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Region-Based Segmentation:

Fuzzy Connectedness, Graph Cut and Related

Algorithms

Krzysztof Chris Ciesielski and Jayaram K. Udupa

Abstract. In this chapter, we will review the current state of knowledge on region-
based digital image segmentation methods. More precisely, we will concentrate on
the four families of such algorithms: (i) The leading theme here will be the framework
of fuzzy connectedness (FC) methods. (ii) We will also discuss in detail the family
of graph cut (GC) methods and their relations to the FC family of algorithms. The
GC methodology will be of special importance to our presentation, since we will
emphasize the fact that the methods discussed here can be formalized in the language
of graphs and graph cuts. The other two families of segmentation algorithms we will
discuss consist of (iii) watershed (WS) and (iv) the region growing level set (LS)
methods. Examples from medical image segmentation applications with different FC
algorithms are also included.

11.1 Introduction and Overview

In this chapter, we will review the current state of knowledge in region-based
digital image segmentation methods, with a special emphasis on the fuzzy
connectedness family of algorithms. The other image segmentation methods
are discussed in the other chapters of this book and we will refer to them only
marginally. We will put a special emphasis on the delineation algorithms, that
is, the segmentation procedures returning only one Object Of Interest (OOI)
at a time rather than multiple objects simultaneously. This will make the
presentation clearer, even for the methods that can be easily extended to the
multi-object versions.

We will discuss only the region-growing-type delineation algorithms, which
in Chapter 1 are referred to as agglomerative or bottom-up algorithms. More
precisely, we will concentrate on the four families of such algorithms. The lead-
ing theme will be the framework of Fuzzy Connectedness (FC) methods devel-
oped since 1996 [1–6], including a slightly different approach to this method-
ology, as presented in papers [7–9]. For some applications of FC, see also
e.g. [10,11]. We will also discuss the family of Graph Cut (GC) methods [12–20]
and their relations to the FC family of algorithms. The GC methodology will
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be of special importance to our presentation, since we will formalize the FC
framework in the language of graphs and graph cuts. The other two families
of segmentation algorithms we will discuss consist of Watershed (WS) [21–23]
and region growing Level Set (LS) methods from [24, 25].

The common feature of all the presented algorithms is that the object
to be segmented by them is indicated (by user, or automatically) by one or
more space elements (spels) referred to as seeds. In addition, if P is an object
returned by such an algorithm, then any spel belonging to P is connected to at
least one of the seeds indicating this object. The word “connected” indicates,
that the topological properties of the image scene play important role in this
class of segmentation processes. So, we will proceed with explaining what we
mean by the image scene, its topology, as well as the notion of connectedness
in this context.

For the rest of this chapter, n ≥ 2 will stand for the dimension of the image
we consider. In most medically relevant cases, n is either 2 or 3, but a time
sequence of 3D images is often considered as a 4D image.

11.1.1 Digital Image Scene

A digital image scene C can be identified with any finite subset of the n-
dimensional Euclidean space R

n. However, we will concentrate here only on
the case most relevant for medical imaging, in which C is of the rectangular
form C1×· · ·×Cn and each Ci is identified

1 with the set of integers {1, . . . ,mi}.
A topology on a scene C = 〈C,α〉 will be given in terms of adjacency

relation α, which intuitively determines which pair of spels c, d ∈ C is “close
enough” to be considered connected. Formally, an adjacency relation α is a
binary relation on C, which will be identified with a subset of C ×C, that is,
spels c, d ∈ C are α-adjacent, if and only if, 〈c, d〉 ∈ α. From the theoretical
point of view, we need only to assume that the adjacency relation is symmetric
(i.e., if c is adjacent to d, then also d is adjacent to c).2 However, in most
medical applications, it is enough to assume that c is adjacent to d when the
distance3 ||c−d|| between c and d does not exceed some fixed number. In most
applications, we use adjacencies like 4-adjacency (for n = 2) or 6-adjacency
(in the Three-dimensional (3D) case), defined as ||c − d|| ≤ 1. Similarly, the
8-adjacency (for n = 2) and 26-adjacency (in 3D) relations can be defined as
||c− d|| ≤

√
3.

1 This identification of the coordinates of spels with the integer numbers is relevant
only for the computer implementations. For theoretical algorithmic discussion,
especially for anisotropic images, we will assume that Ci’s are the real numbers
of appropriate distances.

2 Usually it is also assumed that α is reflexive (i.e., any spel c is adjacent to itself,
〈c, c〉 ∈ α), but this assumption is not essential for most considerations.

3 In the examples, we use the Euclidean distance || · ||. But any other distance
notion can be also used here.
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The adjacency relation on C translates to the notion of connectivity as fol-
lows. A (connected) path p in a subset A of C is any finite sequence 〈c1, . . . , ck〉
of spels in A such that any consecutive spels ci, ci+1 in p are adjacent. The
family of all paths in A is denoted by P

A. Spels c and s are connected in A
provided there exists a path p = 〈c1, . . . , ck〉 in A from c to s, that is, such
that c1 = c and ck = s. The family of all paths in A from c to d is denoted
by P

A
cd.

11.1.2 Topological and Graph-Theoretical Scene Representations

The topological interpretation of the scene given above is routinely used in the
description of many segmentation algorithms. In particular, this is the case
for FC, WS, and most of the LS methods. On the other hand, the algorithms
like GC use the interpretation of the scene as a directed graph G = 〈V,E〉,
where V = C is the set of vertices (sometimes extended by two additional
vertices) and E is the set of edges, which are identified with the set of pairs
〈c, d〉 from V = C for which c and d are joined by an edge.

Note that if we define E as the set of all adjacent pairs 〈c, d〉 from C (i.e.,
when E = α), then the graph G = 〈V,E〉 and the scene C = 〈C,α〉 are the
identical structures (i.e., G = C), despite their different interpretations. This
forms the basis of the duality between the topological and graph-theoretical
view of this structure: any topological scene C = 〈C,α〉 can be treated as a
graph G = 〈C,α〉 and, conversely any graph G = 〈V,E〉 can be treated as
topological scene C = 〈V,E〉.

Under this duality, the standard topological and graph theoretical notions
fully agree. A path p in C is connected in C = G in a topological sense, if and
only if, it is connected in the graph G = C. A subset P of C is connected, in a
topological sense, in C = G, if and only if, it is connected in the graph G = C.
The symmetry of α translates into the symmetry of the graph G = 〈C,α〉,
and since any edge 〈c, d〉 in G can be reversed (i.e., if 〈c, d〉 is in E = α, then
so is 〈d, c〉), G can be treated as an undirected graph.

11.1.3 Digital Image

All of the above notions depend only on the geometry of the image scene and
are independent of the image intensity function. Here, the image intensity
function will be a function f from C into R

k, that is, f : C → R
k. The value

f(c) of f at c is a k-dimensional vector of image intensities at spel c. A digital
image will be treated as a pair 〈C, f〉, where C is its scene (treated either as
a topological scene or as a related graph) and f is the image intensity. We will
often identify the image with its intensity function, that is, without explicitly
specifying associated scene adjacency. In case when k = 1 we will say that the
image is scalar; for k > 1 we talk about vectorial images. Mostly, when giving
examples, we will confine ourselves to scalar images.
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11.1.4 Delineated Objects

Assume that with an image 〈C, f〉 we have associated an energy function e,
which for every set P ⊂ C associates its energy value e(P ) ∈ R. Assume also
that we have a fixed energy threshold value θ and a non-empty set S ⊂ C
of seeds indicating our OOI. Let P(S, θ) be a family of all objects P ⊂ C,
associated with e, S, and θ, such that e(P ) ≤ θ, S ⊂ P , and every c ∈ P
is connected in P to some seed s ∈ S. Threshold θ will be always chosen
so that the family P(S, θ) is non-empty. Any of the region-based algorithms
we consider here will return, as a delineated object, a set P (S, θ) ∈ P(S, θ).
Usually (but not always) P (S, θ) is the smallest element of P(S, θ).

