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Abstract

We provide a simple construction of a function F': R? — R discon-
tinuous on a perfect set P, while having continuous restrictions F' [ C
for all twice differentiable curves C'. In particular, F' is separately
continuous and linearly continuous.

While it has been known that the projection 7[P] of any such set
P onto a straight line must be meager, our construction allows 7[P] to
have arbitrarily large measure. In particular, P can have arbitrarily
large 1-Hausdorff measure, which is the best possible result in this
direction, since any such P has Hausdorff dimension at most 1.

1 Introduction

In this paper, a curve is understood as the range of a continuous injection
h = (hy, hy) of an interval J into the plane R?. A curve C is said to be smooth
(or Ch), if the coordinate functions hy and hy are continuously differentiable
(i.e., are C') and (R} (t), h4(t)) # (0,0) for every t € J; we say that C is twice
differentiable (or D?), when it is smooth (so, its derivative nowhere vanishes)
and the coordinate functions are twice differentiable. It has been proved by
Rosenthal [17] that
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(x) For any function G: R? — R, if its restriction G | C'is continuous for
every smooth curve C', then G is continuous. However, there exists a
discontinuous function F': R? — R with F' | C' continuous for all twice
differentiable curves C'.!

The function F' constructed by Rosenthal was discontinuous at a single point.
The function constructed in our Theorem 4 seems to be the first example of a
function with continuous restrictions to all twice differentiable curves, which
has uncountable set of points of discontinuity.

For a family € of curves C in the plane R?, we say that F': R? — R is €-
continuous, provided its restriction F' | C'is continuous for every C' € €. The
¢-continuous functions for different classes € of curves have been studied from
the dawn of mathematical analysis. For the class Ly of straight lines parallel
to either of the axis, the Ly-continuity coincides with separate continuity
(referring to maps F' with section functions F'(-,y) and F(z,-) continuous
for every x,y € R). Separately continuous functions have been investigated
by many prominent mathematicians: Volterra (see Baire [2, p. 95]), Baire
(1899, see [2]), Lebesgue (1905, see [13, pp. 201-202]), and Hahn (1919, see
[9]). For the class £ of all straight lines, £-continuity is known under the
name linear continuity. It has been known by J. Thomae (1870, see [20,
p. 15] or [11]) that linearly continuous function need not be continuous. A
simple example of such a function, which can be traced to a 1884 treatise
on calculus by Genocchi and Peano [10], is defined as F(z,y) = 7 for
(x,y) # (0,0), and F(0,0) = 0. Scheeffer (1890, see [18]) and Lebesgue
(1905, see [13, pp. 199-200]) have also noticed that the continuity along all
analytic curves does not implies continuity. The question for what classes
¢ of curves does €-continuity imply continuity, apparently addressed in all
works cited above, has been elegantly answered in 1955 by Rosenthal, as we
stated in (x).

A next natural question, in this line of research, is about the structure of
the sets D(F') of points of discontinuity of €-continuous functions F for dif-
ferent classes € of curves. Of course, every set D(F) must be F,,. This follows
from a well known result (see [14, thm. 7.1]) that, for arbitrary F: R*? — R,

LClearly, for any such F, the composition F o h is continuous, whenever h = (hy, ho) is
a coordinate system for a D? curve. In fact, a little care in constructing such an F (e.g.
by using C* functions h,, in Proposition 1) insures that F o h is also D?. However, it is
important here, that the derivative A’ never vanishes, as it has been proved by Boman [3]
(see also [11]), that if F o (hy,hg) is C! for any C* functions hi, ha, then F is continuous.



K. Ciesielski, T. Glatzer: D?*-continuous functions 10/26/11 3

D(F) is a union of the closed sets D, (F) = {z € R?: wp(z) > 27"}, where
wr(z) = lims_yo+ sup{|F(z) — F(w)|: ||z — w|| < &} is the oscillation of F
at z.

