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Abstract. We introduce the concept of maximal lineability cardinal number,
mL(M), of a subset M of a topological vector space and study its relation

to the cardinal numbers known as: additivity A(M), homogeneous lineability

HL(M), and lineability L(M) of M . In particular, we will describe, in terms of
L, the lineability and spaceability of the families of the following Darboux-like

functions on Rn, n ≥ 1: extendable, Jones, and almost continuous functions.

1. Preliminaries and background

The work presented here is a contribution to a recent ongoing research concerning
the following general question: For an arbitrary subset M of a vector space W , how
big can be a vector subspace V contained in M∪{0}? The current state of knowledge
concerning this problem is described in the very recent survey article [8]. So far, the
term big in the question was understood as a cardinality of a basis of V ; however,
some other measures of bigness (i.e., in a category sense) can also be considered.

Following [1,29] (see, also, [17]), given a cardinal number µ we say that M ⊂W
is µ-lineable if M ∪{0} contains a vector subspace V of the dimension dim(V ) = µ.
Consider the following lineability cardinal number (see [4]):

L(M) = min{κ : M ∪ {0} contains no vector space of dimension κ}.

Notice that M ⊂ W is µ-lineable if, and only if, µ < L(M). In particular, µ is
the maximal dimension of a subspace of M ∪ {0} if, and only if, L(M) = µ+. The
number L(M) need not be a cardinal successor (see, e.g., [1]); thus, the maximal
dimension of a subspace of M ∪ {0} does not necessarily exist.

If W is a vector space over the field K and M ⊂W , let

st(M) = {w ∈W : (K \ {0})w ⊂M}.

Notice that

if V is a subspace ofW , then V ⊂M∪{0} if, and only if, V ⊂ st(M)∪{0}. (1)

In particular,

L(M) = L(st(M)). (2)

Recall also (see, e.g., [19]) that a family M ⊂ W is said to be star-like provided
st(M) = M . Properties (1) and (2) explain why the assumption that M is star-like
appears in many results on lineability.
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A simple use of Zorn’s lemma shows that any linear subspace V0 of M ∪{0} can
be extended to a maximal linear subspace V of M ∪ {0}. Therefore, the following
concept is well defined.

Definition 1.1 (maximal lineability cardinal number). Let M be any arbitrary
subset of a vector space W . We define

mL(M) = min{dim(V ) : V is a maximal linear subspace of M ∪ {0}}.

Although this notion might seem similar to that of maximal-lineability and
maximal-spaceability (introduced by Bernal-González in [7]) they are, in general,
not related.

In any case, (1) implies that mL(M) = mL(st(M)).

Remark 1.2. It is easy to see that HL(M) = mL(M)+, where HL(M) is a
homogeneous lineability number defined in [4]. (This explains why HL is always a
successor cardinal, as shown in [4].) Clearly we have

HL(M) = mL(M)+ ≤ L(M).

The inequality may be strict, as shown in [4].

For M ⊂W we will also consider the following additivity number (compare [4]),
which is a generalization of the notion introduced by T. Natkaniec in [25, 26] and
thoroughly studied by the first author [11–15] and F.E. Jordan [23] for V = RR

(see, also, [20]):

A(M,W ) = min
(
{|F | : F ⊂W & (∀w ∈W )(w + F 6⊂M)} ∪ {|W |+}

)
,

where |F | is the cardinality of F and w + F = {w + f : f ∈ F}. Most of the times
the space W , usually W = RR, will be clear by the context. In such cases we will
often write A(M) in place of A(M,W ).

We are mostly interested in the topological vector spaces W . We say that
M ⊂ W is µ-spaceable with respect to a topology τ on W , provided there ex-
ists a τ -closed vector space V ⊂ M ∪ {0} of dimension µ. In particular, we can
consider also the following spaceability cardinal number:

Lτ (M) = min{κ : M ∪ {0} contains no τ -closed subspace of dimension κ}.
Notice that L(M) = Lτ (M) when τ is the discrete topology.1

In what follows, we shall focus on spaces W = RX of all functions from X = Rn
to R and consider the topologies τu and τp of uniform and pointwise convergence,
respectively. In particular, we write Lu(M) and Lp(M) for Lτu(M) and Lτp(M),
respectively. Clearly

Lp(M) ≤ Lu(M) ≤ L(M).

