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ABSTRACT 

To make Quantitative Radiology a reality in routine radiological practice, computerized automatic anatomy recognition 
(AAR) during radiological image reading becomes essential. As part of this larger goal, last year at this conference we 
presented a fuzzy strategy for building body-wide group-wise anatomic models. In the present paper, we describe the 
further advances made in fuzzy modeling and the algorithms and results achieved for AAR by using the fuzzy models. 
The proposed AAR approach consists of three distinct steps: (a) Building fuzzy object models (FOMs) for each 
population group G. (b) By using the FOMs to recognize the individual objects in any given patient image I under group 
G. (c) To delineate the recognized objects in I. This paper will focus mostly on (b). 
 
FOMs are built hierarchically, the smaller sub-objects forming the offspring of larger parent objects. The hierarchical 
pose relationships from the parent to offspring are codified in the FOMs. Several approaches are being explored 
currently, grouped under two strategies, both being hierarchical: (ra1) those using search strategies; (ra2) those 
strategizing a one-shot approach by which the model pose is directly estimated without searching. Based on 32 patient 
CT data sets each from the thorax and abdomen and 25 objects modeled, our analysis indicates that objects do not all 
scale uniformly with patient size. Even the simplest among the (ra2) strategies of recognizing the root object and then 
placing all other descendants as per the learned parent-to-offspring pose relationship bring the models on an average 
within about 18 mm of the true locations. 
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1. INTRODUCTION 

Since the birth of radiology in 1895, the emphasis in clinical radiology has been on human visualization of internal 
structures. Since radiography could not unravel internal information in an un-obscured manner, the continued quest for 
internal body visualization heralded various tomographic image modalities for deriving anatomic, functional, and 
molecular information. However, this emphasis on human visualization continued and the practice of clinical radiology 
has remained mostly qualitative, descriptive and subjective. Quantification is amply employed in radiology in clinical 
research. However, in clinical radiological practice, this is rare. In this qualitative mode, quantifiable and/or subtle image 
information is underutilized, interpretations remain subjective, and subtle changes due to early disease or therapeutic 
intervention may be underestimated or missed [1]. It is widely recognized that if  Quantitative Radiology (QR) can be 
brought to routine clinical practice, numerous advances can be  made ranging from: improved sensitivity, specificity, 
accuracy, and precision of early disease diagnosis; more objective and standardized response assessment of diseases to 
treatment; improved understanding of what is “normal”; increased ease of disease measurement and reporting; discovery 
of new disease biomarkers; better outcome assessment; effective handling of the large volume of image information; and 
effective combined utilization of multimodality image information. 
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We envision a QR system to operate in the clinic in the following manner. Imagine we build a family of body-wide 
models, at a desired resolution of the population variables (gender, age, etc.), complete with anatomic, organ geographic, 
dynamic, physiological, and functional information. Supported by the model family, the implemented QR system will 
then automatically recognize and delineate the anatomy in the given patient image(s) during clinical image 
interpretation, highlight deviations from normality, and list a host of pertinent quantitative measures, indicating their 
normal range for the particular group to which the patient belongs, highlighting out-of-range measures if any. 

To make QR a reality in routine clinical radiological practice, computerized Automatic Anatomy Recognition (AAR) 
during radiological image reading becomes essential. The goal of AAR is: given a patient image set for a specific body 
region, to identify and delineate the various organs in the body region automatically. Given the clinical image reading 
setting, with potentially lower quality images and the need for greater degree of automation than in research settings, the 
methodology devised for a QR system should take an approach that is as much as possible general and independent of 
the organs, body region, imaging modality, and the imaging protocols. Given the difficulties in image segmentation and 
the vagaries of clinical imaging scenarios, it is imperative that body-wide models representing normal populations be 
created to serve in AAR.  

