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Abstract

The minimum barrier distance, MBD, introduced recently in [1], is a pseudo-

metric defined on a compact subset D of the Euclidean space Rn and whose

values depend on a fixed map (an image) f from D into R. The MBD is

defined as the minimal value of the barrier strength of a path between the

points, which constitutes the length of the smallest interval containing all

values of f along the path.

In this paper we present a polynomial time algorithm, that provably cal-

culates the exact values of MBD for the digital images. We compare this new

algorithm, theoretically and experimentally, with the algorithm presented in

[1], which computes the approximate values of the MBD. Moreover, we no-
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tice that every generalized distance function can be naturally translated to

an image segmentation algorithm. The algorithms that fall under such cat-

egory include: Relative Fuzzy Connectedness, and those associated with the

minimum barrier, fuzzy distance, and geodesic distance functions. In par-

ticular, we compare experimentally these four algorithms on the 2D and 3D

natural and medical images with known ground truth and at varying level of

noise, blur, and inhomogeneity.

Keywords: Image Processing, Distance Function, Distance Transform,

Minimum Barrier, Path Strength, Segmentation, Fuzzy Connectedness,

fuzzy distance

1. Introduction

The distance transform, DT , mappings [1, 2, 3, 4, 5, 6, 7, 8] have been

widely used as the effective tools for analyzing object morphology and geom-

etry [9, 10, 11]. The value DT (x) of a distance transform map at a point x

from the domain C of DT is usually defined as a (possibly signed) distance

of x from a fixed target set B ⊂ C, the distance measured with respect

to some fixed (possibly generalized) metric on C. Most commonly, C is a

bounded subset of the Euclidean space Rn and DT is defined in terms of the

Euclidean distance. For the rectangular shape digital domains C, a fast algo-

rithm for finding the approximate values of the Euclidean distance transform

was introduced by Rosenfeld and Pfaltz [12]. An algorithm for computing

the exact values of such transform in linear time for the n-dimensional images

was described in [13, 14] and elaborated on in [15]. Such algorithms for the

2-dimensional images were also presented in [16, 17].
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The distance transforms used in the image processing commonly take into

account the image data [6, 18, 19, 20]. Most of the distance notions used

in such setting define the distance between two points in the image’s scene

as the minimum cost of a path connecting such points, where the path cost

functions depend on the image intensity and differ for different methods.

Such defined distance measures include the connection value (a variant of

Rosenfeld’s degree of connectivity [21, 22, 23]), which allows for an equivalent

characterization of topological watersheds, leading to an efficient Watershed

(WS) segmentation algorithm [24, 25], as well as the geodesic distance (see

e.g. [26]). Moreover, the degree of connectivity, on the basis of which the

Fuzzy Connectedness (FC) algorithms are defined, can be also treated as the

distance measure defined in the same form. (See e.g. [27, 28, 20].) Falcão

et al. [20] proved that for a general class of the path cost functions, called

smooth, including the three examples mentioned above, the related distance

transform can be found via Dijkstra’s algorithm. For the case of FC, this

was further elaborated in [29], including the discussion of the related results

from the papers [30, 31].

The subject of this paper is the study of the distance transform for the

minimum barrier distance, MBD, and of the segmentation algorithms as-

sociated with it. The MBD for an image f is defined from the path cost

function, called barrier strength, in a manner described above, where the

barrier strength of a path constitutes the length of the smallest interval con-

taining all values of f along the path. However, the barrier strength path

cost function is not smooth in the sense defined in [20]. In fact, the naturally

defined Dijkstra’s algorithms for barrier strength path cost function do not



79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

K.C. Ciesielski, et al.: Efficient algorithm for MBD 1/13/2014 4

need to return the exact values for MBD. Nevertheless, the output of such

algorithms approximate MBD, as proved in [1] and shortly described in what

follows.

Section 2 introduces a general framework for constructing the general-

ized distance mappings. We represent within this framework: the Minimum

Barrier Distance, geodesic distance, fuzzy distance, as well as the distance

notions that stand behind two popular segmentation algorithms, Fuzzy Con-

nectedness (FC) and Watershed (WS). We also discuss, how the generalized

distance mappings can be used to naturally define an image segmentation via

seeds competition. In the case of FC theory, this gives the Relative Fuzzy

Connectedness (RFC) objects. In Section 3 we introduce the new algorithm,

that calculates the MBD in polynomial time. We also discuss, how this new

algorithm relates to the standard Dijkstra’s algorithm, which can be used to

calculate the other distance notions mentioned above.

In Section 4 we present our experimental results. In particular, in Sec-

tion 4.1 we compare different versions of the algorithms that compute MBD

(approximately and exactly) with respect to the execution time and accu-

racy. In Sections 4.2 and 4.3 we compare the segmentation algorithms corre-

sponding to MBD with the segmentation algorithms corresponding to other

distance transforms, that is, with Fuzzy Connectedness, and these corre-

sponding to the geodesic and fuzzy distances. The comparison is quantitative

(stability to noise, blur, and the choice of seed points) and qualitative.
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2. Generalized distance mappings and related segmentations

In this section we review the constructions of the generalized distance

mappings (or generalized metrics) on a set C, which we define as symmetric

functions d : C2 → [0,∞] that satisfy the triangle inequality. (We allow pos-

sibility that d(c, c) > 0 for some c ∈ C.) The construction encompasses the

Minimum Barrier Distance as well as several other popular distance map-

pings used in imaging. We notice that any generalized distance can be used

to naturally define an image segmentation via seeds competition for c ∈ C.

In particular, two popular segmentation algorithms, Relative Fuzzy Connect-

edness (RFC) and Watershed (WS), fall into this category.

Most of the theoretical results that follow are independent of image pro-

cessing interpretation and are presented in a general graph-theoretical set-

ting. Nevertheless, we point out to the image processing applications at each

step of our exposition.

In this paper a digital image is identified with its intensity (or attribute)

function f : C → R`, where C is its domain (whose elements will be referred

to as spels, short for space elements) and the value f(c) of f at c ∈ C

represents image intensity (an `-dimensional vector, each component of which

indicates a measure of some aspect of the signal, like tissue property or color)

at the spel c. It is assumed that image domain comes with an adjacency

relation, that decides which pairs of spels are adjacent. An image domain

C together with its adjacency structure is referred to as a scene. In the

experimental sections we will concentrate on the images on the rectangular

scenes C =
∏k

i=1{1, . . . , ni}, k = 2, 3, with either 4-adjacency, in 2D, or

6-adjacency, in 3D.
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2.1. Path-induced distance mappings

By a graph we understand a pair G = 〈C,E〉 with C representing a finite

set of its vertices and E the set of its edges G, where an edge connecting

c and d from C is identified with an unordered pair {c, d}. In the image

processing applications, we concentrate on the graphs associated with the

images f : C → R` in which the vertices are the spels (the elements of C)

and the set E of edges coincides with the adjacency relation of the image’s

scene.