In the case of any of the four methods FC, GC, WS, and LS, the value
e(P ) of the energy function is defined in terms of the boundary bd(P ) of P ,
that is, the set K = bd(P ) of all edges 〈c, d〉 of a graph C = 〈C,E〉 with
c ∈ P and d not in P . We often refer to this boundary set K as a graph cut,
since removing these edges from C disconnects P from its complement C \P .
The actual definition of e depends on the particular segmentation method.

Let κ : E → R be a local cost function. For 〈c, d〉 ∈ E the value κ(c, d)
depends on the value of the image intensity function f on c, d, and (sometimes)
nearby spels. Usually, the bigger is the difference between the values of f(c)
and f(d), the smaller is the cost value κ(c, d). This agrees with the intuition
that the bigger the magnitude of the difference f(c)−f(d) is, the greater is the
chance that the “real” boundary of the object we seek is between these spels.
In the FC algorithms, κ is called the affinity function. In the GC algorithms
κ is treated as a weight function of the edges and is referred to as local
cost function. For the classical GC algorithms, the energy function e(P ) is
defined as the sum of the weights of all edges in K = bd(P ), that is, as
∑

〈c,d〉∈K κ(c, d). The delineations for the FC family of algorithms are obtained

with the energy function e(P ) defined as the maximum of the weights of
all edges in K = bd(P ), that is, as max〈c,d〉∈K κ(c, d). The same maximum
function works also for the WS family with an appropriately chosen κ. The
energy function for LS is more complicated, as it depends also on the geometry
of the boundary, specifically its curvature.

11.2 Threshold-Indicated Fuzzy Connected Objects

Let I = 〈C, f〉 be a digital image, with the scene C = 〈C,E〉 being identified
with a graph. As indicated above, the FC segmentations require a local mea-
sure of connectivity κ associated with I, known as affinity function, where for
a graph edge 〈c, d〉 ∈ E (i.e., for adjacent c and d) the number κ(c, d) (edge
weight) represents a measure of how strongly spels c and d are connected to
each other in a local sense. The most prominent affinities used so far are as
follows [26], where σ > 0 is a fixed constant. The homogeneity-based affinity

ψσ(c, d) = e−||f(c)−f(d)||2/σ2

where 〈c, d〉 ∈ E (11.1)
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with its value being close to 1 (meaning that c and d are well connected)
when the spels have very similar intensity values; ψσ is related to the notion
of directional derivative.

The object feature-based affinity (single object case, with an expected
intensity vector m ∈ R

k for the object)

φσ(c, d) = e−max{||f(c)−m||,||f(d)−m||}2/σ2

where 〈c, d〉 ∈ E (11.2)

with its value being close to one when both adjacent spels have intensity values
close to m. The weighted averages of these two forms of affinity functions –
either additive or multiplicative – have also been used. The values of these
affinity functions, used in the presented algorithms, are in the interval [0, 1].

11.2.1 Absolute Fuzzy Connectedness Objects

Let κ be an affinity associated with a digital image I. As stated in Section 11.1,
an FC delineated object Pmax(S, θ), indicated by a set S of seeds and an
appropriate threshold θ, can be defined as

Pmax(S, θ) is the smallest set belonging to the family PFC(S, θ), (11.3)

where PFC(S, θ) is the family of all sets P ⊂ C such that: (i) S ⊂ P ; (ii)
every c ∈ P is connected in P to some s ∈ S; (iii) κ(c, d) ≤ θ for all boundary
edges 〈c, d〉 of P (i.e., e(P ) = max〈c,d〉∈bd(P ) κ(c, d) ≤ θ). This definition of
the object is very convenient for the comparison of FC with GC and with
the other two methods. Nevertheless, for the actual implementation of the FC
algorithm, it is more convenient to use another definition, standard in the FC
literature. The equivalence of both approaches is given by Theorem 1.

A path strength of a path p = 〈c1, . . . , ck〉, k > 1, is defined as µ(p)
def
=

min{κ(ci−1, ci) : 1 < i ≤ k}, that is, the strength of the κ-weakest link of p.
For k = 1 (i.e., when p has length 1) we associate with p the strongest possible

value: µ(p)
def
= 1.4 For c, d ∈ A ⊆ C, the (global) κ-connectedness strength in

A between c and d is defined as the strength of a strongest path in A between
c and d; that is,

µA(c, d)
def
= max

{

µ(p) : p ∈ P
A
cd

}

. (11.4)

Notice that µA(c, c) = µ(〈c〉) = 1. We will often refer to the function µA as a
connectivity measure (on A) induced by κ. For c ∈ A ⊆ C and a non-empty

D ⊂ A, we also define µA(c,D)
def
= maxd∈D µ

A(c, d). The standard definition
of an FC delineated object, indicated by a set S of seeds and an appropriate

4 For k = 1 the set {κ(ci−1, ci) : 1 < i ≤ k} is empty, so the first part of the
definition leads to equation µ(〈c1〉) = min ∅. This agrees with our definition of
µ(〈c1〉) = 1 if we define min ∅ as equal to 1, the highest possible value for κ. Thus,
we will assume that min ∅ = 1.
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threshold θ < 1 and referred to as Absolute Fuzzy Connectedness (AFC)
object, is given as PSθ =

{

c ∈ C : θ < µC(c, S)
}

.5

Theorem 1. PSθ = Pmax(S, θ) for all S ⊂ C and θ < 1.

11.2.2 Robustness of Objects

If a set of seeds S contains only one seed s, then we will write Psθ for the
object PSθ = P{s}θ . It is easy to see that PSθ is a union of all objects Psθ for
s ∈ S, that is, PSθ =

⋃

s∈S Psθ. Actually, if Gθ = 〈C,Eθ〉 is a graph with Eθ
consisting of the scene graph edges 〈c, d〉 with weight κ(c, d) greater than θ,
then Psθ is a connected component of Gθ containing s, and PSθ is a union of
all components of Gθ intersecting S.

One of the most important properties of the AFC objects is known as
robustness. Intuitively, this property states that the FC delineation results do
not change if the seeds S indicating an object are replaced by another nearby
set T of seeds. Formally, it reads as follows.

Theorem 2. (Robustness) For every digital image I on a scene C =
〈C,E〉, every s ∈ C and θ < 1, if Psθ is an associated FC object, then
PTθ = Psθ for every non-empty T ⊂ Psθ. More generally, if S ⊂ C and
T ⊂ PSθ intersects every connected component of Gθ intersecting PSθ (i.e.,
T ∩ Psθ 6= ∅ for every s ∈ S), then PTθ = PSθ.

The proof of this result follows easily from our graph interpretation of the
object, as indicated above. The proof based only on the topological description
of the scene can be found in [2, 5]. The robustness property constitutes the
strongest argument for defining the objects in the FC fashion. Note, that none
of the other algorithms discussed here have this property.

11.2.3 Algorithm for Delineating Objects

The algorithm presented below comes from [1].

Algorithm κθFOEMS
Input: Scene C = 〈C,E〉, affinity κ defined on an image I = 〈C, f〉, a

set S ⊂ C of seeds indicating the object and a threshold θ < 1.
Output: AFC object PSθ for the image I.
Auxiliary Data
Structures:

A characteristic function g : C → {0, 1} of PSθ and a queue
Q of spels.

5 In the literature an AFC object is usually arrived at (see [3, 5]) as P
≤

Sθ
=

{

c ∈ C : θ ≤ µC(c, S)
}

. However, if θ+ denotes the smallest number greater than

θ of the form κ(c, d), with 〈c, d〉 ∈ E, then PSθ = P
≤

Sθ+
. Thus, our definition of

AFC object can be also expressed in the standard form, with just slightly different
threshold. On the other hand, the following presentation is considerably easier
expressible with the AFC object defined with the strict inequality.
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begin
1. set g(s) = 1 for all s ∈ S and g(c) = 0 for all c ∈ C \ S;
2. push to Q all spels c ∈ C for which κ(c, s) > θ for some s ∈ S;
3. while Q is not empty do
4. remove a spel c from Q;
5. if g(c) = 0 then
6. set g(c) = 1;
7. push to Q all spels d ∈ C for which κ(d, c) > θ;
8. endif ;
9. endwhile;
10. create PSθ as a set of all spels c with g(c) = 1;

end
It is easy to see that κθFOEMS runs in linear time with respect to the

size n of the scene C. This is the case, since any spel can be pushed into the
queue Q (Line 7) at most ∆-many times, where ∆ is the degree of the graph
C (i.e., the largest number of spels that can be adjacent to a single spel; e.g.,
∆ = 26 for the 26-adjacency). Specifically, κθFOEMS runs in time of order
O(∆n).

