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ABSTRACT 

To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition 
(AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building body-
wide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally 
and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family 
of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the 
population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained 
in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we 
found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, 
and orientation that exist among organs in different patients. 
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1. INTRODUCTION 
Since the birth of radiology in 1895, the emphasis in clinical radiology has been on human visualization of internal 
structures. Since radiography could not unravel internal information in an unobscured manner, the continued quest for 
internal body visualization heralded various tomographic image modalities for deriving anatomic, functional, and 
molecular information. However, this emphasis on human visualization continued and the practice of clinical radiology 
has remained mostly descriptive and subjective. Quantification is amply employed in radiology in clinical research. 
However, in clinical radiological practice, this is rare. In this qualitative mode, quantifiable and/or subtle image 
information is underutilized, interpretations remain subjective, and subtle changes due to early disease or therapeutic 
intervention may be underestimated or missed [1]. If QR can be brought to routine clinical practice, numerous advances 
can be  made ranging from: improved sensitivity, specificity, accuracy, and precision of early disease diagnosis; more 
objective and standardized response assessment of diseases to treatment; improved understanding of what is “normal”; 
increased ease of disease measurement and reporting; discovery of new disease biomarkers; effective handling of the 
large volume of image information; and effective combined utilization of multimodality image information. 

We envision a QR system to operate in the following manner. Imagine we build a family of body-wide models, at a 
desired resolution of the population variables (gender, age), complete with anatomic, organ geographic, dynamic, 
physiological, and functional information. Supported by the model family, the implemented QR system will then 
automatically recognize and delineate the anatomy in the given patient image(s) during clinical image interpretation, 
highlight deviations from normality, and list a host of pertinent quantitative measures, indicating their normal range for 
the particular group to which the patient belongs, highlighting out-of-range measures if any. 

To make QR a reality in routine clinical radiological practice, computerized Automatic Anatomy Recognition (AAR) 
during radiological image reading, therefore, becomes essential. To facilitate AAR, and hence QR, and focusing only on 
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the anatomic aspects of shape, geography, and architecture of organs, but keeping the larger goal in mind, we present in 
this paper a novel fuzzy strategy for building anatomic models. 

We think of image segmentation as consisting of two related phenomena: Recognition – the high-level process of 
determining the whereabouts of objects in the image, and Delineation – the low-level process of ascertaining the precise 
spatial occupation of objects in the image. Segmentation methods may be broadly classified into three groups: purely 
image-based (pI) approaches [2-9], shape model-based (SM) approaches [10-13], and the emerging hybrid approaches 
[14-17]. The pI approaches are powerful in delineation but need help in recognition. The SM approaches are strong in 
recognition but not as powerful in delineation. The hybrid approaches attempt to combine the delineation strengths of pI 
methods synergistically with the recognition capabilities of SM approaches. SM approaches become essential for AAR. 

Our QR focus will be on the torso, especially the thorax. Considerable progress has already been made in the spirit of 
AAR in the brain [14, 15, 18, 19]. The challenges faced in building practical AAR systems for the brain and the rest of the 
body are quite unique to each of these areas. Recently, there has been a considerable increase in interest in SM 
approaches for body regions other than the brain. For example, in the SPIE 2009 and 2010 Medical Imaging Conference 
Proceedings, there were some 45 papers on this topic; all devoted to specific organs, image modalities, and disease 
conditions. A full scale AAR methodology to serve in QR for the body torso and extremities has not yet been developed. 
Therefore, the proposed methodology has significance in advancing AAR and QR for various non-neurological 
applications in the body. 
 