A path in a graph G = 〈C,E〉 is any sequence π = 〈π(0), π(1), . . . , π(k)〉

of vertices such that {π(i), π(i− 1)} ∈ E for every i ∈ {1, 2, . . . , k}. A path

π = 〈π(0), π(1), . . . , π(k)〉 is from s to c when π(0) = s and π(k) = c. A

family of all paths in G from an s ∈ S to c is denoted by ΠS,c. We will also

write Πs,c for Π{s},c.

Now, assume that with any path π in G we have associated its cost:

a number λ(π) ≥ 0 treated as the “length” of π. (The examples of such

functions λ are given below.) With any such λ we associate a mapping

dλ : C2 → [0,∞] (which need not be a generalized distance) defined as

dλ(c, d) = min{λ(π) : π is a path in G from c to d}.

In what follows we work mostly with the connected graphs, that is, such that

for any vertices c and d there is a path in G from c to d. In such case, all

values of dλ are finite.

In general, dλ need not be a generalized distance. However, it must be

under the assumptions of the following easy fact.
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Proposition 1. Assume that for every path π = 〈π(0), π(1), . . . , π(k)〉

(i) λ(π) = λ(〈π(k), π(k − 1), . . . , π(0)〉), and

(ii) λ(π) ≤ λ(〈π(0), . . . , π(i)〉) + λ(〈π(i), . . . , π(k)〉) for every 0 ≤ i ≤ k.

Then dλ is symmetric and it satisfies the triangle inequality.

Since all path length functions we consider here (except for the auxiliary

map β−w ) satisfy the assumptions of Proposition 1, all considered functions

dλ are the generalized metrics.

In the standard examples, the mappings λ are defined in terms of graph’s

G = 〈C,E〉 weight functions: either vertex weight w : C → [0,∞) or edge

weight w : E → [0,∞). In image processing, such weight functions are de-

fined in terms of the intensity function f : C → R`. (See Section 4 for more

on the weight mappings.)

Geodesic distance. For an edge weight map w : E → (0,∞), where the value

w({c, d}) is a (geodesic) distance from c to d, and the path length function

Σ(〈π(0), π(1), . . . , π(k)〉) =
∑k

i=1w({π(i − 1), π(i)}), the resulted function

dΣ is the geodesic metric. (For the length one path π = 〈π(0)〉, the formula

is interpreted as Σ(π) = 0.)

Fuzzy distance. For a vertex weight map w : C → [0,∞), associated edge

weight map ŵ : E → [0,∞) defined as ŵ(c, d) = w(c)+w(d)
2

, and the path length

function Σ̂(〈π(0), π(1), . . . , π(k)〉) =
∑k

i=1 ŵ({π(i − 1), π(i)}), the resulted

function dΣ̂ is the fuzzy distance. (For the length one path π = 〈π(0)〉, the

formula is interpreted as Σ̂(π) = 0.) Clearly the fuzzy distance is a pseudo-

metric, that is, it is symmetric and satisfies the triangle inequality (as the
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assumptions of Proposition 1 hold for λ = Σ̂); moreover, dΣ̂(c, c) = 0 for

every c ∈ C. (However, dΣ̂(c, d) can be equal 0 for c 6= d.) See [6, 19] for

more on the fuzzy distance.

Fuzzy Connectedness strength mapping. This is defined for an affinity weight

mapping κ : E → [0,M ] (usually with M = 1) interpreted: the closer the

value of κ({c, d}) is toM , the stronger the vertices c and d are connected. The

standard Fuzzy Connectedness strength of a path π = 〈π(0), π(1), . . . , π(k)〉

is defined as µ(π) = mini=1,...,k κ({π(i − 1), π(i)}), that is, the weakest link

of π; the value of µ(〈π(0)〉) is interpreted as M . The Fuzzy Connectedness

path length is defined as λ(π) = M − µ(π) = maxi=1,...,k w({π(i− 1), π(i)}),

where w({c, d}) = M − κ({c, d}); that is, λ(π) is the biggest w-length

of a link in π. Then the Fuzzy Connectedness distance map dλ becomes

dλ(c, d) = M − µ(c, d), where µ(c, d) = max{µ(π) : π ∈ Πc,d} is the standard

FC connectivity strength. Note, that this distance dλ is also a pseudo-metric.

For more on this subject see [27, 28]. Compare also [24, 25, 30].

Watershed and the connection value mapping. This is defined for the vertex

weight mapping w : C → [0,∞), where the value w(c) is interpreted as an

elevation at c. Then, for the path length function λ = β+
w defined as

β+
w (〈π(0), π(1), . . . , π(k)〉) = max

i=0,...,k
w(π(i)),

the related distance function dλ = dβ+
w

is usually referred to as the connection

value and it leads to the Watershed (WS) segmentation algorithm [24, 25].

The connection value related map dλ is a generalized metric; however, it is

not pseudo-metric, since dλ(c, c) can be greater than 0. In what follows we
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will use also the dual path length function λ = β−w defined as

β−w (〈π(0), π(1), . . . , π(k)〉) = min
i=0,...,k

w(π(i)).

Notice that if M = maxc∈C w(c) and the weight function v is defined as

v(c) = M − w(c), then the mapping d∗
β−w

= M − dβ+
v

satisfies

d∗
β−w

= max{β−w (π) : is a path in G from c to d}.

In particular, an algorithm that calculates dβ+
v

can be also used to find d∗
β−w

.

Barrier Distance Transform. This is defined for the vertex weight mapping

w : C → [0,∞). The path length function λ = βw, referred to as the barrier

strength, is defined for a path π = 〈π(0), π(1), . . . , π(k)〉 as

βw(π) = β+
w (π)− β−w (π) = max

i=0,...,k
w(π(i))− min

i=0,...,k
w(π(i)).

The related Barrier Distance map dλ = dβw is a pseudo-metric [1].

2.2. The segmentations associated with the generalized metrics

Let d be a generalized distance on C. For a c ∈ C and a non-empty

W ⊂ C define d(c,W ) = min{d(c, w) : w ∈ W}. For any two non-empty sets

S ⊂ C and T ⊂ C of seeds, S indicating the object and T indicating the

background, we associate the object

Pd(S, T ) = {c ∈ C : d(c, S) < d(c, T )}.

