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ABSTRACT

We present a general graph-cut segmentation framework GGC, in which the delineated objects returned by the
algorithms optimize the energy functions associated with the �p norm, 1 ≤ p ≤ ∞. Two classes of well known
algorithms belong to GGC: the standard graph cut GC (such as the min-cut/max-flow algorithm) and the
relative fuzzy connectedness algorithms RFC (including iterative RFC, IRFC). The norm-based description of
GGC provides more elegant and mathematically better recognized framework of our earlier results from [18, 19].
Moreover, it allows precise theoretical comparison of GGC representable algorithms with the algorithms discussed
in a recent paper [22] (min-cut/max-flow graph cut, random walker, shortest path/geodesic, Voronoi diagram,
power watershed/shortest path forest), which optimize, via �p norms, the intermediate segmentation step, the
labeling of scene voxels, but for which the final object need not optimize the used �p energy function. Actually,
the comparison of the GGC representable algorithms with that encompassed in the framework described in [22]
constitutes the main contribution of this work.

1. INTRODUCTION

The image segmentation field has a rich literature dating back to the 60’s. For the consideration of this paper,
it is useful to categorize the segmentation algorithms into three groups: purely image-based (pI), appearance
model-based (AM), and hybrid. pI methods focus on delineating objects based entirely on the information
about the object that can be harnessed from the given image. AM approaches bring in information about the
object family in terms of its appearance variation in the form of statistical/fuzzy texture and/or shape models
to bear on the segmentation problem. Hybrid approaches are recent; they combine synergistically the pI and
AM approaches in an attempt to overcome the weaknesses of the individual approaches. The major frameworks
existing under the pI approaches include level sets (LS), active boundaries, fuzzy connectedness (FC), graph cut
(GC), watershed (WS), clustering, and Markov Random Field.

In this paper we study the group of purely image-based (pI) segmentation algorithms. Since the top-rated
pI algorithms harness the information with equal effectiveness, there must exist similarity or even equivalence
among such algorithms. This observation prompted researchers to study the possibility of explaining such
algorithms in a common framework [17, 1, 31]. In the same spirit, the popular graph cut (GC) framework has
been generalized recently to, what we refer to as, Generalized GC (GGC). This framework was proposed by
the authors in [18, 19, 20], and studied in a slightly different form in [22], to describe GC, fuzzy connectedness
(FC) and watershed (WS) algorithms in a unified manner. A byproduct of such a unification effort is a deeper
understanding of the strengths and weaknesses of the individual algorithms, which can lead to new methods with
improved performance, a subject of our current research (not described here).

The GGC framework is described in detail in the next section. Briefly, in GGC, the image information is
represented in the form of a weighted graph G = 〈V,E,w〉 and the delineated objects P minimize the energy
functions ||FP ||q for different q ∈ [1,∞], where FP is a map that assigns to every element e from the boundary of
object P its weight w(e). In this formulation, our approach is similar to that from papers [42, 22]. We notice that
all minimization problems associated with the energies ||FP ||q can be solved by only two types of algorithms:
GCsum and GCmax, that solve, respectively, the minimization problems for the energies ||FP ||1 and ||FP ||∞.

The graph cut GCsum algorithms, minimizing the energy εsum(P ) = ||FP ||1, have a rich literature [12, 7, 8,
9, 6, 10, 11]. (See also [41, 31, 29].) The energy εmax(P ) = ||FP ||∞ used as an optimizer is a relatively new
phenomenon — it seems to appear so far only in the papers [42, 22] and in a slightly different setting from the one
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we use in this paper. (But see also [30, 2, 3, 24].) However, as shown in [18, 19, 20], the energy εmax is actually
minimized by most of the algorithms from the fuzzy connectedness, FC, framework, which was extensively studied
since 1996 [43, 37, 44, 38, 21, 45]. (See also [13, 28, 14], where a slightly different approach to this methodology
is used. For other extensions of FC, compare e.g., [36, 27], and the references listed in [15, 16].) Recall also that
the watershed, WS, framework [5, 40, 35, 23, 24, 4, 34] can be encompassed in the FC framework [2, 24, 31], so
it too minimizes the energy εmax.

2. BACKGROUND: GENERALIZED GRAPH CUT FRAMEWORK

In every algorithm within GGC, a digital image I = 〈C, f〉 (where C is its domain and f : C → R
� its intensity

function) is identified with a weighted directed graph G = 〈C,E,w〉 such that:

• C is the set of vertices of the graph, which coincides with the image domain.

• E is the image scene adjacency relation. In particular, E ⊂ C × C is a binary relation representing the
set of all directed edges of G, that is, 〈c, d〉 is an edge if, and only if, 〈c, d〉 ∈ E. It is assumed that E is
symmetric, that is, 〈d, c〉 is an edge provided so is 〈c, d〉.

• w : E → [0, 1] is a weight function associating with any edge e ∈ E its weight w(e). It is assumed that
w is symmetric: w(c, d) = w(d, c) for every edge 〈c, d〉. An example of one of the most standard weight
assignments, measuring the level of homogeneity between a pair of spels, is given by the following formula,
where σ > 0 is a fixed constant: w(c, d) = e−||f(c)−f(d)||2/σ2

for every 〈c, d〉 ∈ E.