The structure of sets D(F) for separately continuous functions (i.e., for
¢ = L) was examined by Young and Young (1910, see [21]) and was fully
described in 1943 by Kershner [12] (compare also [4]), who showed that a set
D C R? is equal to D(F) for a separately continuous F': R? — R if and only
if D is F, and the projection of D onto each axis is meager. More precisely,
the characterization follows from the fact that a bounded set D C R? is
equal to the set D, (F) = {z € R?: wr(z) > 27"} for a separately continuous
F:R? — R if and only if D is closed and its projection onto each axis is
nowhere dense. Notice, that this characterization implies, in particular, that
a set of points of discontinuity a separately continuous F': R?> — R can have
full planar measure.

The structure of sets D(F) for linearly continuous functions F': R? — R
is considerable more restrictive, as can be seen by the following result of
Slobodnik [19]. More on separate continuity can be found in [7, 15, 16].

Proposition 1 If D is the set of points of discontinuity of a linearly contin-
uous function F': R?> — R, then

(o) D is a union of sets D,, n = 1,2,3,..., where each D, is a rotation
of a graph h,, | P, of a Lipschitz function h,: R — R restricted to a
compact nowhere dense set P,.

Since the graph of a Lipschitz function has Hausdorff dimension 1 (see e.g.
8, sec. 3.2]), this means that so does any set of points of discontinuity of a
linearly continuous function. We have recently shown [5] that the condition
(e) is actually quite close to the full characterization of sets D(F’) for linearly
continuous functions F', by proving that: if D is as in (), where each function
h,, is either convex or C2, then D is equal to the set of points of discontinuity
of some linearly continuous function. This new result implies, in particular,
that any meager F, subset of a line is the set of points of discontinuity of some
linearly continuous function; so such a set may have positive 1-Hausdorff
measure.

The main goal of this paper is to show that a function F': R? — R with
continuous restrictions to all twice differentiable curves can also have a set
of points of discontinuity with large 1-Hausdorff measure.
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Notice, that any smooth curve C', with associated injection h = (hq, hs),
is locally (at a neighborhood of an arbitrary point (h(t), h2(t))) a function
of either variable z (when R/ (t) # 0) or of variable y (when hj(t) # 0).Thus,
€(C")-continuity with respect to the class €(C') of all smooth curves is the
same as the C!' U (C')~!-continuity, where C' is the class of all continuously
differentiable functions g: R — R, and (C')™! = {g7': g € C'}, with ¢!
understood as an inverse relation, that is, as ¢g7' = {{(g(y),y): y € R}.
Similarly, €(D?)-continuity, where €(D?) is the class of all (smooth) twice

differentiable curves, coincides with D? U (D?)™!-continuity.

2 The main result

Our example will be constructed using the following simple, but general result
on €-continuous functions. Recall that the support of a function F': R? — R,
denoted as supp(F), is defined as the closure of the set {x € R?: f(z) # 0}.
Symbol w will be used here to denote the first infinite ordinal number, which
is identified with the set of all natural numbers, w = {0, 1,2,...}.

Lemma 2 Let € be a family of curves in R? and let {D; C R*: j < w} be
a pointwise finite family of open sets such that

(F) the set {j <w: D; NC # 0} is finite for every C € €.

Then for every sequence (F;: j < w) of continuous functions from R? into

R such that supp(F;) C D; for all i < w, the function F o Yo FIs
¢-continuous. Moreover, if

J<w

e the diameters of the sets D; go to 0, as j — oo,

e P istheset ofall z € R? for which every open U 5 z intersects infinitely
many sets D;, and

e cach function F; is onto [0, 1],
then P = D(F) = {z € R?: wp(z) = 1}.
PROOF. The first part is obvious. The second follows easily from the fact,
that, for any z € P, every open U > z contains infinitely many sets D;. m

Lemma 2 will be used with P = h I P, the graph of h restricted to P,
where h and P are from the proposition below.
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Proposition 3 For every M € [0,1) there exists a C' function h: R — R
and a nowhere dense perfect P C (0,1) of measure M such that for every
T eP:

W(z) = 0 and lim,_,; 200 — o (1)

(z—2)2
We will postpone the proof of Proposition 3 till the next section. However,
we like to notice here, that the limit lim,_.; % is a variant of the limit

lim, 5 2%, which constitutes a generalized second derivative (related

to Peano derivative) of h at &. Indeed, if h”(Z) exists, finite or infinite, then,
by I'Hopital’s Rule, limy, 5 284 = Tim,, 5 25220 = lim,, ; “0-20) —
h"(z). We need Proposition 3 in its current form, since there is no C! function
h having an infinite second derivative on set of positive measure.? But see

also remarks at the end of this section.

