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Abstract

We construct a closed bounded subset X of R with no isolated points
which admits a differentiable bijection f : X → X such that f ′(x) = 0 for
all x ∈ X. We also show that any such function admits a restriction f�P to
an uncountable closed P ⊆ X forming a minimal dynamical system. The
existence of such a map f seems to contradict several well know results.
The map f marks a limit beyond which Banach Fixed-Point Theorem
cannot be generalized.

1 Introduction

Recall, that a subset X ⊆ R is perfect, if it is closed and has no isolated points.
A map f : X → X (or, more formally, a pair 〈X, f〉) is a minimal dynamical
system, provided X is non-empty, f is surjective, and f [P ] 6= P for any non-
empty closed proper subset P ( X.

The main contribution of this article is the construction and discussion of a
perfect set X and a seemingly paradoxical (see Fact 2) map f : X→ X, a bijection
with f ′ ≡ 0. More importantly, f satisfies certain local contraction properties
but does not have a fixed point. Hence it indicates the boundaries beyond which
local versions of Banach fixed-point theorem cannot be generalized.

∗Key words: differentiable minimal dynamical systems; fixed point theorem;
Mathematics Subject Classification: Primary 37C25, 54H25; Secondary 26A24, 54C05, 47H09.
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Theorem 1 There exists a non-empty compact perfect set X ⊂ R and a differ-
entiable bijection f : X→ X such that f ′(x) = 0 for every x ∈ X. Moreover,

(i) f is a minimal dynamical system;

(ii) f can be extended to a differentiable function F : R→ R.

The identity f ′ ≡ 0 readily implies that f is locally radially shrinking in a
sense that

(LRS) for every x ∈ X there exists an εx > 0 such that |f(x) − f(y)| < |x − y| for
any y ∈ X with 0 < |x − y| < εx

and it seems impossible for a function with such property to map an infinite
compact set X onto itself.

Figure 1: The result of the action of f2 = 〈f, f〉 on X2 = X× X

The (incorrect) intuition against the existence of the function f from Theo-
rem 1 is also supported by the following three facts.

Fact 2 Assume that X ⊆ R and f : X → R.

(i) X * f [X] when X is a bounded closed interval and |f ′| ≤ λ < 1 on X
since then, by the Mean Value Theorem, |f(y)− f(z)| ≤ λ|y− z| for every
y, z ∈ X, so that the diameter of f [X] is strictly smaller than the diameter
of X. If f ′ ≡ 0, then f is constant.

(ii) X * f [X] when X has a positive finite Lebesgue measure m(X) and
|f ′| ≤ λ < 1 on X, since then m(f [X]) ≤ λm(X), see e.g. [9].

(iii) X * f [X] when |f ′| < 1 on X and f can be extended to a continuously
differentiable function F : R → R. This has been proved by the authors
in [5, lemma 3.3].
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The nonexistence of an example such as one from Theorem 1 must have been
suspected by Edrei, when in his 1952 paper [8] he made the following conjecture.

If 〈X, d〉 is a compact metric space and f : X → X is surjection such
that for every x ∈ X there exists an εx > 0 such that d(f(x), f(y)) ≤
d(x, y) for every y ∈ X with d(x, y) < εx, then every point of X is a
point of isometry of f (i.e., for every x ∈ X there exists an δx > 0
such that d(f(x), f(y)) = d(x, y) for every y ∈ X with d(x, y) < δx).

Clearly, Theorem 1 contradicts this conjecture.
In Section 2 we discuss the relation of the dynamical system 〈X, f〉 from

Theorem 1 to the fixed-point theory of locally contractive functions. Section 3
contains the details of a rather delicate construction of 〈X, f〉. In Section 4 we
prove that any infinite dynamical system 〈X, f〉 on a compact space X and
with surjective (LRS) map f must contain an uncountable minimal dynamical
system. This illuminates the role of property (i) in Theorem 1.

2 The example, minimal dynamics, and Banach
Fixed-Point Theorem

Let 〈X, d〉 be a metric space. A map f : X → X is contractive with a contraction
constant λ ∈ [0, 1) if d(f(y), f(z)) ≤ λd(y, z) for every y, z ∈ X. An x ∈ X is a
fixed point of f whenever f(x) = x.

A famous 1922 theorem of Banach [1], known as Banach Fixed-Point Theo-
rem or the Contractive Mapping Principle, states that

Theorem 3 If X is a complete metric space and f : X → X is contractive,
then f has a fixed point.

Let us recall some notation we need to discuss the dynamics of a continuous
function f : X → X. For a number n ∈ ω = {0, 1, 2, . . .}, the n-th iteration f (n)

of f is defined as f ◦ ∙ ∙ ∙ ◦ f , the composition of n instances of f . In particular,
f (1) = f and f (0) is the identity function. The orbit of x ∈ X with respect
to f is the set O(x) = {f (n)(x) : n ∈ ω}. It is easy to see that f is a minimal
dynamical system if, and only if, the orbit O(x) of every x ∈ X is dense in X
(i.e., for every c ∈ X and ε > 0, the open ball B(c, ε) = {y ∈ X : d(c, y) < ε}
intersects O(x)).