Of course, we would expect that

(ST) Pd(S, T ) contains S and is disjoint with T .
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This is guaranteed only for a proper choice of the seed sets S and T . In

particular, if d is a metric (e.g., geodesic), then (ST) holds precisely when S

and T are disjoint. For the pseudo metric d (like the case of FC and MBD),

(ST) holds precisely when the number d(S, T ) = min{d(s, T ) : s ∈ S} is

greater than 0.

For the Fuzzy Connectedness pseudo metric dλ, as defined above, the

object Pd(S, T ) is precisely the Relative Fuzzy Connectedness, RFC, object.

The Watershed object is also often defined as Pd(S, T ) (with respect to the

distance dβ+
w

). Similarly, the delineated objects for the geodesic, fuzzy, and

MB distances we define as Pd(S, T ) for their respective distance functions.

In either case, the segmentation into k-objects, indicated by the seed sets

S1, . . . , Sk can be defined as {Pd(Si, Ti) : i = 1, . . . , k}, where the set Ti is

equal to (S1 ∪ · · · ∪ Sk) \ Si.

3. The algorithms for DTs and related segmentations

Let λ be an arbitrary path cost function on a graph G = 〈C,E〉. We

assume that the cost of an empty path is infinite: λ(∅) = ∞. Also, for any

path π = 〈π(0), π(1), . . . , π(k)〉 and c connected by an edge with π(k), π ĉ

is a concatenation path 〈π(0), π(1), . . . , π(k), c〉.

Notice, that for the path cost functions we consider, the value of λ(π ĉ)

can be calculated from the value of λ(π) in O(1) time. (More precisely, in the

case of the barrier distance, we need to use the values of β−(π) and β+(π)

to find β−(π ĉ) and β+(π ĉ) in O(1) time.) Therefore, for the complexity

considerations, we will assume that the values of λ(〈r〉), as well as that of

λ(π ĉ) using λ(π), can be found in O(1) time.
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Algorithm 1 Dijkstra’s algorithm DA(λ,R)

Input: Path cost function λ on a graph G = 〈C,E〉, non-empty R ⊂ C.

Output: For every c ∈ C, a path πc from an r ∈ R to c and L(c) = λ(πc).

Auxiliary: Ordered queue Q: if c precedes d in Q, then L(c) ≤ L(d).

begin

1: For all c ∈ C \R initialize πc = ∅ and L(c) =∞;

2: For all r ∈ R initialize πr = 〈r〉 and L(r) = λ(πr), push all r ∈ R to Q;

3: while Q is not empty do

4: Pop d from Q;

5: for every c ∈ C connected by an edge to d do

6: Calculate ` = λ(πd ĉ) using L(d);

7: if ` < L(c) then

8: Put πc = πd ĉ, L(c) = `, place c to an appropriate place in Q;

9: end if

10: end for

11: end while

12: Return paths πc and numbers L(c) = λ(πc);

end

3.1. Dijkstra’s algorithm

Consider the version of the Dijkstra’s algorithm presented as Algorithm 1.

The algorithm always stops and, for the connected graphs, the returned paths

F = {πc : c ∈ C} form a forest rooted at R (i.e., any path in F starts at

an r ∈ R and F contains any initial segment of a path in F ). It is easy to

see that if λ is the path cost function for geodesic, fuzzy connectedness, or

watershed distance, then the algorithm DA(λ,R) returns λ-minimal paths,
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that is, having the property that dλ(c, R) = λ(πc) for every c ∈ C. (All these

path cost functions are smooth, in the sense of [20].) On the other hand, for

the barrier strength cost function λ = βw, this is not the case, as could be

seen on the graph from Figure 1. Indeed, the two paths π1 = 〈s, a, d, s〉 and

π2 = 〈s, b, d, s〉 between s and c have the barrier weights βw(π1) = .8− .4 = .4

and βw(π2) = .8−.5 = .3, and so dβw(s, c) = βw(π2) = .3. However, the initial

restriction π = 〈s, b, d〉 of π2 is not dβw-optimal for d (as βw(π) = .7− .5 = .2,

while dβw(s, d) = βw(〈s, a, d〉) = .5 − .4 = .1 < βw(π)), which is impossible

for the Dijkstra’s algorithm.

●!●!

●! ●!

s!

c!

.5!

.5!

.7!

.4! ●!

.8!d!a!

b!

Figure 1: The minimum barrier distance dβw(s, c) = .8 − .5 for the indicated weight

function w. However, DA(βw, {s}) returns suboptimal πc, with βw(πc) = .8− .4.

Even for the good cases, when Algorithm 1 returns λ-optimal paths, it

seems that to find the object Pdλ(S, T ) = {c ∈ C : dλ(c, S) < dλ(c, T )} it

is necessary to run DA twice: DA(λ, S) to compute dλ(·, S) and DA(λ, T )

to compute dλ(·, T ). To avoid this, in the experiments we used a modifica-

tion DA∗(λ, S, T ) of DA(λ,W ) with W = S ∪ T obtained by replacing the

condition “` < L(c)” in line 7 with “either λ(πd ĉ) < λ(πc) or

` = L(c) and πc(0) ∈ S and πd(0) ∈ T .”

The additional condition insures, that for the path of same strength, the
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algorithm favors those that initiate at T .

If F = {πc : c ∈ C} is a forest returned by DA∗(λ, S, T ), then the object

P ∗dλ(S, T ) = {c ∈ C : πc(0) ∈ S}

is uniquely defined, in a sense that any two forests returned by DA∗(λ, S, T )

(which may be different, subject to possible differences in order of processing

the vertices from Q) lead to the same set P ∗dλ(S, T ). Moreover, P ∗dλ(S, T )

contains Pdλ(S, T ) and is disjoint with Pdλ(T, S); in other words, P ∗dλ(S, T )

is a union of Pdλ(S, T ) and some of the vertices from the “boundary” set

{c ∈ C : dλ(c, S) = dλ(c, T )}. All these facts on P ∗dλ(S, T ) were rigorously

proved in [29] for the FC case, showing, in particular, that P ∗dλ(S, T ) is the

Iterative Relative Fuzzy Connectedness, IRFC, object studied earlier. The

arguments presented in [29] easily generalize to the case of a general path

cost function.

3.2. Algorithms finding approximation of MBD

Let ϕ(c, d) = min{β+
w (π) : π ∈ Πc,d} −max{β−w (π′) : π′ ∈ Πc,d}, that is,

ϕ(c, d) = dβ+
w

(c, d)− dβ−w (c, d).

