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Purpose: Recently, clinical radiological research and practice are becoming in-

creasingly quantitative. Further, images continue to increase in size and volume.

For quantitative radiology to become practical, it is crucial that image segmentation

algorithms and their implementations are rapid and yield practical run time on very20

large data sets. The purpose of this paper is to present a parallel version of an algo-

rithm that belongs to the family of Fuzzy Connectedness (FC) algorithms, to achieve

an interactive speed for segmenting large medical image data sets.

Methods: The most common FC segmentations, optimizing an ℓ∞-based energy,

are known as Relative Fuzzy Connectedness (RFC) and Iterative Relative Fuzzy25

Connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC)

can be found via linear time algorithms, linear with respect to the image size. The

new algorithm, P-ORFC (for Parallel Optimal RFC), which is implemented by using

NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably im-

proves the computational speed of the above mentioned CPU based IRFC algorithm.30

Results: Experiments based on four data sets of small, medium, large, and super

data size, achieved speed-up factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspond-

ingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need

not precisely match that of IRFC output, it is very close to it and, as we prove,

always lies between the RFC and IRFC objects.35

Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC

has been developed on the NVIDIA GPUs. An interactive speed of segmentation has

been achieved, even for the largest medical image data set. Such GPU implemen-

tations may play a crucial role in automatic anatomy recognition in clinical radiology.

40

Key words: Image segmentation, fuzzy connectedness, graph-based methods, GPU

implementations
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I. INTRODUCTION

In spite of several decades of research, image segmentation remains a challenging problem

in medical image analysis1. Graph-based algorithms make up a prominent class of purely45

image based segmentation algorithms. Among these, as summarized in2 and3, the graph

cut methods4 employ the ℓ1-norm while random walker5 optimizes the ℓ2-norm. The fuzzy

connectedness6–9 and the shortest path (geodesics)10,11 use the ℓ∞-norm. The fuzzy connect-

edness (FC) framework has some unique properties such as robustness to seed points and

computational speed. As such, it has been extensively utilized in many medical applications,50

including multiple sclerosis lesion detection and quantification via Magnetic Resonance Imag-

ing (MRI)12, upper airway segmentation via MRI for studying pediatric obstructive sleep

apnea13, automatic brain segmentation in MRI with the assistance of an atlas14, clutter-free

volume rendering and artery-vein separation in MR angiography15, in brain tumor delin-

eation via MRI16, etc. Several different forms of the mathematical definition of FC and55

the associated algorithms are reported in the literature17–20. The theoretical framework of

FC has been compared rigorously to the popular level set and graph cut methods21–24 and

has been shown to have some theoretical and practical advantages over the latter including

computational efficiency. However, when processing large image data sets, the run times for

FC algorithms are still too high to meet practical clinical demands.60

Both graph cut and random walk methods have been implemented on the GPU3,25–27,

achieving the speed improvement, with respect to their CPU counterparts and using dif-

ferent platforms, of the order of 0.7–19 fold. Several parallel implementations have been

developed to improve the efficiency of the FC algorithms. A parallel implementation of the

scale-based FC algorithm has been developed for implementation on a Cluster of Worksta-65

tions (COW) by using the message passing interface (MPI) parallel-processing standard28.

A manager-worker scheme has been used in this implementation. A speed-up factor of ap-

proximately three has been achieved on a COW with six workstations. An OpenMP-based

parallel implementation of the FC algorithm has been reported in29. A speed increase of

approximately five has been achieved, relative to the sequential implementation on an SGI70

Altix 4700; an expensive, shared memory multiprocessor system. A parallel implementation

of the absolute FC method, AFC6, on the NVIDIA GPU has also been developed achieving

a speed increase of more than 10 over the CPU version30.
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This paper focusses on a GPU implementation of an logarithm optimizing the ℓ∞-based

energy εmax, in the ℓp-norm formulation proposed in2. The energy optimization is what truly75

distinguishes this work from that presented in30, as AFC objects have no build-in energy

optimization factor.

The objects optimizing the energy εmax are carefully discussed in24. The most efficient cur-

rently existing CPU algorithm returning an εmax-optimizer, GCmax from24 (compare also31),

is a version of Dijkstra algorithm. It returns, in a linear time with respect to the image size,80

an object known as the Iterative Relative FC, IRFC, object. (Compare8,9.) The smallest

(in the sense of inclusion) among all εmax-optimizers always exists and is called the Relative

FC, RFC, object. The RFC object can be strictly smaller than the IRFC object. The RFC

object can also be found in a linear time with respect to the image size (by a simple modi-

fication of the GCmax algorithm); however such modification runs slower (by a factor of 2)85

than the original GCmax algorithm.