For every weighted graph G = 〈C,E,w〉, consider the space X̃ of all functions x : C → [0, 1], referred to as
fuzzy subsets of C, with the value x(c) indicating a degree of membership with which c belongs to the set. The
family X of all functions x ∈ X̃ with the only allowed values of 0 and 1 (i.e., x : C → {0, 1}) will be referred to
as the family of all hard subsets of C. Each x ∈ X is identified with the true subset P = {c ∈ C : x(c) = 1} of
C. Notice that, in such a case, x is the characteristic function χ

P of P ⊂ C. The GGC framework is expressed
exclusively in terms of X , the hard subsets of C. The fuzzy subsets X̃ are used in the framework considered in
[22] and discussed in detail in the next section.

The goal of the segmentation algorithms we consider here is to indicate, in the input image I = 〈C, f〉, a
“desired” object P ⊂ C, which is identified with its characteristic function χ

P ∈ X . We usually restrict the
collection X of all allowable “desirable” objects by indicating two disjoint sets, referred to as seeds: S ⊂ C
indicating the object and T ⊂ C indicating the background. This restricts the collection of allowable outputs
of the algorithm to the family X (S, T ) of all x ∈ X with x(s) = 1 and x(t) = 0 for all s ∈ S and t ∈ T . Note
that X (S, T ) = {χP : S ⊂ P ⊂ C \ T}. We also use the notation P(S, T ) = {P ⊂ C : χP ∈ X (S, T )}, indicating
standard set representation of X (S, T ).

For q ∈ [1,∞] consider the energy functional εq : X̃ → [0,∞), where, for every x ∈ X̃ , εq(x) is defined as the
q-norm of the functional Fx : E → R, given by a formula Fx(c, d) = w(c, d)|x(c)− x(d)| for 〈c, d〉 ∈ E. That is,

ε∞(x) = ||Fx||∞ = max〈c,d〉∈E w(c, d)|x(c)− x(d)| and

εq(x) = ||Fx||q = q

√∑
〈c,d〉∈E

(
w(c, d)|x(c)− x(d)|)q for q < ∞.

Notice that limq→∞ εq(x) = ε∞(x), since q-norms converge, as q → ∞, to the ∞-norm. In the GGC framework
these functionals are used only for x = χ

P ∈ X . In this case, if bd(P ) is defined as the set of all edges e = 〈c, d〉
with x(c) 	= x(d), then εq(χP ) = q

√∑
〈c,d〉∈bd(P )

(
w(c, d)

)q
and ε∞(χP ) = max〈c,d〉∈bd(P ) w(c, d).

For 1 ≤ q ≤ ∞, graph G = 〈C,E,w〉 (associated with I = 〈C, f〉), and seed sets S and T , let εqmin be the
minimum of the energy εq(x) over all ST -allowable objects x ∈ X (S, T ), that is, εqmin = min{εq(x) : x ∈ X (S, T )}.
Any element of Xq(S, T ) = {x ∈ X (S, T ) : εq(x) = εqmin} will be referred to as an energy εq minimizer of X (S, T ).
Any algorithm A that, given an image I and seed sets S and T , returns an object A(I, S, T ) from Xq(S, T ) will be
referred to as an εq-minimizing algorithm. Notice that any such algorithm has also a hidden aspect: a subroutine,
denote it I 
→ w, that translates the input image I into its associated graph G = 〈C,E,w〉. We will write AI �→w

in place of A if we like to stress this parameter.
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The standard min-cut/max-flow algorithm is, obviously, an ε1-minimizing algorithm. We will use a symbol
GCsum to denote this (or any other ε1-minimizing) algorithm. The ε∞-minimizing algorithms have also been in
use for a long time, although they were not recognized as such until very recently. (See [18]. Compare also [19]
and [20].) More precisely, the Relative Fuzzy Connectedness, RFC, and Iterative, Relative Fuzzy Connectedness,
IRFC, algorithms are the ε∞-minimizing algorithms, as discussed in more detail in the remainder of this section.

The εq-minimizing algorithms for 1 < q < ∞ do not bring anything new to the GGC framework, since
any εq-minimizing algorithm AI �→w is also an ε1-minimizing algorithm AI �→wq . This is so, since for both these
algorithms the associated sets Xq and X1 are identical. However, the situation becomes more complicated in the
fuzzy optimization case, discussed in the next section.

The ε1- and ε∞-minimization problems (and so, the associated algorithms) are truly distinct, as discussed
in [18, 19, 20] and below. Nevertheless, there is an interesting connection between them, as proved in [20]: for
every image I there exists a q < ∞ such that the family X1(S, T ) associated with any ε1-minimizing algorithm
AI �→wq (e.g., for A = GCsum) is contained in the family X∞(S, T ). In particular, the output of AI �→wq minimizes
ε∞ in X (S, T ) and, in the case when X∞(S, T ) has only one element, AI �→wq (I, S, T ) = GCmax(I, S, T ).

