Krzysztof Chris Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310 and Department of Radiology, MIPG, University of Pennsylvania, Blockley Hall – 4th Floor, 423 Guardian Drive, Philadelphia, PA 19104-6021. email: KCies@math.wvu.edu Jakub Jasinski, Department of Mathematics, University of Scranton, Scranton, PA 18510-4666. email: jakub.jasinski@scranton.edu

ON CLOSED SUBSETS OF \mathbb{R} AND OF \mathbb{R}^2 ADMITTING PEANO FUNCTIONS

Abstract

In this note we describe closed subsets of the real line $P \subset \mathbb{R}$ for which there exists a continuous function from P onto P^2 , called *Peano function*. Our characterization of those sets is based on the number of connected components of P. We also include a few remarks on compact subsets of \mathbb{R}^2 admitting Peano functions, expressed in terms of connectedness and local connectedness.

1 Introduction

For a topological space X, we say that X admits a Peano function provided there exists a continuous map f from X onto X^2 , to which we will refer as a Peano function (for X). The classic result of G. Peano [5] states that there exists a Peano function for the interval $[0,1] \subset \mathbb{R}$.

Throughout this note $\kappa(X)$ denotes the number (cardinality) of connected components of X. Recently K. Ciesielski and J. Jasinski [1] gave the following characterization of compact sets of reals which admit Peano functions.

Theorem 1.1. If $P \subset \mathbb{R}$ is compact, then P admits a Peano function if, and only if, either $\kappa(P) = 1$ or $\kappa(P) = \mathfrak{c}$.

In the next theorem, generalizing Theorem 1.1, we give a complete characterization of non-empty closed subsets of \mathbb{R} which admit Peano functions.

Mathematical Reviews subject classification: Primary: 26A30; Secondary: 26B05 Key words: Peano curve, space filing curve

Note, that if X admits a continuous map $f = \langle f_1, f_2 \rangle$ from X onto X^2 , then for every $n < \omega$ there exists a continuous map g_n from X onto X^n . For $n = 2^k$ this can be done by induction: $g_{2^{k+1}} : X \to X^{2^{k+1}} = X^{2^k} \times X^{2^k}$ can be defined as $\langle g_{2^k} \circ f_1, g_{2^k} \circ f_2 \rangle$. Then, for any $n \leq 2^k$, g_n can be defined as a composition of g_{2^k} with the projection $\pi : X^{2^k} \to X^n$ onto the first n coordinates. Compare also [6].

2 Closed subsets of the real line

Theorem 2.1. A closed non-empty subset P of \mathbb{R} admits a Peano function if, and only if, one of the following conditions holds:

- (1) $\kappa(P) = 1$;
- (2.1) $\kappa(P) = \omega$ and P is countable, unbounded;
- (2.2) for every $n < \omega$, $\kappa(P \setminus (-n, n)) = \omega$ and $P \setminus (-n, n)$ is uncountable;
- (3.1) $\kappa(P) = \mathfrak{c}$ and P is bounded;
- (3.2) $\kappa(P \setminus (-n, n)) = \mathfrak{c}$ for every $n < \omega$.

PROOF. We first show the sufficiency of each of the conditions (1)-(3.2).

- (1) $\kappa(P)=1$: If P is bounded, then P admits a Peano function by the classical Peano result, [5]. So, assume that P is unbounded. Then there exists a sequence $[b_0,c_0]\subset [b_1,c_1]\subset [b_2,c_2]\subset \cdots$ of closed intervals such that $P=\bigcup_{n<\omega}[b_n,c_n]$. We also have $P^2=\bigcup_{n<\omega}[b_n,c_n]^2$. Moreover, for some $a\in\mathbb{R}$, P contains either $[a,\infty)$ or $(-\infty,a]$. Assume the former case and, for simplicity, that a=0. By the classic Peano result, for each $n<\omega$ there exists a continuous surjection $f_n\colon [2n,2n+1]\to [b_n,c_n]^2$. Then, the union $\bigcup_{n<\omega}f_n$ is a continuous surjection from $\bigcup_{n<\omega}[2n,2n+1]\subset P$ onto $\bigcup_{n<\omega}[b_n,c_n]^2=P^2$. Since P^2 is convex, by the version of Tietze's theorem from [2], we can extend $\bigcup_{n<\omega}f_n$ to the desired continuous surjection $f\colon P\to P^2$.
- (2.1) $\kappa(P) = \omega$ and P is countable: If P is countable unbounded, then either $P \cap [n, \infty) \neq \emptyset$ for all $n < \omega$ or $P \cap (-\infty, n] \neq \emptyset$ for all $n < \omega$. Assume the former case. Then, there exists an increasing sequence $\langle d_n \in \mathbb{R} \setminus P : n < \omega \rangle$ divergent to ∞ such that $P_n = P \cap (d_n, d_{n+1})$ is non-empty for every $n < \omega$. Then, the sets P_n , for every $n < \omega$, and $\bigcup_{k < \omega} P_k = P \cap [d_0, \infty)$ are clopen in