The new algorithm, called P-ORFC (for Parallel Optimal Relative FC), is implemented

on NVIDIA’s Compute Unified Device Architecture (CUDA) platform for segmenting med-

ical image data sets and achieves a speedup factor of 17-32 over the top-of-the-line CPU

algorithm GCmax discussed above. The output of P-ORFC is close to the IRFC object90

and, as we prove here, always lies between the RFC and IRFC objects; however, it may

be strictly between these two objects. Certainly, it would be more desirable to have a fast

GPU-based algorithm that returns precisely the known IRFC (or RFC) object. This was

our initial idea, as reported in the conference proceedings version of this paper32, which de-

scribes the CPU-based implementation CUDA-IRFC-IFT of the GCmax algorithm. However,95

the experiments of segmenting large size image data with CUDA-IRFC-IFT (not included

in the study reported in32) did not achieve the performance substantially better the CPU

based GCmax algorithm. Therefore, for the study presented in this paper, we redesigned

the CUDA-IRFC-IFT algorithm to the new algorithm P-ORFC, which clearly outperforms

(with respect to running time) the GCmax and CUDA-IRFC-IFT algorithms, while it has a100

similar quality of the output.

The paper is organized as follows. In Section II.A, we first summarize the principles

of fuzzy connectedness and describe some of the CPU-based FC algorithms. Section II.B

describes our new algorithm and its implementation on the NVIDIA Tesla C1060 GPU by

using CUDA. It also contains the proof of its correctness. The experimental results are105
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presented in Section III. Finally, we state our concluding remarks in Section IV.

II. MATERIALS AND METHODS

II.A. Principles of Fuzzy Connectedness

In this section, the principles of Fuzzy Connectedness, FC, are briefly summarized

(following6,8,9,22,24), to make this paper self-contained.110

II.A.1. Digital image and its scene

We will identify a digital image I = ⟨C, f⟩ with its intensity function f : C → Rℓ, that

is, a map from its domain — a finite set C, whose elements will be referred to as spels,

short for space elements — into Rℓ. The value f(c) of f at c represents image intensity, an

ℓ-dimensional vector, at this spel.115

The domain C of the image comes with an adjacency relation function α : C×C → {0, 1},

independent of the image intensity function, and the structure C = ⟨C,α⟩ is referred to as

a digital scene. The spels c, d ∈ C are adjacent, when α(c, d) > 0. Intuitively, the adjacent

spels are defined as spatially close to each other and are considered to be connected (in a

topological and graph-theoretical sense). Recall22,24 that a scene C is often identified with120

the directed graph G = ⟨C,E⟩, where the sets E of graph directed edges are defined as

{⟨c, d⟩ ∈ C × C : α(c, d) > 0}. (Since α is usually a symmetric function, the graph can be

also naturally identified with a non-directed graph.)

In the experimental part of this paper, Sec. III, we will concentrate on the gray scalar

images (i.e., having range R1) defined on the 3D domains of the rectangular form C =125

C1 × C2 × C3, each Ci being the set of integers {1, . . . ,mi}. (Thus, in what follows, we

often refer to spels as voxels.) Also, we will use the 6-adjacency relation of voxels. However,

none of the results presented in Sec. II.B (including the algorithm P-ORFC) requires these

additional restrictions. In fact, the results even apply to a more relaxed definition of the

adjacency α, which allows its range to contain the fractional values in [0, 1].130

A path p in the scene C is any finite sequence ⟨c1, ..., ck⟩ of elements of C such that any

consecutive voxels in p are adjacent, that is, with α(ci, ci+1) > 0 for all i = 1, . . . , k− 1. For

A ⊂ C and c ∈ C, we say a path p = ⟨c1, ..., ck⟩: is in A, provided ci ∈ A for all i; and is
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from A to c, when c1 ∈ A and ck = c.

II.A.2. Affinity and connectivity functions135

The affinity function (also, referred to as a graph weight or cost function) is a map

κ : E → [0, 1] which assigns to every pair ⟨c, d⟩ of adjacent voxels a strength κ(c, d) of

local hanging togetherness. The strength κ(c, d) usually depends on: the value of α(c, d)

(important only, when we allow fractional values of α), the similarity between the intensities

f(c) and f(d) (this is a homogeneity-based affinity component ψ), and the object feature-

based affinity component ϕ defined below. The affinity functions are discussed in detail

in7,33. In the experimental part of this paper, the following functional form for κ is used:

κ(c, d) = α(c, d)
√
ψ(c, d)ϕ(c, d), (1)

where ψ(c, d) is given by

ψ(c, d) = e
− ∥f(c)−f(d)∥2

σ2
h , (2)

with σ2
h being the variance of the intensity difference ∥f(c)− f(d)∥ for all adjacent c and d,

and the object feature based affinity ϕ(c, d) is given by

ϕ(c, d) = e
−max{∥f(c)−m∥,∥f(d)−m∥}2

σ2
o . (3)

Here, m and σ2
o are related to the mean and variance of the intensity of the object that we

wish to find in C.

For a fixed affinity κ, we define a strength µ(p) of a path p = ⟨c1, ..., ck⟩ in C, with k > 1,

as µ(p) = min{κ(ci−1, ci) : 1 < i ≤ k}, that is, the strength of the κ-weakest link of p.