Recall, that a simple application of Zorn’s Lemma1 gives the following 1912
theorem of Birkhoff [2].

Theorem 4 For every compact X and continuous f : X → X there exists a
non-empty compact Z ⊆ X such that f � Z is a minimal dynamical system.

Of course, the set Z from Birkhoff’s theorem 4 can be a singleton. Actually, it
must be a singleton whenever f is a contraction, since otherwise, the diameter
of f [Z] would be smaller than the diameter of Z.

1Applied to the family Z of all closed non-empty Z ⊆ X such that f [Z] ⊆ Z.



K.C. Ciesielski, et al.: Banach theorem vs minimal dynamics 2015/09/22 4

Does it mean, that the only compact minimal dynamical systems
to which Banach Fixed-Point Theorem is applicable are the systems
with singleton spaces?

For the original Banach Fixed-Point Theorem, the answer is affirmative. How-
ever, in this note, we discuss its generalizations in which the assumption that f
is contractive is relaxed to a “local contracting” condition, see Theorems 6 and 7
below. In particular, under such relaxed assumptions, the interplay between the
generalized Banach fixed-point theorems and the minimal dynamical systems is
considerably more intricate.

In the rest of this section, we will discuss two notions of locally contractive
maps: one defined via standard topological localization technique, the other
motivated by a calculus interpretation of contractive maps.

Locally contractive maps via standard localization technique: We say
that a map f : X → X is locally contractive, (LC), provided for every x ∈ X
there exists an εx > 0 such that f � B(x, εx) is contractive with some constant
λx ∈ [0, 1). For a compact space X, (LC) is equivalent to the following uniform
local contraction property2

Fact 5 If X is compact, then f : X → X is locally contractive if, and only if,

(ULC) there exist a λ ∈ [0, 1) and an ε > 0 such that d(f(y), f(z)) ≤ λd(y, z) for
every x ∈ X and y, z ∈ B(x, ε).

Recall that an x ∈ X is a periodic point of a function f : X → X provided
f (n)(x) = x for some n > 0. In particular, x ∈ X is a fixed point of f if,
and only if, it is a periodic point of f with period 1, that is, f (1)(x) = x. For
(LC) functions, using Fact 5, Edelstein’s generalizations of Banach Fixed-Point
Theorem [7, Remark 5.1], and [6, Theorem 5.2], we obtain the following:

Theorem 6 Assume that f : X → X is locally contractive and that X is com-
pact. Then

(i) f has a periodic point;

(ii) f has a fixed point provided X is connected.

Notice, that the assumption of connectedness in (ii) is essential, as justified
by the function f : X → X, with X = [−2,−1] ∪ [1, 2], defined as f(x) =
−sgn(x) = − x

|x| for all x ∈ X. Clearly, it satisfies (LC) with λ = 0 and it has
no fixed point, though points 1 and −1 are periodic.

2Let {B(x, εx) : x ∈ X0} ⊆ {B(x, εx) : x ∈ X} be a finite subcover of X. Then the number
λ = maxx∈X0 λx ∈ [0, 1) satisfies (LC), though with possibly smaller numbers εx.
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Locally contractive maps via calculus interpretation: Differentiable
contractive maps on R have a very nice characterization. Namely, if X ⊆ R
is a closed interval and f : X → X is differentiable, then, by the Mean Value
Theorem, f is contractive if, and only if,

(D) there exists a λ ∈ [0, 1) such that |f ′(x)| ≤ λ for every x ∈ X.

More generally, notice that if X ⊆ R has no isolated points, then the standard
definition of the derivative makes sense for f : X → X and, if f is differentiable,
then (D) is equivalent to the following property, which uses no notion of the
derivative

(LRC) there is a λ ∈ [0, 1) such that for every x ∈ X there exists an εx > 0 with
a property that d(f(x), f(z)) ≤ λd(x, z) for every z ∈ B(x, εx).

(LRC) was studied, for arbitrary metric spaces X, by several authors [12, 13, 15]
and was referred to as the local radial contraction property of f .

Figure 2: f(0) = 0 and f(x) = (an)2 for any x ∈ [an, bn] and n = 1, 2, 3, . . .

Clearly (ULC)⇒(LRC). The fact that this implication cannot be reversed
is justified by a function f : X → X depicted in Figure 2, where X = {0} ∪⋃∞

n=1[an, bn], 1 = b1 > a1 > b2 > a2 > ∙ ∙ ∙ > limn an = 0, and f(an)−f(bn+1) =
an−bn+1 for all n = 1, 2, 3, . . .. This f is (LRC) since f ′(x) = 0 for every x ∈ X.
At the same time (LC) fails for f at x = 0, since any open U 3 0 contains distinct
a and b with f(a) − f(b) = a − b.

Now, returning to Banach Fixed-Point Theorem, the following generalization
to (LRC) functions first appeared in a 1978 paper [13] of Hu and Kirk. However,
its proof contained a gap, as it relied on a false proposition from [12]. The first
complete proof of this theorem appeared in the 1982 paper [15] of Jungck.
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Theorem 7 Assume that X is a complete metric space and that every two
points of X can be connected by a path in X of finite length.3 If f : X → X
satisfies (LRC), then f has a fixed point.