Probabilistic and fuzzy techniques have been co-developed in different endeavors including image analysis and 
segmentation. Probabilistic/statistical techniques have been studied extensively for shape modeling under SM 
approaches, but little exists on fuzzy object modeling except our own earlier preliminary work [20, 21]. Therefore 
bringing fuzzy set concepts to object modeling is an innovative, fundamental contribution of this work. Fuzzy and 
probability principles start off with different axioms and use different mathematical constructs [22] and lead to very 
different algorithms in imaging. Our motivation for developing fuzzy object modeling principles is to find natural and 
computationally efficient means of bringing prior object shape information for large object assemblies into graph based 
pI approaches such as FC, live wire, watershed, and graph cut. Thus, our approach is inherently digital and fuzzy, 
without making continuous approximations or important assumptions on prior distributions and random phenomena, etc. 
 
There are several components to the AAR-QR project we are pursuing: (C1) gathering body-wide group-wise image data 
for normal subjects; (C2) building fuzzy models and evaluating them; (C3) using fuzzy models to recognize and 
delineate anatomy in a given patient image set; (C4) detecting and delineating pathology; (C5) quantification; (C6) 
computational set up for interactive-rate performance. In this paper, our focus is only on (C2) – constructing fuzzy 
models and their evaluation – which forms one of the core aspects of the whole effort. 

 

2. FUZZY MODELS 
Let B denote a body region of interest, and C = 〈C, f〉 denote an image acquired for B, where C ⊂ Z3 is the domain of C 
covering B, and f: C → R is the image intensity function. The elements of C will be called voxels and the values of f(v) 
for any v ∈ C will be referred to as the intensity of voxel v. Let C1,….,CN be the images of B for N subjects, all belonging 
to a particular group G (defined by a chosen resolution of the population variables), which are provided for building the 
model for B. The fuzzy organ model for B, denoted FOM(B), is a quadruple FOM(B) = 〈H, M, ρ, λ〉. Briefly, H denotes a 
hierarchy, expressed as a tree, of the organs and the sub-organs in B. M is a family of fuzzy sets M = 
{ }:  1    FM L≤ ≤l l , each member representing one of L organs/sub-organs of B as a fuzzy set over the subject 
population. ρ denotes parent-to-offspring relationship in the hierarchy over H and N subjects. λ is a family 
{ }:   1    Lλ ≤ ≤l l of L scale factor ranges ,  a bλ λ λ⎡ ⎤= ⎣ ⎦l l l , indicating the size variation of the organs in B over N 
subjects. Once FOM(B) is built, it can be used to perform AAR in any image C acquired for B of any new subject 
(patient) who belongs to the same group as G. We will require that the set of images { }1,...., NC C  provided for model 
building all pertain to subjects whose body region B is normal. 
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The model building process consists of the following three steps: 

Step 1. Gathering image data: 

The cleanest way of gathering image data for model building is to prospectively acquire image data from subjects 
certified to be normal under each group G at an adequate “resolution” of the group variables (gender, age, etc.). Such an 
approach would be an expensive and labor intensive undertaking. For developing the concepts and testing the feasibility, 
we have taken a vastly less expensive and simpler approach of utilizing existing patient data. The two radiologists 
participating in this project (BS, DAT) examined all image data and certified them to be radiologically normal for the 
body region for which they are considered. In this manner, we have collected 32 contrast enhanced CT (breath-hold) 
image data sets from 32 patients from our hospital database for the thorax and similarly 52 data sets for the abdomen. 
For now, we have considered only male subjects in the age range of 50-60 for these data. Our modeling schema is such 
that the population variables can be defined at higher “resolutions” in the future, and the model updated when more data 
are added. 

Step 2. Delineating organ boundaries: 

In this paper, we will focus mainly on the thoracic body region and major organs in the thorax, with the hierarchy (H) as 
illustrated in Fig. 1. Let L denote the number of organs (in this case, L = 11). 

 

 

 

 

 

 

 
 
 
 
In body-wide modeling, a tree such as the one in Fig. 1 becomes a sub-tree of a tree associated with the whole body, 
each sub-tree corresponding to a different body region. 

