Functions continuous on twice differentiable curves, discontinuous on large sets

Krzysztof Chris Ciesielski^{a,b,*} and Timothy Glatzer^a

^aDepartment of Mathematics, West Virginia University,

Morgantown, WV 26506-6310

^bDepartment of Radiology, MIPG, University of Pennsylvania, Blockley Hall – 4th Floor, 423 Guardian Drive, Philadelphia, PA 19104-6021

Abstract

We provide a simple construction of a function $F \colon \mathbb{R}^2 \to \mathbb{R}$ discontinuous on a perfect set P, while having continuous restrictions $F \upharpoonright C$ for all twice differentiable curves C. In particular, F is separately continuous and linearly continuous.

While it has been known that the projection $\pi[P]$ of any such set P onto a straight line must be meager, our construction allows $\pi[P]$ to have arbitrarily large measure. In particular, P can have arbitrarily large 1-Hausdorff measure, which is the best possible result in this direction, since any such P has Hausdorff dimension at most 1.

1 Introduction

In this paper, a *curve* is understood as the range of a continuous injection $h = \langle h_1, h_2 \rangle$ of an interval J into the plane \mathbb{R}^2 . A curve C is said to be *smooth* (or \mathcal{C}^1), if the coordinate functions h_1 and h_2 are continuously differentiable (i.e., are \mathcal{C}^1) and $\langle h'_1(t), h'_2(t) \rangle \neq \langle 0, 0 \rangle$ for every $t \in J$; we say that C is *twice* differentiable (or D^2), when it is smooth (so, its derivative nowhere vanishes) and the coordinate functions are twice differentiable. It has been proved by Rosenthal [17] that

^{*}E-mail: KCies@math.wvu.edu; web page: http://www.math.wvu.edu/~kcies. This paper will be a part of Ph.D. thesis of the second author.

(*) For any function $G : \mathbb{R}^2 \to \mathbb{R}$, if its restriction $G \upharpoonright C$ is continuous for every smooth curve C, then G is continuous. However, there exists a discontinuous function $F : \mathbb{R}^2 \to \mathbb{R}$ with $F \upharpoonright C$ continuous for all twice differentiable curves C.¹

The function F constructed by Rosenthal was discontinuous at a single point. The function constructed in our Theorem 4 seems to be the first example of a function with continuous restrictions to all twice differentiable curves, which has uncountable set of points of discontinuity.

For a family \mathfrak{C} of curves C in the plane \mathbb{R}^2 , we say that $F: \mathbb{R}^2 \to \mathbb{R}$ is \mathfrak{C} *continuous*, provided its restriction $F \upharpoonright C$ is continuous for every $C \in \mathfrak{C}$. The \mathfrak{C} -continuous functions for different classes \mathfrak{C} of curves have been studied from the dawn of mathematical analysis. For the class \mathcal{L}_0 of straight lines parallel to either of the axis, the \mathcal{L}_0 -continuity coincides with separate continuity (referring to maps F with section functions $F(\cdot, y)$ and $F(x, \cdot)$ continuous for every $x, y \in \mathbb{R}$). Separately continuous functions have been investigated by many prominent mathematicians: Volterra (see Baire [2, p. 95]), Baire (1899, see [2]), Lebesgue (1905, see [13, pp. 201-202]), and Hahn (1919, see [9]). For the class \mathcal{L} of all straight lines, \mathcal{L} -continuity is known under the name linear continuity. It has been known by J. Thomae (1870, see [20,p. 15] or [11]) that linearly continuous function need not be continuous. A simple example of such a function, which can be traced to a 1884 treatise on calculus by Genocchi and Peano [10], is defined as $F(x,y) = \frac{xy^2}{x^2+y^4}$ for $\langle x, y \rangle \neq \langle 0, 0 \rangle$, and F(0, 0) = 0. Scheeffer (1890, see [18]) and Lebesgue (1905, see [13, pp. 199-200]) have also noticed that the continuity along all analytic curves does not implies continuity. The question for what classes \mathfrak{C} of curves does \mathfrak{C} -continuity imply continuity, apparently addressed in all works cited above, has been elegantly answered in 1955 by Rosenthal, as we stated in (*).