Clearly, ϕ(c, d) ≤ dβw(c, d), that is, ϕ gives a lower bound for the MBD

dβ. The equation need not hold, as ϕ(s, d) = 0 < .1 = dβw(s, d) for the

example from Figure 1. Nevertheless, for image induced graphs, the map ϕ

approximates the MBD, as proved in [1] and explained in more details in

Theorem 1. The additional advantage of using ϕ as an approximation of

MBD is that its values can be easily computed by the following algorithm

introduced in [1].
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Algorithm 2 AapprMBD({s})
Input: A vertex weight map w on a graph G = 〈C,E〉, an s ∈ C.

Output: A map ϕ(·, {s}).

begin

1: Run DA(β+
w , {s}) and record dβ+

w
(c, {s}) = β+

w (πc) for every c ∈ C;

2: Run DA(β+
v , {s}), where v = M − w and M = maxc∈C w(c),

and record dβ−w (c, {s}) = M − β+
v (πc) for every c ∈ C;

3: Return map ϕ(c, {s}) = dβ+
w

(c, {s})− dβ−w (c, {s});

end

The following theorem is a variant of a theorem proved in [1]. It specifies

an upper bound of a difference between MBD and ϕ.

Theorem 1. Let G = 〈C,E,w〉 be a vertex weighted graph of a rectangular

k-D image and let ε = max{|w(x) − w(y)| : x, y ∈ C are (3k − 1)-adjacent}.

Then for every c, d ∈ C there exists a path π ∈ Πc,d with the range in

[dβ−w (c, d) − ε, dβ+
w

(c, d) + ε]. In particular, 0 ≤ dβ(c, d) − ϕ(c, d) ≤ 2ε, that

is, ϕ approximates the MBD with at most 2ε error.

The proof of the theorem translates the discrete MBD to the continuous

case and uses the fact that in the continuous case the distance ϕ coincides

with MBD. This last fact is based heavily on a version of Alexander’s lemma

(see e.g. [32, p. 137]), a deep topological result.

Unfortunately, the number ϕ(·, S) returned by AapprMBD(S) well approxi-

mates the MBD distance dβw(c, S) only when S is a singleton. Thus, for

larger sets S, to find ϕ(·, S) using AapprMBD within 2ε error, it is necessary

to run AapprMBD({s}) for every s ∈ S to find maps ϕ(·, {s}) and, at the end,
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compute ϕ(·, S) as mins∈S ϕ(·, {s}). Then, the approximation given by The-

orem 1 still holds. However, such a procedure essentially increases the com-

putational complexity of finding ϕ(·, S).

Of course, the forest {πc : c ∈ C} returned by the algorithm DA(βw, R)

gives an upper bound βw(πc) of MBD map dβw(c, R). However, there is no

known theoretical result giving an upper bound for the error for the difference

βw(πc) − dβw(c, R). Nevertheless, all three measures, ϕ(c, s), dβw(c, s), and

βw(πc), are experimentally compared, see Section 4.1.

3.3. Novel algorithm AMBD for finding the exact MBD

The proof of correctness of the main algorithm presented in this section,

AMBD, is a bit involved. However, an idea behind AMBD is relative simple

and can be already seen in its simpler version, presented here as the algorithm

AsimpleMBD (S). Therefore, we start here with the discussion of AsimpleMBD (S).

For a vertex weight map w on a graph G = 〈C,E〉 and an a ∈ R define

a modified vertex weight map wa as

wa(c) = w(c) provided w(c) ≥ a and wa(c) =∞ otherwise.

Theorem 2. The paths pc returned by AsimpleMBD (S) indeed satisfy βw(pc) =

dβw(c, S). Moreover, if n = |C|, the size of C, and we assume thatO(|E|) = n,

then AsimpleMBD (S) stops after at most O(n2 lnn) operations.

In addition, if the range of w is a subset of a fixed set of size m ≤ n, then

there exists a small modification of DA(β+
w , S) such that AsimpleMBD (S) requires

at most O(m2n) operations.
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Algorithm 3 AsimpleMBD (S)

Input: A vertex weight map w on a graph G = 〈C,E〉, non-empty S ⊂ C.

Output: For every c ∈ C a path pc from S to c with βw(pc) = dβw(c, S).

begin

1: Initialize: U = max{w(s) : s ∈ S}; for c ∈ C, pc = ∅ and βw(pc) =∞;

2: Push all numbers from {w(c) ≤ U : c ∈ C} to a queue Q, each only once;

3: while Q is not empty do

4: Pop a from Q; run DA(β+
v , S) with v = wa, returning πc’s & βv(πc)’s;

5: for every c ∈ C do

6: if βv(πc) < βw(pc) then

7: Put pc = πc and update the value of βw(pc) to βv(pc);

8: end if

9: end for

10: end while

end

Proof. Notice that if there exists a path π from S to c with the range in

[a,∞), then the path πc returned by DA(β+
v , S) with v = wa also has this

property. This immediately implies correctness of the algorithm.

The first complexity estimate follows from the fact that the complexity of

the standard form of DA(β+
w , S) is O(n lnn), while we run it at most n-many

times. The second complexity estimate follows from the fact that, under the

assumption, there is a form of DA(β+
w , S) that runs in O(mn) time, as shown

in [29] (compare discussion below), and that in this case the loop is executed

at most m times.

Notice that in image processing it is very common that indeed m is a
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lot smaller than n, in which case the complexity of AsimpleMBD becomes O(n).

However, the constants in this estimate are significant, so AsimpleMBD runs many

times (of order O(m)) slower than DA(β+
w , S).

As it can be seen, an idea behind the algorithm AsimpleMBD is that for every

c ∈ C we consider all possible lower bounds β−w (π) among the paths π ∈ ΠS,c

and, for each such lower bound a, we find a path aπ minimizing β+
w ; then

βw-minimizer of ΠS,c is found among such aπ’s. This idea is also present in

the algorithm AMBD, though in its dual form: we consider all possible upper

bounds β+
w (π) among the paths π ∈ ΠS,c and, for each such upper bound b,

we find a path bπ maximizing β−w ; a βw-minimizer of ΠS,c is one of the bπ’s

with the smallest βw-value. The main difference between AsimpleMBD and AMBD

is in how we choose “all possible one-sided bounds:” in the case of AsimpleMBD

we consider for this purpose all a ∈ W , a ≤ U . In AMBD this process is

considerably more subtle.