2.1. RFC and IRFC as ε∞-optimizers; fast GCmax algorithm returning IRFC objects

The FC objects are, usually, defined in terms of paths in the weighted graph G = 〈C,E,w〉 associated with an
image I = 〈C, f〉. A path p in G is any finite sequence 〈c1, . . . , ck〉 of vertices such that any consecutive vertices
ci, ci+1 in p are adjacent (i.e., 〈ci, ci+1〉 ∈ E). The strength μ(p) of a path p = 〈c1, . . . , ck〉, k > 1, is defined
as the strength of the w-weakest link of p, that is, as μ(p) = min{w(ci−1, ci) : 1 < i ≤ k}. For k = 1 (i.e.,
when p has length 1) we associate with p the strongest possible value, μ(p) = 1. For c, d ∈ C, the connectedness
strength μC(c, d) between c and d is defined as the strength of a strongest path in G from c to d (i.e., of a path
〈c1, . . . , ck〉 in G with c1 = c and ck = d). Also, for non-empty S, T ⊂ C we define μC(c, T ) = maxt∈T μC(c, t)
and μC(S, T ) = maxs∈S μC(s, T ). A path p = 〈c1, . . . , ck〉 from c to T (i.e., with c1 = c and ck ∈ T ) is optimal
provided μ(p) = μC(c, T ). The RFC object, indicated by S and T , is defined via competition of sets S and T for
attracting a given c ∈ C to their realms (see [37]):

PS,T
def
= {c ∈ C : μC(c, S) > μC(c, T )}.

Notice that PS,T = {c ∈ C : (∃s ∈ S)μC(c, s) > μC(c, T )} =
⋃

s∈S P{s},T , as μC(c, S) = maxs∈S μC(c, s). The
following theorem (see [18], [19], or [20]) shows that the RFC object minimizes energy εmax = ε∞ and that,
under simple assumptions, it is the smallest among all minimizers.

Theorem 2.1. Assume that μC(S, T ) < 1. Then PS,T minimizes the energy εmax on X∞(S, T ). Moreover,

(i) The number μC(S, T ) is the minimum of εmax on X (S, T ) (i.e., μC(S, T ) = ε∞min).

(ii) If S is a singleton, then PS,T is contained in any object P with εmax(χP ) = μC(S, T ).

The original definition of the IRFC object P∞
S,T was in terms of expanding the RFC object PS,T iteratively,

with PS,T being the first iteration of P∞
S,T . However, for the discussion presented in this papers, it is more

appropriate to use another equivalent description of P∞
S,T , given below.

Let W = S ∪ T ⊂ C. A forest for a graph G = 〈C,E,w〉 is any of its subgraph F = 〈C,E′〉 free of cycles;
a forest F is spanning with respect to W provided any connected component of F contains precisely one element
of W . In particular, for any such forest F and any c ∈ C, there is a unique path pc in F from c to W . We
associate with any such forest F a set P (S,F) ∈ P(S, T ) of all vertices connected to S by a path in F. Also, we
say that a spanning forest F = 〈C,E′〉 with respect to W is: an optimum path forest, OPF, provided every path
pc in F is optimal (i.e., when μ(pc) = μC(c,W ) for every c ∈ C); it is a maximal spanning forest, MSF, provided
the number

∑
e∈E′ w(e) is maximal among all numbers

∑
e∈E′′ w(e), with 〈C,E′′〉 being a spanning forest with

respect to W . Let
POPF (S, T ) = {P (S,F) : F is an OPF with respect to S ∪ T}.

According to the following theorem, which is a compilation of the results from [18, 19] (see also [20]), the IRFC
object P∞

S,T can be defined as the smallest (with respect to set inclusion) of the sets belonging to POPF (S, T ).
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Note also that, by our new Theorem 4.1, P∞
S,T can be defined as well as the smallest object belonging to the

family PMSF (S, T ) = {P (S,F) : F is an MSF with respect to S ∪ T}.
Theorem 2.2. Let G = 〈C,E,w〉 be a weighted graph associated with an image I = 〈C, f〉 and let S and T be
non-empty subsets of C indicating, respectively, the foreground and the background seeds. If μC(S, T ) < 1, then

(i) The family POPF (S, T ) has the smallest element, which coincides with the IRFC object P∞
S,T .

(ii) P∞
S,T minimizes the energy εmax = ε∞ on P(S, T ).

(iii) P∞
S,T is returned by the algorithm GCmax (indicated below), which runs (provably, worst case scenario) in

a linear time with respect to the scene size |C|.
Algorithm GCmax

Input: A weighted graph G = 〈C,E,w〉 associated with an image I = 〈C, f〉; sets S, T ⊂ C, with
W = S ∪ T being non-empty.

Output: A connectedness strength function μC(·,W ); an OPF F with respect to W such that, if
μC(S, T ) < 1, then P∞

S,T = P (S,F).

Notice that by running GCmax twice, with W = S and W = T , we can find functions μC(·, S) and μC(·, T ).
In particular, GCmax can be used also to find, in linear time, the RFC object PS,T .

3. HARD VERSUS FUZZY GRAPH CUT MINIMIZATION PROBLEMS

This section contains new results. It can be treated as a comparison of GGC with the results presented in the
papers [42] and [22]. In these papers the authors discuss image delineation algorithms that use a very similar
approach to that described above: the same weighted graphs are associated with the images and the same
energy functions εp are used to find their minimizers which, in turn, are transformed to final image delineations.
However, for most cases, the actual outputs of these algorithms need to minimize the energy functionals εp which
they employ, see Theorem 3.2. As such, they actually do not fit the GGC framework described in the previous
section. Nevertheless, there are interesting relationships between the two approaches, as we describe in more
detail below.

