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Abstract

In 2003, Maurer at al. [10] published a paper describing an al-
gorithm that computes the exact distance transform in linear time
(with respect to image size) for the rectangular binary images in the
k-dimensional space Rk and distance measured with respect to Lp-
metric for 1 ≤ p ≤ ∞, which includes Euclidean distance L2. In this
paper we discuss this algorithm from theoretical and practical points of
view. On the practical side, we concentrate on its Euclidean distance
version, discuss the possible ways of implementing it as signed distance
transform, and experimentally compare implemented algorithms. We
also describe the parallelization of these algorithms and discuss the
computational time savings associated with them. All these imple-
mentations will be made available as a part of the CAVASS software
system developed and maintained in our group [7]. On the theoret-
ical side, we prove that our version of the signed distance transform
algorithm, GBDT , returns the exact value of the distance from the
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geometrically defined object boundary. We provide a complete proof
(which was not given in [10]) that all these algorithms work correctly
for Lp-metric with 1 < p <∞. We also point out that the precise form
of the algorithm from [10] is not well defined for L1 and L∞ metrics.
In addition, we show that the algorithm can be used to find, in linear
time, the exact value of the diameter of an object, that is, the largest
possible distance between any two of its elements.

1 Introduction

For a metric space X with a distance ∆ and its non-empty subset B ⊂ X,
a distance transform DT is a mapping from X such that DT (x) = ∆(x,B)

for every x in X, where ∆(x,B)
def
= infb∈B ∆(x, b). In other words, for every

x the value of DT (x) is a result of minimization:

DT (x) = inf
b∈B

∆(x, b). (1)

A feature transform FT is a related argument minimization:

FT (x) = arg inf
b∈B

∆(x, b). (2)

In particular, if FT (x) ∈ B exists (which is always the case for non-empty
finite B), then DT (x) = ∆(x, FT (x)). However, the value of FT (x) need
not be unique, see Figure 1. In this paper we will consider only the situation
when X is either the k-dimensional Euclidean space Rk or its finite subset
C, treated as a digital scene.

1.1 Background

Distance transform in digital spaces is an important tool in image process-
ing [1, 2, 4–6, 8, 12, 15, 16]. (See also [25–30].) It finds widespread use in
a variety of image operations such as filtering, interpolation, segmentation,
registration, shape analysis, shape modeling, image compression, skeletoniza-
tion or medial axis transform, and morphological operations. Some examples
of these operations are as follows; most are applicable in Rk. A binary im-
age can be interpolated guided by the shape of the object it represents by
first applying a distance transform to the binary image, then interpolating
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Figure 1. The inside rectangle (red) represents

the set of all points of distance r from the image

background (outside, in blue) and can be viewed

as its boundary propagation at time t = r/v. We

have DT (c) = DT (d) = r. FT (d) is uniquely

defined as b; FT (c) can be either a or a′.

!!

""""!

Figure 2. Representation in R2

of the point xuv from (P2) on a

horizontal line for Euclidean dis-

tance. Points on the slanted line are

equidistant from u and v.

the distance map, and finally connecting the interpolated distance map back
to a binary image [12]. This principle can also be applied to a gray level
image [5, 6] by representing an n-dimensional gray image as a surface shape
(binary image) in an (n+ 1)-dimensional space where image intensity forms
the height of the surface in (n + 1)th dimension. Medial axis representa-
tion of a shape [11] is a powerful concept that has numerous applications.
One of its manifestations in the digital space is in the form of algorithms to
“skeletonize” binary images. The distance transforms (and the feature trans-
forms) find extensive use in robust “skeletonization” operations [1, 2, 17, 18].
Shape model-based techniques are funding extensive use in medical image
segmentation, object motion tracking, shape analysis, and change detection.
In constructing a shape model from the shape samples given for a shape
family, distance transforms are used in ways analogous to their employment
in interpolation. For example, the given shape samples are first distance
transformed, and subsequently, the distance maps are averaged to estimate
the mean of the given sample shapes [19, 20]. Distance transforms are also
useful in image segmentation both in binary and gray level images [21, 22].
The distance transform is commonly used in image segmentation algorithms
that utilize front (e.g., object boundary) propagation. (For more on this, in a
non-digital setting, see also comment (D2) on page 8.) When a front is prop-
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agated from an initial surface S with a constant speed v, the front/surface
position at time t is precisely represented as the set of points c at which the
value of the distance transform (i.e., the distance from c to S) is equal to vt.