P. Let $P^2 = \{c_n : n < \omega\}$ and notice that $f : P \to P^2$ defined by

$$f(x) = \begin{cases} c_n & \text{for } x \in P_n, \\ c_0 & \text{for } x \in P \setminus \bigcup_{k < \omega} P_k \end{cases}$$

is continuous and onto P^2 .

(2.2) For every $n < \omega$, $\kappa(P \setminus (-n, n)) = \omega$ and $P \setminus (-n, n)$ is uncountable: The assumptions imply that for every real s < t the set $P \setminus (s, t)$ contains a component [a, b] with a < b. Thus, by an easy induction, we can choose disjoint components $\{[a_n, b_n] : n < \omega\}$ of P such that $a_n < b_n$ and $[a_n, b_n] \subset P \setminus (-n, n)$ for every $n < \omega$. Clearly, $\bigcup_{n < \omega} [a_n, b_n]$ is unbounded.

We make the argument more transparent by assuming that $\bigcup_{n<\omega}[a_n,b_n]$ is unbounded towards positive infinity and (by selecting a subsequence, if necessary) that $a_0 < b_0 < a_1 < b_1 < \cdots$. It is now easy to see that there exists a sequence of intervals $\langle (c_n,d_n)\colon n<\omega\rangle$ with $c_n,d_n\notin P,\ d_n=c_{n+1}$ such that each set $P_n=P\cap(c_n,d_n)$ contains $[a_n,b_n]$ for $n<\omega$. Then, as before, the sets P_n , for all $n<\omega$, and $\bigcup_{k<\omega}P_k=P\cap[c_0,\infty)$ are clopen in P.

Notice also, that $P^2 = \bigcup_{n < \omega} R_n$, where each R_n is a bounded closed rectangle $I_n \times J_n$, that is, both I_n and J_n are bounded closed (possible singletons) intervals. Indeed, each component of P^2 is of the form $C = I \times J$, where both I and J are closed (possible singleton or unbounded) intervals, while any such set is a countable union of bounded closed rectangles.

For every $n < \omega$ choose a continuous function f_n from P_n onto R_n . It exists, since P_n can be continuously mapped onto $[a_n, b_n]$, and, with the help of the classic Peano result, $[a_n, b_n]$ can always be mapped continuously onto R_n . Let $c \in P^2$ and define

$$f(x) = \begin{cases} f_n(x) & \text{for } x \in P_n, \\ c & \text{for } x \in P \setminus \bigcup_{k < \omega} P_k. \end{cases}$$
 (1)

Clearly $f: P \to P^2$ is a Peano function for P.

- (3.1) $\kappa(P) = \mathfrak{c}$ and P is bounded: Such sets P admit Peano functions by Theorem 1.1.
- (3.2) $\kappa(P \setminus (-n, n)) = \mathfrak{c}$ for every $n < \omega$: We either have $\kappa(P \cap [n, \infty)) = \mathfrak{c}$ for all $n < \omega$ or $\kappa(P \cap (-\infty, -n]) = \mathfrak{c}$ for all $n < \omega$. Assume the former case. Then, there exists an increasing sequence $\langle d_n \in \mathbb{R} \setminus P : n < \omega \rangle$ diverging to ∞

such that for every $P_n = P \cap (d_n, d_{n+1})$ we have $\kappa(P_n) = \mathfrak{c}$. Then $\bigcup_{k < \omega} P_k$ is closed and each P_n is compact and open in P.

