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ABSTRACT

This paper presents a parallel algorithm for the top of the line among the fuzzy connectedness algorithm family,
namely the iterative relative fuzzy connectedness (IRFC) segmentation method. The algorithm of IRFC, realized
via image foresting transform (IFT), is implemented by using NVIDIA’s compute unified device architecture
(CUDA) platform for segmenting large medical image data sets. In the IRFC algorithm, there are two major
computational tasks: (i) computing the fuzzy affinity relations, and (ii) computing the fuzzy connectedness
relations and tracking labels for objects of interest. Both tasks are implemented as CUDA kernels, and a
substantial improvement in speed for both tasks is achieved. Our experiments based on three data sets of small,
medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up
factor of 2.4x, 17.0x, and 42.7x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the
implementation of the algorithm in CPU.
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1. INTRODUCTION

In spite of several decades of research, image segmentation remains a challenging problem in medical image
analysis.1 Image segmentation methods based on the fuzzy connectedness (FC) framework and its extensions2–5

have been extensively utilized in many medical applications, including multiple sclerosis (MS) lesion detection
and quantification via MR imaging,6 upper airway segmentation in children via MRI for studying obstructive
sleep apnea,7 automatic brain segmentation in MRI images with the assistance of an atlas,8 clutter-free volume
rendering and artery-vein separation in MR angiography,9 in brain tumor delineation via MR imaging,10 etc. The
theoretical framework of FC has been compared rigorously to the popular level set and graph cut methods11–13

and has been shown to have some theoretical and practical advantages over the latter including computational
efficiency. However, when processing large image data sets, the run times for FC algorithms are still too high to
meet practical clinical demands.

Several parallel implementations have been developed to improve the efficiency of the fuzzy connectedness
algorithms. A parallel implementation of the scale-based FC algorithm has been developed for implementation on
a cluster of workstations (COWs) by using the message passing interface (MPI) parallel-processing standard.14 A
manager-worker scheme has been used in this implementation. A speed-up factor of approximately three has been
achieved on a COWwith six workstations. An OpenMP-based parallel implementation of the fuzzy connectedness
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algorithm has been reported.15 A speed increase of approximately five has been achieved relative to the sequential
implementation on an SGI Altix 4700, an expensive shared memory multiprocessor system (MPS). A parallel
implementation of the absolute FC method2 on the NVIDIA GPU has also been developed.16 A speedup
factor of more than 10 has been achieved over an optimized CPU implementation for various clinical medical
images. The successful implementation of the earliest and very basic algorithm in the FC framework led us to
develop parallel implementations of more advanced FC algorithms. In this paper, we present a parallel version
of the top of the line FC family of algorithms, namely the iterative relative fuzzy connectedness algorithm via
image foresting transform (IRFC-IFT),4,13,17 implemented on NVIDIA’s Compute Unified Device Architecture
(CUDA) platform for segmenting medical image data sets.

The paper is organized as follows. In Section 2, we first summarize the FC principles and the sequential
IRFC algorithm; we then describe parallelized version of this algorithm and its implementation on the NVIDIA
Tesla C1060 GPU by using CUDA in Section 3. The experimental results are presented in Section 4. Finally,
we state our concluding remarks in Section 5.

2. FUZZY CONNECTEDNESS PRINCIPLES AND SEQUENTIAL ALGORITHM

In this section, we briefly describe the principles of fuzzy connectedness to make this paper self-contained. Please
see the original papers for more details.2,4, 12

We refer to a 3-D digital image as a scene and represent it by a pair C = (C, f), where C, called the scene
domain, is a rectangular array of voxels, and f is the scene intensity function which assigns to every voxel c ∈ C
an integer intensity value in [L,H].

2.1 Fuzzy adjacency and affinity

Independent of any image data, we think of the digital space defined by the voxels as having a fuzzy adjacency
relation. We denote the fuzzy adjacency relation by α and the degree of adjacency assigned to a pair (c, d) of
voxels by α(c, d). The fuzzy adjacency relation assigns to every pair (c, d) of voxels a value between zero and one.
The closer c and d are to each other, the greater is this number. In this paper we will use the hard 6-adjacency
for α.