The novelty in our effort stems from the following three considerations. First, most of the anatomy modeling methods to 
date has focused on specific organs or organ systems and not on the multitude of organs body-wide. This difference 
evokes its own challenges. Second, except for our own earlier work [2-4], the reported modeling strategies all have a 
statistical theoretical framework, in the form of statistical shape modeling [5], statistical atlases [6], etc. Probabilistic and 
fuzzy techniques have been co-developed in many endeavors including image analysis and segmentation. They start off 
with different axioms, use different mathematical constructs, and lead to very different algorithms in imaging. Our 
motivation for pursuing the development of fuzzy anatomy modeling principles is to find natural and computationally 
efficient means of bringing anatomic knowledge about large assemblies of objects into graph-based approaches such as 
fuzzy connectedness [7]. This allows us to pursue an all-digital fuzzy approach without seeking continuous 
approximations or making crucial assumptions on random phenomena and their distributions, etc. Third, we model the 
hierarchical arrangement inherent in the anatomic layout of organs and exploit this codification to make AAR effective 
and efficient. There are several components to the AAR-QR project we are pursuing: (C1) gathering body-wide group-
wise image data for normal subjects; (C2) building fuzzy models and evaluating them; (C3) using fuzzy models to 
recognize and delineate anatomy in a given patient image set; (C4) detecting and delineating pathology; (C5) 
quantification; (C6) computational set up for interactive-rate performance. In this paper our focus will be on (C3), 
specifically on recognizing anatomic organs in the torso. About 25 organs in the thoracic, upper and lower abdominal, 
and pelvic region are considered. 

2. FUZZY MODELS 

This section summarizes the fuzzy modeling approach. For details see [4]. 

We will use the following notation. We will think of the whole body, WB, as being divided into body regions, B1,….,Br,  
for example, head, neck, thorax, abdomen, pelvis, etc. We will denote an image acquired for a body region B by I = 〈C, 
f〉 where C ⊂ Z3 is the domain of I covering B, and f: C → R is the image intensity function. The elements of C will be 
called voxels and the values f(v) assigned to v∈C will be referred to as the intensity of v in I. Our idea is to build models 
that represent normalcy. Our approach to model building relies on patient images, available in our hospital image 
database, that are certifiably normal for specific body regions. This is a more practical and less expensive strategy than 
requiring prospective image acquisition expressly for the purpose of building models. On the flip side, clinical images 
are acquired rarely for the whole body but typically only for specific body regions. This necessitates our approach of 
building models by body region to eventually assemble these models properly to create the model for WB. Most of our 
description below therefore pertains to a (any) body region B.  

Models are built for each subject group, G, separately. Each group G is defined at a desired resolution of the population 
variables such as age, gender, race, etc. Let I1,…,IN be the images of B acquired from N subjects, all belonging to a 
particular group G and let O1,….,OL be the organs in B considered for modeling. The fuzzy organ model of B, FOM(B), 
is then considered to be a quintuple FOM(B) =  〈H, M, ρ, λ, η〉.  

H here, represented as a tree, is the hierarchical order considered in the model for the organs and sub-organs in B. The 
hierarchy represents the natural anatomic order of the organs in B or an order that is motivated by the effectiveness of 
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object recognition. Our efforts have so far focused on the thoracic and abdominal body regions. The hierarchies of 
organs employed for these regions are depicted in Figs. 1(a) and (b). 

 

 

  

 

 

 

 
                       

 

 

 

 

The second item M is a family of fuzzy models, one fuzzy model FMℓ associated with each organ Oℓ, M = {FMℓ:1 ≤  ℓ ≤ 
L}. FMℓ models how organ Oℓ varies within its population of N samples. It is represented as a fuzzy subset of the body 
region, with a membership value µℓ(v) assigned to each geographically located voxel v. This value is estimated by 
propagating each organ shape inwardly and outwardly from the boundary and by determining how these propagated 
shapes from the population meet at v. 

The third item, ρ = {ρℓ,k: Oℓ is a parent of Ok in H, 1 ≤ ℓ, k ≤ L}, describes the position and orientation relationships, and 
their variation, between each offspring object Ok and its parent Oℓ in the hierarchy. For the root object, which has no 
parent, ρℓ,k is assumed to be its relationship to the scanner coordinate system. 