Each of the L organs is delineated in each of the images in the set { }, : 1n n nC f n N= ≤ ≤   C  to generate a family of 
binary images S = { }, , : 1 , 1n, n nC , f n N L= ≤ ≤ ≤ ≤l l l l          C . Each C ln,  represents the region occupied by the 
organ in its image domain rather than indicating just the boundary. The delineation is done by employing a combination 
of tools and under the guidance and verification of the two radiologists. 

Step 3: Constructing fuzzy models: 
 
Let 1 LO ,....,O  be the organs considered in B to be included in the fuzzy model. In our case 

1 2 3, =   =O = SB, O TC O TS , etc., see Fig. l. Let { }, : 1   C= ≤ ≤l lnS  n    N  be the set of binary images representing 
object lO  in the N different subjects in group G. Ideally, for any 1    ≤ ≤l L , we would like the different samples of 

lO  in different subjects to differ by a homothetic affine transformation (translation, rotation, and isotropic scaling) ,lnA . 
Our idea behind the concept of a fuzzy model is to codify the spatial variations in shape from this ideal that may exist 
among the N samples as a spatial fuzzy set, while also retaining the spatial relationship among objects in the hierarchical 
order. 
 
The fuzzy object model of lO  will be denoted by FM l , and expressed as a fuzzy subset of a reference set 3ZΩ ⊂l , 
defined in the Scanner Coordinate System (SCS); that is, ( ), FM Ω μ=l l l . The membership function ( ) ,  v vμ Ω∈l l  
defines the degree of membership of voxel v in the model of lO . Further details on how ,lnA , μl , and FM l  are 
determined from the set lS  of binary images are given below. 

Figure 1: Hierarchy of thoracic organs. SB: Skin Boundary; TC: Thoracic Cavity; TS: Thoracic Skeleton; LPS: Left Plural Sac; M: 
Mediastinum; RPS: Right Plural Sac; PC: Pericardium; TB: Trachea & Bronchi; E: Esophagus; AS: Arterial System; VS: Venous 
System. 
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We permit only such alignment operations, mimicking ,lnA , among the members of lS , that are executed precisely and 
that avoid the uncertainties of local optima associated with optimization-based full-fledged registration schemas. In this 
spirit, we handle the translation, rotation, and scaling components of ln,A  in the following manner. 

For translation and rotation, for each manifestation of lO  in , , 1  C ≤ ≤ln n    N , we determine, within SCS, the 
geometric center and the inertia (principal) axes of lO  from the region occupied by lO  in ,C ln . Subsequently, all 
samples are aligned to the mean center and axes. These translation and rotation operations may also be determined based 
on some reference object such as TS, in which case, these operations will be identical for all objects within the same 
subject. 
 
The scale factor estimation is based on a linear size estimate (in mms) of each sample of lO  and resizing all samples to 
the mean size. Five methods of size estimation are tested: (m1) ( )1/3

,nV l  where ,nV l  is the volume of lO  in ,C ln . (m2) 
The diagonal length of the smallest box enclosing lO  in ,C ln  whose edges are parallel to the image coordinate axes. 
(m3) ( )1/2

,nλ l  where ,nλ l  is the eigenvalue associated with the major principal axis of lO  in ,C ln . (m4) The diagonal 
length of the box enclosing the skeleton (TS) in ,C ln . (m5) The diagonal length of the box enclosing the union of all 
objects excluding SB in ,C ln  (this object will be denoted by ALL for future reference). Note that m1-m3 constitute 
object-dependent scaling. That is, in these strategies, for any fixed l , the samples of lO  are scaled based on the mean 
size of lO  estimated from its family. In m4 and m5, all objects in a given subject are scaled uniformly by using the scale 
factors derived from the family of objects TS and ALL, respectively. For this scale factor estimation, any of the measures 
under m1-m3 may be employed to determine the size of TS and ALL. For example, in m4 based on TS, and employing 
the measure of size in m1, the mean of ( )1/3

,nV l  over all samples of lO  = TS is determined first. This mean size is then 
utilized to scale not just TS in each subject n but also his all other objects. 
 
