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Abstract

In this note we describe closed subsets of the real line P C R for
which there exists a continuous function from P onto P2, called Peano
function. Our characterization of those sets is based on the number of
connected components of P. We also include a few remarks on com-
pact subsets of R? admitting Peano functions, expressed in terms of
connectedness and local connectedness.

1 Introduction

For a topological space X, we say that X admits a Peano function provided
there exists a continuous map f from X onto X2, to which we will refer as a
Peano function (for X ). The classic result of G. Peano [5] states that there
exists a Peano function for the interval [0, 1] C R.

Throughout this note x(X) denotes the number (cardinality) of connected
components of X. Recently K. Ciesielski and J. Jasinski [1] gave the following
characterization of compact sets of reals which admit Peano functions.

Theorem 1.1. If P C R is compact, then P admits a Peano function if, and
only if, either k(P) =1 or k(P) = c.

In the next theorem, generalizing Theorem 1.1, we give a complete char-
acterization of non-empty closed subsets of R which admit Peano functions.
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Note, that if X admits a continuous map f = (fi, f2) from X onto X2, then
for every n < w there exists a continuous map g, from X onto X™. For n = 2F
this can be done by induction: gor+1: X — X2 = X2" x X?" can be defined
as (gok © f1,gor © fo). Then, for any n < 2% g, can be defined as a compo-
sition of gox with the projection m: X2" = X" onto the first n coordinates.
Compare also [6].

2 Closed subsets of the real line

Theorem 2.1. A closed non-empty subset P of R admits a Peano function
if, and only if, one of the following conditions holds:

(1) w(P)=1;

(2.1) k(P) = w and P is countable, unbounded;

(2.2) for every n < w, k(P \ (—n,n)) =w and P\ (—n,n) is uncountable;
(3.1) k(P) =c and P is bounded;

(3.2) K(P\ (=n,n)) =c for every n < w.

PRrROOF. We first show the sufficiency of each of the conditions (1)-(3.2).

(1) sk(P) = 1: If P is bounded, then P admits a Peano function by the
classical Peano result, [5]. So, assume that P is unbounded. Then there
exists a sequence [bg, co] C [b1, 1] C [b2, 2] C -+ - of closed intervals such that
P = Upcwlbn,cn]. We also have P2 = J, _ [bn,cn]?. Moreover, for some
a € R, P contains either [a,00) or (—o0,a]. Assume the former case and, for
simplicity, that @ = 0. By the classic Peano result, for each n < w there exists
a continuous surjection f,: [2n,2n + 1] = [by, ¢,]?. Then, the union (J, ., fn
is a continuous surjection from (J,, _ [2n,2n+1] C P onto |, ., [bn, ¢n)? = P2
Since P? is convex, by the version of Tietze’s theorem from [2], we can extend
Un<o fn to the desired continuous surjection f: P — P2,

(2.1) k(P) = w and P is countable: If P is countable unbounded, then
either PN [n,00) # 0 for all n < w or PN (—oo,n] # 0 for all n < w. Assume
the former case. Then, there exists an increasing sequence (d,, € R\ P: n < w)
divergent to oo such that P, = PN (d,,d,+1) is non-empty for every n < w.
Then, the sets P,, for every n < w, and {J,_,, Px = P N [dp, o0) are clopen in
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P. Let P? = {c,: n < w} and notice that f: P — P? defined by

¢, forzxzeP,,
flz) =
Co fOI‘J)EP\Uk<ka

is continuous and onto PZ2.

(2.2) For every n < w, k(P\(—n,n)) =w and P\ (—n,n) is uncountable:
The assumptions imply that for every real s < ¢ the set P\ (s,¢) contains a
component [a, b] with a < b. Thus, by an easy induction, we can choose disjoint
components {[an, b,]: n < w} of P such that a,, < b, and [ay, b,] C P\(—n,n)
for every n < w. Clearly, |, ., [@n, bn] is unbounded.

We make the argument more transparent by assuming that (J,, ., [an, b]
is unbounded towards positive infinity and (by selecting a subsequence, if
necessary) that ap < by < a; < by < ---. It is now easy to see that there
exists a sequence of intervals ((c,,d,): n < w) with ¢,,d, ¢ P, d, = ¢pt1
such that each set P, = P N (¢cp,d,) contains [an,by,] for n < w. Then, as
before, the sets P,, for all n < w, and |J,, Pr = P N [co, 00) are clopen in P.

Notice also, that P2 = U, <w Bn, where each R, is a bounded closed rect-
angle I, X J,, that is, both I, and J, are bounded closed (possible singletons)
intervals. Indeed, each component of P? is of the form C' = I x J, where both
I and J are closed (possible singleton or unbounded) intervals, while any such
set is a countable union of bounded closed rectangles.