The fourth item, λ, is a family {λℓ: 1 ≤ ℓ, k ≤ L}, where each λℓ expresses the variation in scale factor (size) of organ Oℓ 
over its population. 

The last item, η, represents the statistics of a set of measurements pertaining to the organ assembly in B. 

The concepts underlying FOM(B) can be readily extended from body region B to the whole body WB. The hierarchy 
now will have the WB region at its root and B1,….,Br as the immediate descendants. The node corresponding to each 
body region B will then have a sub-tree, rooted at that node, which represents the hierarchy associated with B. We hope 
to build a body-wide model FOM(WB) eventually by the piece-meal approach of building models for each body region B 
separately. In the rest of this paper, our focus will be on AAR as applicable to a given body region B. 

 

3. ANATOMY RECOGNITION 

Once a model FOM(B) is built for a body region B and a population group G, our task is to perform AAR in a given 
image I of the body region B of a patient who belongs to group G. We think of the AAR task to consist of two 
components: recognition and delineation. The goal of recognition is to determine where organs O1,….,OL are in I, 
meaning, to determine the best pose (location, orientation, and scale factor) for the models FMl,….,FML at  which they 
are to be placed in I so they fall in place as closely as possible to the actual organ manifestation in I. The goal of 
delineation is to mark the precise spatial occupation of O1,….,OL in I. Although the two components are interdependent 
and operate in tandem, this paper’s focus will be only on recognition. 

Our approach to AAR, specifically to recognition, is hierarchical. First the root object is recognized in I. Then the 
descendants Ok are recognized from a knowledge of the pose of their already recognized parent Oℓ and the parent-to-
offspring relationship ρℓ,k as well as evidence garnered from I. The AAR recognition procedure is as follows. 

(b) (a) 

Figure 1: The hierarchy of the organs considered for modeling. (a) B = thorax. SB: Skin Boundary; RS: Respiratory System; TS: 
Thoracic Skeleton; IMS: Internal Mediastinum; RPS & LPS: Right & Left Plural Space; TB: Trachea & Bronchi; PC: Pericardium; AS 
& VS: Arterial & Venous System. (b) B = Abdomen. SB: Skin boundary; ASk: Abdominal Skeleton; STs: Soft Tissue; SAT: 
Subcutaneous Adipose Tissue; LVr: Liver; MSℓ: Muscle; SPℓ: Spleen; Pan: Pancreas; RAd & LAd:  Right & Left Adrenal Gland; RKd 
& LKd: Right & Left Kidney; AIa: Aorta & Iliac Arteries; IVC: Inferior Vena Cava & Iliac Veins. 
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Procedure AAR-R 
 
In:      An image I of B and FOM(B), both for group G. 
 
Out:    Poses for FMℓ, 1 ≤ ℓ ≤ L,  in I. 
 
Begin 
R1.     Call recognition algorithm RA0(O) to determine the pose of the root object O in I. 
 
R2.     Repeat 
 
R3.        Traverse down H and determine the offspring object Ok to be recognized next. 
 
R4.        Knowing the pose of the parent object Oℓ, relationship ρℓ,k, and scale range λk, call RA(Ok) 
              to determine the pose of Ok in I. 
 
R5.    Until all objects are covered in H. 
 
R6.    Output poses in I for all objects. 
 
End 
 
For an effective AAR system, recognition and delineation need to be coupled synergistically. This can improve the 
effectiveness of both recognition and delineation [8]. In fact, a call for a delineation algorithm will have to be 
interspersed in the above procedure (for example, between R1 and R2 and between R4 and R5), and recognition and 
delineation may have to be iterated alternately to fully express the synergy existing between them. Since the focus here 
is on recognition, we will leave out such matters from this paper. 

We have been experimenting with several strategies for the recognition algorithm RA0 and RA. These may be grouped 
into two categories – (ra1): those using search strategies to seek the “best” pose for the models in I; (ra2): those 
strategizing a one-shot approach by which the model pose in I is directly estimated without searching. We have 
implemented and tested the following three methods under these strategies – Methods 1 and 2 under ra1 and Method 3 
under ra2. 
 