More precisely, AMBD can be considered as a Dijkstra’s algorithm for

finding πc ∈ ΠS,c with the minimal value of β−w (πc), in which “ill-advised

order” of the queue Q is used: instead of ordering Q according to the values

of β−w of already found paths, we order it according the values of β+
w of such

paths. Although this order would be suboptimal if we were only to find

the β−w -optimal paths, this allows us: (1) to consider as “all possible upper

bounds of π ∈ ΠS,c” only the upper bounds of the paths examined during

the execution of the algorithm; (2) while considering such an upper bound,

say b, to examine all paths π ∈ ΠS,c with β+
w (π) ≤ b, to choose among such

paths one, say bπ, with the largest lower bound, and to update our current

best βw-estimate pc among π ∈ ΠS,c to bπ, if appropriate.
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Algorithm 4 AMBD(S)

Input: A vertex weighted graph G = 〈C,E,w〉, non-empty S ⊂ C.

Output: For every c ∈ C a path pc from an s ∈ S to c such that the number

βw(pc) is the minimum barrier distance from S to c.

Auxiliary: For every c ∈ C a path πc from S to c being β−w -optimal.

A priority queue Q: if c precedes d in Q then either β+
w (πc) < β+

w (πd) or

β+
w (πc) = β+

w (πd) and β−w (πc) ≥ β−w (πd).

begin

1: For every s ∈ S initialize: ps = πs = 〈s〉 and β−w (πc) = β+
w (πc) = w(s);

2: For every c ∈ C \ S put: pc = πc = ∅, β−w (πc) = −∞, and β+
w (πc) =∞;

3: Push all s ∈ S to Q;

4: while Q is not empty do

5: Pop c from Q;

6: for every d ∈ C connected by an edge to c do

7: Set L− ← β−w (πc d̂) = min{β−w (πc), w(d)};

8: Set L+ ← β+
w (πc d̂) = max{β+

w (πc), w(d)};

9: if L− > β−w (πd) then

10: Set πd ←πc d̂, β−w (πd)←L−, β+
w (πd)←L+, βw(πd)←L+−L−;

11: Remove d from Q, if needed; place d into (a right place) in Q;

12: if βw(πd) < βw(pd) then

13: Set pd ← πd;

14: end if

15: end if

16: end for

17: end while

end
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The proof of the complexity (but not of the correctness) of AMBD(S),

presented in Theorem 3, requires the assumption that the graph’s degree

(i.e., the largest number of edges connected to a single vertex) is small, O(1),

with respect to the size n of the set C of graph’s vertices. This assumption

is essentially always true for the graphs associated with images. Moreover,

we make some additional assumptions about the structure of the queue Q

it utilizes. Actually, the algorithm works correctly if Q has a simple struc-

ture of a double linked list. However, in such structure the insertion of a

vertex, as in the line 11 of AMBD, would require O(n) operation. Therefore,

we will consider two other structures for Q. The first is a binary heap that

allows insertion and deletion of any element in O(lnn) time [33]. However,

for the graphs associated with image processing, the set Z of possible values

of a weight function w is usually restricted to a fixed set of a modest size,

most frequently of a form Z = {i/D : i = 0, 1, . . . ,m} for m not exceeding

212 = 4096. In this case, Q can be defined as an array of buckets indexed

by the set V = {〈β+, β−〉 ∈ Z2 : β+ ≥ β−} and ordered as described in the

algorithm AMBD. This is, essentially, the structure described in [29]. Each

bucket with an index 〈β+, β−〉 ∈ V consists of the pointers to vertices c for

which β+
w (πc) = β+ and β−w (πc) = β−. An advantage of Q to be represented

in such an array format is that this allows O(1)-time insertion into Q and

deletion from Q of any element c with a fixed label 〈z, `〉. Emptying Q in

the priority order from the largest to the smallest vertex in V , as done when

executing line 5 of the algorithm, may require O(|V |) = O(m2) operations

during the complete execution of AsimpleMBD (S). For large images, O(m2) is

usually considered as smaller than O(n), favoring the array of buckets imple-



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

K.C. Ciesielski, et al.: Efficient algorithm for MBD 1/13/2014 20

mentation. However, in our implementations, including AsimpleMBD (S), we use

Dijkstra’s algorithm with the binary heap queue structure.

Theorem 3. [On the correctness and complexity of AMBD(S)]

Correctness: After AMBD(S) terminates, we have βw(pc) = dβw(c, S) for

all c ∈ C.

Complexity: Let n be the size of the graph and m be the size of a fix

set Z, containing W = {w(c) : c ∈ C}. The algorithm computational

complexity is either

(BH) O(m n lnn), if we use binary heap as Q, or

(LS) O(m(n+m)), if we use as Q a list structure described above.

Proof of the Complexity Part of Theorem 3. The complexity of

each execution of the while loop, lines 4-17, is determined by the line 11,

which is either O(lnn) in case (BH), or O(m) in case (LS). Moreover,

(∗) a vertex d can be popped from the queue, line 5, at most m times.

To see this property, notice that with an i-th appearance of d in Q we asso-

ciate, in line 11, a path πid from S to d. For d to appear in Q for the (i+1)-st

time, we must have executed the line 11, meaning that β−w (πi+1
d ) > β−w (πid).

This means that 〈β−w (πid)〉i is a strictly increasing sequence of numbers from

W . So, the sequence cannot have more than m elements and (∗) is proved.

Now, in the case of (BH), (∗) implies that the loop can be executed at

most mn-times, meaning that the algorithm’s complexity is O(mn lnn).
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In the case of (LS), the true execution of the loop is O(mn). However, in

addition, we may need O(m2) operations for searching, in line 4, for the top

of the queue. This gives complexity O(mn) +O(m2) = O(m(n+m)).

Before we prove the correctness of AMBD(S), it might be useful to follow

the execution of AMBD({s}) for the graph from Figure 1. In this example, we

use the convention that β+
w (∅) = ∞ and β−w (∅) = −∞. After the execution

of lines 1-3, we have πs = ps = 〈s〉, and this state does not change, so we

will not list it below. The state of the remaining variables is listed as follows,

where index i represents the time just before the i-th execution of line 4 (so

state 1, is just after the initialization).