11.3 Optimization in Foreground-Background Case

So far, we discussed algorithms delineating an object, P , indicated by some
seeds S belonging to P . Since we had no direct information on the spatial
extent of the desired object, the actual extent of the delineated object P was
regulated only by a mysterious parameter: a threshold θ setting the upper limit
on the energy function value e(P ). The difficulty of choosing this threshold is
overcome by setting up and solving an appropriate optimization problem for
an energy function e. The setting part is done as follows.

First, we choose a proper initial condition, which, in the case of FC and
GC algorithms, consists of indicating not only the foreground object (i.e., the
OOI) by a set S of seeds, but also a background (i.e., everything except the
OOI) by another set T of seeds. The stipulation is that S is contained in the
delineated P , while T is disjoint with P . This ensures that we will consider
only non-trivial sets P as possible choices for the object.

Let P(S, T ) be the family of all sets P ⊂ C such that S ⊂ P and T∩P = ∅.
We like the desired object P to minimize the energy e(P ) over all P ∈ P(S, T ),
that is, sets P satisfying the initial condition indicated by seeds S and T . In
other words, if we define emin = min{e(P ) : P ∈ P(S, T )}, then the OOI
PS,T will be chosen, by an algorithm, as an element of the family Pmin =
{P ∈ P(S, T ) : e(P ) = emin}. This is a typical setup for the energy optimiza-
tion image delineation algorithms.

Notice that, although the minimal energy emin is always uniquely defined,
the family Pmin may have more than one element, so our solution PS,T ∈ Pmin

still may not be uniquely determined. In the case of GC framework, the family
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Pmin has always the smallest element (smallest in terms of inclusion) and this
element is taken as PS,T . The situation is the same in the FC framework,
when S is a singleton. In the case when S has more seeds, the family Pmin is
refined to a smaller family P∗

min and PS,T is the smallest element of P∗
min. All

of this is discussed in more detail below.

11.3.1 Relative Fuzzy Connectedness

In the fuzzy connectedness framework, the optimization technique indicated
above is called Relative Fuzzy Connectedness (RFC). Once again, the actual
definition of the RFC object PS,T (see [2]) is in a slightly different format
from the one indicated above – it emphasizes the competition of seed sets S
and T for attracting a given spel c to their realms. The attraction is expressed
in terms of the strength of global connectedness µC(c, S) and µC(c, T ): PS,T
claims a spel c when µC(c, S) exceeds µC(c, T ), that is,

PS,T = {c ∈ C : µC(c, S) > µC(c, T )}

Notice that, PS,T = {c ∈ C : (∃s ∈ S)µC(c, s) > µC(c, T )} =
⋃

s∈S P{s},T ,
as µc(c, S) = maxs∈S µ

C(c, s). Below, we will show that, if the number
µC(S, T ) = maxs∈S µ

C(s, T ) is less than 1, then PS,T ∈ P(S, T ), that is,
that PS,T contains S and is disjoint with T . (If µC(S, T ) = 1, then sets S and
T need not be disjoint. In this case the set PS,T is empty.) It is also important
that

if P ∈ P(S, T ), then e(P ) ≥ µC(S, T ) (11.5)

Indeed, choose a path p = 〈c1, . . . , ck〉 from s ∈ S to a t ∈ T such that µ(p) =
µC(S, T ). Since c1 = s ∈ P and ck = t /∈ P , there exists a j ∈ {2, . . . , k}
with cj−1 ∈ P while cj /∈ P . This means that 〈cj−1, cj〉 ∈ bd(P ). Hence,
e(P ) = max〈c,d〉∈bd(P ) κ(c, d) ≥ κ(cj−1, cj) ≥ min{κ(ci−1, ci) : 1 < i ≤ k} =
µ(p) = µC(S, T ).

Next note that each object P{s},T is indeed a result of the optimization,
as stated above.

Lemma 1. Assume that θs = µC(s, T ) < 1. Then P{s},T = Psθs . Moreover,
θs equals emin = min{e(P ) : P ∈ P({s}, T )} and Psθs is the smallest set in
the family Pmin = {P ∈ P({s}, T ) : e(P ) = emin}.

The description of the RFC object PS,T when S has more than one seed
is given in the following theorem. Intuitively, it says that each seed s ∈ S
generates separately its own part P{s},T ∈ P({s}, T ) and although their union,
PS,T , minimizes only its own lower bound θS = µC(S, T ), each component
P{s},T minimizes its own version of the minimum, θs = µC(s, T ), which may
be (and often is) smaller than the global minimizer θS = µC(S, T ). In other
words, the object PS,T can be viewed as a result of minimization procedure
used separately for each s ∈ S, which gives a sharper result than a simple
minimization of global energy for the entire object PS,T .
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Theorem 3. Assume that θS = µC(S, T ) < 1. Then e(PS,T ) = θS = emin

and PS,T =
⋃

s∈S Psθs is the smallest set in the family P∗
min of the sets of the

form
⋃

s∈S P
s, where each P s belongs to Psmin = {P ∈ P({s}, T ) : e(P ) = θs}.

Moreover, P∗
min ⊂ Pmin.

11.3.2 Algorithm for Delineating Objects

The algorithm presented below is a multiseed version of the algorithm from [1].
It is a main step for defining the RFC object PS,T .
Algorithm κFOEMS
Input: Scene C = 〈C,E〉, affinity κ defined on an image I = 〈C, f〉, a

set T ⊂ C.
Output: A connectivity function h : C → [0, 1], h(c) = µC(c, T ).
Auxiliary Data Structures: A queue Q of spels.
begin

1. set h(t) = 1 for all t ∈ T and h(c) = 0 for all c ∈ C \ T ;
2. push to Q all spels c ∈ C for which κ(c, t) > 0 for some t ∈ T ;
3. while Q is not empty do
4. remove a spel c from Q;
5. find M = max{min{h(d), κ(d, c)} : 〈d, c〉 ∈ E}
6. if M > h(c) then
7. set h(c) =M ;
8. push to Q all d ∈ C for which min{M,κ(c, d)} > h(d);
9. endif ;
10. endwhile;
11. output connectivity function h : C → [0, 1], h(c) = µC(c, T );

end

The algorithm runs in quadratic time with respect to the size n of a scene
C. More precisely, the maximal number of possible values for the connectiv-
ity function h is the size of the range of κ, which does not exceed the size
of the set of all edges E, that is, ∆n. Therefore, each spel d may be pushed
back to Q at most ∆n2 many times: when the value h(c) is changed (maxi-
mum ∆n-many times) for each of ∆-many spels c adjacent to d. Since each
instance of performing the while command operation is of time order O(∆),
the κFOEMS ends, in the worst case, in time of order O(∆2n2).

If a connectivity function h(c) = µC(c, T ) is calculated, then numbers
θs = µC(s, T ) < 1 are readily available, and object PS,T =

⋃

s∈S Psθs
can be delineated, in quadratic time of order O(∆2n2), by calling algorithm
κθFOEMS for each s ∈ S.

11.3.3 Graph Cut Delineation

For the GC algorithms, a graph GI = 〈V,E〉 associated with the image I =
〈C, f〉, whereC = 〈C,α〉, is a slight modification of the graph 〈C,α〉 discussed



10 Ciesielski, Udupa

above. Specifically, the set of vertices V is defined as C∪{s, t}, that is, the stan-
dard set C of image vertices is expanded by two new additional vertices s and
t called terminals. Individually, s is referred to as source and t as sink. The set
of edges is defined as E = α∪{〈b, d〉 : one of b, d is in C, the other in {s, t}}.
In other words, the edges between vertices in C remains as in C, while we
connect each terminal vertex to each c ∈ C.