A next natural question, in this line of research, is about the structure of the sets D(F) of points of discontinuity of \mathfrak{C} -continuous functions F for different classes \mathfrak{C} of curves. Of course, every set D(F) must be F_{σ} . This follows from a well known result (see [14, thm. 7.1]) that, for arbitrary $F \colon \mathbb{R}^2 \to \mathbb{R}$,

¹Clearly, for any such F, the composition $F \circ h$ is continuous, whenever $h = \langle h_1, h_2 \rangle$ is a coordinate system for a D^2 curve. In fact, a little care in constructing such an F (e.g. by using \mathcal{C}^{∞} functions h_n in Proposition 1) insures that $F \circ h$ is also D^2 . However, it is important here, that the derivative h' never vanishes, as it has been proved by Boman [3] (see also [11]), that if $F \circ \langle h_1, h_2 \rangle$ is \mathcal{C}^1 for any \mathcal{C}^{∞} functions h_1, h_2 , then F is continuous.

D(F) is a union of the closed sets $D_n(F) = \{z \in \mathbb{R}^2 : \omega_F(z) \ge 2^{-n}\}$, where $\omega_F(z) = \lim_{\delta \to 0^+} \sup\{|F(z) - F(w)| : ||z - w|| < \delta\}$ is the oscillation of F at z.

The structure of sets D(F) for separately continuous functions (i.e., for $\mathfrak{C} = \mathcal{L}_0$) was examined by Young and Young (1910, see [21]) and was fully described in 1943 by Kershner [12] (compare also [4]), who showed that a set $D \subset \mathbb{R}^2$ is equal to D(F) for a separately continuous $F \colon \mathbb{R}^2 \to \mathbb{R}$ if and only if D is F_{σ} and the projection of D onto each axis is meager. More precisely, the characterization follows from the fact that a bounded set $D \subset \mathbb{R}^2$ is equal to the set $D_n(F) = \{z \in \mathbb{R}^2 \colon \omega_F(z) \geq 2^{-n}\}$ for a separately continuous $F \colon \mathbb{R}^2 \to \mathbb{R}$ if and only if D is closed and its projection onto each axis is nowhere dense. Notice, that this characterization implies, in particular, that a set of points of discontinuity a separately continuous $F \colon \mathbb{R}^2 \to \mathbb{R}$ can have full planar measure.

The structure of sets D(F) for linearly continuous functions $F \colon \mathbb{R}^2 \to \mathbb{R}$ is considerable more restrictive, as can be seen by the following result of Slobodnik [19]. More on separate continuity can be found in [7, 15, 16].

Proposition 1 If D is the set of points of discontinuity of a linearly continuous function $F \colon \mathbb{R}^2 \to \mathbb{R}$, then

(•) D is a union of sets D_n , $n = 1, 2, 3, \ldots$, where each D_n is a rotation of a graph $h_n \upharpoonright P_n$ of a Lipschitz function $h_n \colon \mathbb{R} \to \mathbb{R}$ restricted to a compact nowhere dense set P_n .

Since the graph of a Lipschitz function has Hausdorff dimension 1 (see e.g. [8, sec. 3.2]), this means that so does any set of points of discontinuity of a linearly continuous function. We have recently shown [5] that the condition (•) is actually quite close to the full characterization of sets D(F) for linearly continuous functions F, by proving that: if D is as in (•), where each function h_n is either convex or C^2 , then D is equal to the set of points of discontinuity of some linearly continuous function. This new result implies, in particular, that any meager F_{σ} subset of a line is the set of points of discontinuity of some linearly continuous function; so such a set may have positive 1-Hausdorff measure.

The main goal of this paper is to show that a function $F \colon \mathbb{R}^2 \to \mathbb{R}$ with continuous restrictions to all twice differentiable curves can also have a set of points of discontinuity with large 1-Hausdorff measure.

Notice, that any smooth curve C, with associated injection $h = \langle h_1, h_2 \rangle$, is locally (at a neighborhood of an arbitrary point $\langle h_1(t), h_2(t) \rangle$) a function of either variable x (when $h'_1(t) \neq 0$) or of variable y (when $h'_2(t) \neq 0$). Thus, $\mathfrak{C}(\mathcal{C}^1)$ -continuity with respect to the class $\mathfrak{C}(\mathcal{C}^1)$ of all smooth curves is the same as the $\mathcal{C}^1 \cup (\mathcal{C}^1)^{-1}$ -continuity, where \mathcal{C}^1 is the class of all continuously differentiable functions $g \colon \mathbb{R} \to \mathbb{R}$, and $(\mathcal{C}^1)^{-1} = \{g^{-1} \colon g \in \mathcal{C}^1\}$, with g^{-1} understood as an inverse relation, that is, as $g^{-1} = \{\langle g(y), y \rangle \colon y \in \mathbb{R}\}$. Similarly, $\mathfrak{C}(D^2)$ -continuity, where $\mathfrak{C}(D^2)$ is the class of all (smooth) twice differentiable curves, coincides with $D^2 \cup (D^2)^{-1}$ -continuity.