1: πx = px = ∅ for x ∈ {a, b, c, d} and Q = 〈s〉;

2: πa = pa = 〈s, a〉, πb = pb = 〈s, b〉, πc = pc = ∅, πd = pd = ∅,

Q = 〈a, b〉 (β+
w (πa) = .5 < .7 = β+

w (πb));

3: πa = pa = 〈s, a〉, πb = pb = 〈s, b〉, πc = pc = ∅, πd = pd = 〈s, a, d〉,

Q = 〈d, b〉 (β+
w (πd) = .5 < .7 = β+

w (πb));

4: πa = pa = 〈s, a〉, πb = pb = 〈s, b〉, πc = pc = 〈s, a, d, c〉,

πd = pd = 〈s, a, d〉, Q = 〈b, c〉 (β+
w (πb) = .7 < .8 = β+

w (πc));

5: πa = pa = 〈s, a〉, πb = pb = 〈s, b〉, πc = pc = 〈s, a, d, c〉,

pd = 〈s, a, d〉, πd = 〈s, b, d〉, Q = 〈d, c〉 (β+
w (πd) = .7 < .8 = β+

w (πc));

6: πa = pa = 〈s, a〉, πb = pb = 〈s, b〉, πc = pc = 〈s, b, d, c〉,

pd = 〈s, a, d〉, πd = 〈s, b, d〉, Q = 〈c〉;
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7: πa = pa = 〈s, a〉, πb = pb = 〈s, b〉, πc = pc = 〈s, b, d, c〉,

pd = 〈s, a, d〉, πd = 〈s, b, d〉, Q = ∅;

Proof of the Correctness part of Theorem 3. To facilitate the

proof of algorithm’s correctness, we insert into its pseudo code the auxiliary

variables: a counter j initialized as 0, and a one dimensional array M̄ of

numbers. We also expand the line 5 to

5∗: Pop c from Q; Set j ← j + 1 and M̄ [j] = β+
w (πc).

Let 〈M̄ [j]〉j be the array recorded during the execution of the algorithm.

Then, by the order imposed on Q, it is non-decreasing (i.e., M̄ [k] ≤ M̄ [k+1]

for all allowable indices k).

For any real number M define the sets ΠM = {π ∈ Π: β+
w (π) ≤ M}

and Π<M = {π ∈ Π: β+
w (π) < M}. We prove that for every M ∈ W the

following property holds. This will finish the proof, since (•) for M = maxW

is precisely the desired correctness of the algorithm.

(•) Let k be the largest index with M̄ [k] ≤M . Then, for every d ∈ C with

ΠS,d ∩ ΠM 6= ∅, after the k-th execution of the loop 5-16 we have

(a) πd maximizes β−w on ΠS,d ∩ ΠM , and

(b) pd minimizes βw on ΠS,d ∩ ΠM .

To see (a), for every m ∈ W and ` = 1, 2, . . . consider the property:

(am` ) For every d ∈ C, if there exists a π ∈ ΠS,d∩ΠM of length ≤ ` such that

β−w (π) ≥ m and π maximizes β−w on ΠS,d ∩ΠM , then πd also maximizes

β−w on ΠS,d ∩ ΠM .
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We need to show that (am` ) holds for every m ∈ W and ` = 1, 2, . . .. To prove

this, for µ ∈ W consider the statement:

(aµ) The property (aµ` ) holds for every ` = 1, 2, . . ..

By the power of recursion, it is enough to prove that for every m ∈ W : if

(aµ) holds for every µ > m with µ ∈ W , then (am) is also true.

So, fix an m ∈ W and assume that (aµ) holds for every µ > m with

µ ∈ W . We must show (am), that is, that (am` ) holds for every ` = 1, 2, . . ..

This will be proven by induction on `.

Clearly, (am` ) holds for ` = 1, since in this case we need only to consider d

from S and then πd must be equal 〈d〉, what is insured in line 1. So, assume

that for some ` = 1, 2, . . . the property (am` ) holds. We need to prove (am`+1).

To see (am`+1), fix a π = 〈c0, . . . , c`〉 ∈ ΠS,d maximizing β−w on ΠS,d ∩ ΠM , for

which β−w (π) ≥ m. We need to show that πd maximizes β−w on ΠS,d ∩ ΠM .

If µ = β−w (π) > m, then this maximization is insured by (aµ). So, assume

that β−w (π) = m and let π′ = 〈c0, . . . , c`−1〉. Notice that for c = c`−1,

(∗) πc maximizes β−w on ΠS,c ∩ ΠM .

Indeed, if β−w (π′) > m, then for any π′′ maximizing β−w on ΠS,c ∩ ΠM

(which may have length greater than `) we have β−w (π′′) ≥ β−w (π′) > m.

Thus, (∗) is insured by (aµ). On the other hand, if β−w (π′) = m, then (∗) is

insured by (am` ).

Finally, notice that, by (∗), vertex c, together with the path πc, must have

been placed into Q prior to k-th execution of the the loop 5-16 (through the

execution of either line 3 or line 11). Therefore, for some k′ ≤ k, this c, with

the same path πc, is popped from Q and after the consecutive execution of
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the lines 10-11 we must have β−w (πd) = max{β−w (πc), w(d)} ≥ m = β−w (π).

This means, that πd maximizes β−w on ΠS,d ∩ ΠM , finishing the proof of (a).

We prove part (b) by induction along the increasing order of W . So, let

M ∈ W be such that (b) holds for every M ′ ∈ W smaller than M . By the

power of induction, it is enough to prove that (b) holds for M . So, fix a d ∈ C

with ΠS,d ∩ ΠM 6= ∅ and let π be a path minimizing βw on ΠS,d ∩ ΠM . Let

p be equal the value of pd after the k-th execution of the loop 5-16. Clearly

p ∈ ΠS,d ∩ ΠM . To finish the proof, it is enough to show that p minimizes

βw, that is, that βw(p) ≤ βw(π).

If M ′ = β+
w (π) is less than M , then, by the inductive assumption, for some

k′ < k, after the k′-th execution of the loop 5-16 we have βw(pd) ≤ βw(π).

Clearly, the value of βw(pd) cannot increase during the algorithm’s execution,

so after the k-th execution of the loop 5-16 still βw(p) = βw(pd) ≤ βw(π),

that is, p minimizes βw on ΠS,d ∩ ΠM . Therefore, in what follows we can

assume that β+
w (π) = M .

If ΠS,d ∩Π<M = ∅, then, by part (a), for some k′ ≤ k (with M̄ [k′] = M),

during the k′-th execution of the loop 5-16, πd becomes a maximizer of β−w on

ΠS,d ∩ΠM . Then β+
w (πd) = M , since πd /∈ Π<M . Thus, the execution of lines

12-14 during the same execution of the loop insures that, from this point on,

pd also minimizes βw on ΠS,d ∩ΠM . So, in what follows we can assume that

ΠS,d ∩ Π<M 6= ∅.

Since Π<M 6= ∅, there exists an M ′ ∈ W (the largest number in W

smaller than M) such that ΠM ′ = Π<M . In particular, ΠS,d ∩ ΠM ′ 6= ∅. By

the inductive assumption, (•) holds for M ′. So, let k′ be the largest index

with M̄ [k′] ≤ M ′ and let and π′ be the path πd immediately after the k′-
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th execution of the loop 5-16. Then, π′ maximizes β−w on ΠS,d ∩ ΠM ′ . Let

m′ = β−w (π′).