The distance transform can be used as a basic tool in constructing other
analysis tools. The algorithm LTdiam we present in Section 3 for finding the
exact object diameter is one such. Roughly, the diameter of an object is the
(length of the) longest line segment connecting any two of its points. This
tool is useful, for example, in creating 3D rendered images of a given object.
In scaling the object properly for creating its projection in the rendered
image, information about the radius of the smallest sphere that just encloses
the object is very useful. Similarly, in Radiology, a standard measure, as per
the RECIST criterion, used to define the size of a lesion is its diameter [23].
This is what the algorithm LTdiam output estimates automatically, unlike
in the RECIST guidelines wherein the measurement is manual.

1.2 Preliminaries

The focal point of the discussion presented in this paper is the linear time
distance transform LTDT algorithm, which constitutes our version of the
algorithm of Maurer et al. [10]. It returns both a distance transform DT
and a feature transform FT . We implemented LTDT for the Euclidean
distance ∆, but it also works for any metric ∆ satisfying the property (P)
described in Definition 1.1. This generality requires very little additional
effort. Nevertheless, for most readers it may be natural to assume for the
rest of the paper that ∆ stands simply for the Euclidean distance.

The algorithm LTDT works on binary images defined on the rectangular
grid C = {x10, . . . , x1n1−1} × · · · × {x

k
0, . . . , x

k
nk−1} ⊂ Rk of any dimension

k ≥ 1. For a non-trivial binary image I on C (i.e., a mapping from C onto
{0, 1}; that is, with non-empty foreground and background), LTDT returns
a distance transform function DT from C into R defined, for c ∈ C, as
DT (c) = ∆(c, BI), where BI = {d ∈ C : I(d) = 0} is the image background.
It also calculates an associated feature transform map FT . The algorithm
LTDT runs in time O(n), where n = n1 · . . . · nk is the size of the image
domain C.

Definition 1.1 Let C be as described above. We say that a metric ∆ on
Rk satisfies the property (P) provided the following holds.
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(P) For every d = 1, . . . , k, line R in Rk parallel to the d-axis, and u = (ui)
and v = (vi) from C ⊂ Rk:

(P1) If ud = vd, y ∈ R is such that yd = ud, and ∆(u, y) ≤ ∆(v, y),
then ∆(u, x) ≤ ∆(v, x) for every x ∈ R.

(P2) If ud < vd, then there is an xuv ∈ R (computable in O(1) time)
such that for every x = (xi) from R: if xd < xuv, then ∆(u, x) <
∆(v, x); and if xd ≥ xuv, then ∆(u, x) ≥ ∆(v, x). (See Figure 2.)

Intuitively, conditions (P1) and (P2) both address what happens with
the property “x is closer to u than to v” (expressible as ∆(u, x) ≤ ∆(v, x)
or ∆(u, x) < ∆(v, x)) when u and v are fixed and x moves along a fixed
line R parallel to one of the axis, labeled as d-axis. (P1) addresses the case
when either u = v or the line through u and v is perpendicular to the d-axis;
it tells that the property “x is closer to u than to v” remains unchanged
independently of the position of x on R. (P2) addresses the case when the
line through u and v is not perpendicular to the d-axis. It expresses the fact
that, in this case, there is a point xuv on line R which is ∆-equidistant from
u and v and that the validity of “x is closer to u than to v” depends only on
which side of xuv on R point x lies. See Figure 2.

Recall that, for 1 ≤ p <∞, the Lp metric on Rk is defined by the formula

∆(x, y) =
(∑k

i=1 |xi − yi|p
)1/p

. In particular, the L2 metric is the standard

Euclidean distance. It is easy to see that, for p > 1, the Lp metric satisfies
property (P). (See Proposition 4.4.) In what follows, we always assume that
xd0 < · · · < xdnd−1 for every d = 1, . . . , k, although we need not assume that
the images are isotropic, that is, the numbers xdi+1 − xdi can be different for
different indices i and/or d. Nevertheless, all our figures are presented for
isotropic images and our implementations are tested for this case. The el-
ements of the grid C will be referred to as spels, short for space elements.
Notice that, in this theoretical setting, the spels are represented as the se-
quences 〈xdid〉

k
d=1 of the actual coordinate values (indicating the distances in

real distance units, like mm), rather than as their indices, 〈id〉kd=1, which is
a common representation in image processing. For the isotropic images and
Lp distances, this distinction actually makes no difference for the algorithms
presented in this article. However, the distinction is important for anisotropic
images, as discussed in Remark 2.3.