But what happens if, in Theorem 7, we replace all the assumptions on the
space X with a simple requirement that X is compact? In other words,

is Theorem 6(i) true for (LRC) maps?

The negative answer is provided by the function f from Theorem 1; it shows
the limits to the localized generalizations of Banach Fixed-Point Theorem. As f
forms a minimal dynamical system, it is fair to say that f marks the spot where
the minimal dynamical systems “meet” Banach Fixed-Point Theorem. See also
Theorem 9.

The results discussed in this section are summarized in Table 1.

Convexity f : X → X has periodic/fixed point when f is
of X

contractive
locally locally radially

assumed? contractive (LC) contractive (LRC)

Yes
fixed point fixed point fixed point

Banach, Thm 3 Edelstein, Thm 6(ii) Hu & Kirk, Thm 7

No
fixed point periodic point NEITHER

Banach, Thm 3 Edelstein, Thm 6(i) KC & JJ, Thm 1

Table 1: Fixed/periodic point properties implied by various contractive proper-
ties of the function f : X → X, where X is compact and either arbitrary, or a
convex subspace of a Banach space

Remark 8 It is interesting to notice that, according to the property (6) proven
below, function f from Theorem 1 is (LC) at all points but one. Of course,
this single exception is of paramount importance, since, by Theorem 6(i), any
everywhere (LC) function has periodic points.

3 Construction of the example from Theorem 1

The Adding machine: On the set 2ω of infinite 0 -1 sequences define the
following “add one and carry” operation σ : 2ω → 2ω, often referred to as adding
machine (see e.g. [18] or [4]) and representing odometer-like action: for s =
〈s0, s1, s2, . . .〉 ∈ 2ω, σ(s) = s + 〈1, 0, 0, ...〉 or, more precisely,

σ(s) =

{
〈0, 0, 0, . . .〉 if si = 1 for all i < ω,

〈0, 0, . . . , 0, 1, sk+1, sk+2, . . .〉 if sk = 0 and si = 1 for all i < k.

3A length of a path p : [0, 1] → X is defined as a supremum over all numbers∑n
i=1 d(p(ti), p(ti−1)), where 0 = t0 < t1 < ∙ ∙ ∙ < tn = 1. In particular, every convex

subset X of a Banach space is path connected in the sense of Theorem 7.
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Figure 3: f = h ◦ σ ◦ h−1

In other words, if for k < ω we let wk ∈ 2k+1 to be wk = 〈1, . . . , 1, 0〉 (a sequence
of k-many 1s followed by a single 0) and zk ∈ 2k+1 to be zk = 〈0, . . . , 0, 1〉
(a sequence of k-many 0s followed by a single 1), then

σ(1, 1, 1, . . .) = 〈0, 0, 0, . . .〉

σ(wk, sk+1, sk+2, . . .) = 〈zk, sk+1, sk+2, . . .〉.

It is well known and easy to see that σ is a continuous bijection and that

the orbit of every s ∈ 2ω is dense in 2ω.4 (1)

In particular, σ is a minimal dynamical system, see e.g. [17].
For s ∈ 2ω and ν < ω let Nν(s) =

∑
i<ν si2i, with N0(s) understood as 0.

An important property of σ is that for every s ∈ 2ω and k < ω

if s � (k + 1) = wk, then Nν(σ(s)) = Nν(s) + 1 for every ν > k. (2)

Let 1̄ = 〈1, 1, 1, . . .〉. Then, in particular,

Nν(s) < Nν(σ(s)) for every s ∈ 2ω with s 6= 1̄ and any large enough ν < ω.

However, the inequality Nν(s) < Nν(σ(s)) is false for any ν < ω, when s = 1̄.

Format of the example: We will find a continuous injection h : 2ω → R
such that X = h[2ω] and f = h ◦ σ ◦ h−1 forms the example from Theorem 1,
see Figure 3. (Note that h−1 is a homeomorphism between 2ω and X.) Since

4For τ ∈ 2n let [τ ] = {t ∈ 2ω : t � n = τ}. By induction on n < ω, we can easily see that
O(s) ∩ [τ ] 6= ∅ for any s ∈ 2ω .
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f(n) = h ◦ σ(n) ◦ h−1 whenever n < ω, (1) implies that for any x ∈ X the orbit
O(x) of f is dense in X.

Note that f = h ◦σ ◦h−1 is, what is usually called, a topological conjugate of
(or isomorphic to) the adding machine σ. In particular, the mapping h can be
considered as a generator of a metric ρ on 2ω defined as ρ(s, t) = |h(s) − h(t)|.