Recall also a series of definitions that shall be needed throughout the paper.

Definition 1.3. For X ⊆ Rn a function f : X → R is said to be

• Darboux if f [K] is a connected subset of R (i.e., an interval) for every
connected subset K of X;

1Of course, there might be some other topological properties distinguishing between the families
M with the same value Lτ (M). For example, in [2] it is shown that if M is the family of strongly
singular functions in CBV[0, 1], then Lu(M) = c+ and M contains a linear subspace generated

by a discrete set of the cardinality c. Similarly, if M is the family of all nowhere differentiable
functions in C[0, 1], then Lu(M) = c+, as proven in [28]. However, the linear subspace of M given
in [28] is only separable.
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• Darboux in the sense of Pawlak if f [L] is a connected subset of R for every
arc L of X (i.e., f maps path connected sets into connected sets);

• almost continuous (in the sense of Stallings) if each open subset of X ×R
containing the graph of f contains also a continuous function from X to R;

• a connectivity function if the graph of f � Z is connected in Z×R for any
connected subset Z of X;

• extendable provided that there exists a connectivity function F : X ×
[0, 1]→ R such that f(x) = F (x, 0) for every x ∈ X;

• peripherally continuous if for every x ∈ X and for all pairs of open sets U
and V containing x and f(x), respectively, there exists an open subset W
of U such that x ∈W and f [bd(W )] ⊂ V .

The above classes of functions are denoted by D(X), DP(X), AC(X), Conn(X),
Ext(X), and PC(X), respectively. The class of continuous functions from X into R
is denoted by C(X). We will drop the domain X if X = R.

Definition 1.4. A function f : Rn → R is called

• everywhere surjective if f [G] = R for every nonempty open set G ⊂ Rn;
• strongly everywhere surjective if f−1(y) ∩ G has cardinality c for every
y ∈ R and every nonempty open set G ⊂ Rn; this class was also studied
in [13], under the name of c strongly Darboux functions;

• perfectly everywhere surjective if f [P ] = R for every perfect set P ⊂
Rn (i.e., when f−1(r) is a Bernstein set for every r ∈ R (compare [10,
chap. 7]));

• a Jones function (see [22]) if f ∩ F 6= ∅ for every closed set F ⊂ Rn × R
whose projection on Rn is uncountable.

The classes of these functions are written as ES(Rn), SES(Rn), PES(Rn),
and J(Rn), respectively. We will drop the domain Rn if n = 1.

Definition 1.5. A function f : R→ R has:

• the Cantor intermediate value property if for every x, y ∈ R and for each
perfect set K between f(x) and f(y) there is a perfect set C between x
and y such that f [C] ⊂ K;

• the strong Cantor intermediate value property if for every x, y ∈ R and for
each perfect set K between f(x) and f(y) there is a perfect set C between
x and y such that f [C] ⊂ K and f � C is continuous;

• the weak Cantor intermediate value property if for every x, y ∈ R with
f(x) < f(y) there exists a perfect set C between x and y such that f [C] ⊂
(f(x), f(y));

• perfect roads if for every x ∈ R there exists a perfect set P ⊂ R having
x as a bilateral (i.e., two sided) limit point for which f � P is continuous
at x.

The above classes of functions shall be denoted by CIVP, SCIVP, WCIVP, and PR,
respectively.

Notice that all classes defined in the above three definitions are star-like.
The text is organized as follows. In Section 2 we study the relations between

additivity and maximal lineability numbers. Sections 3 and 4 focus on the set
of extendable functions on R and Rn, respectively. Surprisingly enough, we shall
obtain very different results when moving from R to Rn. The lineability of some
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of the above functions have been recently partly studied (see, e.g., [4, 18–20]) but
here we shall give definitive answers concerning the lineability and spaceability of
several previous studied classes.

2. Relation between additivity and lineability numbers

The goal of this section is to examine possible values of numbers A(M), mL(M),
and L(M) for a subset M of a linear space W over an arbitrary field K. We
will concentrate on the cases when ∅ 6= M ( W , since it is easy for the cases
M ∈ {∅,W}. Indeed, as it can be easily checked, one has A(∅) = L(∅) = 1 and
mL(∅) = 0; A(W ) = |W |+, L(W ) = dim(W )+, and mL(W ) = dim(W ).