2 The main result

Our example will be constructed using the following simple, but general result on \mathfrak{C} -continuous functions. Recall that the *support* of a function $F \colon \mathbb{R}^2 \to \mathbb{R}$, denoted as $\operatorname{supp}(F)$, is defined as the closure of the set $\{x \in \mathbb{R}^2 \colon f(x) \neq 0\}$. Symbol ω will be used here to denote the first infinite ordinal number, which is identified with the set of all natural numbers, $\omega = \{0, 1, 2, \ldots\}$.

Lemma 2 Let \mathfrak{C} be a family of curves in \mathbb{R}^2 and let $\{D_j \subset \mathbb{R}^2 : j < \omega\}$ be a pointwise finite family of open sets such that

(F) the set $\{j < \omega : D_j \cap C \neq \emptyset\}$ is finite for every $C \in \mathfrak{C}$.

Then for every sequence $\langle F_j: j < \omega \rangle$ of continuous functions from \mathbb{R}^2 into \mathbb{R} such that $\operatorname{supp}(F_i) \subset D_i$ for all $i < \omega$, the function $F \stackrel{\text{def}}{=} \sum_{j < \omega} F_j$ is \mathfrak{C} -continuous. Moreover, if

- the diameters of the sets D_j go to 0, as $j \to \infty$,
- \hat{P} is the set of all $z \in \mathbb{R}^2$ for which every open $U \ni z$ intersects infinitely many sets D_j , and
- each function F_i is onto [0, 1],

then $\hat{P} = D(F) = \{z \in \mathbb{R}^2 \colon \omega_F(z) = 1\}.$

PROOF. The first part is obvious. The second follows easily from the fact, that, for any $z \in \hat{P}$, every open $U \ni z$ contains infinitely many sets D_i .

Lemma 2 will be used with $\hat{P} = h \upharpoonright P$, the graph of h restricted to P, where h and P are from the proposition below.

Proposition 3 For every $M \in [0, 1)$ there exists a C^1 function $h: \mathbb{R} \to \mathbb{R}$ and a nowhere dense perfect $P \subset (0, 1)$ of measure M such that for every $\hat{x} \in P$:

$$h'(\hat{x}) = 0 \text{ and } \lim_{x \to \hat{x}} \frac{|h(x) - h(\hat{x})|}{(x - \hat{x})^2} = \infty.$$
 (1)

We will postpone the proof of Proposition 3 till the next section. However, we like to notice here, that the limit $\lim_{x\to \hat{x}} \frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^2}$ is a variant of the limit $\lim_{x\to \hat{x}} 2\frac{h(x)-h(\hat{x})}{(x-\hat{x})^2}$, which constitutes a generalized second derivative (related to Peano derivative) of h at \hat{x} . Indeed, if $h''(\hat{x})$ exists, finite or infinite, then, by l'Hôpital's Rule, $\lim_{x\to \hat{x}} 2\frac{h(x)-h(\hat{x})}{(x-\hat{x})^2} = \lim_{x\to \hat{x}} 2\frac{h'(x)-0}{2(x-\hat{x})} = \lim_{x\to \hat{x}} \frac{h'(x)-h'(\hat{x})}{x-\hat{x}} = h''(\hat{x})$. We need Proposition 3 in its current form, since there is no C^1 function h having an infinite second derivative on set of positive measure.² But see also remarks at the end of this section.

Theorem 4 Let h and P be as in Proposition 3. Then $\hat{P} = h \upharpoonright P$ is the set of points of discontinuity of a D^2 -continuous function $F \colon \mathbb{R}^2 \to \mathbb{R}$. Moreover, F has oscillation equal 1 at every point from \hat{P} .