For every n < w choose a continuous function f, from P, onto R,. It
exists, since P, can be continuously mapped onto [a,, b,], and, with the help
of the classic Peano result, [a,,b,] can always be mapped continuously onto
R,,. Let ¢ € P? and define

) fulz)  forxz € Py,
o= {c for z € P\ Uy, Pr- .

Clearly f: P — P2 is a Peano function for P.

(3.1) k(P) =c and P is bounded: Such sets P admit Peano functions by
Theorem 1.1.

(3.2) kK(P\(—n,n)) = ¢ for every n < w: We either have k(PN[n,c0)) =¢
for all n < w or k(P N (—o0,—n]) = ¢ for all n < w. Assume the former case.
Then, there exists an increasing sequence (d,, € R\ P: n < w) diverging to oo
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such that for every P,, = PN (d,,d,41) we have k(P,) = ¢. Then {J,_,, P is
closed and each P, is compact and open in P.

Since every closed subset of R? is sigma compact, P2 = U, <w Kn, where
each K,, C R? is compact. Recall (e.g. [1, p. 70]) that any compact set
Q C R with £(Q) = ¢ can be mapped continuously onto any compact K C R2.
For every n < w choose a continuous function f,, from P, onto K,, and fix a
¢ € P?. Notice that the function f: P — P? defined by the formula (1) above
is a Peano function for P.

We now prove the necessity of the conditions of Theorem 2.1. For the rest of
this section let P C R be a non-empty closed set and let f: P — P2 be a Peano
function for P. It is easy to verify that x(P) € {1,w, c}. Indeed, x(P) cannot
be finite greater than 1 because it admits a Peano function so x(f[P]) < x(P)
while k(P?) = x(P)?. Now if x(P) is infinite, then x(P) = |P \ Int(P)|. So,
below we discuss the three possible values of k(P).

k(P) =1: The condition (1) from Theorem 2.1 is satisfied.

k(P) =w: Notice that in this case, by Theorem 1.1, P must be unbounded.
If P is countable then the condition (2.1) is met. So, let us assume that
|P| = c¢. Let (K,,: n < w) be a sequence of all components of P. Clearly at
least one of the K,,’s, say Ky, must be uncountable.

Claim 1: Infinitely many of the K,,’s are uncountable.

Suppose otherwise, that is, that P has a finite number of uncountable com-
ponents. At the same time, P? has infinitely many uncountable components,
Ky x K,,, n < w. Since a continuous image of a single component must be
connected, only finitely many of the uncountable components of P2 can be
covered by a continuous image of P. Thus, P does not admit Peano functions
which proves Claim 1.

It follows that P has infinitely many non-degenerate interval components.
At most two of them can be unbounded. Let (I,,),<., be a sequence of all
non-degenerate bounded interval components of P and set F' = J,, ., In.
Claim 2: F' is unbounded.

By way of contradiction assume that F' is bounded. Then, there exists
an n < w such that F C [-n,n]. Observe that P cannot have unbounded
components. Indeed, if P did have an unbounded component, then P? would
have infinitely many unbounded components. However, since F' C [—n,n], a
continuous image of P can have at most two unbounded components, since
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Figure 1: Illustration why the set F' in Claim 2 must be unbounded.

the image of P N [—n,n] is compact. So, such P would not admit a Peano
function. Thus, our P does not have any unbounded components so P\ [—n,n]
is countable. Therefore, once again, no continuous function f from P can be
onto P2, since f[PN[—n,n]], being compact, is contained in [—m, m]? for some
m < w and for any € P\ [—m,m] the uncountable set {x} x Iy C P? cannot
be covered by the countable set f[P \ [—n,n]], see Figure 1. So, F must be
unbounded, which proves Claim 2.

Clearly, the two claims imply (2.2).

k(P) =¢: If P is bounded then we have condition (3.1). So assume that the
set P is unbounded. We must show that for all n < w, k(P ~ (—n,n)) = c.
Suppose otherwise, that there is an ng < w with k(P ~ (—ng,ng)) < w. Since
fIP N [—ng,ne]] is compact, it is contained in [—m, m]? for some m < w. For
any x € P~ [-m,m]| the the {z} x P C P% ~\ f[P N [—ng,np]] intersects
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uncountably many components of P2, so it cannot be covered by a continuous
image of P~ (—ng,ng), since it has only countably many components. [ ]

3 Compact subsets of the plane

The case of connected and locally connected sets is made clear by the following
theorem.

Theorem 3.1. If P is a compact connected and locally connected metric
space, then P admits a Peano function.