A fuzzy subset of a set C (i.e., an element of X̃ , which in [42, 22] is referred to as a labeling) is any function
x : C → [0, 1], with the value x(c) indicating a degree of membership with which c belongs to the set. Many
delineation algorithms considered in the literature, as those surveyed in [22], deal with the fuzzy minimization
problems, the notion obtained from that of hard minimization problem upon replacing in its definition the “hard”
subsets of C by the “fuzzy” subsets of C. More precisely, for disjoint sets S, T ⊂ C, we define PF (S, T ) as the
family of all fuzzy sets x ∈ X̃ with x(c) = 1 for all c ∈ S and x(c) = 0 for all c ∈ T . For a threshold θ and an
energy map ε̂ from X̃ into [0,∞), we define PF

θ (S, T ) as the family of all x ∈ PF (S, T ) such that ε̂(x) ≤ θ. Then,

a fuzzy minimization problem, MPF (ε̂f ), is a map 〈f, S, T 〉 
→ PF
θ̂min

(S, T ), where θ̂min is the smallest number

θ for which the family PF
θ (S, T ) is non-empty. Finally, a delineation algorithm for MPF (ε̂f ) is any specific

numerical recipe that, given f and 〈S, T 〉, returns an xmin from PF
θ̂min

(S, T ).

Recall that any hard set P ⊂ C can be treated as a fuzzy set, by identifying it with its characteristic function
χ
P : C → {0, 1}. This allows us to identify the family P(S, T ) with PH(S, T ) = X (S, T ) and recognize χ

Pmin as
a minimizer of the energy εH defined as εH(χP ) = ε(P ). In particular, if εH is equal to the restriction ε̂ � PH of

ε̂ to PH def
= PH(∅, ∅), then the three minimization problems MP(ε), MPF (εH), and MPF (ε̂ � PH) coincide. In

what follows, we will often write ε to denote εH .

If we are happy to accept a fuzzy minimizer that returns an x from PF (S, T ), not necessarily from PH , as a
“desired object,” this is a viable approach. However, often, we are after the hard delineated objects. In particular,
although the delineation algorithms presented in [42, 22] minimize the “fuzzy” energy functions ε̂ : PF → [0,∞),
they actually return a characteristic function x̄ : C → {0, 1} of a hard object, rather than a fuzzy minimizing
object (labeling) xmin ∈ PF

θ̂min
(S, T ) indicated by the fuzzy minimization problem, where

x̄(c) = 1 when xmin(c) ≥ 0.5 and x̄(c) = 0 for xmin(c) < 0.5. (1)
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In [22], the authors consider the energy functions on PF defined for every p ∈ [0,∞) and q ∈ [1,∞) via formula∗

Ep,q(x) =
∑

〈c,d〉∈E

[w(c, d)]p|x(c)− x(d)|q. (2)

Actually, for p = 0, the formula (2) is undefined whenever w(c, d) = 0. We interpret E0,q as limp→0+ Ep,q, which
leads to treating [w(c, d)]0 as sgn[w(c, d)], where the value of the sign function sgn(a) is defined as 0 for a = 0
and 1 for a > 0. In [42, 22], the authors also allow p = ∞ and q = ∞, through different limiting processes, which
we will discuss below.

Notice that, for every q, Ep,q � PH = Ep,1 � PH (i.e., Ep,q agrees with Ep,1 for the hard delineations),
rendering the parameter q in Ep,q redundant for the hard optimization problem set-up:

Remark 3.1. If, for any energy functions ε̄ and ε̂ defined on PF , their restrictions ε̄ � PH and ε̂ � PH are equal,
then the hard minimization problems MP(ε̄ � PH) and MP(ε̂ � PH) associated with them coincide.

3.1. Cases p, q ∈ R and p = q → ∞
Paper [42] discusses the following variants of Ep,q:

εq(x)
def
= (Eq,q(x))

1/q
= q

√ ∑
〈c,d〉∈E

(
w(c, d)|x(c)− x(d)|)q = ||Fx||q, (3)

where Fx : E → R, Fx(c, d) = w(c, d)|x(c)−x(d)| for 〈c, d〉 ∈ E, and || · ||q is the standard �q-norm. In particular,

for q = ∞, the formula (3) is interpreted as ε∞(x)
def
= limq→∞ (Eq,q(x))

1/q
= limq→∞ ||Fx||q, leading to

ε∞(x) = ||Fx||∞ = max
〈c,d〉∈E

w(c, d)|x(c)− x(d)|. (4)

This energy function is the only form of the energy Ep,q, with p, q → ∞, considered in [22] and in this paper.

The following theorem summarizes the relationships between these minimization problems.

Theorem 3.2. Let 1 ≤ q < ∞ and 0 ≤ p < ∞.

(a) The hard delineation optimization problem associated with ε∞ coincides with MP(εmax).

(b) The hard delineation optimization problems associated with Ep,q and with (Ep,q)
1/q (so, also with εq =

(Eq,q)
1/q) coincide with MP(εsump ), where εsump is the energy εsum associated with the graph G = 〈C,E,wp〉.

(c) Moreover, if q 	= 1, then the hard object x̄ associated, as in (1), with a fuzzy minimizer xmin for the fuzzy
energy function Ep,q need not minimize the associated hard delineation energy function; that is, x̄ need
not belong to the appropriate family PH

θmin
(S, T ).

Proof. (a) Clearly ε∞ � PH = εmax, so also MP(ε∞ � PH) = MP(εmax).

(b) The map y 
→ y1/q is strictly increasing for every q ∈ [1,∞), so the optimization problem (fuzzy or
hard) associated with Ep,q is clearly equivalent to that for (Ep,q)

1/q (since the associated families Pθmin(S, T ) are
identical). Since Ep,q � PH = εsump , (b) follows.

