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ABSTRACT

We introduce an image segmentation algorithm GCmax
sum ,

which combines, in a novel manner, the strengths of two

popular algorithms: Relative Fuzzy Connectedness (RFC)

and (standard) Graph Cut (GC). We show, both theoretically

and experimentally, that GCmax
sum preserves robustness of RFC

with respect to the seed choice (thus, avoiding “shrinking

problem” of GC), while keeping GC’s bigger control over

“leaking though the weak boundary.” The theoretical analy-

sis of GCmax
sum is greatly facilitated by our recent theoretical

results that RFC belongs to the Generalized GC (GGC) seg-

mentation algorithms framework. In our implementation of

GCmax
sum we use, as a subroutine, a version of RFC algorithm

(based on Image Foresting Transform) that runs (provably)

in linear time with respect to the image size. This results in

GCmax
sum running in a time close to linear.

Index Terms— image segmentation, robustness, fuzzy

connectedness, graph cut

1. INTRODUCTION

The algorithm we present in this paper belongs to the group

of purely image-based (pI) segmentation algorithms (see e.g.

[3, 10, 2, 9]), whose outputs are based entirely on the informa-

tion available in the given image. Since the top-rated pI algo-

rithms harness the information with equal effectiveness, there

must exists similarity or even equivalence among such algo-

rithms. This observation prompted researchers to study the

possibility of explaining such algorithms in a common frame-

work [1, 4]. In the same spirit, the popular graph cut (GC)

framework has been generalized recently to, what we refer to

as, Generalized GC (GGC). This framework was proposed by

the authors in [5, 6], and studied in a slightly different form

in [7], to describe GC, fuzzy connectedness (FC), and wa-

tershed (WS) algorithms in a unified manner. A byproduct

of such a unification effort is a deeper understanding of the

strengths and weaknesses of the individual algorithms, which

can lead to new methods with improved performance, as we

will demonstrate in this paper.

In this work, which falls within the GGC [5, 6] realm, we

identify and justify some of the strong and weak properties of

GC and FC, both theoretically and empirically, in a compara-

tive manner. The most crucial among these are robustness of

segmentation with respect to the selection of seed points (FC

better than GC), boundary smoothness (GC better than FC),

and computational efficiency (FC better than GC). The pro-

posed new algorithm combines the best of both GC and FC

and achieves an intermediate speed close to that of FC.

2. GENERALIZED GRAPH CUT FRAMEWORK

In every algorithm within GGC, a digital image I = 〈C, f〉
(where C is its domain and f : C → R

� its intensity function)

is identified with a weighted directed graph G = 〈V,E,w〉
such that: (1) V is the set of vertices of the graph and is equal

to the image domain C. (2) E is the image scene adjacency

relation. In particular, E ⊂ V × V is a binary relation rep-

resenting the set of all directed edges of G, that is, 〈c, d〉 is

an edge if, and only if, 〈c, d〉 ∈ E. It is assumed that E is

symmetric, that is, 〈d, c〉 is an edge provided so is 〈c, d〉. (3)

w : E → [0,∞) is a weight function associating with any

edge e ∈ E its weight w(e). It is assumed that w is symmet-

ric: w(c, d) = w(d, c) for every edge 〈c, d〉.

For every weighted graph G = 〈V,E,w〉, consider the

space X̃ of all functions x : V → [0, 1], referred to as fuzzy

subsets of V , with the value x(c) indicating a degree of mem-

bership with which c belongs to the set. The family X of all

functions x ∈ X̃ with the only allowed values of 0 and 1 (i.e.,

x : V → {0, 1}) will be referred to as the family of all hard

subsets of V . Each x ∈ X is identified with the true subset

P = {c ∈ V : x(c) = 1} of V . Notice that, in such a case,

x is the characteristic function χ
P of P ⊂ V . In this paper

we will consider only the space X . The fuzzy sets x ∈ X̃ in

GGC are the subject of [7] and discussed in detail in [6].

The goal of the segmentation algorithms is to indicate,

in the input image I = 〈C, f〉, a “desired” object P ⊂ C,

which is identified with its characteristic function χ
P ∈ X .