A path p in a subset A of C is any finite seqence 〈c1, ..., ck〉 of voxels in A such that any consecutive voxels
ci, ci+1 in p are adjacent, that is, with α(ci, ci+1) > 0. The family of all paths in A is denoted by P

A. Voxels c
and s are connected in A provided that there exists a path p = 〈c1, ..., ck〉 in A from c to s such that c1 = c and
ck = s. The family of all paths in A from c to d is denoted by P

A
cd.

Fuzzy affinity, denoted κ, is a local fuzzy relation defined on the scene domain C, which assigns to every pair
(c, d) of nearby voxels a strength of local hanging togetherness which has a value between zero and one. The
strength κ(c, d) between two voxels c and d depends on α(c, d) as well as on how similar their scene intensities
f(c) and f(d) (homogeneity-based affinity), and intensity-derived features are for voxels c and d (object feature-
based affinity). The affinity functions are discussed in detail in previous papers.3,18 In this paper, the following
functional form for κ is used:

κ(c, d) = α(c, d)
√
ψ(c, d)φ(c, d), (1)

where α(c, d) = 1 if ‖c− d‖ ≤ 1 and α(c, d) = 0 if ‖c− d‖ > 1; the homogeneity based affinity ψ(c, d) is given by

ψ(c, d) = e
− ‖f(c)−f(d)‖

σ2
h , (2)

where σ2
h is the variance of the intensity difference for all c and d such that α(c, d) > 0; and the object feature

based affinity φ(c, d) is given by

φ(c, d) = e
−max{‖f(c)−m‖,‖f(d)−m‖}2

σ2
o . (3)

For the single object case, m and σ2
o are related to the mean and variance of the intensity of the object that we

wish to define in the scene.
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2.2 Absolute fuzzy connectedness (AFC)

In this section, we will define an AFC object, denoted PSθ, containing a non-empty set S ⊂ C of seeds and
indicated by a threshold θ < 1.

The strength of a path p = 〈c1, ..., ck〉, k > 1, is defined as μ(p) = min{κ(ci−1, ci) : 1 < i ≤ k}, that is,
the strength of the κ-weakest link of p. For k = 1 we associate with p the strongest possible value: μ(p) = 1.
For c, d ∈ A ⊆ C, the (global) fuzzy κ-connectedness strength in A between c and d is defined as the strength
of a strongest path in A between c and d; that is, μA(c, d) = max{μ(p) : p ∈ P

A
cd}. We will refer to the

function μA as a connectivity measure (on A) induced by κ. For c ∈ A ⊆ C and a non-empty D ⊂ A, we
also define μA(c,D) = maxd∈Dμ

A(c, d). We then define the absolute fuzzy connectedness, AFC, object PSθ as
PSθ = {c ∈ C : θ < μC(c, S)}.

If a set of seeds S contains only one seed s, then we will write Psθ = P{s}θ. It is easy to see that PSθ is a
union of all objects Psθ for s ∈ S, that is, PSθ =

⋃
s∈S Psθ. One of the most important properties of the AFC

objects (as well as of RFC and IRFC objects defined below) is their robustness to seeds placement. Intuitively,
this property states that the FC delineation results do not change if the seeds S indicating an object are replaced
by another nearby set U of seeds. The standard algorithm κθFOEMS, which, given a scene C = (C, f), a set
S ⊂ C of seeds indicating the object, and a threshold θ < 1, returns the AFC object PSθ, is described in.2

2.3 Relative fuzzy connectedness (RFC)

Instead of defining an object on its own based on connectivity strength, in RFC, all (important) objects in the
scene are considered in defining each object. The objects compete among themselves in terms of connectivity
strength to win over voxels in the scene and to have them as their members. In this competition, every pair of
voxels in the scene will have a strength of connectedness in each object. The object in which this strength is
highest will claim membership of the voxels. This approach of fuzzy object definition, using relative strengths of
connectedness, eliminates the need for the threshold θ. All specified objects are defined simultaneously in this
approach.