Proposition 2.1. Let W be a vector space over a field K and let ∅ 6= M ( W .
Then

(i) 2 ≤ A(M) ≤ |W | and mL(M) < L(M) ≤ dim(W )+;
(ii) if A(st(M)) > |K|, then A(st(M)) ≤ mL(M).

In particular, if M is star-like, then A(M) > |K| implies that

(iii) A(M) ≤ mL(M) < L(M) ≤ dim(W )+.

Proof. (i) These inequalities are easy to see.
(ii) This can be proved by an easy transfinite induction. Alternatively, notice

that A. Bartoszewicz and S. G la̧b proved, in [4, corollary 2.3], that if M ⊂ W
is star-like and A(M) > |K|, then A(M) < HL(M). Hence, A(st(M)) > |K|
implies that A(st(M)) < HL(st(M)) = mL(st(M))+ = mL(M)+. Therefore,
A(st(M)) ≤ mL(M). �

In what follows, we will restrict our attention to the star-like families, since,
by Proposition 2.1, other cases could be reduced to this situation. Our next the-
orem shows that, for such families and under assumption that A(M) > |K|, the
inequalities (3) constitute all that can be said on these numbers.

Theorem 2.2. Let W be an infinite dimensional vector space over an infinite
field K and let α, µ, and λ be the cardinal numbers such that |K| < α ≤ µ < λ ≤
dim(W )+. Then there exists a star-like M (W containing 0 such that A(M) = α,
mL(M) = µ, and L(M) = λ.

The proof of this theorem will be based on the following two lemmas. The first
of them shows that the theorem holds when α = µ, while the second shows how
such an example can be modified to the general case.

Lemma 2.3. Let W be an infinite dimensional vector space over an infinite field K
and let µ and λ be the cardinal numbers such that |K| < µ < λ ≤ dim(W )+. Then
there exists a star-like M ( W containing 0 such that A(M) = mL(M) = µ and
L(M) = λ.

Proof. For S ⊂W , let V (S) be the vector subspace of W spanned by S.
Let B be a basis for W . For w ∈ W , let supp(w) be the smallest subset S of B

with w ∈ V (S) and let cw : supp(w)→ K be such that w =
∑
b∈supp(w) cw(b)b. Let

E be the set of all cardinal numbers less than λ and choose a sequence 〈Bη : η ∈ E〉
of pairwise disjoint subsets of B such that |B0| = µ and |Bη| = η whenever 0 6=
η ∈ E. Define

M = A ∪
⋃
η∈E

V (Bη),
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where

A = {w ∈W :

cw(b0) = cw(b1) for some b0 ∈ supp(w) ∩B0, b1 ∈ supp(w) \B0}.

We will show that M is as desired.
Clearly, M is star-like and 0 ∈M (W . Also, L(M) ≥ λ, since for any cardinal

η < λ the set M contains a vector subspace V (Bη) with dim(V (Bη)) ≥ η.
To see that A(M) ≥ µ, choose an F ⊂W with |F | < µ. It is enough to show that

|F | < A(M), that is, that there exists a w ∈ W with w + F ⊂ A. As supp(F ) =⋃
v∈F supp(v) has cardinality at most |F |+ ω < µ = |B0| = |Bµ| ≤ |B \B0|, there

exist b0 ∈ B0 \ supp(F ) and b1 ∈ B \ (B0 ∪ supp(F )). Let w = b0 + b1 and notice
that w + F ⊂ A ⊂ M , since for every v ∈ F we have b0 ∈ supp(w + v) ∩ B0,
b1 ∈ supp(w + v) \B0, and cw+v(b0) = 1 = cw+v(b1).

Next notice that the inequalities |K| < µ ≤ A(M) and Proposition 2.1 imply
that µ ≤ A(M) ≤ mL(M). Thus, to finish the proof, it is enough to show that
mL(M) ≤ µ and L(M) ≤ λ.

To see that mL(M) ≤ µ, it is enough to show that V (B0) is a maximal vector
subspace of M . Indeed, if V is a vector subspace of W properly containing V (B0),
then there exists a non-zero v ∈ V ∩ V (B \B0). Choose a b0 ∈ B0 and a non-zero
c ∈ K \{cv(b) : b ∈ supp(v)}. Then cb0 +v ∈ V \M . So, V (B0) is a maximal vector
subspace of M and indeed mL(M) ≤ dim(V (B0)) = µ.