(c) This part is justified by the following example.

Example 3.3. For the energies εq and Eq,q with q ∈ (1,∞] it is possible that PF
θ̂min

(S, T ) and PH
θmin

(S, T ) are

disjoint and that x̄ ∈ PH(S, T ) associated with xmin ∈ PF
θ̂min

(S, T ) does not belong to PH
θmin

(S, T ).

Proof. Take C = {s, c, d, t}, where s is a foreground seed and t is a background seed, that is, S = {s} and
T = {t}. Consider a graph on C with just three symmetric edges, {s, c}, {c, d}, and {d, t} (so, with six directed

∗Actually, the most general energy formula defined in [22] is of the form Êp,q(x) = Ep,q(x) +
∑

c∈C(wc)
p|x(c)− y(c)|q

for a y ∈ PF . However, in all theoretical investigations there, the unary constants wc are taken as 0, in which case
Êp,q = Ep,q. Our analysis here applies only to this simplified case.
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edges) with the respective weights 1, v, and v, for v > 1 to be determined. Then, PF (S, T ) consists of all fuzzy
sets xy,z : C → [0, 1] with y, z ∈ [0, 1], where xy,z(s) = 1, xy,z(c) = y, xy,z(d) = z, and xy,z(t) = 0.

First fix a q ∈ (1,∞). Then, Eq,q(xy,z) = 2[(1−y)q+vq|y−z|q+vqzq] is a function of two variables, y and z.
It has precisely one minimum† at zq = (vq/(q−1)+2)−1 and yq = 2(vq/(q−1)+2)−1. Thus, PF

θ̂min
(S, T ) = {xyq,zq},

leading to xmin = xyq,zq . Now, if v ∈ (1, 2(q−1)/q), then 1 < vq/(q−1) < 2 and we have 0 < zq < 0.5 < yq < 1,
leading to x̄ with x̄(s) = x̄(c) = 1 and x̄(d) = x̄(t) = 0. But this implies that Eq,q(x̄) = vq > 1 = Eq,q(χ{s}), so
indeed x̄ /∈ PH

θmin
(S, T ).

To see that the same example works for q = ∞, fix a v ∈ (1, 21/2). Then, for every q > 2 and y, z ∈ R,
we have ||F (xy,z)||q ≥ ||F (xyq,zq )||q. Taking the limit, as q → ∞, gives ||F (xy,z)||∞ ≥ ||F (xy∞,z∞)||∞, where
z∞ = limq→∞ zq = (v + 2)−1 and y∞ = 2z∞. Then, similarly as above, PF

θmin
(S, T ) = {xy∞,z∞}, leading to

xmin = xyq,zq and x̄ with x̄(s) = x̄(c) = 1 and x̄(d) = x̄(t) = 0. But this implies that ε∞(x̄) = v > 1 = ε∞(χ{s}),
so once again x̄ /∈ PH

θmin
(S, T ).

It was noticed in [42] that, for the energy ε1 = E1,1 (i.e., for q = 1), we have PF
θmin

(S, T ) = PH
θmin

(S, T ), so, in

this case, the fuzzy MP(E1,1) and the hard MP(E1,1 � PH) minimization problems coincide with the “classic”
min-cut/max-flow problem MP(εsump ). For all other energy functions considered in Theorem 3.2 (including the

cases of random walk ε2 = (E2,2)
1/2 and of the �∞ energy ε∞ studied in [42, 22]), the algorithmic output x̄

(derived from xmin) does not constitute (an exact) solution to the related hard optimization problem. This,
for example, explains why the experimental results from [42] for the �∞ algorithm are not robust (i.e., the
delineations lack stability with changing seeds), in spite of a theorem (see e.g. [18]) according to which the
related hard optimization problem is provably robust.

3.2. The case of q → ∞ and p ∈ R

The most natural understanding of this case would be to define the energy as Ep,∞(x)
def
= limq→∞ Ep,q(x) =∑

〈c,d〉∈E [w(c, d)]
p limq→∞ |x(c) − x(d)|q =

∑
〈c,d〉∈E [w(c, d)]

p�x(c) − x(d)�, where the value of the floor func-

tion �a� is defined as the largest integer less than or equal to a. (This is the case since, for a ∈ [0, 1],
we have limq→∞ aq = �a�.) However, for such function, PF

θ̂min
(S, T ) contains all x ∈ PF (S, T ) with 0 <

x(c) < 1 for all c ∈ C not in S ∪ T . In particular, any element of PH(S, T ) could end up as x̄, rendering

such Ep,∞ useless. Instead, in [22, sec. 3.3] the authors use the function εp,∞(x)
def
= limq→∞(Ep,q(x))

1/q =

limq→∞ q

√∑
〈c,d〉∈E

(
[w(c, d)]p/q|x(c)− x(d)|

)q

, that is, εp,∞(x) = max〈c,d〉∈E sgn(w(c, d))|x(c) − x(d)|, and re-

late it to the Voronoi diagram delineation. It is clear, that εp,∞ is equal to ε∞ associated with the graph
G = 〈C,E, sgn(w)〉, so Theorem 3.2(a) is applicable in this case.