The paper is organized as follows. In Section 2, we describe and dis-
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cuss different versions of signed distance transform algorithms that can be
derived from the basic algorithm LTDT . The material presented there is
self-contained, except that it relies on Theorem 1.2.

In a short Section 3, we note that a small modification LTDTmax of the
LTDT algorithm returns, for a binary image I, an exact maximal feature
transform MFT : C → BI , that is such that, MDT (x) = supb∈BI

∆(x, b).
We also use LTDTmax to describe an algorithm which returns, in linear time
with respect to the size n of C, a pair s, t ∈ BI for which ∆(s, t) is equal to the
diameter of the set BI , which is such that, ∆(s, t) = sup{∆(c, d) : c, d ∈ BI}.

In Section 4, we describe in detail the algorithm LTDT and provide a
complete proof of the following theorem, in the statement of which we use
the terminology and notation described above.

Theorem 1.2 If C is a rectangular scene in Rk and ∆ is a metric on Rk

satisfying property (P), then for any non-trivial binary image I on C, the
algorithm LTDT returns the exact distance transform DT (c) = ∆(c, BI)
and a related feature transform FT . It runs in a linear time with respect to
the size n of C.

In particular, LTDT works correctly for Lp metrics for 1 < p <∞, which
includes the Euclidean metric.

In Section 5, we report on the experimental results of applying some of the
discussed algorithms on real medical image data for testing the algorithms
discussed in the earlier sections. This section also presents an experimental
comparison of different forms of the algorithm and a description of their
parallelization. The paper is completed with some concluding remarks in
Section 6.

2 Signed Distance Transform algorithms

Let I be a k-dimensional non-trivial binary image, that is, a function from
Ω ⊂ Rk onto {0, 1}. It can be either digital (i.e., with Ω in the form of a
digital grid C) or geometrical (i.e., with Ω equal to Rk.) A Signed Distance
Transform for I is usually defined on Ω as

SDTI(x) = (−1)I(x)∆(x,BdI),

where BdI is a boundary between the foreground FI = {x ∈ Ω: I(x) = 1}
of the image I and its background BI = {x ∈ Ω: I(x) = 0}. The main
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variability in this formula is caused by the use of different definitions of
the boundary BdI . More precisely, for geometrical images, the boundary
is always defined as the topological (geometrical) boundary, which can be
expressed as BdgI = {x ∈ Rk : ∆(x, FI) = ∆(x,BI)}. However, for digital
images. the set BdgI is always disjoint from the grid C (see Figure 3(a)),
so alternative definitions of the digital boundary are often used, although
definitions conforming to BdgI have also been pursued [15]. For example, the
digital boundary BddigI for I is often defined as the set of all spels c in BI ⊂ C
that are adjacent to some foreground spels. In fact, the ITK implementation
of the Maurer’s algorithm [14], called the exact distance transform EDT ,
is in the SDTI form implemented in 3D and uses BddigI defined with 18-
adjacency (i.e., c, d are adjacent when ||c− d|| <

√
3). We also implemented

this version of the algorithm, as LTSDT (linear time signed distance trans-
form), using our version of LTDT and compared it with EDT . Nevertheless,
the following arguments (D1)-(D4) listing the desired properties of distance
transform algorithms show that, for most image processing tasks, the SDT g

I

— the SDTI used with BdgI — should be favored over all possible different
versions of SDTI .

(a) (b)

Figure 3. (a) Geometric boundary BdgI of a binary image I on a 5×5 rectangular grid C

with four foreground spels marked by large dots [15]. (b) The same binary image on the

9×9 double resolution grid C ′, where the smallest dots represent added spels. The digital

boundary Bd′I on C ′, marked by stars, consists of the intersection of BdgI with C ′.
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(D1) Exact linear time implementation. The exact value of SDT g
I can

be calculated in linear time with respect to the size of C of a binary image
— see algorithm Geometric Boundary Distance Transform GBDT described
on page 11.