In all search approaches (ra1), we have ignored the angular orientation and considered only the object center location 
and the scale factor. That is, the search space is 4-dimensional. To determine the optimum pose for object Ok, a subset of 
this 4D space is determined based on the variations observed in ρℓ,k and λk. This subspace is then sampled at regular 
discrete intervals, and at each sample pose, a “recognition score” is valuated to examine the degree of match of FMk with 
the intensity patterns in I. The pose returning the maximum score is considered to be the pose recognizing object Ok. 

Method 1: Using Fisher Linear Discriminant (FLD) 

FLD [9] is a non-parametric pattern classification technique which we employ here in a supervised learning mode. In the 
learning phase, during model building, for each organ Ok, a linear discriminant (a separating line in the feature space) 
that optimally separates the image-derived features of Ok from the image-derived features of the background of Ok is 
determined as described below. In the recognition phase, this discriminant is used to determine the optimum pose of Ok.  

We employ three features f1, f2, and f3 to characterize the appearance of the boundary of organ Ok as well as its 
background in the training images I1,….,IN. Consider a pixel edge e described by e = {c ,d} where c and d are 4-adjacent 
pixels in a slice of any of these images J = 〈C, f〉 . To every edge e, we assign the features f1, f2, and f3 in the following 
manner: f1 = min{f(c), f(d)}, f2 = max{f(c), f(d)}, and f3 is the signed gradient magnitude of f evaluated at e. The sign is 
positive if the gradient direction is in agreement with the direction of increasing signed distance from the boundary 
(counting distance inside the object as negative and outside as positive) of Ok in J. 

For the purposes of FLD design, the “object” class for Ok is represented by the set of features Sk = {(f1, f2, f3)t: e is a pixel 
edge “near” the boundary of Ok in any of I1,….,IL}. Similarly the “background” class of Ok is defined by Bk = {(f1, f2, f3)t: 
e is a pixel edge “away” from the boundary of Ok in any of I1,….,IL}. A linear discriminant that optimally separates Sk 
and Bk for each organ Ok is determined via the FLD method [9]. 

In the recognition phase, for each searched pose p of FMk in I, a recognition score Fu(p) is determined as follows. Let u 
be the vector normal to the best separating FLD plane found at training. Let Bd(FMk) = {(c, d): c and d are 6-adjacent & 
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μk(c) ≥ 0.5 & μk(d) < 0.5}, where μk is the membership function of FMk, be a hard boundary surface derived from FMk, 
by thresholding FMk  at 0.5. Let '

kS be the set of feature vectors sampled on Bd(FMk) at pose p. The recognition score is 
then taken to be ( ) = ( )

k

F
S'

•
∈
∑u p v u

v
. The pose that yields the maximum value for Fu(p) is taken to be the recognized 

pose. 

Method 2: Minimizing ball-scale-based energy 

In this method, an optimum pose for FMk in I is determined by minimizing an energy function that is formulated by 
using the concept of ball scale (b-scale) [10]. The idea behind b-scale is to treat the basic elements of an image (such as 
I) not as voxels but as balls of uniform intensity. For I = 〈C, f〉, its b-scale image Ib = 〈C, fb〉 is such that, for any c∈C, 
fb(c) is the radius of the largest ball centered at c within which f is “homogeneous”. The energy function associated with 
FMk at pose p in I is E(p) = ( )

∈
∑ bf c

c Qp

. 

Method 3: One-shot recognition 

In this strategy, the root object is first recognized in I by the method described below. All other objects are then 
subsequently positioned in I based on the found root object pose and the mean ρℓ,k from the model. The objects are also 
scaled by the scale factor found for the root object. 

To recognize the root object SB, a threshold is applied to I to roughly separate the foreground voxels, and a 
morphological opening operation is performed to remove extraneous material such as the scanner table. The position of 
the model of SB in I is determined to be the geometric center of this roughly segmented object. Its scale factor is 
estimated from its linear size measure, which, in this paper is taken to be the square root of the principal eigenvalue 
resulting from a principal component analysis of the binary object. (We have examined the use of other size measures in 
model building such as the length of the diagonal of a box that just encloses Oℓ and the cube root of the volume of Oℓ 
[4].)  