To see that L(M) ≤ λ, notice that this is obvious for λ = dim(W )+. So, we can
assume that λ ≤ dim(W ) and choose a vector subspace V of W of dimension λ.
It is enough to show that V \M 6= ∅. To see this, for every ordinal η ≤ λ let us

define B̂η =
⋃
{Bζ : ζ ∈ E ∩ η}. Notice that

for every η < λ there is a non-zero w ∈ V with supp(w) ∩ B̂η = ∅.

Indeed, if πη : W = V (B̂η) ⊕ V (B \ B̂η) → V (B̂η) is the natural projection, then

there exist distinct w1, w2 ∈ V with πη(w1) = πη(w2) (as |V (B̂η)| < λ = dim(V )).
Then w = w1 − w2 is as required.

Now, choose a non-zero w1 ∈ V with supp(w1) ∩ B0 = supp(w1) ∩ B̂1 = ∅.

Then, w1 /∈ A and if supp(w1) 6⊂ B̂λ =
⋃
η∈E Bη, then also w1 /∈

⋃
η∈E V (Bη), and

we have w1 ∈ V \M . Therefore, we can assume that supp(w1) ⊂ B̂λ =
⋃
η<λ B̂η.

Let η < λ be such that supp(w1) ⊂ B̂η and choose a non-zero w2 ∈ V with

supp(w2) ∩ B̂η = ∅. Then w = w2 − w1 ∈ V \M (since w /∈ A, being non-zero

with supp(w) ∩ B0 = ∅, and w /∈
⋃
ζ∈E V (Bζ), as its support intersects both B̂η

and B \ B̂η). �

Lemma 2.4. Let W , W0, and W1 be the vector spaces over an infinite field K such
that W = W0 ⊕W1. Let M (W0 and

F = M +W1 = {m+ w : m ∈M & w ∈W1}.

Then

(i) If M is star-like, then F is also star-like.
(ii) A(F ,W ) = A(M,W0).

(iii) If 0 ∈M , then mL(F) = mL(M) + dim(W1).
(iv) If 0 ∈M and dim(W1) < L(M), then L(F) = L(M) + dim(W1).
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Proof. In the following, let π0 : W = W0 ⊕W1 →W0 be the canonical projection.
(i) Let x ∈ F and λ ∈ K \ {0}. Since M is star-like and π0(x) ∈ M , we have

that π0(λx) = λπ0(x) ∈M , and hence λx ∈M +W1 = F .
(ii) Let us see that A(M,W0) ≤ A(F ,W ). To this end, let κ < A(M,W0). We

need to prove that κ < A(F ,W ). Indeed, if F ⊂ W and |F | = κ, then |π0[F ]| ≤
|F | = κ. So, there exists a w0 ∈W0 such that π0[w0 + F ] = w0 + π0[F ] ⊂M , that
is, w0 + F ⊂M +W1 = F . Therefore, κ < A(F ,W ).

To see that A(F ,W ) ≤ A(M,W0) let κ < A(F ,W ). We need to show that
κ < A(M,W0). Indeed, let F ⊂ W0 be such that |F | = κ. Since |F | < A(F ,W ),
there is a w ∈W with w+F ⊂ F . Then π0(w) ∈W0 and π0(w)+F = π0[w+F ] ⊂
π0[F ] = M , so indeed κ < A(M).

(iii) First notice that it is enough to show that

V is a maximal vector subspace of F if, and only if, V = V0 +W1, where
V0 is a maximal vector subspace of M .

(3)

Indeed, if V is a maximal vector subspace of F with mL(F) = dim(V ), then, by
(3), mL(F) = dim(V ) = dim(V0) + dim(W1) ≥ mL(M) + dim(W1). Conversely,
if V0 is a maximal vector subspace of M with mL(M) = dim(V0), then we have
mL(M) + dim(W1) = dim(V0) + dim(W1) = dim(V0 +W1) ≥ mL(F).

To see (3), take a maximal vector subspace V of F . Notice that W1 ⊂ V , since
V ⊂ V + W1 ⊂ F + W1 = F and so, by maximality, V + W1 = V . In particular,
V = V0 + W1 ⊂ F = M + W1, where V0 = π0[V ]. Thus, V0 is a vector subspace

of M . It must be maximal, since for any its proper extension V̂0 ⊂ M , the vector
space V̂0 +W1 ⊂ F would be a proper extension of V .