Since every closed subset of \mathbb{R}^2 is sigma compact, $P^2 = \bigcup_{n < \omega} K_n$, where each $K_n \subseteq \mathbb{R}^2$ is compact. Recall (e.g. [1, p. 70]) that any compact set $Q \subseteq \mathbb{R}$ with $\kappa(Q) = \mathfrak{c}$ can be mapped continuously onto any compact $K \subseteq \mathbb{R}^2$. For every $n < \omega$ choose a continuous function f_n from P_n onto K_n and fix a $c \in P^2$. Notice that the function $f: P \to P^2$ defined by the formula (1) above is a Peano function for P.

We now prove the necessity of the conditions of Theorem 2.1. For the rest of this section let $P \subseteq \mathbb{R}$ be a non-empty closed set and let $f: P \to P^2$ be a Peano function for P. It is easy to verify that $\kappa(P) \in \{1, \omega, \mathfrak{c}\}$. Indeed, $\kappa(P)$ cannot be finite greater than 1 because it admits a Peano function so $\kappa(f[P]) \leq \kappa(P)$ while $\kappa(P^2) = \kappa(P)^2$. Now if $\kappa(P)$ is infinite, then $\kappa(P) = |P \setminus \operatorname{Int}(P)|$. So, below we discuss the three possible values of $\kappa(P)$.

 $\kappa(P) = 1$: The condition (1) from Theorem 2.1 is satisfied.

 $\kappa(P) = \omega$: Notice that in this case, by Theorem 1.1, P must be unbounded. If P is countable then the condition (2.1) is met. So, let us assume that $|P| = \mathfrak{c}$. Let $\langle K_n : n < \omega \rangle$ be a sequence of all components of P. Clearly at least one of the K_n 's, say K_0 , must be uncountable.

Claim 1: Infinitely many of the K_n 's are uncountable.

Suppose otherwise, that is, that P has a finite number of uncountable components. At the same time, P^2 has infinitely many uncountable components, $K_0 \times K_n$, $n < \omega$. Since a continuous image of a single component must be connected, only finitely many of the uncountable components of P^2 can be covered by a continuous image of P. Thus, P does not admit Peano functions which proves Claim 1.

It follows that P has infinitely many non-degenerate interval components. At most two of them can be unbounded. Let $\langle I_n \rangle_{n < \omega}$ be a sequence of all non-degenerate bounded interval components of P and set $F = \bigcup_{n < \omega} I_n$.

Claim 2: F is unbounded.

By way of contradiction assume that F is bounded. Then, there exists an $n < \omega$ such that $F \subseteq [-n,n]$. Observe that P cannot have unbounded components. Indeed, if P did have an unbounded component, then P^2 would have infinitely many unbounded components. However, since $F \subseteq [-n,n]$, a continuous image of P can have at most two unbounded components, since

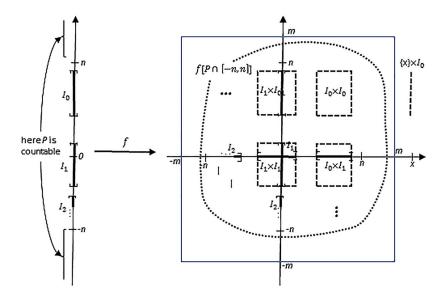


Figure 1: Illustration why the set F in Claim 2 must be unbounded.

the image of $P\cap [-n,n]$ is compact. So, such P would not admit a Peano function. Thus, our P does not have any unbounded components so $P\smallsetminus [-n,n]$ is countable. Therefore, once again, no continuous function f from P can be onto P^2 , since $f[P\cap [-n,n]]$, being compact, is contained in $[-m,m]^2$ for some $m<\omega$ and for any $x\in P\smallsetminus [-m,m]$ the uncountable set $\{x\}\times I_0\subset P^2$ cannot be covered by the countable set $f[P\smallsetminus [-n,n]]$, see Figure 1. So, F must be unbounded, which proves Claim 2.

Clearly, the two claims imply (2.2).