Theorem 4 Let h and P be as in Proposition 3. Then P=h [ P is the set
of points of discontinuity of a D?-continuous function F': R? — R. Moreover,
F' has oscillation equal 1 at every point from P.

PRrROOF. Let {J;: j < w} be an enumeration, without repetitions, of bounded
connected components of R\ P. For every j < w let the I; be the open middle
third subinterval of .J; and let F; be a continuous function from R? onto [0, 1]
with supp(Fj) contained in D; = {(z,y) € R*: z € I; & |y — h(x)| < |[;|*},
where |I;] is the length of I;. We will show that the function F' = 3. F}
is as required.

It is enough to show that sets D; satisfy property (F) for € = D?U(D?),
since all other assumptions of Lemma 2 are clearly satisfied. To see this, fix
a D? function g: R — R. We need to prove that both g and ¢g~! intersect
only finitely many sets D;.

To see that ¢ intersects only finitely many sets D;, by way of contradic-
tion, assume that there is an infinite set {j,: n < w} such that g N D; # 0.
For n < w choose (x,,y,) € gN D;,. Then g(z,) =y, for all n < w. Choos-
ing a subsequence, if necessary, we can assume that lim,, ...z, = = € P.
Then, by the definition of sets D;, we have

O o) = I T T ey 0 @

2This follows, for example, from [1, thm. 19] (used with f = h’) which says that: for
any real-valued continuous function f defined on a set P C R of positive measure there
exists a C! function g: R — R which agrees with f on an uncountable set.
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Yyn—h(zn)
(zn—12)2

W <lim,  |I;,| = 0. In particular,
In

as lim,, .o < lim,_,

g9(z) = lim g(z,) = lim y, = lim (y, — h(z,)) + lim h(z,) = h(2)

n—o0 n—oo n—oo n—oo
and
n - h L n - h n . h n) h L A
¢ (%) = lim y—(ir) = lim y—(:f) + lim M =n'(z) =0.
n—oo T, — I n—o00 Ty — X n—o0 Ty — X
Hence, by I'Hopital’s Rule, lim,_,; % = lim, s % = l¢"(&) and,
using (2) once more,
h n — h(z . h n) — In . n) v 1 ~
i M) = R(E) e RlEn) — Y e 0(En) — () Lona).
n—00 ({L’n — q:)Q n—00 (xn — x)Q n—00 (xn — x)Q 2

where the first equation is justified by y,, = g(x,) and h(z) = g(z). But this

contradicts the assumption on A that lim,_.; “‘((9;)_;;‘)(;’)'

To see that g~! intersects only finitely many sets D;, by way of contradic-
tion, assume that there is an infinite set {j,: n < w} such that g=*ND;, # 0.
For n < w choose (,,,y,) € g 'ND;,. Then g(y,) = x, for all n < w. Choos-
ing a subsequence, if necessary, we can assume that lim, ,,x, = & € P.

= Q.

Then, def limy, oo ¥ = limy, oo (Y — A(xy,)) + lim, o A(x,) = h(Z) and
also ¢g(9) = lim, 00 9(yn) = lim,, o =, = Z. Since, by the assumptions from
Proposition 3, h'(z) = 0 we obtain

9Wn) —9@)  Yn—9

1 = lim - =
nsoo Yy =0 g(yn) — 9(9)
_ i I = 9) gy vn = B(E)
= 4@ hM@)=4(y)-0=0,
a contradiction. ]

It is also worth to notice here, that if h: R — R is a C! homeomorphism
and P is a perfect set such that h”(Z) = lim,_; W = oo for every
# € P, then a small modification of the above proof gives a D? continuous
function F: R? — R with D(F) = h | P. This remark is of interest here,
since such an h is easily constructed with standard calculus tools, see e.g. [6,

Example 4.5.1]. However, as mentioned above, for such an h, neither can P
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have positive measure, nor can we have h/(z) = 0 for more than finitely many

points x from P. So, in the modified argument for g, the fraction %

hi@n)= [h/((x)(m"y 2+h@)] - Moreover, the same
P : ’

argument that we used to show that g ¢ D? would need to be repeated for

g~ !, however, this would require more restrictions in the definition of the sets

D; to allow for the reversed role of the variables x and y.

would need to be replaced with

3 Proof of Proposition 3

Function h described below is a minor modification of a map f from [1, thm.
18).