The simplest way to think about the terminals is that they serve as the
seed indicators: s for seeds S ⊂ C indicating the object; t for seeds T ⊂ C
indicating the background. The indication works as follows. For each edge
connecting a terminal r ∈ {s, t} with a c ∈ C associate the weight: ∞ if either
r = s and c ∈ S, or r = t and c ∈ T ; and 0 otherwise. This means, that the
source s has infinitely strong connection to any seed c in S, and the weakest
possible to any other spel c ∈ C. (We assume that all weights are nonnegative,
that is, in [0,∞].) Similarly, for the sink t and seeds c from T .

Now, assume that for every edge 〈c, d〉 ∈ α we give a weight κ(c, d) asso-
ciated with the image I = 〈C, f〉. Since the algorithm for delineating RFC
object uses only the information on the associated graph (which includes the
weights given by the affinity κ), we can delineate RFC object P ∗

{s},{t} ⊂ V

associated with this graph GI . It is easy to see that the RFC object PS,T ⊂ C
associated with I is equal to P ∗

{s},{t} ∩ C. Similarly, for θ < 1, if P ∗
sθ ⊂ V is

an AFC object associated with the graph GI , then the AFC object PSθ ⊂ C
associated with I is equal to P ∗

Sθ ∩ C. All of this proves that, from the FC
framework point of view, replacing the graph G = 〈C,α〉 with GI is only
technical in nature and results in no delineation differences.

Historically, the rationale for using in GC frameworks graphs GI , with
distinctive terminals, is algorithmic in nature. More precisely, for a weighted
graph G = 〈V,E〉 with positive weights and two distinct vertices s and t
indicated in it, there is an algorithm returning the smallest set PG in the family
Pmin = {P ∈ P(s, t) : e(P ) = emin}, where P(s, t) = {P ⊂ V \ {t} : s ∈ P},
emin = min{eΣ(P ) : P ∈ P(s, t)}, eΣ(P ) =

∑

e∈bd(P ) we, and we is the weight
of the edge e in the graph.

Now, let GI = 〈C ∪ {s, t}〉, E〉 be the graph associated with an image I as
described above, that is, weights of edges between spels from C are obtained
from the image I (in a manner similar to the affinity numbers) and weights
between the other edges by seed sets S and T indicating foreground and
background. It is easy to see that the object PΣS,T = C ∩ PGI contains S, is
disjoint with T , and has the smallest cost eΣ among all such sets. Thus, the
format of definition of the GC object PΣS,T is the same as that for RFC object
PS,T , the difference being only the energy functions e they use.

In spite of similarities between the GC and RFC methodologies as indi-
cated above, there are also considerable differences between them. There are
several theoretical advantages of the RFC framework over GC in this setting.

• Speed: The FC algorithms run faster than those for GC. Theoretical es-
timation of FC algorithms worst scenario run time (for slower RFC) is
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O(n2) with respect to the scene size n (Sect. 11.3.2), while the best theo-
retical estimation of the run time for delineating PΣS,T is of order O(n3) (for

the best known algorithms) or O(n2.5) (for the fastest currently known),
see [15]. This is also confirmed by experimental comparisons.

• Robustness: The outcome of FC algorithms is unaffected by small (within
the objects) changes of the position of seeds (Theorems 2 and 4). On the
other hand, the results of GC delineation may become sensitive for even
small perturbations of the seeds.

• Multiple objects: The RFC framework handles easily the segmentation of
multiple objects, retaining its running time estimate and robustness prop-
erty (Sect. 11.4.1). The GC in the multiple object setting leads to an NP-
hard problem [12], so all existing algorithms for performing the required
precise delineation run in exponential time. However, there are algorithms
that render approximate solutions for such GC problems in a practical
time [12].

• Shrinking problem: In contrast to RFC methods, the GC algorithms have a
tendency of choosing the objects with very small size of the boundary, even
if the weights of the boundary edges is very high [16, 19]. This may easily
lead to the segmented object being very close to either the foreground
seed set S, or the complement of the background seed set T . Therefore,
the object returned by GC may be far from desirable. This problem has
been addressed by many authors, via modification of the GC method.
Notice that RFC methods do not have any shrinking problem.

• Iterative approach: The FC framework allows an iterative refinement of its
connectivity measure µA, which in turn makes it possible to redefine e as
we go along. From the viewpoint of algorithm, this is a powerful strategy.
No such methods exist for GC at present.

All of this said, it should be noticed that GC has also some nice properties
that FC does not possess. First notice that the shrinking problem is the result
of favoring shorter boundaries over the longer, that is, has a smoothing effect
on the boundaries. This, in many (but not all) cases of medically important
image delineations, is a desirable feature. There is no boundary smoothing fac-
tor built in to the FC basic framework and, if desirable, boundary smoothing
must be done at the FC post processing stage.

Another nice feature of GC graph representation GI of an image I is that
the weights of edges to terminal vertices naturally represent the object feature-
based affinity, see (11.2), while the weights of the edges with both vertices in
C are naturally connected with the homogeneity type of affinity (11.1). This
is the case, since homogeneity-based affinity (a derivative concept) is a binary
relation in nature, while the object feature-based affinity is actually a unary
relation. Such a clear cut distinction is difficult to achieve in FC framework,
since it requires only one affinity relation in its setting.
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11.4 Segmentation of Multiple Objects

Now, assume that we like to recognize m > 1 separate objects, P1, . . . , Pm, in
the image I = 〈C, f〉. What general properties the family P = {P1, . . . , Pm}
should have? The term “segmentation” suggests that P should be a parti-
tion of a scene C, that is, that sets are pairwise disjoint (i.e., no two of then
have common element) and that they cover C (i.e., C =

⋃m
i=1 Pi). Unfor-

tunately, insuring both of these properties is usually neither desirable not
possible for the medical image segmentation problems. We believe, that the
most reasonable compromise here is to assume that the objects Pi are pair-
wise disjoint, while they do not necessarily cover the entire image scene C.
The motivation here is the delineation of major body organs (e.g., stomach,
liver, pancreas, kidneys). Therefore, the term image segmentation refers to a
family P = {P1, . . . , Pm} of pairwise disjoint objects for which the background
set BP = C \⋃m

i=1 Pi might be nonempty.
It should be stressed, however, that some authors allow overlap of the

objects, while ensuring that there is no nonempty background BP [7,8]. Other
methods (like classical WS algorithms) return a partition of a scene.

11.4.1 Relative Fuzzy Connectedness

Assume that for an image I = 〈C, f〉 we have a pairwise disjoint family
S = {S1, . . . , Sm} of sets of seeds, each Si indicating an associated object

Pi. If for each i we put Ti =
(

⋃m
j=1 Sj

)

\ Si, then the RFC segmentation is

defined as a family P = {PSiS : i = 1, . . . ,m}, where each object PSiS is equal
to PSi,Ti

= {c ∈ C : µC(c, Si) > µC(c, Ti)}.
Since, by Lemma 1, each PSi,Ti

equals
⋃

s∈Si
P{s},Ti

=
⋃

s∈S Psθs , where

θs = µC(s, Ti), using the algorithms from Section 11.3.2, the partition P can
be found in O(n2) time. Also, the robustness Theorem 2 can be modified to
this setting as follows.

Theorem 4. (Robustness for RFC) Let S = {S1, . . . , Sm} be a family of
seeds in a digital image I and let P = {PSiS : i = 1, . . . ,m} be an associated
RFC segmentation. For every i and s ∈ Si let g(s) be in P{s},Ti

. If S ′ =
{S′

1, . . . , S
′
m}, where each S′

i = {g(s) : s ∈ Si}, then PSiS = PS′

i
S′ for every i.

In other words, if each seed s present in S is only “slightly” shifted to a
new position g(s), then the resulting RFC segmentation {PS′

i
S′ : i = 1, . . . ,m}

is identical to the original one P .
When an RFC object PSiS is indicated by a single seed, then, by Theo-

rem 3, it is equal to the AFC object Psiθi for appropriate threshold θi. But
even when all objects are in such forms, different threshold θi need not be
equal, each being individually tailored.