For k = 1, we associate with p the strongest possible value: µ(p) = 1. For c ∈ C and a140

non-empty S ⊂ C, we define the connectivity value µ(c, S) (of c with respect to S) as the

maximum strength µ(p) among all paths from S to c. In addition, if a set A ⊂ C contains

both c and S, then µA(c, S) is defined as the maximum of µ(p) among all paths from S to

c in A. Finally, if T ⊂ C \ S is non-empty, then µ(S, T ) = maxs∈S µ(s, T ) is the maximum

of the strength of all possible paths from S to T .145
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II.A.3. Absolute and Relative Fuzzy Connectedness

For a non-empty set S ⊂ C of seeds, indicating the foreground, and a threshold θ < 1,

the Absolute Fuzzy Connectedness, AFC, object is defined as

PSθ = {c ∈ C : µ(c, S) > θ}.

Notice that S ⊂ PSθ =
∪

s∈S P{s}θ and that each object P{s}θ is connected (in the topological

and graph-theoretical sense). The AFC object is robust with respect to seed choice in the

sense that P{c}θ = P{s}θ for every c ∈ P{s}θ.

The necessity of specifying the threshold vanishes in the Relative Fuzzy Connectedness,

RFC, definition. The RFC object is defined in terms of the disjoint non-empty sets S, T ⊂ C

of seeds, the former indicating an object, the latter the background:

P 1
S,T = {c ∈ C : µ(c, S) > µ(c, T )}.

The RFC object is always disjoint with T . It contains S, when µ(S, T ) < 1. Notice also150

that, if S is a singleton, then P 1
S,T equals the AFC object PSθ with θ = µ(S, T ). The RFC

object is also robust with respect to seed choice.

It has been recently noticed (see22,24) that the RFC object P 1
S,T minimizes an ℓ∞-energy

εmax in the family

P(S, T ) = {P ⊂ C : S ⊂ P ⊂ C \ T},

where εmax(P ) = ∥FP∥∞ = max{κ(c, d) : ⟨c, d⟩ ∈ bd(P )} and the boundary bd(P ) of P is

defined as the set of adjacent pairs ⟨c, d⟩ for which P contains precisely one of c and d.

Here FP is a mapping from E to [0,∞), defined as FP (c, d) = κ(c, d) for ⟨c, d⟩ ∈ bd(P ) and155

FP (c, d) = 0 for other adjacent pairs. The minimal energy min{εmax(P ) : P ∈ P(S, T )} is

equal to µ(S, T ) and the RFC object P 1
S,T is the smallest (with respect to inclusion) element

of the collection {P ∈ P(S, T ) : εmax(P ) = µ(S, T )}. It is worth mentioning here that the

standard min cut/max flow graph cut algorithm produces an object that minimizes the

ℓ1-energy ∥FP∥1 on P(S, T ).160

II.A.4. Iterative Relative Fuzzy Connectedness

The RFC procedure leads naturally to two objects: the foreground P 1
S,T and the back-

ground P 1
T,S. These two objects, however, can still leave a sizable leftover zone B = {c ∈
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C : µ(c, S) = µ(c, T )} = C \ (P 1
S,T ∪ P 1

T,S), where there is tie in strength of connectedness.

The goal of Iterative Relative Fuzzy Connectedness, IRFC, is to find a way to naturally

redistribute some of the spels from B to a new version of objects, P∞
S,T and P∞

T,S. The IRFC

object is defined as P∞
S,T =

∪∞
k=1 P

k
S,T , where the objects P k

S,T are found iteratively, starting

from the RFC object P 1
S,T :

P k+1
S,T = P k

S,T ∪
{
c ∈ C \ P k

S,T : µ(c, S) > µC\Pk
S,T (c, T )

}
.

Objects P∞
S,T and P∞

T,S are disjoint and P∞
S,T still minimizes the energy εmax on P(S, T ), as

proved in24. The paper24 describes also a linear time (with respect to image size) algorithm

GCmax, which returns P∞
S,T . (Compare also11,31,34.) Actually, GCmax returns the Optimal

Path Forest for S ∪ T , that is, a family P = {pc : c ∈ C} of paths such that for every c ∈ C,165

pc = ⟨c1, ..., ck⟩ is from S ∪ T to c, µ(pc) = µ(c, S ∪ T ), and any initial restriction ⟨c1, ..., cj⟩

(1 ≤ j < k) of pc is also in P . For this family, P∞
S,T equals {c ∈ C : pc starts at S}. The

IRFC object is also robust with respect to seed choice.

The GCmax algorithm can be also used to find, still in a linear time with respect to the

image size, the RFC object24.170

II.B. The new GPU-based algorithm

In this section we present the new GPU-based algorithm P-ORFC. We start with a

brief description of the NVIDIA GPU hardware architecture and the CUDA programming

model. For a full description of NVIDIA GPU and CUDA, readers are referred to the

CUDA programming guide35. Then, we describe the new algorithm, P-ORFC, devised175

Fig. 1 NVIDIA GPU hardware architecture.
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for the CUDA model and implemented in NVIDIA GPU. Finally, we state and prove the

theoretical properties of P-ORFC and relate the P-ORFC-returned object to the RFC and

IRFC objects.