Let € € (0,1) be such that M < 1 — ¢ and let K be a symmetrically
defined Cantor-like subset of [0, 1] of measure 1 — e. More precisely, the set
K is defined as K = (), ., Useon £s = [0, 1]\ U, co<w Js, Where: 2" denotes the
set of all sequences from n = {0,1,...,n—1} into 2 = {0,1}; 2<* =, 2"
is the set of all finite 0-1 sequences; Iy = [0,1], and, for any s € 2", J; is
an open interval of length 5% sharing the center with I, while I+ and Iy
are the left and right component intervals of I, \ Js, respectively. Note that
|| = 557 < g < L] < 55 for every s € 2", so the choice of J, is always
possible. Clearly the set K has the desired measure of 1 — > ... |Js| =
1= 2 =1—c¢

For every s € 2" let fs be a function from R onto [0,1/(n + 1)] defined as
fs(x) = +1 A |dlst($ R\ Js), where dist(z,T) = inf{|z —t|: t € T'} denotes
the dlstance from z to T'. Then, the function hy = > ocu fS R — [0, 1] is
continuous and our C' function h: R — R is defined as h(x fo ho(t
Note that h is strictly increasing on [0, 1].

Let P be an arbitrary perfect subset of K of measure M, which is disjoint
with the set of all endpoints of the intervals J,, s € 2<“. We will show that
h and P are as required.

Clearly, for every & € P C K we have h'(2) = ho(z) = 0. To see the
other condition, first notice that for n > 1/1n(4/3)

if T,x9 € KNI, for s € 2" and T # xg, then h(zo)=h(@)]

(wo—2)2

To argue for (3), choose the largest m < w such that &, z¢ € I; for some
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t € 2™. Then m > n, & and x( are separated by the interval J;, and

1

|h(l‘0) — h(:ﬁ” fﬂco hO dt| |fJ ho dt| 2|Jt| m+1) S %375_,_1 D)

(o — )? (o —95)2 R L T N CVE O B
A 1_e 1 m n
Hence, |h((200);g(f)| > 23’(’1;;2’)"2“) = %((%?1) > é((i/ 3)1), as required, where
the last inequality holds, since the function f(z) = % is increasing for

x> 1/1n(4/3), having derivative f'(z) = A A3 @)1

)
g (z+1)
Next, notice that

if s € 2" x e J,, and z is an endpoint of J;, then ‘h((?__&()ﬁo” > 4(?;::11)5' (4)

To argue for (4), let x; be the midpoint between zy and x. Then hy is linear

on the interval between xy and x; with the slope im. Hence, indeed,
1 22
h(@) = hzo)| _ [hw) = hlzo)| _ 31— 20 G 3!
(x — x0)? 4(xy — mp)? 4(xy — ) 4(n+1)e

|h(z)=h(@)] _

(z—2)?
this, we fix an arbitrarily large N and show that W > N for the points
x close enough to 7.

Let ng be such that mln{ ((1/3;7 %} > 4N for all n > ny and let

s € 2™ be such that © € I,. Notice that & belongs to the interior U of I, as

2 € P. Hence, it is enough to show that % > N for every x # Z from

U. So, fix such an z.

If x € K, then % > N follows immediately from (3). So, assume
that ¢ K. Then x € J; for some t O s. Let 2y be the end point of
J; between x and z. Notice, that xq # z, since £ € P. Then, since h is

increasing on [0, 1], properties (3) and (4) imply

Finally, fix an 2 € P. We need to show that lim,_,; = 00. For

[h(z) = h@)] _ |h(z) = Mao)l (@ = 20)* | [A(zo) = M@)] (20 — 2)°
(z— )2 (@ —m)? (z—2)? (w—1)* (z—-2)
(z — x0)” (o — 2)°
> ANy HAN s 2

finishing the proof. ]
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