This idea is best depicted schematically (Fig. 11.1). Figure 11.1(a) repre-
sents a schematic scene with a uniform background and four distinct areas
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denoted by S, T , U , W , and indicated by seeds marked by ×. It is assumed
that each of these areas is uniform in intensity and the connectivity strength
within each of these areas has the maximal value of 1, the connectivity between
the background and any other spel is ≤ 0.2, while the connectivity between
the adjacent regions is as indicated in the figure: µ(s, t) = 0.6, µ(s, u) = 0.5,
and µ(u,w) = 0.6. (Part b): The RFC segmentation of three objects indi-
cated by seeds s, t, and u, respectively. (Part c):Three AFC objects indicated
by the seeds s, t, u and delineated with threshold θ = 0.6. Notice that while
Ps,{s,t,u} = Ps,.6 and Pt,{s,t,u} = Pt,.6, object Pu,.6 is smaller than RFC in-
dicated Pu,{s,t,u}. (Part d): Same as in Part (c) but with θ = 0.5. Note that
while Pu,{s,t,u} = Pu,.5, objects Ps,.5 and Pt,.5 coincide and lead to an object
bigger than Ps,{s,t,u} and Pt,{s,t,u}.

11.4.2 Iterative Relative Fuzzy Connectedness

The RFC segmentation P = {PSiS : i = 1, . . . ,m} of a scene can still leave
quite a sizable “leftover” background set B = BP of all spels c outside any
of the objects wherein the strengths of connectedness are equal with respect
to the seeds. The goal of the Iterative Relative Fuzzy Connectedness (IRFC)
is to find a way to naturally redistribute some of the spels from BP among
the object regions in a new generation (iteration) of segmentation. Another
motivation for IRFC is to overcome the problem of “path strength dilution”
within the same object, of paths that reach the peripheral subtle and thin
aspects of the object.

In the left part of Figure 11.2, two object regions A and B, each with
its core and peripheral subtle parts, are shown, a situation like the arteries
and veins being juxtaposed. Owing to blur, partial volume effect and other
shortcomings, the strongest paths from s1 to t1, s1 to t2, s2 to t1, and s2 to t2
are all likely to assume similar strengths. As a consequence, the spels in the
dark areas may fall in BP , the unclaimed background set.

The idea of IRFC is to treat the RFC delineated objects PSiS as the first
iteration P 1

SiS
approximation of the final segmentation, while the next step

×
× 

× ×

s
t

u

.5

.6

.6

S T

U W

w

(a) schematic scene

Pu,{s,t,u}

Ps,{s,t,u} Pt,{s,t,u}

(b) segmentation

Pu,(.6)+

Pt,(.6)+Ps,(.6)+

(c) θ = 0.6

Pu,(.5)+

Pt,(.5)+Ps,(.5)  =+

(d) θ = 0.5

Fig. 11.1. Relative fuzzy connectedness. Each object is optimized separately.
Panels (c) and (d) show delineations.



14 Ciesielski, Udupa

iteration is designed to redistribute some of the background spels c ∈ BP ,
for which µC(c, Si) = µC(c, Ti) for some i. Such a tie can be resolved if the
strongest paths justifying µC(c, Si) and µC(c, Ti) cannot pass through the
spels already assigned to another object. In other words, we like to add spels
from the set P ∗ = {c ∈ B : µB∪PSiS (c, Si) > µB∪PSjS (c, Sj) for every j 6= i},
to a new generation P 2

SiS
of P 1

SiS
, that is, define P 2

SiS
as P 1

SiS
∪ P ∗. This

formula can be taken as a definition. However, from the algorithmic point of
view, it is more convenient to define P 2

SiS
as

P 2
SiS = P 1

SiS ∪
{

c ∈ C \ P 1
SiS : µ

C(c, Si) > µC\P 1
SiS (c, Ti)

}

while the equation P 2
SiS

= P 1
SiS

∪P ∗ always holds, as proved in [5, thm. 3.7].

Thus, the IRFC object is defined as P∞
SiS

=
⋃∞
k=1 P

k
SiS

, where sets P kSiS
are

defined recursively by the formulas P 1
SiS

= PSiS and

P k+1
SiS

= P kSiS ∪
{

c ∈ C \ P kSiS : µ
C(c, Si) > µC\Pk

SiS (c, Ti)
}

(11.6)

The right side of Figure 11.2 illustrates these ideas pictorially. The ini-
tial segmentation is defined by RFC conservatively, so that PSiS corresponds
to the core aspects of the object identified by seed s ∈ Si (illustrated by
the hatched area containing s). This leaves a large boundary set B where
the strengths of connectedness with respect to the different seeds are equal
(illustrated by the shaded area containing c). In the next iteration, the seg-
mentation is improved incrementally by grabbing those spels of B that are
connected more strongly to PSiS than to sets PSjS . When considering the
object associated with s, the “appropriate” path from s to any c ∈ B is any
path in C. However, all objects have to compete with the object associated
with s by allowing paths from their respective seeds t ∈ Ti to c not to go
through PSiS since this set has already been declared to be part of the object
of s.

The IRFC segmentation is robust in the sense of Theorem 4, where in its
statement the objects PSiS are replaced by the first iteration P 1

SiS
of P∞

SiS
.

Fig. 11.2. RFC vs. IRFC. Left: The strongest paths from s1 to t1, s1 to t2, s2
to t1, and s2 to t2 are likely to have the same strength because of partial volume
effects; Right: Pictorial illustration of IRFC advantages over RFC.
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This follows easily from Theorem 4 [5]. It is also worth to notice that the
witnessing strongest paths from c ∈ P∞

SiS
to Si can be found in P∞

SiS
[5].

11.4.3 Algorithm for Iterative Relative Fuzzy Connectedness

The algorithm presented below comes from [5]. Note that we start the recur-
sion with P 0

SiS
= ∅. It is easy to see that with such definition P 1

SiS
obtained

with (11.6) is indeed equal to PSiS .
Algorithm κIRMOFC
Input: Scene C = 〈C,E〉, affinity κ defined on an image I = 〈C, f〉,

a family S = {S1, . . . , Sm} of pairwise disjoint set of seeds, a

sequence 〈T1, . . . , Tm〉, with Ti =
(

⋃m
j=1 Sj

)

\ Si for every i.
Output: A sequence 〈P∞

S1S
, . . . , P∞

SmS〉 forming IRFC segmentation.
Auxiliary
Data
Structures:

A sequence of characteristic functions gi : C → {0, 1} of
objects P kSiS

and affinity κgi equal to κ for pairs 〈c, d〉 with
gi(c) = gi(d) = 0, and 0 otherwise. Note that µC(·, Ti) for
κgi equals to µC\PSiS (·, Ti) for PSiS indicated by gi.

begin
1. for i = 1 to m do
2. invoke κFOEMS to find h0(·) = µC(·, Si);
3. initiate gi(c) = 0 for all c ∈ C;
4. set κgi = κ and flag = true;
5. while flag = true do;
6. set flag = false;
7. invoke κFOEMS to find h(·) = µC(·, Ti) for κgi ;
8. for all c ∈ C do
9. if gi(c) = 0 and h0(c) > h(c) then
10. set gi(c) = 1 and flag = true;
11. for every d ∈ C, d 6= c, adjacent to c do
12. set κgi(c, d) = 0 and κgi(d, c) = 0;
13. endfor ;
14. endif ;
15. endfor ;
16. endwhile;
17. endfor ;
18. output sets P∞

SiS
indicated by characteristic functions gi;

end

The proof that the algorithm stops and returns proper objects can be
found in [5]. Since it can enter while loop at most once for each updated spel,
it enters it O(n) times, where n is the size of C. Since κFOEMS runs in time
of order O(∆2n2), the worst scenario for κIRMOFC is that it runs in time
of order O(∆2n3).

A slightly different approach to calculating IRFC objects comes from the
Image Foresting Transform (IFT) [20,27]. This approach distributes the spels
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unassigned by IRFC to different objects, according to some ad hoc algorithmic
procedure.