II.B.1. NVIDIA GPU architecture and CUDA programming

The underlying hardware architecture of a NVIDIA GPU is illustrated in Figure 1. The180

NVIDIA Tesla C1060 GPU is used as an example to provide a brief overview of the archi-

tecture. The Tesla C1060 GPU has 240 processing cores with a clock rate of 1.3GHz for

each core, delivering nearly 1 Tera FLOPS of computational power. To support access to

this computing power, NVIDIA provides the CUDA programming framework35, based on

the C-language model, which is briefly described below.185

The 240 cores of the Tesla C1060 GPU are grouped into 30 multi-processors. Each multi-

processor has 8 processing cores, organized in a SIMD (Single Instruction Multiple Data)

fashion. Each core has its own register file and arithmetic logic unit which allows it to

accomplish a specific computational task. The Tesla C1060 has 4 GB of on-board device

memory, which can be used as read-only texture memory or read-write global memory. The190

GPU device memory features very high bandwidth, recorded at 102 GB per second, but

it suffers from high access latency. In each multi-processor unit, there is 16 KB of user-

controlled L1 cache, called shared memory. If it is used efficiently, it can be employed to

hide the latency in global memory access.

In CUDA programming, the parts of the algorithm that are executed in parallel mode195

on P-ORFC are referred to as kernels. A CUDA kernel is executed by an array of threads.

All threads run the same kernel code and each thread has an ID that it uses to compute

memory addresses make control decisions.

II.B.2. The new algorithm, P-ORFC, implemented in CUDA

The P-ORFC algorithm is presented below.200
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Algorithm 1 P-ORFC
Input: An image ⟨C, f⟩; Non-empty sets S, T ⊂ C of seeds, indicating the foreground (object)

and background, respectively;

Output: Functions: h : C → {−1} ∪ [0, 1] approximating µ(·, S ∪ T ) and a labeling map λ : C →

{0, 1} (1 for the background, 0 for the foreground);

Auxiliary: A global boolean variable β, to help in deciding on stopping of the main loop;

begin

1: Allocate GPU global memory for the affinity κ;

2: Invoke AFFINITY-KERNEL on GPU to compute κ;

3: Allocate GPU global memory for h and λ;

4: h(c)← 1 for all c ∈ S ∪ T and h(c)← −1 for all c /∈ (S ∪ T );

5: λ(c)← 1 for all c ∈ T , and λ(c)← 0 for all c ∈ S; β ← “true”;

6: while β = “true” do

7: β ← “false”;

8: Invoke TRACKING-KERNEL(h, λ, β);

9: Transfer β back to CPU;

10: end while

11: Copy h and λ from GPU to CPU;

12: Return {c ∈ C : λ(c) = 0} as the foreground;

end

In any FC algorithm, including P-ORFC, there are two major computational tasks: (C1)

computing the fuzzy affinity relations, and (C2) computing the fuzzy connectivity measure

µ(·, S ∪ T ). In addition, we record in (C2) the labels for the objects of interest. We shall

refer to (C1) as “affinity computation” and (C2) as “tracking” connectivity. These two tasks

are implemented as CUDA kernels in the P-ORFC algorithm illustrated in the flow chart of205

Figure 2.

II.B.2.a. Affinity computation kernel The CUDA implementation of fuzzy affinity com-

putation is straightforward. The fuzzy affinity computation of every pair ⟨c, d⟩ of adjacent

voxels (i.e., 6-adjacent or, more generally, with α(c, d) > 0) is totally independent of other

pairs of voxels. Thus, for the pair ⟨c, d⟩, one thread is assigned to compute the corresponding210

affinity components ψ(c, d) and ϕ(c, d) from (2) and (3), and the fuzzy affinity κ(c, d) result,
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Fig. 2 The flow chart of the CUDA implementation of the P-ORFC algorithm.

given by the formula (1), is written to the specific allocated GPU device memory.

Actually, in our experiments, we use as the affinity function κ̄(c, d) = D κ̂(c, d), with D =

212 = 4096, where κ̂(c, d) is the greatest number in the set Z = {i/D : i = 0, 1, . . . , D} less

than or equal to κ(c, d). (Thus, κ̄(c, d) is the integer part of Dκ(c, d).) Although replacing215

κ with its approximation κ̂ can slightly change the segmentation output, it considerably

speeds up the running time of the algorithm. On the other hand, according to the results

from the paper33, the affinities κ̄ and κ̂ produce identical FC results.

II.B.2.b. Tracking kernel The top of the line in the sequential IRFC algorithm GCmax
24

(compare also31) is a (relatively simple) modification of the Dijkstra’s algorithm DA. In220

particular, the order in which the voxels are accessed by DA (so, also by GCmax) is strictly

regulated, and so this regulation does not allow full exploitation of the parallel processing

features offered by the GPU. (We tried GPU implementation of GCmax, as reported in the

conference proceedings version of this paper32, and found that such a version of the algorithm

runs considerably slower than the P-ORFC algorithm presented here. This seems to be due225

to the fact that, during the execution of the GPU version of GCmax, most of the CUDA

threads actually do not update a voxel’s connectivity values.) The challenges of parallel

implementation of the Dijkstra’s algorithm are also reported in36,37.

To avoid the difficulties caused by the priority queue structure required by DA, a “brute-

force” method was used to update the connectivity value µ(c, S ∪ T ) of each voxel c. In230

particular, all threads are made to be actively involved in the updating operations: each GPU
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thread independently checks the connectivity value of the voxel it processes and compares it

with that of its neighbors. A global boolean variable β, indicating whether any connectivity

update was made during each kernel run, is maintained on the GPU to track the update

status. Its local counterpart, b, is kept on the shared memory of each multiprocessor and235

the b’s are combined to yield β at the end of each kernel execution.