Conversely, if V0 is a maximal vector subspace of M , then V = V0 + W1 is a
vector subspace of F . If cannot have a proper extension V̂ ⊂ F , since then the
vector space π0[V̂ ] ⊂M would be a proper extension of V0.

(iv) To see that L(F) ≤ dim(W1) + L(M), choose a vector space V ⊂ F . We
need to show that dim(V ) < dim(W1) + L(M). Indeed, V1 = V + W1 is a vector
subspace of F + W1 = F and dim(V ) ≤ dim(V1) = dim(W1) + dim(π0[V1]), since
V1 = W1⊕π0[V1]. Therefore, dim(V ) ≤ dim(W1)+dim(π0[V1]) < dim(W1)+L(M),
since dim(W1) < L(M) and dim(π0[V1]) < L(M), as π0[V1] is a vector subspace of
M = π0[F ]. So, L(F) ≤ dim(W1) + L(M).

To see that dim(W1) +L(M) ≤ L(F), choose a κ < dim(W1) +L(M). We need
to show that κ < L(F), that is, that there exists a vector subspace V of F with
dim(V ) ≥ κ. First, notice that dim(W1) < L(M) and κ < dim(W1) + L(M) imply
that there exists a µ < L(M) such that κ ≤ dim(W1) + µ < dim(W1) + L(M).
(For finite values of L(M), take µ = max{κ − dim(W1), 0}; for infinite L(M), the
number µ = max{κ,dim(W1)} works.) Choose a vector subspace V0 of M with
dim(V0) ≥ µ. Then the vector subspace V = V0 +W1 = V0⊕W1 of F is as desired,
since we have dim(V ) = dim(W1) + dim(V0) ≥ dim(W1) + µ ≥ κ. �

Proof of Theorem 2.2. Represent W as W0 ⊕ W1, where dim(W0) = λ and
dim(W1) = µ. Use Lemma 2.3 to find a star-like M ( W0 containing 0 such
that A(M,W0) = mL(M) = α and L(M) = λ. Let F = M + W1 ( B. Then,
by Lemma 2.4, F 3 0 is star-like such that A(F) = A(M,W0) = α, mL(F) =
mL(M) + dim(W1) = α + µ = µ, and L(F) = L(M) + dim(W2) = λ + α = λ, as
required. �
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A. Bartoszewicz and S. G la̧b have asked [4, open question 1] whether the inequal-
ity A(F)+ ≥ HL(F) (which is equivalent to A(F) ≥ mL(F)) holds for any family
F ⊂ RR. Of course, for the star-like families F with A(F) > c, a positive answer to
this question would mean that, under these assumptions, we have A(F) = mL(F).
Notice that Theorem 2.2 gives, in particular, a negative answer to this question.

We do not have a comprehensive example, similar to that provided by Theo-
rem 2.2, for the case when A(M) ≤ |K|. However, the machinery built above,
together with the results from [4], lead to the following result.

Theorem 2.5. Let W be a vector space over an infinite field K with dim(W ) ≥
2|K|. If 2 ≤ κ ≤ |W |, there exists a star-like family F ( W containing 0 such that
A(F) = κ and mL(F) = dim(W ) (so that L(F) = dim(W )+).

Proof. Represent W as W = W0 ⊕W1, where dim(W0) = 2|K| and dim(W1) =
dim(W ). If 2 ≤ κ ≤ |K|, then, by [4, Theorem 2.5], there exists a star-like family
M ⊂ W0 such that A(M,W0) = κ. Notice that the family constructed in that
result contains 0. Then, by Lemma 2.4, the family F = M + W1 satisfies that
A(F) = A(M,W0) = κ and mL(F) = mL(M) + dim(W1) = dim(W ). �

3. Spaceability of Darboux-like functions on R

Recall (see, e.g., [12, chart 1] or [11]) that we have the following strict inclusions,
indicated by the arrows, between the Darboux-like functions from R to R. The
next theorem, strengthening the results presented in the table from [8, page 14],
determines fully the lineability, L, and spaceability, Lp, numbers for these classes.