There are several possible scenarios of combining the methods used for scaling, translation, and rotation. In this paper, 
we will study three scenarios, denoted S1-S3, for understanding the quality of the resulting fuzzy models. In S1, all 
operations are object specific. That is, for any object lO , its sample in each ,C ln  is translated, rotated, and scaled based 
on the mean center, orientation, and size (determined by one of the methods m1-m3) estimated from all samples of lO  
only. In S2, the means are estimated based on TS. Then all objects ,  1  ,   O L≤ ≤l l  for a given subject n undergo the 
same translation, rotation, and scaling as determined by the TS for that subject. S3 is similar to S2 except that, in place of 
TS, we use ALL. 
 
Since we deal with digital images, an interpolant is needed to derive ( ), ,n nA l lC . Since C ln,  are binary images, we 
employ the shape-based interpolating  scheme [23], which first applies a distance transform DT [24] to the boundary of 
the object in C ln, , resulting in a (gray level) image DT ( C ln, ) to which an appropriate (such as tri-linear) interpolating 
function ,nI l  is applied to derive another gray-level image denoted , , ,,  .a a a

n n nC f=l l lC  
 
The aligned binary images, denoted , ,

, , ,,  a b a a b
n n nC f=l l lC , corresponding to lO , are obtained by thresholding ,

a
n lC at 0 

(meaning ( ),
,   1a b

nf v =l  if ( ),   0;  otherwisea
nf v ≥l ( ),

,,  = 0, a b a
nnf v v C∈ ll ). DT assigns to voxels inside lO  in C ln,  a 

positive distance value, and to those outside, a negative value. Since DT propagates shape information inside and outside 
the boundary of lO  in C ln, , it is  useful in both (shape-based) interpolation and in deriving FM l . The fuzzy model 

( ),  FM Ω μ=l l l  is such that, for any v Ω∈ l , 
 

( ) ( )( ), / .a
nv g f v Nμ ⎡ ⎤= ⎣ ⎦l l  

 
Ωl  is taken to be the smallest set (rectangular array) of voxels such that  
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and g is a sigmoid function that maps distance values into fuzzy membership values in [0, 1]. In words, the aligned and 
shape-interpolated distance maps of the different manifestations of lO  in the family are averaged. Then averaged 
distance values are mapped to [0, 1]. 

Our AAR approach makes essential use of the hierarchy information and parent-to-offspring relationship encapsulated in 
ρ . For each valid pair ( ),  kl  such that Ol  and kO  are a parent object and an offspring, ,kρl  codifies the mean 
positional relationship ,kPl  between Ol  and kO  and its variation ,kVl  over N samples. We adopt the convention that 

0,1ρ  stores information about the mean positional relationship of the root object SB relative to SCS. Let ,nGC l  be the 
geometric center of Ol  ,in  ,  1    ,  1    n n N L≤ ≤ ≤ ≤l lC . Then ,kPl  is the mean of the vectors in the set 
{ }, , :  1    n k nGC GC n N− ≤ ≤l  and ,kVl  is a 2nd order tensor, obtained via PCA of this set. In order not to corrupt ,kρl  
by the differences in size among subjects, before estimating ,kρl , Ol  and all offspring objects kO of Ol  are scaled with 
respect to the center ,nGC l  of Ol  as per a common scale factor, estimated for Ol  via one of methods m1-m3. The 
reason behind this process is the thinking that an object and all its offsprings should be scaled similarly to retain their 
positional relationship information correctly. 
 
There are several choices for the operations and their parameters in building the fuzzy models. We would like these to be 
selected in such a manner that, without changing the shape of the sample objects or affecting the relationship among 
objects, the model created is as crisp as possible. We characterize the crispness of a fuzzy model by an entity called the 
index of fuzziness. We employ the following measure of index of fuzziness of a fuzzy model FMl , which is derived 
directly from the aligned binary images ,

,
a b
n lC : 

( )

,
,

,
,

1

a b
n

n

a b
n

n

h FM = −
l

l

l

I

U

C

C

. 