 $\kappa(P)=\mathfrak{c}$: If P is bounded then we have condition (3.1). So assume that the set P is unbounded. We must show that for all $n<\omega$, $\kappa(P\smallsetminus(-n,n))=\mathfrak{c}$. Suppose otherwise, that there is an $n_0<\omega$ with $\kappa(P\smallsetminus(-n_0,n_0))\leq\omega$. Since $f[P\cap[-n_0,n_0]]$ is compact, it is contained in $[-m,m]^2$ for some $m<\omega$. For any $x\in P\smallsetminus[-m,m]$ the the $\{x\}\times P\subset P^2\smallsetminus f[P\cap[-n_0,n_0]]$ intersects

uncountably many components of P^2 , so it cannot be covered by a continuous image of $P \setminus (-n_0, n_0)$, since it has only countably many components.

3 Compact subsets of the plane

The case of connected and locally connected sets is made clear by the following theorem.

Theorem 3.1. If P is a compact connected and locally connected metric space, then P admits a Peano function.

PROOF. We may assume that P has two different points, $a,b \in P$. Let d be the metric on P and define a function $g \colon P \to [0,\infty), \ g(x) = d(x,b)$. The space P is compact and connected so, by the intermediate value theorem (see e.g. [4, Theorem 24.3]), $g[P] = [0,\alpha]$ for some $\alpha \in (0,\infty)$. Also, since P^2 is still compact, connected, and locally connected metric space [4, Theorem 23.6], by Hahn-Mazurkiewicz Theorem [3, p. 129], there exists a continuous function from h from $[0,\alpha]$ onto P^2 . Then, $f = h \circ g$ is a Peano function for P.

For compact connected subsets P of \mathbb{R}^2 which are not locally connected, the situation is not that simple, since such a space need not be path connected.

Example 3.2. If $P = \{\langle x, \sin(1/x) \rangle : x \in (0,1]\} \cup (\{0\} \times [-1,1])$ is the topologist's sine curve [4, p.157], then there is no continuous function from P onto P^2 .

PROOF. Since a continuous image of a path connected set is path connected, the two path components of P cannot be mapped onto four path components of P^2 .

What about compact path connected subsets P of \mathbb{R}^2 , which are not locally connected? Here is another counterexample. In its statement, for every $r \in \mathbb{R}$, the set I_r represents the closed line segment in \mathbb{R}^2 connecting $\langle 0, 1 \rangle$ with $\langle r, 0 \rangle$. Moreover, $S = \{0\} \cup \{1/n \colon n = 1, 2, 3, \ldots\}$.

Example 3.3. Let $P = \bigcup_{r \in S} I_r$ be the closed infinite broom, see Figure 2. (Compare [4, p. 162].) Then, there is no continuous function from P onto P^2 .

PROOF. An argument bares some similarity to the fact that S cannot be continuously mapped onto S^2 , a special case of [1, lemma 4.3]. Recall that P is not locally connected at the point $\langle 0,0\rangle$. Actually, for every open V containing $\langle 0,0\rangle$ and of the diameter less than 1, the sets $V\cap I_{1/n}$ are pairwise disjoint, closed in V, and non-empty for all but finitely many n.

By way of contradiction, assume that P admits a Peano function f. We will show, that this assumption implies that

•
$$\{\langle 0,0\rangle\} \times P \subset f[I_0].$$

However, \bullet is impossible, since a continuous image of an interval must be locally connected [3, p. 129]. At the same time, no locally connected subspace T of P^2 can contain $\{\langle 0,0\rangle\} \times P$, since for such T every connected $C \subset P^2$ of the diameter less than 1 and with $\langle \langle 0,0\rangle, \langle 0,0\rangle \rangle \in C$ must be contained in I_0^2 , so it has empty interior in T.

To see \bullet , fix a $p \in P$ and let $t = \langle \langle 0, 0 \rangle, p \rangle$. We need to show that $t \in f[I_0]$. For this, consider the sequence $\langle t_n \rangle_n = \langle \langle \langle 1/n, 0 \rangle, p \rangle \rangle_n$, in $P \times \{p\}$, converging to t and notice, that

(*) for every $s \in S$ the set $f[I_s]$ can contain only finitely many t_n 's.