Format of the function h: The map h : 2ω → R will be defined via formula

h(s) =
∑

n<ω

sncs�n for every s ∈ 2ω (3)

for appropriately chosen numbers cτ ∈ R for τ ∈ 2<ω. To ensure that f ′(x) = 0
for x = h(s) with s ∈ 2ω, it needs to be shown that for every y = h(t) with
t ∈ 2ω and t 6= s, the numbers

Δst =
|f(x) − f(y)|

|x − y|
=

|h(σ(s)) − h(σ(t))|
|h(s) − h(t)|

converge to 0 when ` = min{i < ω : si 6= ti} diverges to infinity.
For s 6= 1̄, that is, of the form 〈wk, sk+1, sk+2, . . .〉, the choice of cτ ’s will

guarantee this convergence by ensuring, for large enough `, and the u ∈ {s, t}
with u` = 1,

|h(σ(s)) − h(σ(t))| ≤ 3
2

∑

n≥`

un|cσ(u)�n|

|h(s) − h(t)| ≥ 1
2

∑

n≥`

un|cu�n| > 0
(4)

as well as the existence of a constant Ek > 0 depending only on k, and a
sequence 〈βn : n < ω〉 with β−1

n ↘ 0 for which

|cσ(u)�n|

|cu�n|
= Ekβ−1

n ≤ Ekβ−1
` for every n ≥ `. (5)

This guarantees the desired convergence, as then

Δst =
|h(σ(s)) − h(σ(t))|

|h(s) − h(t)|
≤

3
2

∑
n≥` un|cσ(u)�n|

1
2

∑
n≥` un|cu�n|

≤ 3Ekβ−1
` →`→∞ 0. (6)

The case s = 1̄ requires essentially different argument, based on the following
two properties, satisfied for ` > 0:

|h(σ(s)) − h(σ(t))| ≤
1

` + 1
1
`

(7)

and

|h(s) − h(t)| ≥
∑

n≥`

|cs�n| ≥
∑

n≥`

1
(n + 2)1/2

1
n + 2

1
n + 1

. (8)
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Since
∑

n≥`
1

(n+2)1/2
1

n+2
1

n+1 ≥
∑

n≥`
1

(n+2)2.5 ≥
∫∞

`+2
x−2.5 dx = 1

1.5
1

(`+2)1.5 ,

(7) and (8) imply the required convergence:

Δst =
|h(σ(s)) − h(σ(t))|

|h(s) − h(t)|
≤

1
`(`+1)

1
1.5

1
(`+2)1.5

= 1.5
(` + 2)1.5

`(` + 1)
→`→∞ 0.

Definition of the coefficients cs�n from (3): We can see by now that a lot
is expected of the coefficients cτ . So, their definition is quite delicate and it will
not be fully completed until we reach equation (14).

To ensure satisfaction of the properties (4)-(8), for every s ∈ 2ω and n < ω
we let βn = ln(n + 3) > 1, and define

cs�n = as�nβ−bs�n
n ds�n, (9)

where ds�n > 0 is defined below in (14), as�0 = −1, bs�0 = 0, and, for n > 0,

as�n =

{
−1 when s � n = 〈1, 1, . . . , 1〉,

1 otherwise
and bs�n = Nνn(s) =

∑

i<νn

si2
i,

where νn = max
{
m < ω : (βn)2

m−1 <
√

n + 2
}
. Notice that the definition of

νn gives (βn)bs�n ≤ (βn)2
νn−1 <

√
n + 2, that is, that

β−bs�n
n >

1
(n + 2)1/2

for every s ∈ 2ω and n < ω. (10)

Reduction of property (8): The sole purpose of the coefficients as�n is to
facilitate the following argument for the first inequality from (8), in case s = 1̄,
where the equations hold since s � n = t � n for all n < `, while as�n = −1 and
at�n = 1 for all n ≥ `

|h(s)−h(t)| =

∣
∣
∣
∣
∣
∣

∑

n≥`

sncs�n −
∑

n≥`

tnct�n

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
−
∑

n≥`

|cs�n| −
∑

n≥`

tn|ct�n|

∣
∣
∣
∣
∣
∣
≥
∑

n≥`

|cs�n|.

Also, by (10), for every n > 0 we have |cs�n| = β
−bs�n
n ds�n ≥ 1

(n+2)1/2 ds�n. Thus,

the second inequality from (8) is ensured by the following requirement:

ds�n =
1

n + 2
1

n + 1
for every n < ω and s = 1̄. (11)

Reduction of property (5): For s = 〈wk, sk+1, sk+2, . . .〉 and large enough
`, the property (5) holds, as long as we ensure that

dσ(s)�n = Ekds�n for every s = 〈wk, sk+1, sk+2, . . .〉 and n > k. (12)

Indeed, since (βn)2
k+1−1

√
n+2

= (ln(n+3))2
k+1−1

√
n+2

→n→∞ 0, there exists an ` > k such

that (βn)2
k+1−1 ≤

√
n + 2 for any n ≥ `. This choice of ` ensures (5) as then,
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Figure 4: Iτ , Iτ 0̂, and Iτ 1̂ for τ ∈ 2n

by the definition of numbers νn, for every n ≥ ` we have k +1 ≤ νn. So, by (2),
Nνn(σ(u)) = Nνn(u) + 1 and

|cσ(u)�n|

|cu�n|
=

β
−Nνn (σ(u))
n dσ(u)�n

β
−Nνn (u)
n du�n

= β−1
n

dσ(u)�n

du�n
= Ekβ−1

n .