11.4.4 Variants of IRFC

In the papers [7–9] (in particular, see [8, page 465]), the authors employ differ-
ent affinity κi for each i-th object to be delineated, and apply the algorithm
that returns the objects P̂∞

SiS
=

⋃∞
k=0 P̂

k
SiS

, with sets P̂ kSiS
being defined

recursively by the formulas P 0
SiS

= ∅ and

P̂ k+1
SiS

= P̂ kSiS ∪
⋃

j 6=i

{

c ∈ C \ P̂ kSiS : µ
C
i (c, Si) ≥ µ

C\P̂k
SiS

j (c, Sj)

}

(11.7)

where µj is the global connectivity measure associated with the affinity κj .
In general, the segmentations defined with different affinities, in the format

of (11.7) (even with just one step iteration, that is, in the RFC mode), are
neither robust nor have path connectedness property mentioned at the end of
Section 11.4.2. (See [2].) Although, the lack of path connectedness property
may seem to be of little consequence, it undermines the entire philosophy that
stands behind IRFC definitions. Nevertheless, it solves some problems with
dealing with the object-feature based affinity in single affinity mode, which
was discussed in [28].

11.5 Scale-based and Vectorial Fuzzy Connectedness

In our discussion so far, when formulating affinities κ, we considered κ(c, d) to
depend only (besides the spatial relation of c and d) on the (vectorial or scalar)
intensities f(c) and f(d) at c and d, cf. (11.1) and (11.2). This restriction can
be relaxed, yielding us scale-based and vectorial affinity.

In scale-based FC [26], instead of considering just c and d, a “local scale
region” around each of c and d is considered in scene C for defining κ. In the
ball scale approach, this local region around c is the largest ball bc, centered
at c, which is such that the image intensities at spels within bc are homoge-
neous. For defining κ(c, d) then, the intensities within bc and bd are considered.
Typically a filtered value f ′(x) is estimated for each x ∈ {c, d} from all inten-
sities within bx by taking their weighted average, the weight determined by
a k-variate Gaussian function centered at f(x). The filtered values f ′(c) and
f ′(d) are then used in defining κ(c, d) instead of the original intensities f(c)
and f(d). In place of the ball, an ellipsoid has also been proposed for the scale
region, which leads to the tensor scale approach [29]. The underlying idea
in these approaches is to reduce the sensitivity of FC algorithms to spel-level
random noise. Note that when local scales are used in this manner, none of the
theoretical constructs of FC needs change. Actually, the scale-based approach
can be seen as a preprocessing step: replace the original intensity function f
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with its scale-based filtered version f ′, and then proceed with the regular FC
algorithm applied to the image I ′ = 〈C, f ′〉 in place of I = 〈C, f〉.

In vectorial FC [6], the vectorial intensity function f(x) ∈ R
k is used

in defining κ. For example, in such a case, (11.1) and (11.2) become k-
variate Gaussian functions (i.e., we apply k-variate Gaussian to a vector, like
f(c)− f(d), instead of simple Gaussian function to its length ||f(c)− f(d)||).
Obviously, the scale concept can be combined with the vectorial idea [6]. In
fact, these two concepts can be individually or jointly combined with the
principles underlying AFC, RFC, and IRFC.

11.6 Affinity Functions in Fuzzy Connectedness

An affinity function for an image I = 〈C, f〉, with C = 〈C,α〉, is a function,
say κ, defined on a set C ×C. More precisely, it is of importance only for the
adjacent pairs 〈c, d〉, that is, from α ⊂ C × C. The affinity functions defined
in (11.1) and (11.2) have the values in the interval [0, 1], are symmetric (i.e.,
κ(c, d) = κ(d, c) for all c, d ∈ C) and have the property that κ(c, c) = 1 for all
c ∈ C. We will refer to any such affinity as a standard affinity.

In general, any linearly ordered set 〈L,� 〉 can serve as a range (value
set) of an affinity [30]: a function κ : C × C → L is an affinity function (into
〈L,� 〉) provided κ is symmetric and κ(a, b) � κ(c, c) for every a, b, c ∈ C.
Note that κ(d, d) � κ(c, c) for every c, d ∈ C. So, there exists an element in
L, which we denote by a symbol 1κ, such that κ(c, c) = 1κ for every c ∈ C.
Notice that 1κ is the largest element of Lκ = {κ(a, b) : a, b ∈ C}, although it
does not need to be the largest element of L. Clearly, any standard affinity κ
is an affinity function with 〈L,� 〉 = 〈[0, 1],≤ 〉 and 1κ = 1. In the discussion
below, 〈L,� 〉 will be either the standard range 〈[0, 1],≤ 〉 or 〈[0,∞],≥ 〉.
Note that, in this second case, the order relation � is the reversed standard
order relation ≥.

11.6.1 Equivalent Affinities

We say that the affinities κ1 : C × C → 〈L1,�1 〉 and κ2 : C × C → 〈L2,�2 〉
are equivalent (in the FC sense) provided, for every a, b, c, d ∈ C

κ1(a, b) �1 κ1(c, d) if and only if κ2(a, b) �2 κ2(c, d).

For example, it can be easily seen that for any constants σ, τ > 0 the
homogeneity-based affinities ψσ and ψτ , see (11.1), are equivalent, since
for any pairs 〈a, b〉 and 〈c, d〉 of adjacent spels: ψσ(a, b) < ψσ(c, d) ⇐⇒
||f(a)−f(b)|| > ||f(c)−f(d)|| ⇐⇒ ψτ (a, b) < ψτ (c, d). (Symbol ⇐⇒ means
“if and only if.”) Equivalent affinities can be characterized as follows, where ◦
stands for the composition of functions, that is, (g◦κ1)(a, b) = g(κ1(a, b)) [31].
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Theorem 5. Affinities κ1 : C × C → 〈L1,�1 〉 and κ2 : C × C → 〈L2,�2 〉
are equivalent if and only if there exists a strictly increasing function g from
〈Lκ1

,�1 〉 onto 〈Lκ2
,�2 〉 such that κ2 = g ◦ κ1.

The FC objects, defined in the previous sections, have the same definition
with the general notion of affinity, when the standard inequality ‘≤’ is replaced
by ‘�.’ The implications of and our interest in equivalent affinities are well
encapsulated by the next theorem, which says that any FC segmentation
(AFC, RFC, or IRFC) of a scene C remains unchanged if an affinity on C
used to get the segmentation is replaced by an equivalent affinity.

Theorem 6. [31] Let κ1 : C × C → 〈L1,�1 〉 and κ2 : C × C → 〈L2,�2 〉
be equivalent affinity functions and let S be a family of non-empty pairwise
disjoint subsets of C. Then for every θ1 ≺1 1κ1

in L1, there exists a θ2 ≺2 1κ2

in L2 such that, for every S ∈ S and i ∈ {0, 1, 2, . . .}, we have P κ1

Sθ1
= P κ2

Sθ2
,

P κ1

SS = P κ2

SS , and P
i,κ1

SS = P i,κ2

SS .
Moreover, if g : C → C is a strictly monotone function such that κ2 = g◦κ1

(which exists by Theorem 5), then we can take θ2 = g(θ1).

Keeping this in mind, it makes sense to find for each affinity function an
equivalent affinity in a nice form:

Theorem 7. [31] Every affinity function is equivalent (in the FC sense) to
a standard affinity.

Once we agree that equivalent affinities lead to the same segmentations, we
can restrict our attention to standard affinities without losing any generality
of our method.

Next, we like to describe the natural FC equivalent representations of the
homogeneity-based ψσ (11.1) and object feature-based φσ (11.2) affinities. The
first of them, ψσ(c, d), is equivalent to an approximation of the magnitude of

the directional derivative
∣

∣D−→
cd
f(c)

∣

∣ =
∣

∣

∣

f(c)−f(d)
||c−d||

∣

∣

∣
of f in the direction of the

vector
−→
cd. If spels c and d are adjacent when ||c − d|| ≤ 1, then for adjacent

c, d ∈ C we have ψ(c, d)
def
=

∣

∣D−→
cd
f(c)

∣

∣ = |f(c) − f(d)|. Such defined ψ is
an affinity with the range 〈L,� 〉 = 〈[0,∞],≥ 〉. The equivalence of ψ with

ψσ is justified by Theorem 5 and the Gaussian function gσ(x) = e−x
2/σ2

, as
ψσ(c, d) = (gσ ◦ ψ)(c, d) for any adjacent c, d ∈ C.