Indeed, otherwise, we would have $t \in f[I_s]$ and every open U in $f[I_s]$ containing t would intersect infinitely many sets $K_n = I_{1/n} \times P$, see Figure 2. Since, for

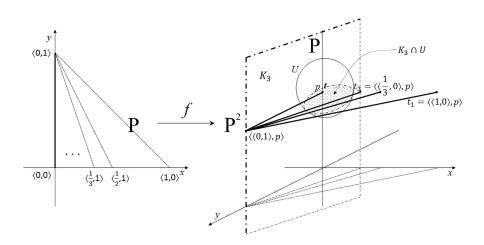


Figure 2: There is no Peano function for the infinite broom P. The outlined parallelogram represents the set $K_3 = I_{1/3} \times P$

every U of the diameter less than 1, the sets $U \cap K_n$ are pairwise disjoint and clopen in U, this would mean that $f[I_s]$ is not locally connected at t.

Using (*) and the assumption that f is onto P^2 , we can choose a subsequence $\langle t_{n_i} \rangle_i$ and distinct points $s_i \in S$ such that $t_{n_i} \in f[I_{s_i}]$ for every i. Let $x_i \in I_{s_i}$ be such that $f(x_i) = t_{n_i}$. Since P is compact, choosing subsequence, if necessary, we can assume that $\langle x_i \rangle_i$ converges to an $x \in P$. Since the points s_i are distinct, $x \in I_0$. Thus, $t = \lim_i t_{n_i} = \lim_i f(x_i) = f(\lim_i x_i) = f(x) \in f[I_0]$, as we were to prove.

Can the argument from the above example be generalized to any compact path connected subset P of \mathbb{R}^2 , which is not locally connected? A negative answer is given by the following example. In its statement, $C \subset [0,1]$ stands for the Cantor ternary set.

Example 3.4. Let $P = \bigcup_{r \in C} I_r$ be the closure of Knaster-Kuratowski exploding set. Then P is compact, path connected, and not locally connected. Moreover, there exists a continuous function from P onto P^2 .

PROOF. Let $p = \langle p_1, p_2 \rangle \colon C \times [0, 1] \to [0, 1]^2$ be defined as $p(x, y) = \langle x(1 - y), y \rangle$ and notice that $P = p[C \times [0, 1]]$, since $p[\{r\} \times [0, 1]] = I_r$. Clearly p is a continuous closed map. As such, it is a quotient map, see e.g. [4, p. 137].

Let $k = \langle k_1, k_2 \rangle$ and $h = \langle h_1, h_2 \rangle$ be the Peano functions for C and [0, 1], respectively. Moreover, assume that $h(1) = \langle 1, 1 \rangle$, which is satisfied for the standard Peano curve. Let $g = \langle p \circ \langle k_1, h_1 \rangle, p \circ \langle k_2, h_2 \rangle \rangle$: $C \times [0, 1] \to P^2$. Clearly, g is continuous and onto P^2 . Moreover, g is constant on any set $p^{-1}(\{z\})$ with $z \in P$. (Indeed, if $p(c_0, y_0) = p(c_1, y_1)$ for distinct $\langle c_0, y_0 \rangle$ and $\langle c_1, y_1 \rangle$ from $C \times [0, 1]$, then $y_0 = y_1 = 1$. So, by $h(1) = \langle 1, 1 \rangle$, $g(c_i, y_i) = p(k_i(c_i), 1) = \langle 0, 1 \rangle$ for i < 2.) Therefore, by [4, theorem 22.2], there exists a continuous function f from P onto P^2 , the desired Peano map.

Problem 1. Characterize the compact connected (or just path connected) subsets of the plane which admit Peano function.

References

- [1] K.C. Ciesielski and J. Jasinski, Smooth Peano functions for perfect subsets of the real line, *Real Analysis Exchange* **39**(1) (2014), 57–72.
- [2] J. Dugunji, An extension of Tietze's theorem, *Pacific Journal of Mathematics* **1**(3) (1951), 353–366.
- [3] J.G. Hocking and G.S. Young, *Topology*, Addison-Wesley, 1961.

- K.C. Ciesielski, J. Jasinski, Sets admitting Peano functions 11/24/149
- [4] J.R. Munkres, *Topology*, Prentice Hall, 2nd ed., 2000.
- [5] G. Peano, Sur une courbe, qui remplit toute une aire plane, $Math.\ Ann.$ 36 (1890), 157-160.
- [6] H. Sagan, Space-Filling Curves, Springer-Verlag, 1994.