Next, notice that m′ < β−w (π). Indeed, the inequality m′ ≥ β−w (π) would

imply βw(π′) ≤ M ′ −m′ < M − β−w (π) = βw(π), contradicting the fact that

π minimizes βw on ΠS,d ∩ΠM . Therefore, the maximum of β−w on ΠS,d ∩ΠM

is strictly greater than the maximum of β−w on ΠS,d ∩ΠM ′ . So, by (a), there

exists a k′′ ∈ (k′, k] such that during the the k′′-th execution of the loop 5-16,

the condition on line 9 is satisfied. In particular, directly after the execution

of the line 10, m′ ≤ β−w (πd) ≤ M , implying that after the execution of lines

12-14, βw(pd) ≤ M − m′ = βw(π). In particular, βw(p) ≤ βw(π), finishing

the proof.

3.4. Discussion of AMBD

The algorithms AsimpleMBD (S) and AMBD(S) have the same computation ef-

ficiency, when measured in terms of the worst case scenario. So, why do

we bother with a more complicated version AMBD(S)? Actually, it is easy

to argue that the execution time of AMBD(S) is never worse than that of

AsimpleMBD (S) and, in most cases, AMBD(S) is more efficient. To see this, let

δ be the degree of the graph (for the images, δ = 4 in 2D and δ = 6

in 3D), put U = max{w(s) : s ∈ S}, and let µ be the size of the set

WU = {w(c) ≤ U : c ∈ C}. In AsimpleMBD (S) algorithm, the βw-strength of a

path from S to c is checked always (often unnecessarily) between µ- and

δµ-many times.

On the other hand, the number of similar checks in AMBD(S) for each

spel may be considerably smaller than µ. Certainly, this is the case for each

seed. But also, if a spel c is connected to an s ∈ S with a large value ν of
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β−w (meaning that the size µc of the set {w(d) ∈ [ν, w(s)] : d ∈ C} is smaller

than µ), then the βw-strength of c will be updated at most δµc many times,

an improvement from δµ.

Also, it is good to mention here that, for some seed sets S and T , the

resulted MBD object P (S, T ) remains unchanged upon small changes of sets

S and T . More specifically, this is the case for the seed pairs 〈s, t〉 ∈ S×T that

are essentially separated in the barrier sense, that is, when for any βw-optimal

path p from s to t, β−w (p) < min{w(s), w(t)} ≤ max{w(s), w(t)} < β+
w (p). Of

course, this robustness for the seed choice is not as potent as the robustness of

RFC; however, it is considerable better than for the segmentations associated

with the geodesic or fuzzy distances.
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Figure 2: Images from the grabcut dataset used in the 2D experiments.

4. Experimental evaluation of the algorithms computing MBD and

of the related segmentation algorithms

All experiments presented in this section were conducted on a computer

HP Proliant ML350 G6 with 2 Intel X5650 6-core processors (2.67Hz) and

104GB memory.

4.1. Experimental comparison of the algorithms that compute MBD

In these experiments we have compared four different versions of the

algorithms returning MBD: the novel exact MBD algorithm AMBD(S), the
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interval Dijkstra’s algorithm DA(βw, S) approximating MBD from above, the

AapprMBD(S) executed once for each seed point, which approximates MBD from

below with an error ≤ 2ε (see Theorem 1), and A?apprMBD(S) executed only once

even for multiple seeds. The aim for these experiments was to evaluate the

practical usefulness of each of these algorithms and to use this information

to decide which of them to use in the next set of experiments, comparing

MBD with other distance measures.

For the experiments we used 2D images from the grabcut dataset [35],

converted to gray scale by using the mean of the three color band values. The

images come with the true segmentations. The examples of the images are

given in Figure 2. Their sizes range from 113032 pixels (for 284×398 image)

to 307200 (for 640 × 480 image), while the intensity range of the images

is [0, 255]. The experiments were conducted as follows. For each number

s = 1, . . . , 25, the following procedure was repeated 100 times: (1) extract

a random image from the subset of the images in the grabcut database; (2)

generate randomly the set S of s-many seed points in the image; (3) run

each of the four MBD algorithms on this image with the chosen set S. The

averages, for each value of s and each of the algorithms, of the execution

time and error in computed distance values are presented in Figures 3 and 4,

respectively. See also Figure 5.
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Figure 3: The mean execution time for the algorithms AMBD(S) (exact), DA(βw, S),

AapprMBD(S), and A?apprMBD(S), for the seed set S having an indicated number of elements.
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Figure 4: The mean error of the output values of the algorithms DA(βw, S), AapprMBD(S),

and A?apprMBD(S), as compared with the exact values of MBD returned by AMBD(S). The

intensity range of the images is [0, 255].
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Figure 5: The mean number of pixels with incorrect value of MBD for the output of the

algorithms DA(βw, S), AapprMBD(S), and A?apprMBD(S), as compared with MBD returned by

AMBD(S).

Based on the presented results, we concluded that the algorithmsA?apprMBD(S)

and AapprMBD(S) are not worth pursuing any further: the first one because of

its high computing time cost in the presence of multiple seeds, while the

second because its higher level of errors, in comparison with the remaining

two algorithms.

The experimental performance of the other two algorithms was better

than theoretically insured worst case scenarios: (1) The time performance of

the exact MBD algorithm AMBD(S) seems to be independent of the number

of seeds and is only a bit worst than the execution time of the linear time

algorithms A?apprMBD(S) and DA(βw, S). As expected (Theorem 3), we see in

Figure 6 that, in practice, the execution time of AMBD(S) depends on the

image size in a linear manner. (2) The error level of DA(βw, S) is clearly
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smaller than that of the other two algorithms approximating MBD. Moreover,

DA(βw, S) is the most efficient in terms of the computing time.

As a result, in the remaining experiments we used only two MBD algo-

rithms: AMBD(S) and DA(βw, S).

4.2. Comparison of the segmentation algorithms on 2D natural images

In this section, we compare the segmentations, as described in Section 2.2,

associated with the following distance functions (see Section 2.1) for the 2D

gray-scale digital images f : C → [0,∞) obtained from the grabcut dataset,

see Figure 2.

• The exact MBD computed with AMBD(S), where w(c) = f(c).

• An approximate MBD computed with DA(βw, S), where w(c) = f(c).

• The geodesic distance computed with DA(Σ, S), where, for adjacent

c, d ∈ C, w(c, d) = |f(c)− f(d)|.

• The fuzzy distance computed with DA(Σ̂, S), where w(c) = f(c).

• The fuzzy connectedness computed with DA(w, S), where, for adjacent

c, d ∈ C, w(c, d) = M − κ(c, d) = |f(c)− f(d)|.