PROOF. Let $\{J_j: j < \omega\}$ be an enumeration, without repetitions, of bounded connected components of $\mathbb{R} \setminus P$. For every $j < \omega$ let the I_j be the open middle third subinterval of J_j and let F_j be a continuous function from \mathbb{R}^2 onto [0, 1]with $\operatorname{supp}(F_j)$ contained in $D_j = \{\langle x, y \rangle \in \mathbb{R}^2 : x \in I_j \& |y - h(x)| < |I_j|^3\}$, where $|I_j|$ is the length of I_j . We will show that the function $F = \sum_{j < \omega} F_j$ is as required.

It is enough to show that sets D_j satisfy property (F) for $\mathfrak{C} = D^2 \cup (D^2)^{-1}$, since all other assumptions of Lemma 2 are clearly satisfied. To see this, fix a D^2 function $g: \mathbb{R} \to \mathbb{R}$. We need to prove that both g and g^{-1} intersect only finitely many sets D_j .

To see that g intersects only finitely many sets D_j , by way of contradiction, assume that there is an infinite set $\{j_n : n < \omega\}$ such that $g \cap D_{j_n} \neq \emptyset$. For $n < \omega$ choose $\langle x_n, y_n \rangle \in g \cap D_{j_n}$. Then $g(x_n) = y_n$ for all $n < \omega$. Choosing a subsequence, if necessary, we can assume that $\lim_{n\to\infty} x_n = \hat{x} \in P$. Then, by the definition of sets D_j , we have

$$\lim_{n \to \infty} (y_n - h(x_n)) = \lim_{n \to \infty} \frac{y_n - h(x_n)}{x_n - \hat{x}} = \lim_{n \to \infty} \frac{y_n - h(x_n)}{(x_n - \hat{x})^2} = 0,$$
(2)

²This follows, for example, from [1, thm. 19] (used with f = h') which says that: for any real-valued continuous function f defined on a set $P \subset \mathbb{R}$ of positive measure there exists a \mathcal{C}^1 function $g: \mathbb{R} \to \mathbb{R}$ which agrees with f on an uncountable set.

K. Ciesielski, T. Glatzer: D^2 -continuous functions 10/26/11

as
$$\lim_{n\to\infty} \left| \frac{y_n - h(x_n)}{(x_n - \hat{x})^2} \right| \le \lim_{n\to\infty} \frac{|y_n - h(x_n)|}{|I_{j_n}|^2} \le \lim_{n\to\infty} |I_{j_n}| = 0$$
. In particular,
$$g(\hat{x}) = \lim_{n\to\infty} g(x_n) = \lim_{n\to\infty} y_n = \lim_{n\to\infty} (y_n - h(x_n)) + \lim_{n\to\infty} h(x_n) = h(\hat{x})$$

and

$$g'(\hat{x}) = \lim_{n \to \infty} \frac{y_n - h(\hat{x})}{x_n - \hat{x}} = \lim_{n \to \infty} \frac{y_n - h(x_n)}{x_n - \hat{x}} + \lim_{n \to \infty} \frac{h(x_n) - h(\hat{x})}{x_n - \hat{x}} = h'(\hat{x}) = 0.$$

Hence, by l'Hôpital's Rule, $\lim_{x\to \hat{x}} \frac{g(x)-g(\hat{x})}{(x-\hat{x})^2} = \lim_{x\to \hat{x}} \frac{g'(x)-0}{2(x-\hat{x})} = \frac{1}{2}g''(\hat{x})$ and, using (2) once more,

$$\lim_{n \to \infty} \frac{h(x_n) - h(\hat{x})}{(x_n - \hat{x})^2} = \lim_{n \to \infty} \frac{h(x_n) - y_n}{(x_n - \hat{x})^2} + \lim_{n \to \infty} \frac{g(x_n) - g(\hat{x})}{(x_n - \hat{x})^2} = \frac{1}{2}g''(\hat{x}),$$

where the first equation is justified by $y_n = g(x_n)$ and $h(\hat{x}) = g(\hat{x})$. But this contradicts the assumption on h that $\lim_{x\to\hat{x}} \frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^2} = \infty$.