The atomic read/write operations in the device memory are used for concurrent memory

access. Actually, the read/write conflict can occur only in Algorithm 3 in lines 4 and 5,

when the values of h and λ are accessed/modified. The multiple write/write can appear

only for line 6, but then the same modifications are made, so there is no conflict, as at least240

one of the modifications will be performed.

The Algorithm 1 was executed on the host (CPU) side while the kernels were executed

on the device (GPU) side, as shown in Figure 2. The values of h, κ, and λ were stored in

GPU global memory, which was accessible by all threads on GPU. The different threads of

TRACKING-KERNEL operate on voxels for updating connectivity and label information245

simultaneously. In one invocation, they all updated connectivity information as much as

they could on the voxels in their purview. The CPU boolean variable β determines whether

any updating has been done in the last invocation of the tracking kernel. If so, the kernel

was invoked again with the updated information on the voxels. The CPU terminates the

run of the algorithm when no updates were performed during the last run of the tracking250

kernel.

The affinity and tracking kernels are presented below. The kernels start with computing

thread index t(id), which determines which thread handles each voxel.

Algorithm 2 AFFINITY-KERNEL
1: Compute thread index t(id);

2: for each voxel c processed by t(id) do

3: for each voxel d such that α(c, d) > 0 do

4: Compute affinity κ(c, d);

5: Write κ(c, d) to the corresponding GPU memory;

6: end for

7: end for

Note that in Algorithm 2, each pair ⟨c, d⟩ is considered only once. Thus, different threads
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independently compute affinities for different pairs of voxels.255

In the tracking kernel, the value of the global variable β is updated in the following

manner. A boolean variable bi is maintained in the shared memory of each block Bi, i

denoting an index of the associated multi-processor, which indicates if there are any changes

of connectivity in the voxels processed by threads in Bi. When a thread in Bi updates

connectivity and label map information, the value of bi is set to “true”. After all threads260

in each Bi finish their work, the value of β is then updated in terms of bi’s. We take this

strategy to update the value of β because the memory access in the shared memory is much

faster than that in the global memory.

Algorithm 3 TRACKING-KERNEL(h, λ, β)
Auxiliary: A boolean variable b in a shared memory of each block B, initialized as b← “false”.

1: Compute thread index t(id);

2: for each voxel c processed by t(id) do

3: for each voxel e such that α(c, e) > 0 do

4: if (h(c) < min{h(e), κ(c, e)}) or (h(c) = min{h(e), κ(c, e)} and λ(c) < λ(e)) then

5: h(c)← min{h(e), κ(c, e)}, λ(c)← λ(e);

6: b← “true”;

7: end if

8: end for

9: end for

10: Synchronize all threads in the block;

11: if b = “true” for at least one block then

12: β ← “true”;

13: end if

To understand the meaning of TRACKING-KERNEL, one needs to put it in the perspec-

tive of the entire algorithm P-ORFC, which is an iterative procedure. At the first iteration,265

only the threads which process the voxels c neighboring e ∈ S ∪ T are active. TRACKING-

KERNEL is called to update the connectivity measure h and the label map λ. More threads

will be involved and become active for the connectivity and label map information update

at the successive iterations.

Because of the limited communication capability among threads from different blocks,270
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the CPU side collects the global index information from each block on GPU that is updated

by each thread in the block through shared memory and decides when to terminate calling

the TRACKING-KERNEL. Each thread checks the connectivity and label values of each

voxel under its control, and the values of its neighbors, to see if it is allowed to operate on

the current voxel c for updating connectivity and label information.275

In line 5 of TRACKING-KERNEL, atomic operation was used for consistency. Otherwise,

write/read conflict can occur. (Actually, a pair ⟨h(c), λ(c)⟩ was coded as a single integer

atomic variable, to insure that the update was always done simultaneously by the same

thread.) In lines 6 and 12, there may be multiple writings happening simultaneously. How-

ever, atomic operation was not used here since, according to CUDA manual, it is guaranteed280

that at least one writing operation will be performed.

The algorithm P-ORFC terminates when all voxels are fully processed and no further

changes to connectivity or label can be made.

II.B.3. Properties of P-ORFC

Theorem 1 The object P returned by the algorithm P-ORFC contains the RFC object285

and is contained in the IRFC object. Moreover, P minimizes the ℓ∞-energy εmax.

Proof. Assume that during the execution of P-ORFC we keep track of the path function

p such that, at any voxel c and at any time of the program execution, p(c) represents the

path from S ∪ T to c which justifies the current values h and λ. To do this formally, we

would need to initialize p as290

• set h(c)← ⟨c⟩ for all c ∈ S ∪ T and h(c)← ∅ for all c /∈ (S ∪ T );

and, between lines 5 and 6 in the tracking kernel, add the command

• set p(c)← p(e)̂ ⟨c⟩, i.e., the extension of p(e) by c.