We start with comparing how the execution time of these algorithms

depends on the image size. The summary of our results is displayed in

Figure 6. The algorithms were executed on the small subimages of the images

in Figure 2. For each side length between 1 and 316, a square centered

subset of the original images was extracted. A single seed point was placed

in the center pixel in the small images. By this procedure, the frequency
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representation does not depend on image size as would be the case if the

images were upsampled or downsampled.

Notice that, according to these experiments, the execution time ofAMBD(S)

depends on the image size in a linear manner, in agreement with Theorem 3.
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Figure 6: Comparison of mean execution time on small images obtained by cutting out

subimages from the images in Figure 2. A single seed point was used for each image.
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4.2.1. Seeds chosen by erosion

In these experiments, the seed sets were chosen in the images via erosion

of different magnitude of the known true segmentations, see e.g. [34]. Such

choice allows varying the seed sets in a more controlled manner, as compared

to the alternative of operators specifying seeds interactively or the random

seed choice, and thereby we can study the influence of seed sets on results

also in a controlled manner. However, there is a concern that such choose

may favor the distance measures similar to the Euclidean distance. Although

this concern does not seem to be present in our experiments, presented in

Figure 7, we restricted this approach only to the presented small study to

avoid any possible bias. (But see also Section 4.3.)
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Figure 7: Comparison of the segmentation of the images from Figure 2, produced with

the distances: exact MBD AMBD(S), approximate MBD DA(βw, S), geodesic DA(Σ, S),

fuzzy DA(Σ̂, S), and fuzzy connectedness DA(M − κ, S). The displayed value for each

algorithm, for the seeds chosen for the indicated erosion radius, represents the average

over the 17 images.
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4.2.2. User selected seeds; noise and smoothing influence

In these experiments, involving the images from Figure 2, the user defined

seeds are used. Four different users have placed seed points in the object and

background of each image. A sample of such choice is shown in Figure 8.

Figure 8: Example of seed points given by (from left to right) users 1–4, respectively.
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Figure 9: Boxplots of Dice coefficient for the indicated algorithm. For each distance

function, the four boxes correspond to the seed points given by users 1–4, respectively.
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Figure 9 shows boxplots, where the central mark of the box is the me-

dian and the edges of the box represent the 25th and 75th percentiles. The

whiskers extend to the most extreme data points not considered outliers,

which are marked by plus-signs. Four different users have provided object

and background seed points for all 17 images. These seed points are used to

compute the object for the five different distance function.
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Figure 10: The performance of the five algorithms as a function of smoothing the images.

The images are degraded by Gaussian smoothing with σ values between

1 and 10. Figure 10 shows the averaged Dice coefficient results and the

execution times for the images with added indicated level of smoothing.
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Figure 11: The performance of the five algorithms as a function of adding noise to the

images.

In the experiments presented in Figure 11 the images were degraded by

the additive Gaussian noise with zero mean and variance σ as indicated on

the horizontal axis. The figure shows the averaged Dice coefficient results

and the execution times for the images with indicated level of noise.
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Figure 12: The performance of the five algorithms as a function of smoothing, applied to

the images with added fixed level of noise.
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Figure 13: The performance of the five algorithms as a function of adding noise, applied

to the smoothed images.

Finally, Figures 12 and 13 show the similar results for the images with

added noise followed by the indicated level of smoothing and for the images

with added smoothing followed by the indicated level of noise, respectively.
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The experiments presented in this section show that the quality of the

segmentations associated with both versions of MBD algorithms compare

favorably with those associated the other three methods. This is particularly

well visible in the case of blurred images. But the same pattern is also

present at the lower level of noise. In the case of the exact MBD distance

algorithm, the price of this improvement is a (slightly) higher execution time.

(Though, this disadvantage quickly decreases, as a function of level of applied

smoothing.) Therefore, if the execution time is an issue, the approximate

MBD algorithm DA(βw, S) is the best performer, unless the image is very

noisy.

(a) (b) (c)

Figure 14: The 3D T1-weighted MRI image of the brain, smoothed by Gaussian blur with

sigma value 0.5. (a) three perpendicular slices; (b) reference segmentation of the same

slices; (c) surface rendering of the reference segmentation.

4.3. Comparison of the segmentation algorithms on a 3D medical image

In the last experiment, presented in this section, we compared the perfor-

mance of the five algorithms on the 3D T1-weighted MRI image of the brain,

shown in Figure 14.
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Figure 15: The performance of the five algorithms on the image from Figure 14, for the

seeds chosen, at the indicated erosion radius, asymmetrically in a way explained in the

text.

The presented experiments were performed on the image that has been

slightly blurred. We added blur, since the segmentation results performed on

the original image were so close to the ground truth for all five algorithms,

that there was no basis to differentiate between them.

The seeds were chosen by erosion, with respect to the ground truth. How-

ever, to avoid a concern expressed in Section 4.2.1, the erosion was done in

an asymmetric manner: increasing radius of the structuring element (with

origin located at the border of the structuring element). More specifically,

an asymmetric erosion of the ground truth object P of radius r was defined

as the set of all spels c = 〈c1, c2, c3〉 ∈ C such that the (structuring) set

S(c, s) = {〈d1, d2, d3〉 ∈ C : ci ≤ di ≤ ci + r for i = 1, 2, 3} is a subset of P .

The results of the experiments are presented in Figure 15. They show

that, in a 3D medical image, the quality of the MBD based segmentations is at

least as good (the case of FC) or clearly better (geodesic and fuzzy distances)
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then those produced by the other methods. This advantage increases, with

the decrease of the seed sets.

5. Conclusions

In this paper we introduced a new efficient algorithm, AMBD, that com-

putes the exact values of the Minimum Barrier Distance transform, intro-

duced by the authors in [1]. We provided a detailed proof that AMBD indeed

returns the exact MBD and that its execution time is, in the worst case

scenario, of order O(n2 lnn), n being the size of the image. Moreover, the

experimental results indicate that, in practice, the execution time of AMBD

is actually linear with respect to n, and comparable to the execution time of

the standard Dijkstra’s algorithm.

We also investigated an algorithm DA(βw, S) which is faster than AMBD

(has, provably, the same complexity as Dijkstra’s algorithm) but returns

only approximate values of MBD. The presented experiments show that the

quality of the output of DA(βw, S) is remarkably similar to that of AMBD.

Finally, we experimentally compared the segmentations associated with

both versions of MBD algorithms with that associated with geodesic distance,

fuzzy distance, and fuzzy connectedness. The segmentation results associated

with MBD compare favorable with the other three methods. In particular,

MBD is considerable more robust to smoothing than the other algorithms.

The same can be also observed when the lower level of noise is added.
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