To see that g^{-1} intersects only finitely many sets D_j , by way of contradiction, assume that there is an infinite set $\{j_n : n < \omega\}$ such that $g^{-1} \cap D_{j_n} \neq \emptyset$. For $n < \omega$ choose $\langle x_n, y_n \rangle \in g^{-1} \cap D_{j_n}$. Then $g(y_n) = x_n$ for all $n < \omega$. Choosing a subsequence, if necessary, we can assume that $\lim_{n\to\infty} x_n = \hat{x} \in P$. Then, $\hat{y} \stackrel{\text{def}}{=} \lim_{n\to\infty} y_n = \lim_{n\to\infty} (y_n - h(x_n)) + \lim_{n\to\infty} h(x_n) = h(\hat{x})$ and also $g(\hat{y}) = \lim_{n\to\infty} g(y_n) = \lim_{n\to\infty} x_n = \hat{x}$. Since, by the assumptions from Proposition 3, $h'(\hat{x}) = 0$ we obtain

$$1 = \lim_{n \to \infty} \frac{g(y_n) - g(\hat{y})}{y_n - \hat{y}} \cdot \frac{y_n - \hat{y}}{g(y_n) - g(\hat{y})} = \lim_{n \to \infty} \frac{g(y_n) - g(\hat{y})}{y_n - \hat{y}} \cdot \lim_{n \to \infty} \frac{y_n - h(\hat{x})}{x_n - \hat{x}} = g'(\hat{y}) \cdot h'(\hat{x}) = g'(\hat{y}) \cdot 0 = 0,$$

a contradiction.

It is also worth to notice here, that if $h: \mathbb{R} \to \mathbb{R}$ is a \mathcal{C}^1 homeomorphism and P is a perfect set such that $h''(\hat{x}) = \lim_{x \to \hat{x}} \frac{h'(x) - h'(\hat{x})}{x - \hat{x}} = \infty$ for every $\hat{x} \in P$, then a small modification of the above proof gives a D^2 continuous function $F: \mathbb{R}^2 \to \mathbb{R}$ with $D(F) = h \upharpoonright P$. This remark is of interest here, since such an h is easily constructed with standard calculus tools, see e.g. [6, Example 4.5.1]. However, as mentioned above, for such an h, neither can P have positive measure, nor can we have h'(x) = 0 for more than finitely many points x from P. So, in the modified argument for g, the fraction $\frac{h(x_n)-h(\hat{x})}{(x_n-\hat{x})^2}$ would need to be replaced with $\frac{h(x_n)-[h'(\hat{x})(x_n-\hat{x})+h(\hat{x})]}{(x_n-\hat{x})^2}$. Moreover, the same argument that we used to show that $g \notin D^2$ would need to be repeated for g^{-1} , however, this would require more restrictions in the definition of the sets D_j to allow for the reversed role of the variables x and y.

3 **Proof of Proposition 3**

Function h described below is a minor modification of a map f from [1, thm. 18].

Let $\varepsilon \in (0,1)$ be such that $M < 1 - \varepsilon$ and let K be a symmetrically defined Cantor-like subset of [0,1] of measure $1 - \varepsilon$. More precisely, the set K is defined as $K = \bigcap_{n < \omega} \bigcup_{s \in 2^n} I_s = [0,1] \setminus \bigcup_{s \in 2^{<\omega}} J_s$, where: 2^n denotes the set of all sequences from $n = \{0, 1, \ldots, n-1\}$ into $2 = \{0,1\}$; $2^{<\omega} = \bigcup_{n < \omega} 2^n$ is the set of all finite 0-1 sequences; $I_{\emptyset} = [0,1]$, and, for any $s \in 2^n$, J_s is an open interval of length $\frac{\varepsilon}{3^{n+1}}$ sharing the center with I_s , while I_{s^0} and I_{s^1} are the left and right component intervals of $I_s \setminus J_s$, respectively. Note that $|J_s| = \frac{\varepsilon}{3^{n+1}} < \frac{1}{3^{n+1}} < |I_s| \le \frac{1}{2^n}$ for every $s \in 2^n$, so the choice of J_s is always possible. Clearly the set K has the desired measure of $1 - \sum_{s \in 2^{<\omega}} |J_s| = 1 - \sum_{n < \omega} 2^n \frac{\varepsilon}{3^{n+1}} = 1 - \varepsilon$. For every $s \in 2^n$ let f_s be a function from \mathbb{R} onto [0, 1/(n+1)] defined as

For every $s \in 2^n$ let f_s be a function from \mathbb{R} onto [0, 1/(n+1)] defined as $f_s(x) = \frac{2}{(n+1)|J_s|} \operatorname{dist}(x, \mathbb{R} \setminus J_s)$, where $\operatorname{dist}(x, T) = \inf\{|x-t| : t \in T\}$ denotes the distance from x to T. Then, the function $h_0 = \sum_{s \in 2^{<\omega}} f_s : \mathbb{R} \to [0, 1]$ is continuous and our \mathcal{C}^1 function $h : \mathbb{R} \to \mathbb{R}$ is defined as $h(x) = \int_0^x h_0(t) dt$. Note that h is strictly increasing on [0, 1].