 
Here  and I U  denote logical intersection and union operations on binary images. M, H, ρ, and λ serve a variety of 
purposes in AAR. For example, in recognizing and delineating objects in a given image C, a synergistic integration of the 
fuzzy models, the variability in ,kVl , and the fuzzy connectedness machinery [25] is carried out to first locate in C an 
object that is easy to recognize, such as SB. The hierarchical organization then imposes severe constraints on the 
subsequent recognition and delineation tasks guided by the object segmented so far, which also provides a scale estimate 
(from λ ) and a positional estimate (from ρ ) for the objects to be segmented subsequently. The model concepts also 
generalize readily to spaces higher than three-dimensional. Thus, static as well as dynamic objects and their mixtures can 
be modeled within the same framework. These topics will be the subject matter of our future work. In the next section, 
we will analyze empirically the model building process for the thoracic body region in some detail. 

3. EXPERIMENTAL ANALYSIS 
The results presented in this section are for the thorax image data. As mentioned earlier, these images are collected from 
our patient image database of routine clinical scans which are of clinical spatial resolution (typical voxel size of 
0.9× 0.9× 5 mm3). We will demonstrate a justification for the hierarchical concept in FOM(B), not from the perspective 
of AAR (although this is obviously very important, but, for now, outside the scope of this paper), but from the 
consideration of the quality of the resulting models. 

 
Fig. 2 displays the cross-sectional boundaries of the 3D surfaces of all N samples for three of the 11 objects - LPS, M, 
and PC - upon alignment. In Fig. 2(a), the N members of the object family are aligned by the object specific method S1 
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with scaling via m1 for creating FOM(B). In 2(b) and 2(c), similarly, the corresponding object cross sections for methods 
S2 and S3 are displayed. From these displays and many other similar cross sections we have examined, we note that 
object-specific translation, rotation, and scaling achieves better alignment. We may conclude that object-specific 
alignment is important to produce crisper FOMs. In Fig. (3a), we show surface renditions of some of the objects in B for 
one subject. In 3(b), volume renditions of FOM(B) with some object models suppressed for minimizing obscuration, are 
shown, all based on the m1 measure. It is important to note that the renditions also depict the correct (mean) and ρ λ  
parameters, in the true spirit of the meaning of FOM(B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 
 

Figure 2: Cross sections of the aligned objects LPS, PC, and TB based on the m1 measure for scenario S1 (a), S2 (b), and S3 (c). 
 
 
 
 
Figure. 3: (a) Surface renditions of some of the 11 objects from one of the N subjects. (b) Volume renditions of FOM(B) derived via 
m1 for scenario S1. Different combinations of object models FM l  are shown 

 
 
 
 

 

 

(a)
 

(a) 

(b) 

(c) 
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Figure 3: (a) Surface renditions of some of the 11 objects from one of the N subjects. (b) Volume renditions of FOM(B) derived via 
m1 for scenario S1. Different combinations of object models FM l  are shown. 
 
Table 1 lists some summary statistics for the linear measures m1-m3 used for scale estimation for the different objects. 
Note that the statistics listed under TS and ALL correspond respectively to measures m4 and m5. Note also that there is 
no definite pattern in the values of CV for m1-m3 for the different objects. Generally m3 shows larger variations among 
members of the same object family than m2 and m1. 
 

AS E LPS M PC RPS SB TB VS TS ALL
MEAN 67.15 35.54 130.37 120.69 84.67 137.20 295.21 36.67 45.21 83.41 193.27

SD 4.61 4.01 14.36 6.55 6.55 13.20 13.99 3.45 5.20 6.14 13.19
CV 6.86 11.28 11.01 5.43 7.74 9.62 4.74 9.41 11.49 7.37 6.82

MEAN 353.47 237.15 351.97 383.93 198.82 359.08 603.73 191.15 300.34 525.28 526.05
SD 31.73 24.67 27.69 33.26 13.86 31.73 35.03 18.24 21.80 31.29 31.90
CV 8.98 10.40 7.87 8.66 6.97 8.84 5.80 9.54 7.26 5.96 6.06