(D2) Agreement with the geometric version. The fact that precisely
the same formula for SDT can be used for discrete and geometric images
is of particular importance for the energy optimization image segmentation
technics (like level sets or active contours) that find the energy minimizing
surface (object boundary) via its evolution according to the Euler-Lagrange
equations. The evolution requires analytic representation of the current po-
sition of the object boundary, which is usually done implicitly as a level
set of some function Ψ from Rk (for a k-dimensional image) into R, that
is, Bd = {x ∈ Rk : Ψ(x) = 0}. The usual initialization of Ψ is as SDTI ,
which in the continuous case is always taken as SDT g

I , and it makes sense
only to use the same formula for its digital version, used in the numerical
approximation. Here, the GBDT implementation (see toward the end of
this section) of SDT g

I in linear time is of great importance, since during the
boundary (front) evolution, the evolving function Ψ is often reinitialized to
SDT of the new position of the front. Since the algorithm for calculating
SDT is invoked multiple times, this may introduce and accumulate errors if
not done correctly and consistently. An example of a front evolution via DT
is shown schematically in Figure 1.

(D3) Agreement with hyper cube interpretation of spels. It is com-
mon practice to identify each spel c in the isotropic rectangular digital image
with the unit side k-dimensional cube centered at c, and the boundary as a
union of the faces of all such cubes shared by foreground and background
points [15]. (See Figure 3.) There are many advantages of such definitions
of a digital boundary (see [16]) in visualization, processing, and image anal-
ysis. For example, when distance transforms are used in interpolating object
shape [12], it has been shown that distances determined with respect to
boundaries so defined lead to more accurate results [6, 8]. The point here is
that SDT g

I is equal to the boundary obtained with a cube-based interpreta-
tion of spels.
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(D4) Symmetry with respect to background and foreground. The
SDT g

I , and any other version of SDTI used with the boundary notion for
which the boundary of the background is equal to the boundary of the fore-
ground, have the following reversibility property, where 1− I is the reversed
image of I (i.e. the foreground of I is the background of 1 − I, and vice
versa):

(r) SDTI(x) = −SDT1−I(x) for every x in the domain of image I.

Clearly, any SDT with this property leads to a more consistent distance
map when distances from boundary are needed in an application for both
foreground and background points. The problem with EDT implemented in
ITK (or LTSDT ), is that it fails to have property (r). In fact, no definition
of boundary as a subset of BI satisfies (r), as shown by the following result.

Theorem 2.1 If SDT is defined via formula SDTJ(x) = (−1)J(x)∆(x,BdJ)
and the property (r) is satisfied by a non-trivial digital image I : C → {0, 1},
then BdI∩C = Bd1−I∩C. In particular, any spel from BdI∩C = Bd1−I∩C
belongs to the background of one of the images I, 1−I, and to the foreground
of the other.

Proof. If x ∈ BdI ∩C, then ∆(x,Bd1−I) = | −SDT1−I(x)| = |SDTI(x)| =
∆(x,BdI) = 0, so x ∈ Bd1−I . This proves BdI ∩C ⊂ Bd1−I ∩C. The other
inclusion is proved analogously. The additional comment holds for any spel
from C.

Of course, if a boundary BdJ of an image J : C → {0, 1} is defined, for
example, as the set of all c ∈ C for which there is an adjacent d ∈ C with
J(c) 6= J(d), then the property (r) holds for SDTI . However, this creates a
“thick” boundary, and some crucial information on the distances close to the
geometrical boundary of the object is lost.

Next, we describe the algorithm GBDT , Geometric Boundary Distance
Transform, mentioned above. It works for the Lp distances with 1 < p <∞.
For a grid C = {x10, . . . , x1n1−1} × · · · × {x

k
0, . . . , x

k
nk−1}, define grid C ′ =

{y10, . . . , y12n1−2} × · · · × {y
k
0 , . . . , y

k
2nk−2}, where, for all appropriate d and i,

yd2i = xdi and yd2i+1 is the mid point between yd2i and yd2i+2. In other words,
we double the resolution of the image grid in each direction. Let Bd′I =
BdgI ∩ C ′ — see Figure 3. The basis for calculating the exact values of
SDTI(c) = (−1)I(c)∆(c, BdgI), c ∈ C, in O(n) time, and the rationale for
GBDT , are provided by the following result.
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Theorem 2.2 ∆(c, BdgI) = ∆(c, Bd′I) for every c ∈ C.

Proof. Clearly ∆(c, BdgI) ≤ ∆(c, Bd′I), since Bd′I ⊂ BdgI . To see the other
inequality, let c ∈ C and d ∈ BdgI be such that ∆(c, d) = ∆(c, BdgI). It is
enough to show that d ∈ C ′. This can be justified by a simple geometric
argument sketched below.