Let P be an arbitrary perfect subset of K of measure M, which is disjoint with the set of all endpoints of the intervals J_s , $s \in 2^{<\omega}$. We will show that h and P are as required.

Clearly, for every $\hat{x} \in P \subset K$ we have $h'(\hat{x}) = h_0(\hat{x}) = 0$. To see the other condition, first notice that for $n > 1/\ln(4/3)$

if
$$\hat{x}, x_0 \in K \cap I_s$$
 for $s \in 2^n$ and $\hat{x} \neq x_0$, then $\frac{|h(x_0) - h(\hat{x})|}{(x_0 - \hat{x})^2} \ge \frac{\varepsilon}{6} \frac{(4/3)^n}{(n+1)}$. (3)

To argue for (3), choose the largest $m < \omega$ such that $\hat{x}, x_0 \in I_t$ for some

 $t \in 2^m$. Then $m \ge n$, \hat{x} and x_0 are separated by the interval J_t , and

$$\frac{|h(x_0) - h(\hat{x})|}{(x_0 - \hat{x})^2} = \frac{|\int_{\hat{x}}^{x_0} h_0(t) dt|}{(x_0 - \hat{x})^2} \ge \frac{|\int_{J_t} h_0(t) dt|}{|I_t|^2} = \frac{\frac{1}{2}|J_t|\frac{1}{(m+1)}}{|I_t|^2} \ge \frac{\frac{1}{2}\frac{\varepsilon}{3^{m+1}}\frac{1}{(m+1)}}{(1/2^m)^2}.$$

Hence, $\frac{|h(x_0)-h(\hat{x})|}{(x_0-\hat{x})^2} \geq \frac{\frac{1}{2}\frac{\varepsilon}{3m+1}\frac{1}{(m+1)}}{(1/2^m)^2} = \frac{\varepsilon}{6}\frac{(4/3)^m}{(m+1)} \geq \frac{\varepsilon}{6}\frac{(4/3)^n}{(n+1)}$, as required, where the last inequality holds, since the function $f(x) = \frac{(4/3)^x}{x+1}$ is increasing for $x > 1/\ln(4/3)$, having derivative $f'(x) = \frac{(4/3)^x [\ln(4/3)(x+1)-1]}{(x+1)^2}$. Next, notice that

if $s \in 2^n$, $x \in J_s$, and x_0 is an endpoint of J_s , then $\frac{|h(x)-h(x_0)|}{(x-x_0)^2} \ge \frac{3^{n+1}}{4(n+1)\varepsilon}$. (4)

To argue for (4), let x_1 be the midpoint between x_0 and x. Then h_0 is linear on the interval between x_0 and x_1 with the slope $\pm \frac{2}{(n+1)|J_s|}$. Hence, indeed,

$$\frac{|h(x) - h(x_0)|}{(x - x_0)^2} > \frac{|h(x_1) - h(x_0)|}{4(x_1 - x_0)^2} = \frac{\frac{1}{2}(x_1 - x_0)^2 \frac{2}{(n+1)|J_s|}}{4(x_1 - x_0)^2} = \frac{3^{n+1}}{4(n+1)\varepsilon}.$$

Finally, fix an $\hat{x} \in P$. We need to show that $\lim_{x \to \hat{x}} \frac{|h(x) - h(\hat{x})|}{(x - \hat{x})^2} = \infty$. For this, we fix an arbitrarily large N and show that $\frac{|h(x) - h(\hat{x})|}{(x - \hat{x})^2} \ge N$ for the points x close enough to \hat{x} .

Let n_0 be such that $\min\left\{\frac{\varepsilon}{6}\frac{(4/3)^n}{(n+1)}, \frac{3^{n+1}}{4(n+1)\varepsilon}\right\} \ge 4N$ for all $n \ge n_0$ and let $s \in 2^{n_0}$ be such that $\hat{x} \in I_s$. Notice that \hat{x} belongs to the interior U of I_s , as $\hat{x} \in P$. Hence, it is enough to show that $\frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^2} \ge N$ for every $x \ne \hat{x}$ from U. So, fix such an x.