MEAN 67.60 68.78 59.29 60.55 32.05 56.28 103.76 45.12 60.75 96.49 70.13
SD 8.46 8.39 7.03 6.58 2.82 7.40 6.71 3.71 7.90 8.73 4.17
CV 12.52 12.20 11.85 10.86 8.81 13.14 6.47 8.23 13.00 9.05 5.94

m 1

m 2

m 3

 
 
Table 1: Summary statistics of the sizes of objects derived via m1, m2, and m3 over the subject population. All units are in mms, 
except CV (coefficient of variation), which is expressed as percent. 
 
Tables 2 and 3 display the residual size variation left over in each object family after uniform scaling of all members of 
each object family by measures m4 and m5 specific to each family, respectively. Note that, in object-dependent scaling by 
measures m1-m3, residual size variation is 0. Table 4 lists the correlation coefficients of the object dependent scale 
factors between different objects based on the m1 measure. A high correlation would indicate that object-dependent 
scaling can be replaced by uniform scaling. This is counter indicated in the table except for some obvious pairs like LPS 
and RPS. The data in Tables 2, 3, and 4 provide a strong justification for object-dependent scaling and alignment. We 
emphasize that it is not just a matter of registering the members of each object family optimally by employing a 7-
parameter (3 translations + 3 rotations + 1 scaling) transformation. For the hierarchical recognition and delineation of all 
objects in the AAR approach, it is important to account for the hierarchical relationship information ρ  and the 
concomitant scale information λ  properly as outlined in Step 3 in the previous section. If we attempt to solve this 
problem via a single image registration operation, it will lead to a registration problem with 7LN free parameters; that is, 
the search space becomes 7LN-dimensional (which amounts to 2464 even in the relatively small AAR problem we have 
undertaken). The approach we proposed is an approximate solution to this very complex problem. 
 

(b) 
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AS E LPS M PC RPS SB TB VS ALL
MEAN 67.36 35.62 131.10 121.22 84.96 137.94 296.91 36.79 45.31 194.19

SD 5.11 3.86 17.81 9.91 7.39 17.04 27.99 3.70 4.73 18.71
CV 7.59 10.82 13.58 8.17 8.69 12.35 9.43 10.07 10.43 9.63

MEAN 353.31 237.45 352.95 385.01 199.20 360.12 604.59 191.12 300.87 526.40
SD 21.47 23.29 30.98 36.82 14.74 35.26 32.16 13.43 22.01 2.79
CV 6.08 9.81 8.78 9.56 7.40 9.79 5.32 7.03 7.32 0.53

MEAN 67.51 69.02 59.47 60.79 32.36 56.45 104.19 45.29 61.13 70.63
SD 4.55 8.01 6.33 6.33 4.58 6.62 7.27 3.55 8.87 7.08

CV 6.74 11.60 10.64 10.41 14.17 11.73 6.98 7.84 14.50 10.03

m 1

m 2

m 3

 
 
Table 2: Residual object size variation left over (SD & CV) after alignment based on TS with object-independent scaling via m1, m2, 
amd m3. All units are in mms, except CV (coefficient of variation), which is expressed as percent. 
 

AS E LPS M PC RPS SB TB VS TS
MEAN 67.44 35.67 130.01 121.11 85.06 136.95 296.34 36.66 45.37 83.74

SD 6.36 4.30 6.94 9.00 8.94 5.23 22.35 2.20 5.65 8.18
CV 9.43 12.06 5.34 7.43 10.51 3.82 7.54 6.00 12.45 9.77

MEAN 353.32 237.43 352.96 385.01 199.22 360.13 604.65 191.10 300.89 526.02
SD 21.18 22.98 30.89 36.43 14.84 35.14 32.62 12.94 22.11 2.79
CV 5.99 9.68 8.75 9.46 7.45 9.76 5.40 6.77 7.35 0.53

MEAN 67.81 68.65 59.16 60.52 32.12 56.17 103.93 45.19 60.73 96.75
SD 9.39 5.83 4.63 5.09 3.10 5.76 6.87 3.54 6.87 9.93
CV 13.85 8.49 7.82 8.41 9.65 10.26 6.61 7.83 11.31 10.26

m 1

m 2

m 3

 
 
Table 3: Residual object size variation left over (SD & CV) after object-independent alignment based on ALL with scaling via m1, 
m2, and m3. All units are in mms, except CV (coefficient of variation), which is expressed as percent. 
 