3.3. The case of p → ∞ and q ∈ R

The delineation algorithm in [22] associated with q ∈ [1,∞) and p → ∞ is referred to as Power Watershed, PW,
algorithm. Although, as in the previous cases, its hard set output x̄ is obtained from a fuzzy object (labeling)
x, it is proved in [22, property 2] that such an x̄ belongs to the family PMSF (S, T ), that is, x̄ is generated by
an MSF with respect to S ∪ T . At the same time, every object from PMSF (S, T ) maximizes the energy εmax on
P(S, T ), as we prove in Theorem 4.1. (This last result is closely related to the subject of papers [3, 24].)

The above shows that PW returns an optimizer for the energy εmax. Since the same is true about IRFC
returned objects (see Theorem 2.2), it can be argued that PW is nothing more than a version of Fuzzy Connect-
edness algorithm. This impression is even deepened by the fact (Theorem 4.1) that the output of the GCmax

†This can be found by simple multivariable calculus. First notice, that both second partial derivatives, ∂2

∂z2
Eq,q(xy,z) =

2q(q− 1)vq[|y− z|q−2 + zq−2] and ∂2

∂y2Eq,q(xy,z) = 2q(q− 1)[(1− y)q−2 + vq|y− z|q−2] are positive, so the function Eq,q is

convex and it can have only one global minimum. For y ≥ z, ∂
∂z

Eq,q(xy,z) = 2[−qvq(y − z)q−1 + qvqzq−1] equals 0 when
(y − z)q−1 = zq−1, that is, when y = 2z. Similarly, the other derivative ∂

∂y
Eq,q(xy,z) = 2[−q(1 − y)q−1 + qvq(y − z)q−1]

equals 0 when (1 − y)q−1 = vq(y − z)q−1, which, with y = 2z, leads to
(

1−2z
2z−z

)q−1

= vq and 1
z
− 2 = vq/(q−1). So,

z = (vq/(q−1)+2)−1 and y = 2(vq/(q−1)+2)−1 minimize Eq,q on [0, 1]× [0, 1], since for z > y, the derivative ∂
∂z

Eq,q(xy,z) =
2[qvq(z − y)q−1 + qvqzq−1] never equals 0.
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algorithm also belongs to the family PMSF (S, T ) of objects indicated by MSF. In particular, if PMSF (S, T ) has
only one element (no tie-zones), then the outputs of PW and GCmax are identical.

Nevertheless, the algorithms PW and GCmax use different paradigms to choose their outputs from PMSF (S, T ):
GCmax always chooses its smallest element, while, within each plateau of the graph, PW chooses the object that
minimizes the energy Ep,q for a current value of q (which, for q > 1, is unique). In particular, Figure 1 provides
an example of a graph, in which outputs of GCmax and PW are different.

s dc.1 .1 t.1
(a) Weighted graph G with S = {s}
and T = {t}

s dc.1 .1 t.1
(b) MSF F, indicated by thicker edges,
returned by GCmax; P (s,F) = {s}

s dc.1 .1 t.1
(c) MSF F̂, indicated by thicker edges,
returned by PW; P (s, F̂) = {s, c}

Figure 1. Example of different outputs of GCmax and PW used with q > 1; the intermediate labeling x for PW is given
by x(c) = 1/3 and x(d) = 2/3 (these numbers can be verified by multivariable calculus technique)

The association of PW with the limiting process p → ∞ comes from the following (fuzzy) limiting property,
that holds for q > 1 and essentially no restriction on the seed choice (see [22, theorem 3]):

(LPF) the fuzzy labeling x returned by PW is equal to a limit, as p → ∞, of the fuzzy sets (labelings) xp

minimizing the energy Ep,q.

Since, in this paper, we are predominantly interested in the hard set objects, of considerably more interest to us
is the following (hard) limiting property, which is analogous to the property of the GCmax algorithm mentioned
earlier:

(LPH) the output x̄ of PW is equal to a limit, as p → ∞, of x̄p, where each is a fuzzy set (labeling) xp minimizing
the energy Ep,q.

However, unlike (LPF), the property (LPH) is proved in [22, theorem 1] only under an additional strong assump-
tion‡ on seeds S and T . Moreover, as noted in [22, figure 2], (LPH) may be false without the assumption on
seeds.

In summary,

• The algorithms GCmax and PW return outputs with very similar properties: they both minimize the same
energy εmax and, in both cases, can be generated by an MSF. Nevertheless, their outputs can be different
(Figure 1).

• The algorithm GCmax is very fast: it provably runs in a (quasi-) linear time with respect to the image
size (Theorem 2.2). There is no similar theoretical result for PW. (The experimental results presented in
[22] suggest that PW runs in quasi-linear time, at least for a simple case of q = 2. It is also true, that
components of PW algorithm, Kruskal’s algorithm and plateau optimizations for Ep,2, run, provably, in a
linear time with respect to the image size. However, their complicated amalgamation, formation of merged
graphs, puts under question, whether a provable quasi-linear time implementation of PW can be found.)