AC // Conn // D
((

C // Ext

66

((
PC

SCIVP // CIVP //
))

PR

66

WCIVP

Figure 1. Relations between the Darboux-like classes of functions
from R to R. Arrows indicate strict inclusions.

Theorem 3.1. Lp(Ext) = (2c)
+

. In particular, all Darboux-like classes of func-
tions from Figure 1, except C, are 2c-spaceable with respect to the topology of point-
wise convergence.

Proof. In [15, corollary 3.4] it is shown that there exists an f ∈ Ext and an Fσ first
category set M ⊂ R such that

if g ∈ RR and g �M = f �M , then g ∈ Ext. (4)

It is easy to see that for any real number r 6= 0 the function rf satisfies the same
property.

Notice also that there exists a family {hξ ∈ RR : ξ < c } of increasing homeo-
morphisms such that the sets Mξ = hξ[M ], ξ < c, are pairwise disjoint. (See, e.g.,

[15, lemma 3.2].) It is easy to see that each function fξ = f ◦ h−1
ξ satisfies (4) with
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the set Mξ. Increasing one of the sets Mξ, if necessary, we can also assume that

{Mξ : ξ < c} is a partition of R. Let ~f = 〈fξ �Mξ : ξ < c〉 and define

V (~f ) =

{⋃
ξ<c

t(ξ)(fξ �Mξ) : t ∈ Rc

}
. (5)

It is easy to see that V (~f ) is 2c-dimensional τp-closed linear subspace
of Ext. �

As the cardinality of the family Bor of Borel functions from R to R is c, Theo-
rem 3.1 easily implies that Ext \Bor is 2c-lineable: L(Ext \Bor) = (2c)

+
. Actually,

we have an even stronger result:

Proposition 3.2. Lp(Ext∩SES \Bor) = (2c)
+

.

Proof. The function f �M satisfying (4) may also have the property that

M is c-dense in R and f �M is SES non-Borel. (6)

Indeed, this can be ensured by enlargingM by a c-dense first category setN ⊂ R\M
and redefining f on N so that f � N is non-Borel and SES.

Now, if f satisfies both (4) and (6) and ~f = 〈fξ � Mξ : ξ < c〉 is defined as in

Theorem 3.1, then the space V (~f ) given in (5) is as required. �

Notice also that Ext∩PES = PR∩PES = ∅. In particular, the space V from
Proposition 3.2 is disjoint with PES.

Remark 3.3. Clearly, Theorem 3.1 implies that Ext is 2c-lineable. This result has
been also independently proved by T. Natkaniec in [27]. The idea used in [27] is
similar, but the technique is different from that used in the proof of Theorem 3.1.
The similar technique was also used in the recent papers [3, 5].

Recall, that it is known that L(AC \Ext) = (2c)
+

. See [19] or [8, page 14].
However, we do not know what the exact values of the following cardinals are.

Problem 3.4. Determine the following numbers:

Lp(F \ G), Lu(F \ G), and L(F \ G)

for F ∈ {Conn \AC,D \Conn,PC \D} and G ∈ {SCIVP,CIVP,PR}.

Recall (see [15] or [11]) that for every F ∈ {Ext,AC,Conn,D} we haveA(F) ≥ c+

and so, by Proposition 2.1,

c+ ≤ A(F) ≤ mL(F) < L(F) ≤ (2c)
+
. (7)

In particular, under the generalized continuum hypothesis GCH we have A(F) =

mL(F) = 2c and mL(F)+ = L(F) = (2c)
+

. However, without the GCH the
situation is less clear. Of course, by Theorem 3.1, the value of L(F) is determined

to be (2c)
+

, reducing the inequalities of (7) to c+ ≤ A(F) ≤ mL(F) ≤ 2c. At the
same time, it is consistent with ZFC that A(F) < 2c. (See [13] or [11].) In such
situation, the exact position of the number mL(F) between A(F) and 2c is unclear,
leading to the following problem.

Problem 3.5. Let F ∈ {Ext,AC,Conn,D}. Is it consistent with the axioms of set
theory ZFC that A(F) < mL(F)? What about the consistency of mL(F) < 2c?
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It is worth to mention, that the formula (7) is also true when F is the class SZ
of the Sierpiński-Zygmund functions. Once again, it is consistent with ZFC that
A(SZ) < 2c, as proved in [14]. However, in contrast with Theorem 3.1, it is also

consistent with ZFC that L(SZ) < (2c)
+

. (See [21]; compare also [6].)