We usually restrict the collection X of all allowable “desir-
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able” objects by indicating two disjoint sets, referred to as

seeds: S ⊂ C indicating the object and T ⊂ C indicating the

background. This restricts the collection of allowable outputs

of the algorithms to the family X (S, T ) of all x ∈ X with

x(s) = 1 and x(t) = 0 for all s ∈ S and t ∈ T . Note that

X (S, T ) = {χP : S ⊂ P ⊂ C \ T }.

For q ∈ [1,∞] consider the energy functional εq : X̃ →

[0,∞), where, for every x ∈ X̃ , εq(x) is defined as the q-

norm of the functional Fx : E → R, given by a formula

Fx(c, d) = w(c, d)|x(c) − x(d)| for 〈c, d〉 ∈ E. That is,

ε∞(x) = ||Fx||∞ = max〈c,d〉∈E w(c, d)|x(c) − x(d)|,

εq(x) = ||Fx||q = q

√∑
〈c,d〉∈E

(
w(c, d)|x(c) − x(d)|

)q

for q < ∞. Notice that limq→∞ εq(x) = ε∞(x), since q-

norms converge, as q → ∞, to the ∞-norm. We will use

these functionals mainly for x = χ
P ∈ X . In this case,

if bd(P ) is defined as the set of all edges e = 〈c, d〉 with

x(c) �= x(d), then εq(χP ) = q

√∑
〈c,d〉∈bd(P )

(
w(c, d)

)q
and

ε∞(χP ) = max〈c,d〉∈bd(P ) w(c, d).
For 1 ≤ q ≤ ∞, graph G = 〈V,E,w〉 (associated with

I = 〈C, f〉), and seed sets S and T , let ε
q
min be the mini-

mum of the energy εq(x) over all ST -allowable objects x ∈
X (S, T ), that is, ε

q
min = min{εq(x) : x ∈ X (S, T )}. Any

element of Xq(S, T ) = {x ∈ X (S, T ) : εq(x) = ε
q
min} will

be referred to as an energy εq minimizer of X (S, T ). Any

algorithm A that, given an image I and seed sets S and T ,

returns an object, denoted as A(I, S, T ), from Xq(S, T ) will

be referred to as an εq-minimizing algorithm. Notice, that any

such algorithm has also a hidden aspect: a subroutine, denote

it I 
→ w, that translates the input image I into its associated

graph G = 〈V,E,w〉. We will write AI �→w in place of A if

we like to stress this parameter.

Notice that the standard min-cut/max-flow algorithm is an

ε1-minimizing algorithm. We will use a symbol GCsum to

denote this algorithm. We have recently proved [5, 6] that

both Relative Fuzzy Connectedness, RFC, and Iterative Rel-

ative Fuzzy Connectedness, IRFC, algorithms are the ε∞-

minimizing algorithms. Moreover, we proposed in [6] an

IRFC segmentation algorithm, GCmax, based on the Opti-

mum Path Forest Framework [8], and proved that it runs in

linear time with respect to the image size.

For 1 < q < ∞, the εq-minimizing algorithms can-

not bring anything truly new to this picture, since any εq-

minimizing algorithm AI �→w is also an ε1-minimizing algo-

rithm AI �→wq . This is so, since for both these algorithms the

associated sets Xq and X1 are identical.

The ε1- and ε∞-minimization problems (and so, the

associated algorithms) are truly distinct, as discussed in

[5, 6]. Nevertheless, there is an interesting connection be-

tween them, as proved in [6]: for every image I there

exists a q < ∞ such that the family X1(S, T ) associ-

ated with any ε1-minimizing algorithm AI �→wq (e.g., for

A = GCsum) is contained in the family X∞(S, T ). In par-

ticular, the output of AI �→wq minimizes ε∞ in X (S, T )
and, in the case when X∞(S, T ) has only one element,

AI �→wq (I, S, T ) = GCmax(I, S, T ).

3. THE NEW ALGORITHM

The ε1- and ε∞-minimizing algorithms, GCsum and GCmax,

have their complementary strengths and weaknesses [5, 6].

From the point of view of this paper, the most important dif-

ferences between these algorithms lie in the sensitivity of their

output to the choice of the seed sets and the nature of the

object’s boundary in the input image. Specifically, the out-

come of the ε∞-minimizing algorithms, GCmax, as well as

its older versions RFC and IRFC, is completely unaffected

by any changes of the seed sets within the delineated object.