(This would not change the algorithm’s output and, since we do not need the variable p

except for this proof, we do not actually implement it.)295

Let P = {pc : c ∈ C} be the family of paths forming an Optimal Path Forest for S ∪ T

such that {c ∈ C : pc starts at S} is the IRFC object P∞. (See Subsection II.A.4.) Notice

that at the end of the execution of P-ORFC, for every voxel c we have



GPU-Based RFC Image Segmentation 15

(⋆) h(c) = µ(c, S ∪ T ) and, whenever c /∈ P∞, also λ(c) = 1.

To see this, first notice that, if (⋆) holds for some c after any execution of the tracking kernel,300

then this property is preserved by any further kernel’s execution, since in any consecutive

execution the condition from line 4 is not satisfied. Thus, to show that (⋆) holds, it is

enough to prove, by induction on the length |pc| of pc, that (⋆) holds for c after |pc|-many

executions of the tracking kernel. Indeed, this is clearly true for |pc| = 1. Also, if (⋆) is true

for any c with |pc| = k− 1, then for any pc = pe ⟨̂c⟩ of length k, during the kth execution of305

TRACKING-KERNEL, (⋆) already holds for e and the execution of lines 4–7 insures that

(⋆) holds also for c. This concludes the argument for (⋆).

Next, we will show that the RFC object P 1 = {c ∈ C : µ(c, S) > µ(c, T )} is contained

in P . For this, fix a c ∈ P 1. Then, at the end of the execution of P-ORFC, we have

µ(p(c)) = h(c) = µ(c, S ∪ T ) = µ(c, S) > µ(c, T ), insuring that λ(c) = 0, as p(c) must start310

at S. So, indeed, c ∈ P .

To see that P is contained in the IRFC object P∞, fix a c from C \ P∞. We need to

show that c /∈ P . Indeed, by (⋆), c ∈ C \ P∞ implies that λ(c) = 1 and so c /∈ P .

Finally, we prove that P minimizes the ℓ∞-energy εmax. Recall, that this energy is

minimized at θ = µ(S, T ). So, take adjacent voxels v0 and v1, one from P , another from315

its complement. Let i ∈ {0, 1} be such that h(vi) ≥ h(vi−1) and put c = vi, e = vi−1.

Then, h(c) ≥ h(e). By definition of εmax, we need to show that κ(c, e) ≤ θ. So, by way of

contradiction, assume that κ(c, e) > θ. Then, h(c) ≥ h(e) ≥ κ(c, e) is impossible, since the

concatenation of the paths p(c), ⟨c, e⟩, and p(e) would form a path from S to T of strength

≥ κ(c, e) > θ = µ(S, T ). The inequality min{h(c), κ(c, e)} > h(e) is also impossible, since320

then the path p(c)̂ e from S ∪T to e would have a strength greater than h(e) = µ(e, S ∪T ),

contradicting maximality of h(e). The only remaining possibility is that of the inequality

κ(c, e) ≥ h(c) = h(e). However, in this case the algorithm would insure that both λ(c) and

λ(e) are 1, meaning that neither c nor e is in P , a contradiction.

The above three cases show, that the assumption κ(c, e) > θ leads to contradiction, so325

that indeed we must have κ(c, e) ≤ θ, as required.
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Fig. 3 Graph used to illustrate the segmentation difference between the RFC P 1
S,T and IRFC P∞

S,T

objects and the output P of P-ORFC. The seed sets for the object and background are S = {s}

and T = {t}, respectively.

II.B.4. RFC object via P-ORFC algorithm

As Figure 3 shows, the output of P-ORFC does not need to coincide with either RFC

or IRFC object. However, the following algorithm shows how to use P-ORFC to return the

RFC object.330

Algorithm 4 P-RFC
Input: An image ⟨C, f⟩; Non-empty sets S, T ⊂ C of seeds, indicating the foreground (object)

and background, respectively;

Output: The RFC object P 1
S,T = {c ∈ C : µ(c, S) > µ(c, T )};

begin

1: Invoke P-ORFC with Ŝ = S and T̂ = ∅ to compute hS(·) = µ(·, S);

2: Invoke P-ORFC with Ŝ = T and T̂ = ∅ to compute hT (·) = µ(·, T );

3: Return {c ∈ C : hS(c) > hT (c)} as the foreground;

end

The output of P-RFC agrees with the RFC object P 1
S,T , since P-ORFC returns h(·) =

µ(·, S ∪ T ). However, we invoke P-ORFC twice, so the computation time of P-RFC will be

greater than (roughly twice) the computation time of P-ORFC.
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Finally, an example is presented in Figure 3, for which none of the objects RFC P 1
S,T ,

IRFC P∞
S,T , and the output P of P-ORFC, coincide. Indeed, it is easy to see that P 1

S,T =335

{s, a, b, c}, since µ(v, S) = 1 > 0.5 = µ(v, T ) for v ∈ {s, a, b, c} and µ(w, S) = µ(w, T ) = 0.5

for w ∈ {d, e}. Also, P 2
S,T = P∞

S,T = {s, a, b, c, d, e}, since there is no path from T to

w ∈ {d, e} disjoint with P 1
S,T , which means that µ(w, S) = 0.5 > µ(w, T ) = 0. Finally,