Beside a set S of seeds indicating the object, let T be a non-empty set of seeds, disjoint with S, indicating
the background (co-object). The actual RFC object PS,T is defined via competition of seed sets S and T for
attracting a given voxel c ∈ C: PS,T = {c ∈ C : μC(c, S) > μC(c, T )}. Notice that PS,T =

⋃
s∈S P{s},T , since

PS,T = {c ∈ C : (∃s ∈ S)μC(c, s) > μC(c, T )} = ⋃
s∈S P{s},T , as μC(c, S) = maxs∈Sμ

C(c, s).

The above RFC delineation procedure can be easily generalized to m > 2 objects. For any scene C = (C, f),
let S = {S1, . . . , Sm} denote sets of disjoint non-empty seeds in C, where each Si is specified for an associated
object Pi. If, for each i, we put Ti = (

⋃m
j=1 Sj)\Si, then the RFC segmentation is defined as a family P =

{PSi,Ti
: i = 1, ...,m}. It is easy to see that the different objects in P are disjoint.

It is important to note that we confined ourselves to a single affinity for different objects. Indeed, single
affinity is a necessary condition to insure nice properties of the relative fuzzy connectedness to hold.4 Here we
describe how different object-oriented affinities may be combined into a single affinity. Let κ1, κ2, . . . , κm be
affinities specified for the m object regions, respectively. These affinities may be combined into a single affinity
κ that retains as much as possible the individual object-specific information.4 In this paper, we use the fuzzy
union of the individual affinities. That is,

κ(c, d) = max
i
κi(c, d). (4)

2.4 Iterative relative fuzzy connectedness (IRFC)

The RFC segmentation P = {PSi,Ti : i = 1, ...,m} of a scene, associated with a family of seeds S = {S1, . . . , Sm},
can still leave a set B = BP of voxels outside of any objects wherein the strengths of connectedness are equal with
respect to the seeds. The iterative relative fuzzy connectedness (IRFC) paradigm was proposed to circumvent
this problem.4,5 It is an iterative refinement strategy that imposes additional constraints based on the results
from previous iterations. We treat the RFC segmentation objects PSi,Ti

as the first iteration P 1
Si,Ti

of the final

segmentation, while the next iteration is to redistribute some of the voxels c ∈ BP , for which μC(c, Si) = μC(c, Ti)
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for some i. Such a tie can be resolved if the strongest paths justifying μC(c, Si) and μC(c, Ti) cannot pass
through the voxels already assigned to another object. That is, we like to add voxels from the set P ∗ = {c ∈ B :
μB∪PSi,Ti (c, Si) > μB∪PSj,Ti (c, Sj) for all j 
= i, to a new generation P k+1

Si,Ti
of P k

Si,Ti
, k = 1, 2, . . . ,∞.

An efficient implementation of the IRFC approach that has been recently proposed,13 based on the Image
Foresting Transform (IFT),17,19,20 is summarized below.

For a given scene C = (C, f) and fuzzy adjacency α, a spanning forest on C is any family F of directed paths
such that: (1) for every c ∈ C there is a unique pc = 〈c1, . . . , ck〉 ∈ F with ck = c, and (2) an initial segment of
any path in F is also in F. A spanning forest F is often identified with its predecessor map PrF : C → C ∪ {nil}
that is defined as follows: if pc = 〈c1, ..., ck〉 ∈ F is a unique path with ck = c, then PrF(c) = nil for k = 1 and
PrF(c) = ck−1 for k > 1. Let SF = {c ∈ C : PrF(c) = nil}. A root map RF : C → SF associated with the
spanning forest F is defined as RF(c) = c1, for any c ∈ C, where pc = 〈c1, ..., ck〉 is the unique path in F which
terminates at c. For any seed set S ∈ C, a path p = 〈c1, ..., ck〉 is optimal (with respect to S and a path cost
function μ) provided that c1 ∈ S and μ(p) = μC(ck, S). A spanning forest F is optimal if every path in F is
optimal.