PROOF. We may assume that P has two different points, a,b € P. Let d be
the metric on P and define a function g: P — [0,00), g(z) = d(x,b). The
space P is compact and connected so, by the intermediate value theorem (see
e.g. [4, Theorem 24.3]), g[P] = [0,a] for some a € (0,00). Also, since P?
is still compact, connected, and locally connected metric space [4, Theorem
23.6], by Hahn-Mazurkiewicz Theorem [3, p. 129], there exists a continuous
function from A from [0,a] onto P2. Then, f = ho g is a Peano function for
P. |

For compact connected subsets P of R? which are not locally connected,
the situation is not that simple, since such a space need not be path connected.

Example 3.2. If P = {{z,sin(1/2)): x € (0,1]} U ({0} x [-1,1]) is the topol-
ogist’s sine curve [4, p.157], then there is no continuous function from P onto
P2.

PROOF. Since a continuous image of a path connected set is path connected,

the two path components of P cannot be mapped onto four path components
of P2, [ ]

What about compact path connected subsets P of R?, which are not locally
connected? Here is another counterexample. In its statement, for every r € R,
the set I, represents the closed line segment in R? connecting (0, 1) with (r, 0).
Moreover, S = {0} U{l/n: n=1,2,3,...}.

Example 3.3. Let P = [J, g I, be the closed infinite broom, see Figure 2.
(Compare [4, p. 162].) Then, there is no continuous function from P onto P2.

PROOF. An argument bares some similarity to the fact that S cannot be
continuously mapped onto S?, a special case of [1, lemma 4.3]. Recall that
P is not locally connected at the point (0,0). Actually, for every open V
containing (0,0) and of the diameter less than 1, the sets VN1, /,, are pairwise
disjoint, closed in V', and non-empty for all but finitely many n.
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By way of contradiction, assume that P admits a Peano function f. We
will show, that this assumption implies that

e {(0,0)} x P C f[I].

However, e is impossible, since a continuous image of an interval must be
locally connected [3, p. 129]. At the same time, no locally connected subspace
T of P? can contain {(0,0)} x P, since for such T" every connected C' C P? of
the diameter less than 1 and with ((0,0), (0,0)) € C' must be contained in I2,
so it has empty interior in 7.

To see o, fix ap € P and let t = ((0,0), p). We need to show that ¢ € f[Iy].
For this, consider the sequence (t,,), = (({1/n,0),p))n, in P x {p}, converging
to t and notice, that

(x) for every s € S the set f[I ] can contain only finitely many ¢,,’s.

Indeed, otherwise, we would have ¢t € f[Is] and every open U in f[I;] containing
t would intersect infinitely many sets K,, = I/, X P, see Figure 2. Since, for

(0,0 <§,1> (%,1) @,0"

Figure 2: There is no Peano function for the infinite broom P. The outlined
parallelogram represents the set K3 = I3 x P
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every U of the diameter less than 1, the sets U N K, are pairwise disjoint and
clopen in U, this would mean that f[I;] is not locally connected at ¢.

Using (*) and the assumption that f is onto P?, we can choose a subse-
quence (t,,); and distinct points s; € S such that t,,, € f[I,,] for every i. Let
x; € Iy, be such that f(x;) = ¢,,. Since P is compact, choosing subsequence,
if necessary, we can assume that (x;); converges to an € P. Since the points
s; are distinct, € Iy. Thus, ¢ = lim, ¢,, = lim; f(x;) = f(lim; ;) = f(x) €
f[1o], as we were to prove. [ |

Can the argument from the above example be generalized to any compact
path connected subset P of R2?, which is not locally connected? A negative
answer is given by the following example. In its statement, C' C [0, 1] stands
for the Cantor ternary set.

Example 3.4. Let P = [, I be the closure of Knaster-Kuratowski ex-
ploding set. Then P is compact, path connected, and not locally connected.
Moreover, there exists a continuous function from P onto P2.

PROOF. Let p = (p1,p2): C x [0,1] — [0,1]? be defined as p(z,y) = (z(1 —
y),y) and notice that P = p[C x [0,1]], since p[{r} x [0,1]] = I,.. Clearly p is
a continuous closed map. As such, it is a quotient map, see e.g. [4, p. 137].
Let k = (k1, ko) and h = (h1, ha) be the Peano functions for C' and [0, 1],
respectively. Moreover, assume that h(1) = (1,1), which is satisfied for the
standard Peano curve. Let g = (po (k1,h1),po (ka,ha)): C x [0,1] — P2
Clearly, g is continuous and onto P2. Moreover, g is constant on any set
p~1({z}) with z € P. (Indeed, if p(co,yo) = p(c1,y1) for distinet {(co,yo) and
(c1,91) from C x [0,1], then yo = y1 = 1. So, by h(1) = (1,1), g(c;,y:) =
p(ki(ci),1) = (0,1) for i < 2.) Therefore, by [4, theorem 22.2], there exists a
continuous function f from P onto P2, the desired Peano map. [ ]

Problem 1. Characterize the compact connected (or just path connected)
subsets of the plane which admit Peano function.
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