To finish the construction, it is enough to define the coefficients dt�n that
ensure: the properties (11) and (12), the fact that h is a continuous injection,
and the estimates (4) and (7).

Definition of the coefficients ds�n: For every n < ω let

ξn =
1
2

1
(n + 4)1/2

.

Then, by (10), for every s ∈ 2ω, ` < ω, and 0 < m < ω,

ξ` <
1
2
β
−bs�`

` and ξm < β
−bs�(m−1)

m−1 . (13)

Mimicking the classical construction of Cantor’s ternary set, we define, for
τ ∈ 2<ω, the intervals Iτ = [pτ , qτ ] in the following way, see Figure 4. For τ
of length 0 (i.e., τ = 〈〉), we put Iτ = [pτ , qτ ] = [0, 1]. If, for some τ ∈ 2n,
the interval Iτ is already defined and τ î ∈ 2n+1 is an extension of τ by a
term i ∈ {0, 1}, then Iτ 1̂ is the terminal n+1

n+2 -th part of Iτ , while Iτ 0̂ the

initial ξn

n+2 -th part of Iτ . More specifically, if Lτ = qτ − pτ is the length of Iτ ,

then Iτ 0̂ = [pτ 0̂, qτ 0̂] = [pτ , pτ + ξn

n+2Lτ ], Iτ 1̂ = [pτ 1̂, qτ 1̂] = [pτ + 1
n+2Lτ , qτ ],

Lτ 0̂ = ξn

n+2Lτ , and Lτ 1̂ = n+1
n+2Lτ . We define

ds�n =
1

n + 2
Ls�n. (14)
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Observe that, for any τ ∈ 2n and i ∈ {0, 1}, we have Lτ 0̂ = ξn

n+2Lτ < n+1
n+2Lτ =

Lτ 1̂. So, Lτ î ≤ Lτ 1̂ = n+1
n+2Lτ and, by induction on n < ω,

Ls�n ≤ L1̄�n =
1

n + 1
for every s ∈ 2ω and n < ω. (15)

Also, an easy inductive argument shows that
∑

n<`

snds�n = ps�` ∈ Is�` for every s ∈ 2ω and ` < ω.

In particular,
⋂

n<ω Is�n =
{∑

n<ω snds�n
}

for every s ∈ 2ω. Moreover

∑

n≥`

snds�n ≤ Ls�` for every s ∈ 2ω and ` < ω (16)

as ps�` +
∑

n≥` snds�n =
∑

n<ω snds�n ∈ Is�` = [ps�`, ps�` +Ls�`]. This will be of
special importance in the case when s` = 0, since then we have

∑
n≥` snds�n =∑

n≥`+1 snds�n ≤ Ls�(`+1) = L(s�`)̂ 0 = ξ`ds�`, that is,

∑

n>`

snds�n =
∑

n≥`

snds�n ≤ ξ`ds�` for every s ∈ 2ω and ` < ω with s` = 0. (17)

Proof of (11) and (12): The property (11) follows immediately from (14)
and (15).

To see (12) notice that for every τ, η ∈ 2m and i ∈ {0, 1} we have Lτ î

Lη̂ i
= Lτ

Lη
.

So, an easy induction shows that for every k < n < ω and τ, η ∈ 2n we have

Lτ�(k+1)

Lη�(k+1)
=

Lτ

Lη
provided τi = ηi for all i with k < i < n.

Since, in (12), si = σ(s)i for all i with k < i < n, by (14) and the above equation

we have
dσ(s)�n

ds�n
=

Lσ(s)�n

Ls�n
=

Lσ(s)�(k+1)

Ls�(k+1)
=

Lzk

Lwk
. Thus, (12) holds with Ek =

Lzk

Lwk
.

Proof of the estimate (7): Here s = 1̄. Then, the use of (17), with `− 1 in
place of ` and σ(t) in place of s, and (15) gives us the required estimate:

|h(σ(s)) − h(σ(t))| =
∑

n≥`

σ(t)ncσ(t)�n =
∑

n≥`−1

σ(t)nβ
−bσ(t)�n
n dσ(t)�n

≤
∑

n≥`−1

σ(t)ndσ(t)�n ≤ dσ(t)�(`−1)ξ`−1

≤ dσ(t)�(`−1) =
1

` + 1
Lσ(t)�(`−1) ≤

1
` + 1

1
`
.
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Proof of the estimates (4): Here s = 〈wk, sk+1, sk+2, . . .〉 and σ(s) =
〈zk, sk+1, sk+2, . . .〉 for some k < ω. Also t ∈ 2ω does not equal s and ` =
min{i < ω : si 6= ti} > 0. By symmetry of expressions |h(s) − h(t)| and
|h(σ(s)) − h(σ(t))| we can assume, without loss of generality, that s` = 1 and
t` = 0. So, the estimates will be proved for u = s.