The Image foresting transform (IFT)19 takes a given scene C, an optimal path cost function (connectivity
measure μC), and an adjacency relation α, and then produces an optimum spanning forest. During the process,
a cost map and root map are also built.

For image segmentation, let S = {S1, . . . , Sm} be sets of disjoint non-empty seeds in C where Si is specified
for an associated object Pi. We define P (Si,F) as the set of all c ∈ C with RF(c) ∈ Si. A label map is a
function defined as λ : C → {l1, . . . , lm}. From the segmentation point of view, the same label li is assigned to
all c ∈ P (Si,F), that is, λ(c) = λ(RF(c)) = li.

The sequential algorithm of IRFC-IFT13 on CPU, which we choose to parallelize, is presented below for the
special case of object and background (m = 2).

Algorithm 1 IRFC-IFT

Input: Affinity function κ; Non-empty sets S, T ⊂ C of seeds, indicating object and background, respectively;
Output: Functions h : C → {−1} ∪ [0, 1] approximating μC(·, S ∪ T ); Predecessor map Pr; Root map R; A
labeling map λ : C → {0, 1};
Auxiliary: An ordered priority queue Q.
begin

1: Set h(c)← 1, R(c)← c, Pr(c)← nil for all c ∈ S ∪ T ;h(c)← −1, R(c)← c, Pr(c)← c for all c /∈ (S ∪ T );
2: Set λ(c)← 0 for all c ∈ T , and λ(c)← 1 for all c ∈ S;
3: Insert c in Q for all c ∈ S ∪ T ;
4: while Q is not empty do
5: Remove a voxel c from Q, such that h(c) is maximal;
6: for every d such that κ(c, d) > 0 do
7: if h(d) < min{h(c), κ(c, d)} then
8: Set h(d)← min{h(c), κ(c, d)};
9: Set R(d)← R(c);Pr(d)← c;λ(d)← λ(c);

10: if d ∈ Q then
11: update the location of d in Q;
12: else
13: insert d in Q;
14: end if
15: end if
16: end for
17: end while

end
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Figure 1. NVIDIA GPU hardware architecture.

3. GPU IMPLEMENTATION

In this section, we first briefly describe the NVIDIA GPU hardware architecture and the CUDA programming
model. For a full description on NVIDIA GPU and CUDA, readers are referred to the CUDA programming
guide.21 We then describe how we implement the IRFC-IFT algorithm using the CUDA model. Note that,
because of the limited size of GPU device memory and latency of global memory access, the predecessor map and
root map in the algorithm of IRFC-IFT are not implemented in the GPU parallelized program. For comparison
purposes, these two maps are also not built in the sequential program.

3.1 NVIDIA GPU architecture

The underlying hardware architecture of a NVIDIA GPU is illustrated in Figure 1. The NVIDIA Tesla C1060
GPU is used as an example to provide a brief overview of the architecture. The Tesla C1060 GPU has 240
processing cores with a clock rate of 1.3GHz for each core, delivering nearly 1 Tera FLOPS of computational
power. To support an intuitive and flexible programming environment to access such computing power, NIVIDA
provides the CUDA framework,21 which is based on a C-language model. CUDA enables the generation and
management of a massive number of processing threads, which can be executed in parallel on GPU cores with
efficient hardware scheduling.

The 240 cores of Tesla C1060 GPU are grouped into 30 multi-processors. Each multi-processor has 8 pro-
cessing cores, organized in a SIMD (Single Instruction Multiple Data) fashion. Each core has its own register
file and arithmetic logic unit which allows it to accomplish a specific computational task. The Tesla C1060 has
4 GB of on-board device memory, which can be used as read-only texture memory or read-write global memory.
The GPU device memory features very high bandwidth, recorded at 102 GB per second, but it suffers from high
access latency. In each multi-processor unit, there is 16 KB of user-controlled L1 cache, called shared memory.
If it is used efficiently, it can be employed to hide the latency in global memory access.