Let F ⊂ BdgI be a face of a k-dimensional cube centered at c, such that
F contains d. Let p be the orthogonal projection of c onto the (k − 1)-
dimensional hyperplane containing F . Note that p ∈ C ′, as it has k − 1
coordinates identical to those of c and one that identifies F ; that is, the mid
point between some yd2i and yd2i+2. If p belongs to F , then d = p (this is
obvious for Euclidean distance L2, but holds also for other Lp distances) and
so d ∈ C ′. Otherwise, d must belong to one of the (k−2)-dimensional hyper-
planes forming the boundary of F , and the argument may be repeated for
this hyperplane. (Formally, the induction on the dimension of a hyperplane
should be used.)

In the algorithm GBDT , and all other algorithms throughout the paper,
we identify the coordinate numbers xdm with their subscripts m; that is, the
grid C = {x10, . . . , x1n1−1}×· · ·×{x

k
0, . . . , x

k
nk−1} is identified with the coordi-

nate set C∗ = {0, . . . , n1 − 1} × · · · × {0, . . . , nk − 1}. Similar identification
will be done for the grid C ′.

More precisely, for c = 〈ci〉ki=1 and d = 〈di〉ki=1 from C∗, let ∆∗(c, d)
be defined as ∆(〈xici〉i, 〈x

i
di
〉i), where ∆ is the (Euclidean or Lp) distance

satisfying (P) for which DT is calculated. Formally, in all the algorithms
presented in this paper, we should use symbols ∆∗ and C∗ in place of ∆ and
C. However, to avoid additional burden, we will skip the ∗-superscript in the
algorithm descriptions. This is additionally justified by the following fact.

Remark 2.3 Let ∆ be an Lp metric, with 1 < p < ∞. If the scene C is
isotropic, with all numbers N i

j = xij+1 − xij (i = 1, . . . , k, j = 0, . . . , nd − 2)
equal to a fixed number θ (physical units), then ∆(c, d) = ∆∗(c, d)θ for all
c, d ∈ C∗. Therefore, for isotropic images, the identification of C∗ with C
does not require any change in the definition of the distance function, except
a multiplication at the end to express distance in physical units. However,
for anisotropic images, the distance must be recovered from the numbers Nd

i ,
which need to be provided together with the image:

∆∗(〈ci〉, 〈di〉) =
(∑k

i=1 |xici − x
i
di
|p
)1/p

,
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where |xici − x
i
di
| =

∑
min{ci,di}<j≤max{ci,di}N

j
i .

In other words, for anisotropic images, the distance function ∆ used in
the algorithms (i.e., ∆∗) should be treated as a subroutine, given by the
above formula.

Algorithm GBDT

Input: Dimension k (≥ 2) of the image; n1, . . . , nk — the size of the
grid; a non-trivial binary image I : C → {0, 1}.

Output: A signed distance transform SDTI : C → R defined as
SDTI(c) = (−1)I(c)∆(c, BdgI).

Auxiliary
Data
Struc-
tures:

A grid C ′ = {0, . . . , 2n1−2}×· · ·×{0, . . . , 2nk−2} having double
resolution with respect to C, where we identify I with its copy Î
defined on Ĉ = {0, 2, . . . , 2n1−2}×· · ·×{0, 2, . . . , 2nk−2} ⊂ C ′

by Î(2x) = I(x), where x = (x1, . . . , xk) ∈ C is arbitrary and
2x = (2x1, . . . , 2xk). A binary image I ′ on C ′ indicating points
of Bd′I of Î (upon such identification) as the 0-value points.

begin
1. set I ′(c) = 1 for all c ∈ C ′;
2. for all x ∈ C and 1 ≤ d ≤ k do
3. for i = 1 to k do
4. if i 6= d then yi = xi, else yi = xi + 1;
5. endfor ;
6. if y ∈ C and I(x) 6= I(y) then
7. set I ′(c) = 0 for each of the 3k−1-many spels c ∈ C ′

on the boundary face between x and y;
8. endif ;
9. endfor ;

10. invoke LTDT with I ′ and appropriate ∆ returning DT defined on C ′;
11. for every x ∈ C set SDTI(x) = (−1)I(x) ·DT (2x);
12. return SDTI ;

end

Theorem 2.4 Algorithm GBDT invoked with the Lp distance, 1 < p <∞,
on any non-trivial binary rectangular digital image I returns the signed dis-
tance to the geometric boundary BdgI between foreground and background.
Moreover, GBDT runs in O(n) time.