Now, as t` = 0, by (17) and (13), we obtain
∑

n>`

tnβ−bt�n
n dt�n ≤

∑

n>`

tndt�n ≤ ξ`dt�` = ξ`ds�` ≤
1
2
β
−bs�`

` ds�`. (18)

Hence, we get the second estimate of (4):

h(s) − h(t) =
∑

n≥`

snβ−bs�n
n ds�n −

∑

n>`

tnβ−bt�n
n dt�n

≥
∑

n≥`

snβ−bs�n
n ds�n −

1
2
β
−bs�`

` ds�`

≥
∑

n≥`

snβ−bs�n
n ds�n −

1
2

∑

n≥`

snβ−bs�n
n ds�n

=
1
2

∑

n≥`

snβ−bs�n
n ds�n =

1
2

∑

n≥`

sn|cs�n| > 0.

The first estimate of (4) is obtained as follows:

|h(σ(s)) − h(σ(t))| =

∣
∣
∣
∣
∣
∣

∑

n≥`

sncσ(s)�n −
∑

n>`

tncσ(t)�n

∣
∣
∣
∣
∣
∣

(19)

≤
∑

n≥`

sn|cσ(s)�n| +
∑

n>`

tn|cσ(t)�n|

=
∑

n≥`

snβ
−bσ(s)�n
n dσ(s)�n +

∑

n>`

tnβ
−bσ(t)�n
n dσ(t)�n

≤
∑

n≥`

snβ
−bσ(s)�n
n dσ(s)�n +

1
2
β
−bσ(s)�`

` dσ(s)�` (20)

≤
∑

n≥`

snβ
−bσ(s)�n
n dσ(s)�n +

1
2

∑

n≥`

snβ
−bσ(s)�n
n dσ(s)�n

=
3
2

∑

n≥`

sn|cσ(s)�n|,

where (19) is ensured by the fact that σ(s)n = sn and σ(t)n = tn for every n ≥ `
and by the equation σ(s) � ` = σ(t) � `, while (20) follows from (18) applied to
the pair σ(s)` and σ(t)`.

Proof of continuity of h: By (9), (16), and (15), for any s ∈ 2ω and ` < ω

we have
∣
∣
∣
∑

n≥` sncs�n

∣
∣
∣ ≤

∑
n≥` sn|cs�n| ≤

∑
n≥` snds�n ≤ Ls�` ≤ 1

`+1 . There-

fore, for distinct s, t ∈ 2ω and ` = min{i < ω : si 6= ti}, |h(s) − h(t)| =
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∣
∣
∣
∑

n≥` sncs�n −
∑

n≥` tnct�n

∣
∣
∣ ≤

∣
∣
∣
∑

n≥` sncs�n

∣
∣
∣+
∣
∣
∣
∑

n≥` tnct�n

∣
∣
∣ ≤ 2

`+1 , that is, h

is continuous.

Proof of injectivity of h: To see that the function h is one-to-one, fix distinct
s, t ∈ 2ω and let ` = min{i < ω : si 6= ti}. By symmetry, we can assume that
s` = 1 and t` = 0. Then, we have

h(s) − h(t) =
∑

n≥`

sncs�n −
∑

n≥`

tnct�n =
∑

n≥`

sncs�n −
∑

n>`

tnct�n.

We need to show that h(s) − h(t) 6= 0. For this we will consider the following
cases.

Case 1: s equals to 1̄ = 〈1, 1, 1, . . .〉. Then as�n = −1 for all n < ω and
at�n = 1 for all n > `. Hence

h(s) − h(t) = −
∑

n≥`

snβ−bs�n
n ds�n −

∑

n>`

tnβ−bt�n
n dt�n < 0.

Case 2: there exists an i < ` such that ti = si = 0. Then, as�n = at�n = 1 for

all n ≥ `. So, using the fact that β
−bt�n
n ≤ 1 for all n < ω and the equations

s` = 1 and s � ` = t � `, and, afterwards, applying (17) to t, followed by (13),
we get

h(s) − h(t) =
∑

n≥`

snβ−bs�n
n ds�n −

∑

n>`

tnβ−bt�n
n dt�n

≥ s`β
−bs�`

` ds�` −
∑

n>`

tndt�n

≥ β−bt�`dt�` − ξ`dt�` = dt�`(β
−bt�`

` − ξ`) > 0.

Case 3: neither Case 1 nor Case 2 hold. Let m = min{i < ω : si = 0}. Then
m > `, sm−1 = 1, and sm = 0. Hence, as as�n = −1 for n ≤ m and as�n = 1 for
n > m, using (17) we get

−
∑

n≥`

sncs�n =
∑

`≤n≤ m

snβ−bs�n
n ds�n −

∑

n>m

snβ−bs�n
n ds�n

≥ sm−1β
−bs�(m−1)

m−1 ds�(m−1) −
∑

n>m

snds�n

= β
−bs�(m−1)

m−1 ds�(m−1) −
∑

n≥m

snds�n

≥ β
−bs�(m−1)

m−1 ds�(m−1) − ξmds�m.
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Now, ds�m = 1
m+2Ls�m = 1

m+2L(s�(m−1))̂ 1 = 1
m+2

m
m+1Ls�(m−1) = m

m+2 ds�(m−1)

so that ds�(m−1) = m+2
m ds�m ≥ ds�m. Thus, by (13),

−
∑

n≥`

sncs�n ≥ β
−bs�(m−1)

m−1 ds�(m−1) − ξmds�m

≥ β
−bs�(m−1)

m−1 ds�m − ξmds�m = ds�m

(
β
−bs�(m−1)

m−1 − ξm

)
> 0.