The CUDA programming model is based on concurrently executed threads. CUDA manages threads in a
hierarchical structure. Threads are grouped into a thread block, and thread blocks are grouped into a grid. All
threads in one grid share the same functionality, as they are executing the same kernel code. Each thread block
is mapped on to one multi-processor unit, and threads in each block are scheduled to run on 8 processing cores
of the multi-processor unit, using a scheduling unit of 32-thread warp. Since the threads in a block are executed
on the same multi-processor, they can use the same shared memory space for data communication. On the other
hand, the threads between different blocks can communicate only through the low-speed global memory.

3.2 CUDA implementation of IRFC

In CUDA, programs are expressed as kernels. In order to map a sequential algorithm to the CUDA programming
environment, developers should identify data-parallel portions of the application and isolate them as CUDA
kernels. In the IRFC-IFT algorithm, there are two major computational tasks: (C1) computing the fuzzy
affinity relations, and (C2) computing the fuzzy connectivity measure and tracking labels for objects of interest.
We shall refer to (C1) as “affinity computation” and (C2) as “tracking” connectivity. These two tasks are
implemented as CUDA kernels, and a significant improvement in speed for both tasks is achieved as a result.

1) Affinity computation kernel: The CUDA implementation of fuzzy affinity computation is straightforward.
The fuzzy affinity computation of every pair (c, d) of voxels where α(c, d) is greater than zero is totally independent
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Figure 2. The flow chart of the CUDA implementation.

of other pairs of voxels. Thus for the pair (c, d), one thread is assigned to compute corresponding ψ(c, d) and
φ(c, d) in Equations (2) and (3), and the fuzzy affinity κ(c, d) result of Equation (1) is written to the specific
allocated GPU device memory.

2) Tracking kernel: The sequential IRFC-IFT algorithm is essentially Dijkstra’s algorithm, with a slight
modification for multiple sources. Parallel implementation of the Dijkstra’s algorithm is quite challenging.22,23

Particulary, the priority queue structure in the algorithm is very hard to implement on the GPU. In this paper, we
use an alternative strategy to implement the functionality of the priority queue. The idea here is to try parallelize
Step 5 in the sequential IRFC-IFT algorithm. That is, all voxels having maximum connectivity measure are
independently processed by different threads simultaneously. We exploit the computing capability of concurrent
executed threads on the GPU. For any c ∈ C, the connectivity measure h(c) is mapped to an integer value which
is used as an index in the queue. A global variable g is maintained on the GPU to track the maximal index
value in the queue. Each GPU thread independently checks the connectivity value of the voxel it processes and
compares with the maximal index. Only those threads associated with maximal index are allowed to update the
connectivity and label map information of neighboring voxels. The atomic read/write operations in the device
memory are used for concurrent memory access. The flow chart of our CUDA implementation is illustrated in
Figure 2, and the algorithm is presented below.
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Algorithm 2 CUDA-IRFC-IFT

Input: Given scene C = (C, f); Non-empty sets S, T ⊂ C of seeds, indicating object and background, respec-
tively;
Output: Functions h : C → {−1} ∪ [0, 1] approximating μC(·, S ∪ T ); A labeling map λ : C → {0, 1};
Auxiliary: A function η : C → {0, 1} indicating which voxels of C are in the queue; A global index variable g.
begin