The natural form of the object feature-based φσ affinity (for one object)
and a spel c is the number ||f(c) − m||, a distance of the image intensity
f(c) at c from the expected object intensity m. For two adjacent distinct
spels, this leads to the definition φ(c, d) = max{||f(c)−m||, ||f(d)−m||}. We
also put φ(c, c) = 0, to insure that φ is an affinity function, with the range
〈L,� 〉 = 〈[0,∞],≥ 〉. Once again, φ is equivalent with φσ , as φσ = gσ ◦ φ.

The homogeneity-based connectivity measure, µψ = µCψ , can be elegantly
interpreted if the scene C = 〈C, f〉 is considered as a topographical map in
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which f(c) represents an elevation at the location c ∈ C. Then, µψ(c, d) is
the highest possible step (a slope of f) that one must make in order to get
from c to d with each step on a location (spel) from C and of unit length.

In particular, the object Pψsθ = {c ∈ C : θ > µψ(s, c)} represents those spels
c ∈ C which can be reached from s with all steps lower than θ. Note that all
we measure in this setting is the actual change of the altitude while making
the step. Thus, this value can be small, even if the step is made on a very steep
slope, as long as the path approximately follows the altitude contour lines –
this is why on steep hills the roads zigzag, allowing for a small incline of the
motion. On the other hand, the measure of the same step would be large,
if measured with some form of gradient induced homogeneity-based affinity!
(Compare Section 11.7.2.)

The object feature-based connectivity measure of one object has also a nice
topographical map interpretation. For understanding this, consider a modified
scene C̄ = 〈C, |f(·)−m|〉 (called membership scene in [1]) as a topographical
map. Then the number µφ(c, d) represents the lowest possible elevation (in
C̄) which one must reach (a mountain pass) in order to get from c to d, where
each step is on a location from C and is of unit length. Notice that µφ(c, d)
is precisely the degree of connectivity as defined by Rosenfeld [32–34]. By
the above analysis, we brought Rosenfeld’s connectivity also into the affinity
framework introduced by [1], particularly as another object feature component
of affinity.

11.6.2 Essential Parameters in Affinity Functions

Next, let us turn our attention to the determination of the number of param-
eters essential in defining the affinities:

• Homogeneity-based affinity ψσ has no essential parameter, that is, the pa-
rameter σ in its definition is redundant, as ψσ = gσ ◦ ψ is equivalent to
ψ, which is independent of σ. This beautiful characteristic says that FC
partitioning of a scene utilizing homogeneity-based affinity is an inherent
property of the scene and is independent of any parameters, besides a
threshold in case of AFC.

• Object feature-based affinity φσ for one object has two explicit parameters,
m and σ, of which only parameterm is essential. Parameter σ is redundant,
since φσ = gσ ◦ φ is equivalent to φ defined above.

• Object feature-based affinity φ̄σ̄ for n > 1 objects is usually defined as
φ̄(c, d) = maxi=1,...,n φσi

(c, d) [28], where each φσi
is defined by (11.2),

with the parameter m replaced with the ith object average intensity mi.
Here σ̄ = 〈σ1, . . . , σn〉. This affinity has 2n explicit parameters, but only
2n− 1 are essential. Indeed, if δ̄ = 〈1, δ2, . . . , δn〉, where δi = σi/σ1, then

φ̄σ̄ and φ̄δ̄ are equivalent, since φ̄δ̄ = hσ1
◦ φ̄σ̄, where hσ(x) = xσ

2

.

Similar results for the averages, additive and multiplicative, of ψ and φ,
as well as their lexicographical order combination, can be found in [28].



20 Ciesielski, Udupa

11.7 Other Delineation Algorithms

We have already discussed deep similarities between FC and GC methods.
In both cases, the image scene can be represented as weighted graphs (with
different ways of assigning these weights) and the segmentations consist of
different subsets P ’s of the graph vertices. In both cases, we associate with
each object P in the graph its energy (cost) value e(P ) represented in terms
of the weights of edges in the boundary of P , that is, with one spel in P ,
another in its complement. The difference is the format of the energy cost
function: in GC it is a sum of the weights of the boundary edges, while in FC
it is the maximum among all these numbers.

11.7.1 Generalized Graph Cut

Despite the similarities, the segmentations resulting from FC and GC have dif-
ferent properties. For example, the FC segmentations are robust with respect
to seed choice, but GC delineations are not. On the other hand, GC output
smoothes the boundary of the resulting object (via penalizing long bound-
aries) – which is sometimes desirable – while FC have no such properties. An
interesting problem was considered in [35]:

“For what classes of graph energy cost functions e(P ) (not necessarily
defined in terms of the edge weights) can we find graph weights such
that the GC optimization of the resulting graph is identical to the
optimization of the original function e?”

The necessary condition given there implies, in particular, that the maxi-
mum energy of FC cannot be represented that way. This also follows from the
fact that FC and GC segmentations have different properties, like robustness.

It should be clear that, if one uses in FC an object feature-based affinity,
then, under an interpretation of µ as Rosenfeld’s degree of connectivity, the
resulting segmented object is the water basin, as in the WS segmentations. If
one desires more than one basin/object, then RFC results agree with the WS
basin interpretation, as long as one “stops pumping the water” when a spill
to another basin occurs.

At that point, we face a problem discussed in Section 11.4.1: should we
leave the spels where competition breaks unassigned to any object, or should
we find a way to redistribute them among the objects. In RFC we opt for
the first of these choices. In standard WS, the second option is followed by
“building the dams” at the “mountain passes” where conflict occurs, and
then continuing “land submerging” process until every spel is assigned. In
other words, the outcome of WS can be viewed as the outcome of RFC used
with proper object feature-based affinity, if we opt for leaving unassigned the
spels where “ties” occur.

In summary, the FC, GC, and WS methods, to which we will refer here
as Generalized Graph (GG) methods, can be viewed as the same class of
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segmentation methods, with their outcomes – resulting from the optimization
of appropriate energy functions – obtained as segmentations of appropriate
weighted graphs. This was clearly demonstrated above, if one chooses treating
segmentation as an assignment of disjoint regions, when some spels belong
to no object. In the other extreme, when the “spels with ties” are assigned
according a proper (slightly ad hoc) procedures typical for each method, the
GG algorithms are also equivalent. They all can be expressed in the IFT
framework [20, 27, 36].

11.7.2 Level Set vs. Generalized Graph Cut

The relation of GG to LS is not straightforward. First of all, we will under-
stand that the name relates to the image segmentation methods that have the
following properties:

1. set the segmentation problem in the continuous setting (i.e., images are
defined on the regions Ω in the Euclidean space Rn, usually with n = 2 or
n = 3), solve it as such, and, only at the last stage of method development,
use discretization (i.e., finite approximation) of the continuous case to the
the digital image case;

2. in the problem set-up, use an energy function e associating with image
segmentation P its energy value e(P);

3. usually (but not always) considered as a problem solution a segmentation
P that minimizes e in an appropriate class of segmentations;

4. usually (but not always) the minimization is achieved by variational meth-
ods, which leads to a differential equation and returns a local minimum
for e.

Some optimization methods, like active contour (snake) [37] satisfy all
these properties, but are not region-based methods, since they concentrate on
finding only parts of a region boundary at a time. Some others actually do
not explicitly optimize an energy (i.e., there is no clear Step 3), but it can be
viewed as a solution for a variational problem (i.e., Step 4), that is, a solution
for an implicitly given optimization problem [24]. Perhaps the most influential
and prominent LS delineation method is that of Mumford and Shah [38], and
its special case, due to Chan and Vese [39].

The biggest difference between such described LS methods and GG meth-
ods is the property (1) of LS: it makes a precise theoretical comparison be-
tween the methods difficult, and, at the purely discrete level, actually im-
possible. This is the case, since the precise outcome of LS is a segmentation
of Ω, while the other methods return segmentations on a discrete scene C.
If we try to compare LS and GG segmentations of a discrete scene C, then
the comparison is between a precisely defined GG output and an unspeci-
fied approximation of the continuous LS segmentation, and any conclusion
of such effort will be only approximate. Therefore, the only precise theoret-
ical comparison between LS and GG segmentation methods can be made at
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the continuous level, that is, on the images defined on an Euclidean scene
Ω. A natural approach how to relate the GG with the continuous output is
described in [40].