So, h(t) − h(s) =
∑

n>` tnct�n −
∑

n≥` sncs�n ≥ −
∑

n≥` sncs�n > 0.

Proof of (i) and (ii) of Theorem 1: Item (i) was addressed earlier, see (1)
and the discussion in Section 4 below.

Item (ii) follows from a theorem of Jarńık [14] that every differentiable func-
tion f from a compact perfect subset of R into R can be extended to a differ-
entiable function F : R → R. (More on Jarńık’s theorem can be found in [16].
The theorem has also been independently proved in [19, theorem 4.5].)

This concludes the proof of Theorem 1.

4 Must the example be based on a minimal dy-
namics?

Recall that for a metric space X, a function f : X → X is locally radially
shrinking if

(LRS) for every x ∈ X there exists an εx > 0 such that d(f(x), f(y)) < d(x, y)
for any y ∈ B(x, εx), y 6= x.

The function f from Theorem 1(i), constructed in Section 3, is (LRS) and forms
a minimal dynamical system. Our goal here is to prove, that this is not a
coincidence, since any surjective (LRS) self map of an infinite compact space X
contains a minimal dynamics of an uncountable Y ⊂ X:

Theorem 9 Let X be an infinite compact metric space and assume that a map
f : X → X is an (LRS) surjection. Then there exists a perfect subset Y ⊆ X
such that f � Y is a minimal dynamical system.

The proof of this theorem is based on several lemmas. We will also use
the following standard notation: for δ > 0 and non-empty A ⊆ X we define
B(A, δ) =

⋃
a∈A B(a, δ).

Lemma 10 If X0 ⊆ X, f : X0 → X satisfies (LRS), and finite A ⊆ X0 is such
that f [A] ⊆ A, then exists a δ > 0 such that f [X0∩B(A, ε)] ⊆ B(A, ε) for every
ε ∈ (0, δ].

Proof. For every a ∈ A let δa > 0 be such that d(f(x), f(a)) ≤ d(x, a)
whenever x ∈ X0 ∩ B(a, δa). Then δ = mina∈A δa > 0 is as needed.
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Indeed, fix an ε ∈ (0, δ] and choose an x ∈ X0 ∩ B(A, ε). To see that
f(x) ∈ B(A, ε) pick an a ∈ A with x ∈ B(a, ε). Then, since f(a) ∈ A, we have
d(f(x), A) ≤ d(f(x), f(a)) ≤ d(x, a) < ε so that f(x) ∈ B(A, ε), as needed.

Our next lemma states that the existence of a surjection with (LRS) property
implies that the space X must be uncountable. In the proof, we use the notion
of Cantor-Bendixon rank, defined as follows. For a metric space X we let (X)′

to be the set of all accumulation points of X. For the ordinal numbers α, λ < ω1,
where λ is a limit ordinal, we define

X(0) = X, X(α+1) = (X(α))′, and X(λ) =
⋂

α<λ X(α).

An easy inductive argument shows that for every α < ω1, if A ⊆ B ⊆ X, then
A(α) ⊆ B(α).

We define the Cantor-Bendixon rank of X, denoted |X|CB , to be the least
ordinal number α < ω1 such that X(α+1) = X(α). Recall, that if X is compact,
then α = |X|CB is either zero or a successor ordinal, that is, of the form α =
β + 1. Moreover, if X is also countable, then α > 0 and X(α) = ∅.

Lemma 11 If X0 ⊆ X is infinite compact and f : X0 → X is a surjection with
(LRS) property, then X0 is uncountable.

Proof. Assume, towards a contradiction, that there exists a function f as in
the lemma with a countable infinite X0. Let X0 be such an example with the
smallest possible Cantor-Bendixon rank α = |X0|CB . Then, since X0 is compact
and infinite, α = β + 1 for some ordinal β ≥ 1. Clearly X ⊆ f [X0] implies that
X(β) ⊆ f [X0](β). Also, an easy inductive argument shows that f [X0](β) ⊆
f [(X0)(β)]. (See e.g. (Iβ) in [5, lemma 4.3].) It follows that X(β) ⊆ f [(X0)(β)].
Since, (X0)(β) ⊆ X(β) and, by compactness of X0, (X0)(β) is finite, the inclusions
(X0)(β) ⊆ X(β) ⊆ f [(X0)(β)] imply the equality (X0)(β) = f [(X0)(β)]. The set
A = (X0)(β) satisfies the assumptions of Lemma 10. So, let δ > 0 be as in this
lemma.