(See Thm 3.1 below.) In particular, relatively small sets of

seeds, chosen with little care, often lead to the same output

as carefully chosen seeds. However, the output of the ε∞-

minimizing algorithms is independent of the object bound-

ary size. So, their output has a greater chance of being jerky

and/or passing through weakly visible segments of the true

object boundary, as can be seen in Figure 1(b,d,e).

On the other hand, the ε1-minimizing algorithms, includ-

ing GCsum, have a tendency to choose the objects with small

boundary. This behavior, known as a shrinking problem1, is

especially acute, when the sets of seeds are small, in which

case the algorithm has a tendency to output, as a delineated

object, a small set very close to the set of object-indicating

seeds, see, e.g., Figure 1(c). However, this is not an issue,

when the input seed sets are relatively big, especially, when

they are relatively close to the desired object and background.

At the same time, the tendency of choosing the objects with

small boundaries decreases the chance that an output object

crosses a true, weakly visible boundary, consequently reduc-

ing the likelihood of causing delineation errors, usually re-

ferred to as leaking problems. Moreover, this decreasing of

boundary size has a boundary smoothing effect, a feature that

may be desirable for many image segmentation tasks.

To combine the strengths of both kinds of minimization

strategies, we devised the following algorithm. Basically, we

obtain a first approximation of the object by applying the

most conservative GCmax algorithm; we obtain the final de-

lineation by applying GCsum to the output of thus created first

approximation. The first step increases (possibly small) sets

of seeds, preserving the algorithm’s robustness (with respect

to seed choice) and avoiding the shrinking problem of GCsum,

see Figure 1(d,e). The second step refines this approximation

by enlarging it to an object with a smoother boundary, see

Figure 1(f). This final increase creates only a small risk of

1The shrinking problem has been addressed by many authors, via modifi-

cations of the GC method, such as the normalized cuts. However, finding the

resulting delineation minimizing normalized cut energy measure is NP-hard

and so only approximate solutions can be found in practical time.
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Fig. 1. (a) A 2D medical image of a vessel. (b) IRFC

result object using 8-neighborhood with the cost function

w(p, q) = K − |I(p) − I(q)|. (c) GCsum object, used with

w, collapses the object to the seeds. (d) RFC object Ŝ, for the

internal seeds. (e) RFC object T̂ , for the external seeds. (f)

The GCmax
sum returned object, resulting from applying GCsum

to seed sets Ŝ (from (d)) and T̂ (from (e)).

object leaking, the attribute of GCsum. More specifically, the

new algorithm is as follows.

Algorithm GCmax
sum

Input: Image I = 〈C, f〉, non-empty seed sets S, T ⊂ C.

Output: An object χP from X (S, T ).
1. create graph G = 〈V,E,w〉 associated with I;

2. use the RFC version of GCmax on G twice

to find: the smallest Ŝ with χ
Ŝ
∈ X∞(S, T )

and the smallest T̂ with χ
T̂
∈ X∞(T, S);

3. apply GCsum to G and seeds Ŝ and T̂ to find χ
P ;

4. return χ
P ;

The fact that both algorithms, GCmax and GCsum, can use

the same weighted graph G, associated with the input image

I , makes the merging of these two algorithms effortless.

Line 1 of the algorithm constitutes a “hidden parameter”

of the algorithm, as mentioned above. The choice of the

weight function, which in FC literature is called the affinity

function, is explained in more detail in the next section.

Line 3 is straightforward: the modified sets Ŝ and T̂ of

seeds, provided by the GCmax step, are already quite large and

close to the desired object, there is little danger for shrinking.

Also, GCsum has a smoothing effect on the final output.

Line 2 requires few words of explanation. To find Ŝ, we

run GCmax in a version described in [6, sec. 4.3] which,

in particular, returns a function μC(·,W ) from C = V

into [0, 1]. We run GCmax twice, once with W = S and

once with W = T , calculating functions μC(·, S) and

μC(·, T ), respectively. The RFC object Ŝ is simply defined as

{c ∈ C : μC(c, S) > μC(c, T )}. Similarly, the RFC co-

object T̂ = {c ∈ C : μC(c, T ) > μC(c, S)}. Since GCmax

runs in a linear time with respect to the image size |C|, a

fact theoretically proved in [6], this does not add much to a

total run time of the algorithm, especially in comparison with

the running time of the GCsum component, which runs in

time of order O(|C|2.5) or greater. We choose, as Ŝ and T̂ ,

the RFC objects rather than the IRFC objects—the standard

output of GCmax—since they constitute the smallest objects

in X∞(S, T ) and X∞(T, S), respectively. In particular, these

are the largest sets for which X∞(Ŝ, T̂ ) = X∞(S, T ). This

leaves extra room for the GCsum step of the algorithm to act

upon, which chooses an object from X (Ŝ, T̂ ), while preserv-

ing the extrema choices, Ŝ and T̂ , indicated by GCmax.