For a continuous image F : Ω → R
k and a digital scene C ⊂ Ω let F ↾ C be

a digital image on C approximating F . We think about it here as a restriction
of F (i.e., (F ↾ C)(c) = f(c) for all c ∈ C). For a segmentation algorithm
A, let A(F ↾ C,p ) be the output of A applied to the image F ↾ C and
some parameters p, like seeds and cost function. We like to think of an A-
segmentation of the entire scene Ω of F as a result of application of A to
the “image F ↾ C obtained with infinite resolution.” More formally, it will be
understood as a limit A∗(F,p) = limC→ΩA(F ↾ C,p) over all appropriate
finite sets C ⊂ Ω [40]. In this set-up, we can say that a discrete segmentation
algorithm A agrees (or is equivalent) at infinite resolution with a continuous
(say, level set) segmentation model M in the class F of images F : Ω → R

k

provided for every F ∈ F and appropriate parameter vector p, the limit
A∗(F,p) exists and is equal to a segmentation M(F,p) of Ω predicted by
M . In this sense, we have proved

Theorem 8. [40] The FC delineation algorithm A▽ used with the gradient
based affinity is equivalent, at infinite resolution, with a level set delineation
model MLS from Malladi, Sethian, and Vemuri paper [24].

Here, the gradient based affinity is a natural discretization of a notion
of gradient (see [40]) similar in spirit to the homogeneity based affinity. We
should stress that there are a few hidden elements in this theorem. First of all,
we consider, after the authors of [24], the outcome of the model as the viscosity
solution of the propagation problem, in which the curvature parameter used
in the model goes to zero. In other words, the actual outcome of the model
M▽ does not guarantees smoothness (in a curvature sense) of the boundary.
This is the only way the equivalence with GG algorithms can be achieved
(at least, with the energy functions we consider), as the graphs associated
with the images consist only of the first order image intensity information
(the weights of edges are based on the intensities of at most two adjacent
spels, which can be viewed as an approximation of the first derivative of the
intensity function), while the curvature is the second order (based on the
second derivative) notion, which requires information of at least three spels
to be defined [16].)

The strange twist of Theorem 8 is that, in fact, it tells us nothing on the
level set algorithm ALS, which is obtained as a discretization of the model
MLS . Although we proved [40] that the limit limC→ΩA▽(F ↾ C,p) exists
and is equal to MLS(F,p), there is no formal prove in the literature that, for
appropriate functions F , the limit limC→ΩALS(F ↾ C,p) exists or that it is
equal to MLS(F,p). Although there are general results in the theory of dif-
ferential equations indicating when a discretization of a differential equation
converges to its continuous solution (in the MLS case, the discrete approx-
imation of the level set function, property (iv), can indeed converge to the
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continuous level set function), such convergence implies neither the existence
of the limit limC→ΩALS(F ↾ C,p) nor, even if it exists, that it is equal to the
continuous object indicated by the limiting surface. The story of other level
sets algorithms is similar — there is a great ravine between their continuous,
mathematical models and the associated discrete approximation algorithms,
which should approximate the continuous models, but that are unknown (at
least, theoretically) when they do so.

11.8 Medical Image Examples

The FC algorithms have been employed in segmenting medical CT, MR, and
ultrasound images under various medical applications. They have also been
used in non-medical image segmentation tasks. Our own application focus has
been medical. These include:

• Delineation of gray matter, white matter, Cerebrospinal Fluid (CSF), le-
sions, diseased parts of white matter, and parcellations of these entities in
different anatomic and functional regions of the brain via multi-protocol
MR images for studying the multiple sclerosis disease (Fig. 11.3) and in
elderly subjects to study aging related depression and dementia;

• Delineation of bone and soft tissue structures in CT images for craniomax-
illofacial surgery planning (Fig. 11.4);

• Separation of arteries and veins in Magnetic Resonance Angiography
(MRA) images (Fig. 11.5);

• Delineation of brain tumors in multi-protocol MR images (Fig. 11.6);

Fig. 11.3. FC and AFC segmentation of brain images. Top: Cross-sectional
brain image from visible woman data set, white and gray matter segmentations via
vectorial scale-based FC, and proton density weighted MRI; Bottom: T2 weighted
MRI, white matter, gray matter, CSF and lesion segmentations via AFC.
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Fig. 11.4. Skin peeling via AFC segmentation.

Left: Volume rendering from CT image of a patient with
mid facial clefts; Right: result after skin peeling.

Fig. 11.5. Vessel separa-

tion via IRFC. Left: A seg-
ment of the peripheral vascular
tree from MRA; Right: arteries
and veins separated via IRFC.

Fig. 11.6. Tumor segmen-

tation. Left column: FLAIR
and T1 weighted MRI with-
out and with contrast agent;
Right column: The edematous
tumor region segmented via
AFC from the FLAIR im-
age and from the subtracted
(post from pre-contrast) image
showing enhancing aspects of
the tumor.

• Delineation of upper airway and surrounding structures in MRI for study-
ing pediatric Obstructive Sleep Apnea (OSA) (Fig. 11.7).

The need for image segmentation in medical applications arises from our
desire to (a) characterize and quantify a disease process; (b) understand the
natural course of a disease; (c) study the effects of a treatment regimen for a
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Fig. 11.7. Surface rendering of

AFC-segmented MRI. Left: Upper
airway and other surrounding structures
(mandible, adenoid, tonsils, tongue) of a
normal child; Right: a child with OSA.

disease; and (d) guide therapeutic procedures. In our applications, the moti-
vation came from (a)-(c). The performance of the different FC algorithms has
been evaluated in these applications quite extensively; please refer to the spe-
cific application related papers cited in [41]. The reasons for choosing FC in
these applications are mainly three-fold. (1) We are intimately familiar with
the FC technology, have the full resources of its implementation, and have
the expertise for optimally utilizing them in medical applications. These are
crucial requirements for the optimal use of any segmentation algorithm. (2)
Among comparable other families of algorithms (such as graph cuts, water-
shed, level sets), FC constitutes one of the fastest groups of algorithms. (3)
The FC formulation is entirely digital starting from first principles, and so
there are no ad hoc/unspecified continuous-to-digital conversion issues.

11.9 Concluding Remarks

Focusing mainly on FC methods, we have presented a unified mathematical
theory wherein four currently predominant, purely image-based approaches –
GC, WS, LS, and FC – are described in a single framework as energy opti-
mization methods in image segmentation. Among these, LS has a continuous
formulation and poses some challenges, unenunciated in the literature, on how
to reconcile it with the eventual computational/algorithmic requirements of
discretization. The remaining – GC, WS, FC – have an inherently discrete
formulation and lend themselves naturally to combinatorial optimization so-
lutions. The unifying treatment has helped us in delineating the similarities
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and differences among these methods and in pinpointing their strengths and
weaknesses.

All segmentation methods rely on a (local) attribute functional of some
sort – we called them affinity for FC and edge cost in general – for transforming
intensity information into contributions to the energy functional. The notion
of equivalent affinities is useful in characterizing the distinct and unique as-
pects of this function that have a real impact on the energy functional. Such
an analysis can also be carried out for the attribute functionals of GC, WS,
and LS, and of any other segmentation methods, although this does not seem
to have been done. (But compare [35].) Its consequence on nailing down the
real independent parameters of a segmentation algorithm has implications in
setting the segmentation algorithm optimally for a given application domain
and in evaluating its robustness to parameter settings.

In all FC developments so far, for theoretical and algorithmic simplic-
ity, only 2-ary fuzzy relations have been considered (meaning, affinity and
connectedness have been considered only between two spels). Further, in the
composition of fuzzy relations such as ψσ and φσ (for a given object and for
all objects), only union and max-min constructs have been employed for the
same reasons. Relaxing these restrictions may lead to new, more powerful and
effective algorithms. For example, m-ary relations can be defined by consid-
ering all spels in the local scale region. Further, considering fuzzy relations as
both fuzzy subsets of the scene and as m-ary relations (m ≥ 2), various fuzzy
subset operations (such as algebraic union, product, etc.) and compositing op-
erations (such as max-star, sum-min, sum-product, algebraic-sum-min, etc.)
can also be used. Prior object shape and appearance fuzzy models can also be
brought into this realm. These require considerable theoretical, algorithmic,
and application related work.
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