U. So, fix such an x. If $x \in K$, then $\frac{|h(x)-h(\hat{x})|}{(x-\hat{x})^2} \ge N$ follows immediately from (3). So, assume that $x \notin K$. Then $x \in J_t$ for some $t \supset s$. Let x_0 be the end point of J_t between x and \hat{x} . Notice, that $x_0 \neq \hat{x}$, since $\hat{x} \in P$. Then, since h is increasing on [0, 1], properties (3) and (4) imply

$$\frac{|h(x) - h(\hat{x})|}{(x - \hat{x})^2} = \frac{|h(x) - h(x_0)|}{(x - x_0)^2} \frac{(x - x_0)^2}{(x - \hat{x})^2} + \frac{|h(x_0) - h(\hat{x})|}{(x_0 - \hat{x})^2} \frac{(x_0 - \hat{x})^2}{(x - \hat{x})^2}$$

$$\geq 4N \frac{(x - x_0)^2}{(x - \hat{x})^2} + 4N \frac{(x_0 - \hat{x})^2}{(x - \hat{x})^2} \geq N,$$

finishing the proof.

References

- S. Agronsky, A. M. Bruckner, M. Laczkovich, and D. Preiss, Convexity conditions and intersections with smooth functions, *Trans. Amer. Math. Soc.* 289 (1985), 659–677.
- [2] R. Baire, Sur les fonctions des variables réelles, Annali di Matematica Pura ed Applicata 3 (1899), 1–122.
- [3] J. Boman, Differentiability of a function and of its compositions with functions of one variable, *Math. Scand.* **20** (1967), 249–268.
- [4] J.C. Breckenridge and T. Nishiura, Partial Continuity, Quasi-Continuity, and Baire Spaces, Bull. Inst. Math. Acad. Sinica 4 (1976), 191–203.
- [5] K. Ciesielski and T. Glatzer, On linearly continuous functions, manuscript in preparation.
- [6] K. Ciesielski and J. Pawlikowski, Covering Property Axiom CPA. A combinatorial core of the iterated perfect set model, Cambridge Tracts in Mathematics 164, Cambridge Univ. Press, 2004.
- [7] J.P. Dalbec, When does restricted continuity on continuous function graphs imply joint continuity?, Proc. Amer. Math. Soc. 118(2) (1993), 669–674.
- [8] K.J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, 1985.
- [9] H. Hahn, Uber Funktionen mehrerer Veränderlichen, die nach jeder einzelnen Veränderlichen stetig sind, Math Zeit. 4 (1919) 306–313.
- [10] A. Genocchi and G. Peano, Calcolo differentiale e principii di Calcolo, Torino, 1884.
- [11] M. Jarnicki and P. Pflug, Directional Regularity vs. Joint Regularity, Notices Amer. Math. Soc. 58(7) (2011), 896–904,
- [12] R. Kershner, The continuity of functions of many variables, Trans. Amer. Math. Soc. 53 (1943), 83–100.

- [13] H. Lebesgue, Sur les fonctions représentable analytiquement, J. Math. Pure Appl. 6 (1905), 139–212.
- [14] J. Oxtoby, *Measure and Category*, Springer, New York, 1971.
- [15] Z. Piotrowski, Separate and joint continuity, Real Anal. Exchange 11 (1985/86), 293–322.
- [16] Z. Piotrowski, *Topics in Separate versus Joint Continuity*, book in preparation.
- [17] A. Rosenthal, On the Continuity of Functions of Several Variables, Math. Zeitschr. 63 (1955), 31-38.
- [18] L. Scheeffer, Theorie der Maxima und Minima einer Function von zwei Variabeln, Math. Ann. 35 (1890), 541–567.
- [19] S.G. Slobodnik, An Expanding System of Linearly Closed Sets, Mat. Zametki 19 (1976) 67 - 84; English translation Math. Notes 19 (1976), 39-48.
- [20] J. Thomae, Abriss einer Theorie der complexen Funktionen, Halle, 1873. (First edition published in 1870.)
- [21] W.H. Young and G.C. Young, Discontinuous functions continuous with respect to every straight line, *Quart. J. Math. Oxford Series* 41 (1910), 87–93.