Finally, note that, at first glance, the most natural candidate for E∞,q(x) is the limit L(x)
def
= limp→∞ Ep,q(x) =

limp→∞
∑

〈c,d〉∈E [w(c, d)]
p|x(c) − x(d)|q, rather than ε∞,q. However, L(x) does not exist, unless w(c, d) ≤ 1

for all 〈c, d〉 ∈ E. Moreover, even if the limit exists (i.e., when w(c, d) ≤ 1 for all 〈c, d〉 ∈ E), the energy

E∞,q(x)
def
= L(x) =

∑
〈c,d〉∈E�w(c, d)�|x(c) − x(d)|q does not lead to a new optimization problem, as such E∞,q

is equal to E1,q for the graph G = 〈C,E, �w�〉.
‡The assumption is that for every threshold t, the set S∪T intersects every connected component of the graph 〈C,Et〉,

where Et = {e ∈ E : w(e) ≥ t}.
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4. IRFC OBJECT AS OPTIMUM PATH AND MAXIMUM SPANNING FORESTS

According to Theorem 2.2, the output P∞
S,T of GCmax, the IRFC object, is given by an OPF. The next theorem

shows, in particular, that it is also given by a maximal spanning forest, MSF. It also relates the family Pθ(S, T )
of all εmax optimizing objects with the families PMSF (S, T ) and POPF (S, T ) of all objects P (S,F) associated
with MSF and OPF, respectively.

Theorem 4.1. Let G = 〈C,E,w〉 be a weighted graph and S, T ⊂ C be non-empty disjoint sets of seeds. If
μ(S, T ) < 1, then

P∞
S,T ∈ PMSF (S, T ) ⊂ POPF (S, T ) ∩ Pθ(S, T ). (5)

In particular, the families PMSF (S, T ) and POPF (S, T ) share the same minimal element, P∞
S,T .

Notice, that the OPF F returned by GCmax need not be MSF. (See Figure 2.) However, by Theorem 4.1,

there is always an MSF F̂ for which P∞
S,T = P (S,F) = P (S, F̂). Moreover, if one is after MSF F̂ for which

P (S, F̂) = P∞
S,T , such an F̂ can still be found (in linear time) as follows: (1) Run GCmax (which returns P∞

S,T

as P (S,F) for some OPF F, which need not be an MSF). (2) Find an MSF F̂ with P (S, F̂) = P (S,F) using
Kruskal’s algorithm, as indicated in the proof of the theorem.

Proof of Theorem 4.1. It was proved in [3, proposition 8] that every MSF is also an OPF. (The same result,
proved independently, is also included in [24, theorem 21]. In both papers optimum path spanning forests are
referred to as shortest path forests.) This justifies inclusion PMSF (S, T ) ⊂ POPF (S, T ).

Next, we prove that P∞
S,T ∈ PMSF (S, T ). Let F be the OPF returned by GCmax, so that we have P∞

S,T =

P (S,F). We will find an MSF F̂ relative to W = S ∪ T which returns the same object, that is, such that

P (S, F̂) = P (S,F).

Recall, that the Kruskal’s algorithm creates MSF F̂ = 〈C, Ê〉 as follows:
• it lists all edges of the graph in a queue Q such that their weights form a decreasing sequence;

• it removes consecutively the edges from Q, adding to Ê those, whose addition creates in the expanded
F̂ = 〈C, Ê〉 neither a cycle nor a path between different vertices from W ; other edges are discarded.

This schema has a leeway in choosing the order of the edges in Q: those that have the same weight can be
ordered arbitrarily.

Let B be the boundary of P (S,F), B = bd(P (S,F)). Assume, that we create the list Q in such a way that,
among the edges with the same weight, all those that do not belong to B precede all those that belong to B.
We will show that Kruskal’s algorithm with Q so chosen, indeed returns MSF F̂ with P (S, F̂) = P (S,F).

Clearly, by the power of Kruskal’s algorithm, the returned F̂ = 〈C, Ê〉 will be MSF relative to W . We will

show that Ê is disjoint with B. This easily implies the equation P (S, F̂) = P (S,F).

To prove that Ê is disjoint with B, choose an edge e = {c, d} ∈ B. Consider the step in Kruskal’s algorithm
when we remove e from Q. We will argue, that adding e to the already existing part of Ê would add a path
from S to T , which implies that e would not be added to Ê.

Let pc and pd be the paths in F from W to c and d, respectively. By symmetry, we can assume that
c ∈ C \ P (S,F) = P (T,F) and d ∈ P (S,F). We will first show that

μ(pc) ≥ we and μ(pd) ≥ we. (6)

Indeed, if μ(pc) > μ(pd), then we ≤ μ(pd), since otherwise μ(d, S) = μ(pd) < min{μ(pc), we} ≤ μ(d, T ), implying
that d belongs to the RFC object PT,S ⊂ P (T,F), which is disjoint with P (S,F). Similarly, if μ(pc) < μ(pd),
then we ≤ μ(pc), since otherwise μ(c, T ) = μ(pc) < min{μ(pd), we} ≤ μ(c, S), implying that c belongs to the
RFC object PS,T ⊂ P (S,F). Finally, assume that μ(pc) = μ(pd). Then we < μ(pc) = μ(pd), since otherwise
GCmax would reassign d to P (T,F), which is disjoint with P (S,F). So, (6) is proved.