4. Spaceability of Darboux-like functions on Rn, n ≥ 2

Recall (see, e.g., [12, chart 2] or [11]) that we have the following strict inclusions,
indicated by the arrows, between the Darboux-like functions from Rn to R for
n ≥ 2.

Conn(Rn) AC(Rn)

C(Rn) // Ext(Rn) // AC(Rn) ∩D(Rn)

44

**
PC(Rn) D(Rn)

Figure 2. Relations between the Darboux-like classes of functions
from Rn to R, n ≥ 2. Arrows indicate strict inclusions.

The proof of the next theorem will be based on the following result [16, Propo-
sition 2.7]:

Proposition 4.1. Let n > 0 and let f : Rn → R be a peripherally continuous func-
tion. Then for any x0 ∈ Rn and any open set W in Rn containing x0, there exists
an open set U ⊆W such that x0 ∈ U and the restriction of f to bd(U) is continu-
ous. Moreover, given any ε > 0, the set U can be chosen so that |f(x0)− f(y)| < ε
for every y ∈ bd(U).

Theorem 4.2. For n ≥ 2, Lp(Ext(Rn)) = Lu(Ext(Rn)) = L(Ext(Rn)) = c+.
In particular, the classes C(Rn) and Ext(Rn) are c-spaceable with respect to the
pointwise convergence topology τp but are not c+-lineable.

Proof. First, notice that Lp(C(Rn)) = c+ is justified by the space C0 of all contin-
uous functions linear on the interval [k, k + 1] for every integer k ∈ Z. Indeed, C0

is linearly isomorphic to RZ.
Now, since c+ = Lp(C(Rn)) ≤ Lp(Ext(Rn)) ≤ Lu(Ext(Rn)) ≤ L(Ext(Rn)),

it is enough to show that L(Ext(Rn)) ≤ c+, that is, that Ext(Rn) is not c+-
lineable. To see this, by way of contradiction, assume that there exists a vector space
V ⊂ Ext(Rn) of cardinality greater than c. Fix a countable dense set D ⊂ Rn and
let 〈〈xk, εk〉 : k < ω〉 be an enumeration of D×{2−m : m < ω}. By Proposition 4.1,

for every function f ∈ Ext(Rn) and k < ω we can choose an open neighborhood Ufk
of xk of the diameter at most εk such that f � bd(Ufk ) is continuous. Consider the

mapping V 3 f 7→ Tf = 〈f � bd(Ufk ) : k < ω〉. Since its range has cardinality c,
there are distinct f1, f2 ∈ V with Tf1 = Tf2 . In particular, f = f1 − f2 ∈ V is

equal zero on the set M =
⋃
k<ω bd(Uf1k ). Notice that the complement M c of M is

zero-dimensional. We will show that f is not extendable, by showing that it does
not satisfy Proposition 4.1.

Indeed, since f1 6= f2, there is an x ∈ Rn with f(x) 6= 0. Let ε = |f(x)| and
let W be any bounded neighborhood of x. Then, there is no set U as required by
Proposition 4.1.
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To see this, notice that for any open set U ⊆ W with x ∈ U , its boundary is of
dimension at least 1. In particular, M ∩ bd(U) 6= ∅ and, for y ∈ M ∩ bd(U), we
have |f(x)− f(y)| = |f(x)| = ε. �

Theorem 4.2 determines the values of the numbers Lp(F), Lu(F), and L(F) for
F ∈ {C(Rn),Ext(Rn),Conn(Rn),PR(Rn)} and n ≥ 2. In the remainder of this
section we will examine these cardinal numbers for the remaining classes from the
diagram in Figure 2. For this, we will need the following fact, improving a recent
result of the second author. (See [18, Theorem 2.2].)

Proposition 4.3. Lp(J(Rn)) = (2c)
+

for every n ≥ 1. In particular, the families
J(Rn), PES(Rn), SES(Rn), and ES(Rn) are 2c-spaceable with respect to the topology
of pointwise convergence.