4. EXPERIMENTAL ANALYSIS 

Image data: In this paper we present results for the Thorax and Abdomen. Institutional Review Board approval for this 
study was obtained prior to study initiation. Subsequently, from our hospital image database, we have gathered contrast-
enhanced breath-hold CT images taken from 32 male subjects of age range 50-60 years for the thoracic and abdominal 
body regions separately. The board certified radiologist participating in this project (DAT) examined all image data and 
certified them to be radiologically normal for the body region for which they are considered. Since the data are from 
routine clinical scans, they are of clinical spatial resolution, with a typical voxel size of 0.9mm×0.9mm×5mm.  
Fuzzy Models: For each body region, we have randomly divided the 32 data sets into a training set (of 16), used for 
model building, and a testing set (of 16) for evaluating recognition performance. We have included 11 and 14 organs in 
the two body regions as depicted in Fig. 1. Fig. 2 displays the rendered surfaces of some of these organs taken from one 
of the training data sets. Models are built separately for the two body regions. Fig. 3 depicts some of the fuzzy models in 
different combinations of the organs for the two body regions, shown as volume renditions. Given the 16 segmented data 
sets for the L organs (= 11 and 14 for the Thorax and Abdomen), the model building step takes a total computational 
time of respectively 86 min and 225 min on an Intel Pentium 4 platform with a 3.6 GHz CPU and 3 GB RAM. 

AAR: Fig. 4 displays some recognition results for each of the three methods (in each row) wherein a slice of a test image 
I is shown together with, as an overlay, the corresponding cross section of FMℓ at the best pose determined by the 
recognition method.  The mean computational time for recognizing all objects per patient is: Method 1 – 25 min 42 s, 
Method 2 – 23 min 37 s. Method 3 – 1 min 12 s. 

Since all (32 + 32) data sets have been previously segmented manually and verified (by DAT and SB) for accuracy and 
used for testing different scenarios of model building, they can be used for testing the accuracy of the recognition 
techniques as well. In this initial effort, we have ignored organ orientation information in both the model building 
process and estimating the recognition pose. (Actually our tests indicate that considering orientation at model building 
(alone) has little influence on recognition results.) Therefore, we will express recognition accuracy in terms of location 
and scale factor. Location error will be expressed in terms of the distance between the geometric centers of Oℓ in the 
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reference segmentation and FMℓ at the recognized pose (ideally this distance should be 0). Scale factor discrepancy will 
be described as a ratio of the true size to the estimated size (ideally 1).  Tables 1 and 2 list the mean location and scale 
factor errors and their standard deviation over the 16 tested data sets for all organs for the Thorax and Abdomen. 

    
Fig. 2: 3D renditions of some of the sample objects for which fuzzy models are built. 

 
Fig. 3: Volume renditions of some of the fuzzy models FMℓ built for the organs in the Thorax (top row) and Abdomen 

(bottom row). 

 
Fig 4: Slice displays of some recognition results for the FLD (top row), b-scale (middle row), and one-shot (bottom row) 
methods for the Thorax data. The cross sections of the fuzzy models at the recognition pose are shown overlaid on the 
image slices. The objects for which the models are displayed are: IMS, RPS, SB, and LPS. 
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Method LPS IMS RPS SB RS TS AS VS E TB PC 

  FLD 
Location 

(mm) 
20.4 
(7.7) 

21.7 
(15.6) 

32.8 
(13.9) 

4.8 
(2.1) 

17.5 
(7.8) 

12.8 
(7.0) 

15.4 
(5.9) 

25.4 
(15.5) 

18.4 
(11.2) 

12.3 
(9.0) 

28.0 
(13.5) 

Scale 0.98 
(0.09) 

1.04 
(0.1) 

1.04 
(0.08) 

1.03 
(0.03) 

1.0 
(0.04) 

1.03 
(0.09) 

1.09 
(0.13) 

1.05 
(0.15) 

1.02 
(0.12) 