Next, let E′ = {e′ ∈ E : we′ ≥ we} \ B. Then, every edge in E′ is already considered by the Kruskal’s
algorithm by the time we remove e from Q. In particular, Ê ∩ E′ is already constructed. We claim, that there
is a path p̂d in Ĝ = 〈C, Ê ∩ E′〉 from S to d.
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s tc

d

.2 .1

.6.2

(a) Weighted graph G, with s indicat-
ing the object and t the background

s tc

d

.2 .1

.6.2

(b) OPF returned by GCmax, which is
not MSF

s tc

d

.2 .1

.6.2

(c) MSF for G, which indicates the
same object {s, c, d} as OPF from (b)

Figure 2. Weighted graph G, with S = {s, t}

Indeed, the component of d in Ĝ must intersect S, since otherwise there is an edge ê in pd (so, in E′) only one
vertex of which intersects this component. But this means that ê ∈ E′ would have been added to Ê, which was
not the case. So, indeed, there is a path p̂d in Ĝ from S to d. Similarly, there is a path p̂c in Ĝ from T to c. But
this means that adding e to Ê would create a path from S to T , which is a forbidden situation. Therefore, indeed,
Kruskal’s algorithm discards e, what we had to prove. This completes the argument for P∞

S,T ∈ PMSF (S, T ).

To finish the proof, we need to show that PMSF (S, T ) ⊂ Pθ(S, T ). So, fix a P ∈ PMSF (S, T ). Then, there is
an MSF F = 〈C,E′〉 with respect to W for which P = P (S,F). Clearly, P = P (S,F) ∈ P(S, T ). So, it is enough
to show that εmax(P ) ≤ θmin = μ(S, T ).

By way of contradiction, assume that this is not the case. Then, there exists an edge e = {c, d} ∈ E with
c ∈ P = P (S,F) and d ∈ C \ P = P (T,F) for which we > θmin = μ(S, T ). Let pc and pd be the paths in F from
W to c and d, respectively. Then either μ(pc) < we or μ(pd) < we, since otherwise the path p starting with pc,
followed by e, and then by pd is a path from S to T with μ(p) = we > μ(S, T ), a contradiction.

Assume that μ(pc) < we. Then pc = 〈c1, . . . , ck〉 with k > 1 and the edge e′ = {ck−1, ck} has weight

≤ μ(pc) < we. But then F̂ = 〈C, Ê〉 with Ê = E′∪{e}\{e′} is a spanning forest rooted at W with
∑

e∈Ê w(e) =∑
e∈E′ w(e)+we−we′ >

∑
e∈E′ w(e), what contradicts maximality of F. This completes the proof of the theorem.

s

c

t

d

.5

.2

.1.1

(a) Weighted graph G, with S = {s}
and T = {t}

s

c

t

d

.5

.2

.1.1

(b) OPF F indicating object
P (S,F) = {s, c}

s

c

t

d

.5

.2

.1.1

(c) The OPF F̂ with w(F̂) = .3 >
.2 = w(F)

Figure 3. The OPF F in (b) indicates object P (S,F) ∈ Pθ(S, T ) \ PMSF (S, T )

Finally, we provide several examples, indicating that little can be improved in the statement of Theorem 4.1.
In all figures forest edges are indicated by thicker lines. Figure 2(b) shows that the OPF F returned by GCmax (i.e.,

with P∞
S,T = P (S,F)) need to be MSF. Thus, the additional work for finding MSF F̂ (indicated on Figure 2(c))
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with P (S, F̂) = P (S,F) = P∞
S,T is essential.

An example of an object in POPF (S, T ) ∩ Pθ(S, T ) but not in PMSF (S, T ) is given in Figure 3. So, the
inclusion in Theorem 4.1 cannot be reversed.

Also, there is no inclusion between POPF (S, T ) and Pθ(S, T ). An object in Pθ(S, T ) \ POPF (S, T ) can be
chosen as {s, d} for the graph from Figure 1. The object indicated in Figure 1(b) belongs to POPF (S, T )\Pθ(S, T ),
if the weight of the middle edge is changed to .5.

We will finish this section, by relating the above results to the minimizers of the energy εsum(P ) =
∑

e∈bd(P ) we,
which are usually calculated via graph cut algorithm GCsum. It is well known that the graph cut algorithms
have the so called shrinking problem: if the object is indicated only by a small set of seeds, it is likely that
the object minimized by εsum will have a short boundary composed of edges with high weights, even if there is
another object with a long boundary of edges with very small weight. In such a case, the families of minimizers
of εsum and εmax are disjoint, indicating no relation between such minimizers.

Still an interesting question is: what happens if we know that the objects minimizing εsum also minimize
εmax? Is it true, that an object P∞

S,T returned by GCmax (so, minimizing εmax) minimizes also εsum? A negative
answer to this question is provided in Figure 4. Actually, the results presented in Figure 4 remain the same, if
all weights in the graph are raised to some finite power p.

s

c

g

d

.1

.1

.1.1

t.1

(a) Weighted graph G, with S = {s}
and T = {t}

s

c

g

d

.1

.1

.1.1

t.1

(b) An example of OPF F returned by
GCmax

Figure 4. The object P∞
S,T = P (S,F) has εsum-energy .2, while minimum εsum-energy on P(S, T ) is .1, for the object

{s, c, d, g}

5. CONCLUDING REMARKS

• Two classes of distinct algorithms, GCsum and GCmax, are enough to find minimizers for all GGC energies:
εq with 1 ≤ q ≤ ∞.

• PW algorithm minimizes the ε∞ energy, but does not run in linear time, while GCmax algorithm, returning
IRFC object, has both properties.

• The IRFC (returned by GCmax) and PW objects can be different although they are usually close (since,
in most cases, the tie zones are small).

• The output of GCmax, the IRFC object, is provably robust to seed choice. Neither PW not GCsum algorithm
has this property.

• GCsum usually produces smoother boundaries than GCmax.

• Any MSF is also an OPF but not vice versa.
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