   
 
 
 
 
 
 
  
 
 
  
 
 
 
 
 
 

Table 4: Correlation in scale factor between all pairs of objects in Scenario S1 with size estimation via m1. 

AS E LPS M PC RPS SB TB VS TS ALL

AS 1.00 0.23 -0.03 0.68 0.65 -0.03 0.05 0.15 0.32 0.50 0.13

E 0.23 1.00 0.11 0.39 0.32 0.10 0.13 0.20 0.22 0.36 0.20

LPS -0.03 0.11 1.00 0.16 -0.13 0.98 0.26 0.73 0.06 0.03 0.97

M 0.68 0.39 0.16 1.00 0.74 0.16 0.48 0.34 0.29 0.32 0.36

PC 0.65 0.32 -0.13 0.74 1.00 -0.08 0.23 0.06 0.32 0.36 0.06

RPS -0.03 0.10 0.98 0.16 -0.08 1.00 0.26 0.69 0.12 0.07 0.97

SB 0.05 0.13 0.26 0.48 0.23 0.26 1.00 0.23 0.19 -0.02 0.34

TB 0.15 0.20 0.73 0.34 0.06 0.69 0.23 1.00 0.08 0.33 0.78

VS 0.32 0.22 0.06 0.29 0.32 0.12 0.19 0.08 1.00 0.41 0.17

TS 0.50 0.36 0.03 0.32 0.36 0.07 -0.02 0.33 0.41 1.00 0.20

ALL 0.13 0.20 0.97 0.36 0.06 0.97 0.34 0.78 0.17 0.20 1.00
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Scenarios m 1 m 2 m 3

S 1 0.6567 0.7087 0.7220
S 2 0.8174 0.7621 0.7936
S 3 0.9651 0.9660 0.9698  

 
Table 5: Index of fuzziness of FOM(B) for the three scenarios and three measures of size via m1, m2, and m3. 

 

The index of fuzziness values h(FOM(B)) are listed in Table 5 for scenarios S1-S3 and for measures m1-m3. These 
values provide a quantitative support for the qualitative observation derived from Figs. 2 and 3. 
 

4. CONCLUSIONS 
With a view to complement the existing rich statistical shape modeling literature, in this paper, we have introduced a 
fuzzy alternative to object modeling. Starting off from our preliminary work in [20, 21], our motivation behind fuzzy 
object modeling is to tightly integrate FOMs with the fuzzy connectedness machinery for building hybrid strategies and 
thereby to arrive at practical solutions to the AAR problem. In this paper, we have addressed some aspects of the fuzzy 
model building operation. The hierarchical organization H of the objects, the hierarchy in the building process, and the 
hierarchical information contained in  and ρ λ  are all important, in addition to the set M of fuzzy models, in our 
approach. We gave some supporting evidences for the ideas behind hierarchy from the viewpoint of model building. Our 
future work will include other body regions, means for bringing them into an integrated hierarchical mold, and object 
recognition and delineation strategies for AAR. 

Other alignment strategies, including image/structure registration methods, may offer better FOMs than those proposed 
in this paper. From a theoretical perspective, there are two important considerations to address: (a) 7LN free parameters 
to deal within registration; (b) the fuzzy model FM l  to satisfy the hierarchy in terms of offspring-to-parent (fuzzy) 
containment and the mutual exclusivity of models corresponding to siblings at each level of H. 
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