P = {s, a, b, c, d}, since after the third invocation of the tracking kernel, the last when any

change is made, we have ⟨h(v), λ(v)⟩ = ⟨1, 0⟩ for v ∈ {s, a, b, c}, ⟨h(d), λ(d)⟩ = ⟨0.5, 0⟩, and340

⟨h(e), λ(e)⟩ = ⟨0.5, 1⟩. (After the second invocation of the tracking kernel these parameters

are: ⟨h(v), λ(v)⟩ = ⟨1, 0⟩ for v ∈ {s, a, b}, ⟨h(d), λ(d)⟩ = ⟨0.5, 0⟩, and ⟨h(w), λ(w)⟩ = ⟨0.5, 1⟩

for w ∈ {c, e}.) In summary, for this example, we have P 1
S,T ( P ( P∞

S,T .

Table I Data set information and performance of the GPU implementation with respect to an

optimal CPU implementation.

Dataset Small Medium Large Super

Protocol PD MRI T1 MRI T1 MRI T1 MRI

Scene domain 256× 256× 55 256× 256× 124 512× 512× 192 512× 512× 576

Voxel size (mm) 0.98× 0.98× 3.0 0.94× 0.94× 1.5 0.5× 0.5× 1.0 0.5× 0.5× 0.33

CPU time (s) 8.21 19.24 101.45 312.24

GPU time (s) 0.25 0.84 4.85 17.85

Speed-up 32.8 22.9 20.9 17.5

III. EXPERIMENTAL RESULTS

In this section, the running times of the GPU and CPU implementations of the P-ORFC345

algorithm are compared for image data of different sizes, and the similarity and accuracy of

the segmentations are assessed.

The CPU version is implemented in C++. The computer used is a DELL PRECISION

T7400 with a quad-core 2.66 GHz Intel Xeon CPU. It runs Windows XP and has 2 GB of

main memory. The GPU used is the NVIDIA Tesla C1060 with 240 processing cores and350

4 GB of device memory. CUDA SDK 3.2 is used in our GPU implementation. Four image
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Fig. 4 Curve of the speed-up factor vs image size ratio.

data sets—small, medium, large, and super—are utilized to test the performance of the

GPU and CPU implementations. Table I lists the image data set information and shows the

performance of the GPU versus CPU implementation. (The “super” data set was obtained

by interpolating the “large” data set.) The parameters and seeds used in both CPU and355

GPU implementations are identical. The parameters m, σh, and σo are estimated from a

small training region.

A speed-up factor of 32.8×, 22.9×, 20.9×, and 17.5×, respectively, has been achieved, for

the four data sets over the optimal CPU implementation. Here, the speed-up factor is defined

as ts/tp, where ts and tp are the times taken for the sequential and parallel implementations,360

respectively. Seemingly there is some loss of achievable speed-up as the data size increases.

This is mainly because, for larger data sets, typically a larger number of iterations in the

algorithm of P-ORFC will be required, which means more costly transfers between GPU

and CPU. In addition, the affinity and tracking kernels require much more device global

memory access, which has high latency. However, the loss seems to level off once the data365

set size crosses the medium size, as depicted in Figure 4, where the value on the horizontal

axis represents the ratio of image data size to the small data size. Note that, in all our

experiments, we segmented the white matter object (foreground) from the other co-objects

(background). For each scene in our experiment, the white matter object covers almost the

whole scene domain.370

Figure 5 shows the example of the small size data set, which comes from MRI of the head

of a clinically normal human subject. A fast spin-echo dual-echo protocol was used. Figures

5(a) and (b) show one slice of the original PD-weighted scene and the corresponding white
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(a) (b) (c)

Fig. 5 (a) A slice of PD-weighted MRI scene from the small data set, (b) the white matter

segmented by the GPU implementation, and (c) the white matter segmented by the CPU imple-

mentation.

matter produced by the algorithm P-ORFC. Figure 5(c) shows the white matter segmented

by the CPU implementation. A region of interest is shown magnified to demonstrate how375

segmentation results may differ qualitatively between CPU and GPU implementations.

(a) (b)

Fig. 6 (a) A slice of T1-weighted MRI scene from the medium data set, and (b) the final label

map.

Figure 6 shows the example of the medium size data set, which is a T1-weighted MRI

scene of the head of a clinically normal human subject. A spoiled gradient recalled (SPGR)

acquisition was used. This data set was obtained from the web site of National Alliance for
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(a) (b)

Fig. 7 (a) A slice of T1-weighted MRI scene from the large data set, and (b) the final label map.

Medical Image Computing (http://www.na-mic.org). Again, Figures 6(a) and (b) show one380

slice of the original scene, and the separated white matter.

Figure 7 shows the example of the large size data set, which is a T1-weighted MRI

scene of the head of a patient with a large brain tumor. The original scene slice and the

corresponding segmented white matter are shown in Figures 7 (a) and (b).