1: Set h(c)← 1, η(c)← 1 for all c ∈ S ∪ T and h(c)← −1, η(c)← 0 for all c /∈ (S ∪ T );
2: Set λ(c)← 0 for all c ∈ T , and λ(c)← 1 for all c ∈ S, g ← 1;
3: Copy h and λ from CPU to GPU;
4: Invoke AFFINITY-KERNEL on grid to compute fuzzy affinity κ;
5: while g > 0 do
6: Invoke TRACKING-KERNEL(h, λ, g);
7: Transfer g back to CPU;
8: end while
9: Copy h and λ from GPU to CPU;

end

The above algorithm is executed on the host (CPU) side while the kernels are executed on the device (GPU)
side, as shown in Figure 2. The values of h, κ, λ and η are stored in GPU global memory, which are accessible
by all threads on GPU. As explained above, the different threads that meet the criteria operate on voxels for
updating connectivity and label map information simultaneously. In one invocation, they all update connectivity
information as much as they can on the voxels in their purview. The CPU determines if there are any voxels left
in (virtual) queue through the global index value. If so, the kernel is invoked again with updated information
of g and η. The CPU terminates the run of the algorithm when the global index g has value of zero. The
value of g is updated in the following manner. A variable li is maintained in shared memory of each block Bi,
which indicates the local maximum index of voxels processed by threads in Bi. When a thread in Bi updates
connectivity and label map information, the value of li is updated accordingly. After all threads in Bi finish
their work, the value of g is then updated in terms of li. We take this strategy to update the value of g because
the memory access in shared memory is much faster than that in global memory. The affinity kernel and the
tracking kernel algorithms are presented below.

Algorithm 3 AFFINITY-KERNEL

1: Compute thread index t(id);
2: for each voxel c processed by t(id) do
3: for all d such that α(c, d) > 0 do
4: Compute affinity κ(c, d);
5: Write κ(c, d) to corresponding GPU memory;
6: end for
7: end for

Note that in Algorithm 3, each pair (c, d) is considered only once. Thus different threads independently
compute affinities for different pairs of voxels.

The algorithm CUDA-IRFC-IFT is an iterative procedure. At the first iteration, only those threads which
process the voxels c ∈ S ∪ T are active. TRACKING-KERNEL is called to update the connectivity measure
h and the label map λ. More threads will be involved and become active for the connectivity and label map
information update at the successive iterations. Because of the limited communication capability among threads
from different blocks, the CPU side needs to collect the global index information from each block on GPU that
is updated by each thread in the block through shared memory, and it decides when to terminate calling the
TRACKING-KERNEL. Each thread checks the connectivity and η value of each voxel under its control to see if
it is allowed to operate on neighboring voxels for updating connectivity and label map information. Note in lines
6 and 7 of the Algorithm TRACKING-KERNEL, atomic operation was used for consistency, because update
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Algorithm 4 TRACKING-KERNEL(h, λ, g)

1: Compute thread index t(id);
2: for each voxel c processed by t(id) such that h(c) = g do
3: Set η(c)← 0;
4: for all e such that κ(c, e) > 0 do
5: if h(e) < min{h(c), κ(c, e)} then
6: Set h(e)← min{h(c), κ(c, e)},λ(e)← λ(c);
7: Set η(e)← 1;
8: end if
9: end for

10: end for
11: update g;

operations for one voxel by multiple threads might happen simultaneously. The atomic operation insures that
no conflict occurs. When voxel c has been processed by one thread, it doesn’t need to be further processed in
the next iteration. The algorithm CUDA-IRFC-IFT terminates when all voxels are processed.

4. EXPERIMENTAL RESULTS

In this section, the running times of the GPU and CPU implementations of the IRFC-IFT algorithm are compared
for image data of different sizes. The CPU version of FC is implemented in C++. The computer used is a DELL
PRECISION T7400 with a quad-core 2.66 GHz Intel Xeon CPU. It runs Windows XP and has 2 GB of main
memory. The GPU used is the NVIDIA Tesla C1060 with 240 processing cores and 4 GB device memory. CUDA
SDK 3.2 is used in our GPU implementation. Three image data sets – small, medium, and large – are utilized
to test the performance of the GPU and CPU implementations. Table 1 lists the image data set information
and shows the performance of the GPU implementation versus the CPU implementation. A speed-up factor of
2.4x, 17.0x, and 42.7x, respectively, has been achieved, for the three data sets over the CPU implementation.
It is noted that the segmentation results produced from both GPU and CPU implementations are identical.
Here, the speed-up factor is defined as ts/tp, where ts and tp are the times taken for the sequential and parallel
implementations, respectively. It seems that the larger the size of the testing data set, the more speedup we
can achieve. This is mainly because for larger data sets, there are more voxels might having maximum index
value such that more threads will be involved for update operations in one iteration. Note that in all of our
experiments, we try to separate the object of interest (foreground) from the other co-object (background).