Proof. Let {Mξ : ξ < c} be a decomposition of Rn into pairwise disjoint Bernstein
sets. For every ξ < c, let fξ : Mξ → R be such that fξ ∩ F 6= ∅ for every closed
set F ⊂ Rn × R whose projection on Rn is uncountable. (All of this can be easily
constructed by transfinite induction. See, e.g., [10].) Notice that

if g ∈ RR and g �Mξ = r fξ for some ξ < c and r 6= 0, then g ∈ J(Rn).

Now, if ~f = 〈fξ �Mξ : ξ < c〉 and V (~f ) is given by (5), then V (~f ) is 2c-dimensional
τp-closed linear subspace of J(Rn). �

Every function in J(Rn) is surjective. In particular, the above result implies
that the class of surjective functions is 2c-lineable. One could also wonder about
the lineability of the family of one-to-one functions from Rn to R, given below.

Remark 4.4. The family of one-to-one functions from Rn to R is 1-lineable but
not 2-lineable.

Proof. Clearly the family is 1-lineable. To see that is not 2-lineable, choose two
injective linearly independent functions f and g generating a linear space Z. Take
arbitrary x 6= y in Rn and consider the function h = f + αg ∈ Z \ {0}, where
α = (f(x)− f(y))/(g(y)− g(x)) ∈ R. Then, we have h(x) = h(y), so Z contains a
function which is not one-to-one. �

Other examples of 1-lineable but not 2-lineable sets and, in general, not lineable
sets can be found in [8, 9].

Theorem 4.5. For n ≥ 2, J(Rn) ⊂ AC(Rn) \ D(Rn). In particular, the class

AC(Rn) \D(Rn) is 2c-spaceable and Lp(AC(Rn) \D(Rn)) = (2c)
+

.

Proof. By Proposition 4.3, it is enough to show that J(Rn) ⊂ AC(Rn) \ D(Rn).
Clearly, J(Rn) ⊂ AC(Rn) ∩ PES(Rn) for any n ≥ 1. Thus, it is enough to show
that PES(Rn) ∩D(Rn) = ∅ for n ≥ 2. But this follows immediately from the fact
that, under n ≥ 2, every Bernstein set in Rn is connected. �

Remark 4.6. Notice that, since AC(Rn) ⊂ DP(Rn), then, for n ≥ 2, we have

Lp(DP(Rn) \D(Rn)) = (2c)
+

. So, DP(Rn) \D(Rn) is also 2c-spaceable.

Theorem 4.7. For n ≥ 2, Lp(D(Rn) \ AC(Rn)) = (2c)
+

. In particular, the class
D(Rn) \AC(Rn) is 2c-spaceable.
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Proof. Let π1 : Rn → R the projection of Rn on its first coordinate. Let W =

V (~f ) ⊂ J be the vector space of cardinality 2c build in Proposition 4.3. Then the
vector space

V = { f ◦ π1 : f ∈W }
is obviously contained in D(Rn) and has dimension 2c. On the other side, if f ∈W
then f ◦ π1 cannot be in AC(Rn), because then f would be continuous. (See [24].)
This is not possible, because J∩C = ∅. Therefore, V ⊂ D(Rn) \ AC(Rn). To
finish, let us remark that the space V is also closed by pointwise convergence. �

Remark 4.8. Notice that, in Rn (for every n ∈ N), we have that AC \Ext is
2c-spaceable (since this class contains the Jones functions). Also, in R, J ⊂
AC \ SCIVP ⊂ AC \Ext and, since Lp(J) = (2c)+, we have (from the previous
results) that

Lp(AC \Ext) = Lu(AC \Ext) = (2c)+.

Problem 4.9. For n ≥ 2, determine the values of the numbers Lp(AC(Rn) ∩
D(Rn)), Lu(AC(Rn) ∩D(Rn)), and L(AC(Rn) ∩D(Rn)).
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tions, Topology Appl. 79 (1997), no. 1, 75–99.
[15] K. Ciesielski and I. Rec law, Cardinal invariants concerning extendable and peripherally con-

tinuous functions, Real Anal. Exchange 21 (1995/96), no. 2, 459–472.
[16] K. Ciesielski and J. Wojciechowski, Sums of connectivity functions on Rn, Proc. London

Math. Soc. (3) 76 (1998), no. 2, 406–426.

[17] P. H. Enflo, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Some Results and Open Questions
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Facultad de Ciencias Matemáticas,
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Universidade Federal da Paráıba,
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