If β = 1, put B = B(A, δ). Then f [X0 ∩ B] ⊆ B. We need to show that
the inclusion is proper. Indeed, X0 ∩ B is closed, since it contains A = (B)′.
So, there exists an x ∈ X0 ∩ B of maximal distance η = d(x,A) to A. Notice,
that η > 0, as X0 ∩ B 6⊆ A. We claim that x 6= f(z) for every z ∈ B. Indeed,
it is obvious when z ∈ A, since then d(f(z), A) = 0 < η = d(x,A); otherwise,
there is an a ∈ A with 0 < d(z, a) = d(z,A) ≤ η < δ and so, by (LRS),
d(f(z), A) ≤ d(f(z), f(a)) < d(z, a) ≤ η = d(x,A), once again giving x 6= f(z).
So, we proved that f [B] ( B.

The contradiction is obtained by noticing that, f being surjective, f [X0 \B]
must contain X \f [X0∩B], which is impossible, since finite a set X0 \B cannot
be mapped onto its proper superset X \ f [X0 ∩ B].

If β > 1, then, for some ε ∈ (0, δ], the set X1 = X0 \ B(A, ε) is infinite and
contains a limit point. Moreover, X1 ⊆ f [X1] and X1 has the Cantor-Bendixon
rank less than α, contradicting the choice of α.
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Lemma 12 If X is compact and f : X → X satisfies (LRS), then, for every
positive m < ω, the set Fm = {x ∈ P : f (m)(x) = x} is finite.

Proof. An easy induction shows that f (m) also satisfies (LRS). If Fm was infi-
nite, then, being compact, it would contain an accumulation point, say x ∈ Fm.
But then, f (m) would not be shrinking in any neighborhood of x, a contradic-
tion.

In what follows, we will use notation Fm to the sets from Lemma 12.

Lemma 13 If X is compact uncountable and f : X → X is a surjective map
satisfying (LRS), then there exists an open U ⊆ X containing

⋃∞
m=1 Fm such

that X \ U is uncountable and X \ U ⊆ f [X \ U ].

Proof. Let μ be a Borel probability measure on X vanishing on points (e.g.,
defined as an appropriate product measure on a copy of a Cantor set in X).
Clearly the orbit O(x) of each x ∈ Fm is finite. So, by Lemma 12, the set
Am =

⋃
x∈Fm

O(x) is finite and, clearly, f [Am] ⊆ Am.
By Lemma 10 applied to A = Am, for every positive m < ω there is a δm > 0

such that f [B(Am, ε)] ⊆ B(Am, ε) for every ε ∈ (0, δm]. Choose εm ∈ (0, δm]
small enough so that μ(B(Am, εm)) ≤ 2−(m+2). Then U =

⋃∞
m=1 B(Am, εm) is

as desired, since μ(U) ≤ 1/2 < μ(X) and f [U ] ⊆ U .

Proof of Theorem 9. Let f and X be as in Theorem 9. Then, by Lemma 11,
X is uncountable. Hence, we can use Lemma 13. Let U be as in Lemma 13 and
put T = X \ U . Then,

(∗) T ⊆ f [T ].

A simple application of Zorn’s Lemma, following an idea from Birkhoff [2],
implies that there exists a minimal non-empty compact Y ⊆ T satisfying (∗).
Notice, that this minimality of Y implies Y = f [Y ], as otherwise Y ∩ f−1(Y )
would be a proper closed subset of Y satisfying (∗).

To finish the argument, notice that Y is infinite, since otherwise it would be
contained in

⋃∞
m=1 Fm ⊆ U , which is disjoint with Y . Thus, by Lemma 11, Y

is uncountable and, being minimal, it must be perfect. (It cannot have isolated
points, since the orbit of any point of Y must be dense in Y .)

Finally, notice that the careful choice of a metric on a copy X of the Cantor
set 2ω is essential to the example from Theorem 1.

Remark 14 If d is the standard metric on 2ω defined, for distinct s, t ∈ 2ω as
d(s, t) = 2−min{n<ω : sn 6=tn}, then 2ω 6⊆ f [2ω] for every (LRS) map f on 〈2ω, d〉.
Indeed, 〈2ω, d〉 is ultrametric (i.e., satisfies d(s, u) ≤ max{d(s, t), d(t, u)} for
every s, t, u ∈ 2ω) while F. George has recently proved [11] that X 6* f [X] for
any (LC) map f on a compact ultrametric space 〈X, d〉. However, George’s
proof works for the (LRS) functions as well, because for any Y ⊆ X, and a ∈ Y
the diameter of Y equals sup{d(a, y) : y ∈ Y }, see [20, p. 49].



K.C. Ciesielski, et al.: Banach theorem vs minimal dynamics 2015/09/22 17

Notice that the perfect subsets X of R that admit a function f as in The-
orem 1 are rare, in a sense that they are of first category in the space K of
non-empty compact subsets of R furnished with the Hausdorff metric. This has
been proved by Bruckner and Steele in [3].

The fact that the set X is compact is crucial. The examples of this kind
for non-compact complete metric spaces are considerably easier to come by. In
particular, Hu and Kirk [13] give an example of a complete metric ρ on R,
inducing the standard topology, such that the map f(x) = x + 1 has derivative
zero everywhere in a sense that limy→x

ρ(f(y),f(x))
ρ(y,x) = 0 for all x ∈ R.

References

[1] S. Banach, “Sur les opérations dans les ensembles abstraits et leur appli-
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