We have the following two theorems, describing nice

properties of GCmax
sum . The first of these theorems immedi-

ately follows from the similar result on RFC segmentations.

Theorem 3.1 Let I = 〈C, f〉 be an image and S, T ⊂ C

non-empty disjoint sets of seeds. If the sets S′ and T ′ have

the same connected components, respectively, as those of Ŝ

and T̂ , then GCmax
sum(I, S, T ) and GCmax

sum(I, S′, T ′) have iden-

tical outputs. In particular, if each of Ŝ and T̂ has only one

connected component in G, then any other choice of sets of

seeds S′ ⊂ Ŝ and T ′ ⊂ T̂ leads to identical delineations.

The above theorem describes the robustness of GCmax
sum

with respect to the seed set size and location. The follow-

ing theorem describes robustness of GCmax
sum with respect to

remapping the image intensity by an increasing function,

which depends on the way the weight/affinity function is

created from the image intensity function.

Theorem 3.2 Let I = 〈C, f〉 and I ′ = 〈C, f ′〉 be the images

with associated weighted graphs G = 〈V,E,w〉 and G′ =
〈V,E,w′〉, respectively. If w′ is a modification of w via an

increasing linear function (i.e., if w′ is a composition L ◦ w

of w and a linear function L), then for every seed sets S, T ⊂
C, the outputs of GCmax

sum(I, S, T ) and GCmax
sum(I ′, S, T ) are

identical. More generally, if w′ is a modification of w via an

increasing function, then the associated RFC approximations

〈Ŝ, T̂ 〉 and 〈Ŝ′, T̂ ′〉 are identical.

Also, less formally, GCmax
sum has the following nice prop-

erties. Some level of boundary smoothness is assured for the

output of GCmax
sum by a similar property of GCsum. Similarly,

some level of leakage control is achieved. The greater robust-

ness (insensitivity) to the artifacts such as a slow background

variation component modulating the image intensity function

can be achieved by a careful creation of w.

4. EXPERIMENTAL RESULTS & CONCLUSION

In this section we present the accuracy results of experiments

involving two 2D datasets, each composed of 40 real MR im-

ages of the foot.
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Fig. 2. (a) Ground truth of the talus (central contour), and ex-

ample of seeds obtained by erosion (inner and outer contours).

The corresponding results: (b) the result for GCsum (standard

GC) algorithm, (c) the result for GCmax (IRFC) algorithm,

and (d) the result for GCmax
sum (new RFC+GC) algorithm.

In the first experiment, we computed the mean perfor-

mance curve for all the methods GCsum (i.e., standard GC),

GCmax (i.e., IRFC) and GCmax
sum (i.e., RFC+GC) to segment

the talus bone, for different seed sets obtained by eroding the

ground truth, as shown in Fig 2(a). For the second dataset

(not shown), we performed the segmentation of the calcaneus

for all the methods. The arc weights w(p, q) were computed

as the complement of the difference of image intensities (i.e.,

as K−|I(p)− I(q)|, where K stands for the maximum value

of |I(p)− I(q)|, with p, q ∈ C).

Fig 2 shows some obtained results. The experimental

curves are given in Fig 3, which show that the combined

GCmax
sum (i.e., RFC+GC) approach provided the best accuracy

results in most cases. GCmax
sum was also much more robust to

seed quantity and position than GCsum. This demonstrates

that the combined approach can effectively work resulting in

smooth boundaries, while GCsum alone fails under this set-

ting because of the shrinking bias. In relation to running time,

GCmax
sum presented an intermediate performance as expected.

In conclusion, we have introduced an image segmenta-

tion algorithm GCmax
sum , which synergistically combines the

strengths of two popular algorithms: GCsum and GCmax

(RFC). As future work, we intend to analyze other promis-

ing RFC extensions and to report its results in other image

domains.
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