0.97 
(0.17) 

0.94 
(0.09) 

 b-scale 
Location 

(mm) 
18.4 
(6.9) 

18.1 
(15.6) 

28.4 
(12.0) 

4.6 
(1.8) 

20.0 
(8.1) 

12.3 
(6.5) 

12.8 
(6.3) 

20.2 
(14.6) 

16.1 
(10.4) 

17.6 
(10.5) 

34.1 
(12.1) 

Scale 1.03 
(0.09) 

1.06 
(0.11) 

1.04 
(0.09) 

1.03 
(0.03) 

1.02 
(0.02) 

1.03 
(0.09) 

1.14 
(0.15) 

1.08 
(0.17) 

1.02 
(0.13) 

1.01 
(0.15) 

1.05 
(0.1) 

One-shot 

Location 
(mm) 

20.1 
(8.1) 

21.7 
(14.8) 

28.5 
(14.4) 

3.5 
(1.6) 

22.6 
(12.9) 

11.6 
(7.0) 

15.9 
(6.3) 

23.5 
(15.0) 

19.1 
(12.5) 

21.5 
(12.0) 

31.6 
(14.2) 

Scale 1.05 
(0.09) 

1.08 
(0.1) 

1.06 
(0.09) 

1.06 
(0.02) 

1.05 
(0.09) 

1.06 
(0.06) 

1.14 
(0.15) 

1.1 
(0.16) 

1.05 
(0.11) 

1.03 
(0.13) 

1.06 
(0.1)  

Table 1: Recognition accuracy for the organs of the Thorax. Standard deviation is in parenthesis. 

 

Method SB ASk STs SAT Lvr Msℓ Spℓ Pan AIa 

One-shot 

Location 
(mm) 

5.2 
(2.1) 

26.3 
(11) 

12.9 
(3.1) 

17.5 
(10.7) 

27.7 
(12.9) 

11.4 
(4.7) 

25.5 
(8.8) 

19.7 
(5.9) 

26.5 
(8.9) 

Scale 1.02 
(0.03) 

1.0 
(0.06) 

1.0 
(0.04) 

1.01 
(0.03) 

0.99 
(0.09) 

1.0 
(0.03) 

1.02 
(0.14) 

0.91 
(0.14) 

1.05 
(0.15) 

Table 2: Recognition accuracy for some of the tested organs of the Abdomen. Standard deviation is in parenthesis. 

 
5. REMARKS 

Overall the b-scale method seems to perform better than the FLD and one-shot methods. There is no statistically 
significant difference between FLD and b-scale methods (p = 0.227). There is however statistical difference between the 
b-scale and one-shot methods (p << 0.05) and the FLD and one-shot methods (p = 0.059). The computational advantage 
of the one-shot method weighs in its favor to make it overall the best strategy among these three methods. 

Note that the estimation of scale factor is overall excellent. The estimation of location is within 20mm (actually overall 
mean = 18.4mm for the Thorax) of the true location for most of the objects. In our previous work with hybrid graph-
based delineation algorithms combined with models [8, 11], we have observed that if the model can be brought within 25 
pixels of the true location, then those algorithms yield a delineation accuracy of 95% or better for true positive volume 
and 5% or less for false positive volume. The overall mean location error in our experiments is about 20 pixels. 
Although we have not yet carried out detailed studies on final organ delineation in this work, the recognition accuracy 
we have achieved seems to bode well for the delineation accuracy that can be achieved. 

RPS and PC seem to fare poorer than the rest of the organs. We believe this stems from the fact that there is considerable 
variation in the position of RPS and PC relative to their parent organs in different subjects. For PC, this is due to the 
motion of the heart, and for RPS, it is due to the liver pressing against the diaphragm and thus changing the shape of RPS 
differently in different subjects. Also there may be differences in the respiratory phase of the breath-hold instant at which 
images are acquired from the different subjects. 

Our future efforts will be to bring textural information into the one-shot recognition process, to complete the whole AAR 
process including delineation, to speed up the computational processes, and to start deploying the AAR system in QR 
applications. 
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