Table 1. Data set information and performance of the GPU implementation with respect to the optimal CPU implemen-
tation.

Dataset Small Medium Large
Protocol PD MRI T1 MRI T1 MRI
Scene domain 256× 256× 46 256× 256× 124 512× 512× 192
Voxel size 0.98× 0.98× 3.0 0.94× 0.94× 1.5 0.5× 0.5× 1.0
CPU time (s) 13.45 293.62 10123.48
GPU time (s) 5.55 17.30 236.98
Speed-up 2.4 17.0 42.7

Figure 3 shows the example of the small size data set, which comes from MRI of the head of a clinically
normal human subject. A fast spin-echo dual-echo protocol is used. Figure 3(a) shows one slice of the original
PD-weighted scene, Figure 3(b) shows corresponding label map that separates the white matter from the other
tissues in the brain.

Figure 4 shows the example of the medium size data set, which is a T1-weighted MRI scene of the head of a
clinically normal human subject. The spoiled gradient recalled (SPGR) acquisition was used. This data set was
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(a) (b)
Figure 3. (a) A slice of PD-weighted MRI scene from the small data set, and (b) the final label map.

(a) (b)
Figure 4. (a) A slice of T1-weighted MRI scene from the medium data set, and (b) the final label map.

obtained from the web site of National Alliance for Medical Image Computing (http://www.na-mic.org). Figure
4(a) shows one slice of the original scene, and Figure 4(b) shows the separated white matter label from other
tissues.

Figure 5 shows the example of the large size data set, which is a T1-weighted MRI scene of the head of a patient
with brain tumor. Figure 5(a) shows one slice of the original scene, and Figure 5(b) shows the corresponding
label map depicting the white matter label and that of the other tissues.

5. CONCLUDING REMARKS

Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images
continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image
segmentation algorithms and their implementations are rapid and yield practical run time on very large data
sets. This paper describes an example of a practical and cost-effective solution to the problem.

We developed a parallel algorithm of the iterative relative fuzzy connectedness algorithm via the image forest-
ing transform (IRFC-IFT), the top of the line among the fuzzy connectedness algorithm family, on the NVIDIA
GPUs, which are far more cost and speed-effective than both COWs and multiprocessing systems. The parallel
implementation achieves speed increases by factors ranging from 2.4x to 42.7x on the Tesla C1060 GPU over an
optimized CPU implementation for three image data sets with a wide range of sizes. A near-interactive speed of
segmentation has been achieved, even for the large data set. For some specific applications, several free param-
eters (e.g. fuzzy affinity parameter) in fuzzy connected image segmentation might be difficult to optimize. The
interactive speed of segmentation could give users immediate feedback on parameter settings; thus allowing them
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(a) (b)
Figure 5. (a) A slice of T1-weighted MRI scene from the large data set, and (b) the final label map.

to fine-tune free parameters and produce more accurate segmentation results. In the current implementation,
the tracking kernel is iteratively launched which is computationally expensive. The performance of the parallel
implementation could be further improved by devising a better mechanism for inter-block communication on the
GPU. In addition, other parallel implementation methods of the Dijkstra’s algorithm need to be investigated.24

On the other hand, a more efficient (near-linear time) implementation of the sequential IRFC-IFT algorithm has
also been available,25 and so the actual speed up factor may differ from those reported in this work. However,
we are certain that such GPU implementations will play a crucial role in automatic anatomy recognition in
radiology.
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