It is noted that the connectivity measures h produced by the GPU and CPU imple-385

mentations are identical. However, the label maps λ may be slightly different in these

two implementations. The differences are at the level of label assignment of voxels when

the strengths of connectedness are equal with respect to object seeds S and background

seeds T , as illustrated in the previous section via Figure 3. Note that the optimal CPU

implementation outputs an IRFC object P∞
S,T

24.390

The dice coefficient38 is used to quantitatively assess the similarity between segmentation

results obtained from the CPU and GPU implementations (objects P and P∞
S,T ). Given two

segmented binary scenes X and Y from two methods, the dice coefficient is defined as

dν(X, Y ) =
2|(X

∩
Y |)

(|X|+ |Y |)
, (4)

where |X| represents the number of voxels in scene X with value 1. The Dice coefficient

varies from 0 to 1 and it measures the degree of agreement between the two segmented395

regions. It is 1 when the two regions are identical and 0 when they are completely disjoint.
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(a) (b) (c)

Fig. 8 (a) A slice of PD-weighted MRI scene with 3% noise from the simulated BrainWeb database,

(b) the segmented white matter by the algorithm P-ORFC, and (c) the ground truth.

The values of dν are listed in Table II for segmented white matter objects produced by the

two algorithms for the four data sets. The high value of dν (> 0.99) for all data sets indicates

the high degree of agreement between the segmentation results of the two algorithms.

Table II Comparison between segmentation results obtained from the CPU and GPU versions of

the algorithm, for the data sets in Table I.

Dataset Small Medium Large Super

dν 0.992 0.995 0.994 0.994

The accuracy of the algorithm P-ORFC is evaluated on the BrainWeb simulated brain400

database with several noise levels39. PD-weighted MRI scenes of normal brain with 1%, 3%,

and 5% noise levels are used in our experiment. Each scene has a size of 181 × 217 × 181

and voxel size of 1.0mm× 1.0mm× 1.0mm. The white matter tissue is segmented by using

the algorithm P-ORFC and the result compared to known ground truth is expressed via

the dice coefficient in Table III. Note that we did not employ any preprocessing step for405

noise suppression in segmentation, and even for the highest noise level, a dν value of 0.93

was achieved. Figures 8(a) and (b) show one slice of the original PD-weighted scene with

3% noise and the corresponding white matter segmented by the algorithm P-ORFC. Figure
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8(c) shows ground truth of the white matter.

Table III Accuracy of the algorithm P-ORFC on the simulated PD-weighted MRI scene of normal

brain with different levels of noise.

Noise level 1% 3% 5%

dν 0.968 0.943 0.926

IV. DISCUSSION AND CONCLUDING REMARKS410

Recently, clinical radiological research and practice are becoming increasingly quantita-

tive. Further, images continue to increase in size and volume. For quantitative radiology

to become practical, it is crucial that image segmentation algorithms and their implemen-

tations are rapid and yield practical run time on very large data sets. This paper describes

an example of a practical and cost-effective solution to the problem.415

A parallel version of an algorithm that optimizes an ℓ∞-based energy and belongs to the

family of FC algorithms, has been developed on the NVIDIA GPUs, which provides a far

more cost and speed-effective solution than both clusters of workstations and multiprocessing

systems. The parallel implementation achieves speed increases by factors ranging from 17.5×

to 32.8× on the Tesla C1060 GPU over the top-of-the-line CPU implementation of the IRFC420

algorithm, optimized and efficient (near-linear time), for image data sets with a wide range

of sizes. An interactive speed of segmentation has been achieved, even for the largest data

set. For some specific applications, several free parameters (e.g. fuzzy affinity parameter)

in fuzzy connected image segmentation may be difficult to optimize. The interactive speed

of segmentation can give users immediate feedback on parameter settings, thus allowing425

them to fine-tune free parameters and produce more accurate segmentation results. The

accuracy of the parallel algorithm on GPU has been evaluated on the BrainWeb simulated

PD-weighted MRI scenes with 1%, 3%, and 5% level of noise, and has been shown to yield

a dice coefficient of 0.93-0.97, with greater than 99% similarity to the results from CPU

algorithms. The algorithm can be generalized to GPU implementation of other ℓ∞-norm430

minimization methods such as the image foresting transform11.
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In the current implementation, the tracking kernel is iteratively launched, which is com-

putationally expensive. The performance of the parallel implementation can be further

improved by devising a better mechanism for inter-block communication on the GPU. In

addition, other parallel implementation methods of the Dijkstra’s algorithm need to be435

investigated40. In the future, we will study clinical applications of the GPU-based RFC

image segmentation method, and the integration of this algorithm with the method of fuzzy

model-based automatic anatomy recognition41. Such GPU implementations may play a

crucial role in automatic anatomy recognition in clinical radiology.

Note that in the algorithm P-ORFC, the number of calls to TRACKING-KERNEL may440

be sensitive to the spatial distribution of seed locations; thus its running time will be affected

by the distribution of seed voxels relative to the shape of the object being segmented. In our

experiments, sets S and T were specified as those voxels whose intensities were equal to the

mean intensity for the white matter and gray matter tissues, respectively. The relationship

between the number of iterations in P-ORFC and the spatial distribution of seed voxels445

will need to be investigated in the future to study optimum ways of specifying seeds for the

best possible algorithm speed. In fuzzy model-based FC, seed specification tailored to the

particular object shape can be potentially implemented.
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