Proof. In this argument, we assume that Theorem 1.2 holds true.
The execution time of line 1 is of order O(2kn) = O(n). Each execution of

lines 3-8 requires O(k) +O(2k) = O(1) operations. Since this loop is entered
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kO(n) times, execution of lines 1 − 9 is done with O(n) operations. Since
LTDT applied to I ′ runs in O(2kn) = O(n) time, and execution of line 11
requires n operations, GBDT indeed runs in O(n) time.

Next, note that after the execution of lines 1-9, map I ′ is as desired:
I ′(c) = 0 when c ∈ Bd′I , and I ′(c) = 1 for all remaining c ∈ C ′. Indeed,
after the initiation, in line 1 of I ′ with value 1 for all c ∈ C ′, we examine (see
lines 2-5) all pairs x, y ∈ C of coordinate distance 1 (i.e., sharing a face of
associated cubes), one from foreground, another from background. Then, in
lines 6-8, we insure that, for all points c ∈ C ′ on the common face between
2x and 2y, the value I ′(c) is adjusted to 0.

After the execution of line 10, for every spel c ∈ C ′ we have FT (c) =
∆(c, Bd′I) = ∆(c, BdgI), where the second equation comes from Theorem 2.2.
To finish the proof, it is enough to note that, in line 11, the factor (−1)I(x)

fixes correctly the sign for the signed distance transform.

The pseudocode of the algorithm LTSDT , defined only in three dimen-
sions, is just a simpler version of GBDT , with the boundary defined as a
subset of the background defined with 18-adjacency:

BddigI = {c ∈ C : I(c) = 0 & ||c− d|| <
√

3 for some d ∈ C with I(d) = 1}.

Algorithm LTSDT
Input: n1, n2, n3 —the size of the grid; a non-trivial binary image

I : C → {0, 1}.
Output: A signed distance transform SDTI : C → R defined as

SDTI(c) = (−1)I(c)∆(c, BddigI ).

Auxiliary
Data:

A binary image I ′ on C indicating points of BddigI of I as the
0-valued points.

begin
1. set I ′(c) = 1 for all c ∈ C;
2. for all c ∈ C with I(c) = 0 do
3. for d ∈ C and ||c− d|| <

√
3 do

4. if I(d) = 1 then I ′(c) = 0;
5. endfor ;
6. endfor ;
7. invoke LTDT with I ′ returning DT defined on C;
8. for every x ∈ C set SDTI(x) = (−1)I(x) ·DT (x);
9. return SDTI ;

end
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3 Maximal Distance Transform and the di-

ameter of an object

For a metric space X with a distance ∆ and its non-empty subset B ⊂ X, let
a maximal distance transformMDT be a mapping from X given by a formula
MDT (x) = supb∈B ∆(x, b) and let a maximal feature transform MFT map
be a related argument maximization: MFT (x) = arg supb∈B ∆(x, b). Thus,
for a non-empty finite set B, MFT (x) exists for all x ∈ X and it belongs to
B. Clearly, the notions of maximal distance transform and maximal feature
transform are dual, in a sense of interchanging minima and maxima, with
the notions of distance transform and feature transform. It is therefore not
surprising that a simple modification of the algorithm LTDT gives us the
following result.

Theorem 3.1 If C is a rectangular scene in Rk and ∆ is a metric on Rk

satisfying property (P), then there exists an algorithm LTDTmax which for
any non-trivial binary image I on C returns the exact maximal distance
transformMDT (c) = supb∈B ∆(c, b) and a related maximal feature transform
MFT . It runs in a linear time with respect to the size n of C.

In particular, LTDTmax works correctly for Lp metrics for 1 < p < ∞,
which includes the Euclidean metric.

Sketch of Proof. Let � be the reverse inequality on R, that is, defined
as

x � y if and only if x ≥ y.

Let LTDTmax be a modified LTDT algorithm obtained by replacing the
order relation ≤ with � in its code in every instance it is applied to ∆. In
the pseudo-codes presented in Section 4, it means only one change, in line 7
in DimUp routine. (Notice that the change does not apply to the order of
coordinates of points in the scene.)

The key result is that such created algorithm LTDTmax still returns dis-
tance and feature transforms with respect to this modified order �. The
proof of this fact is identical to that presented in Section 4, although it re-
quires some care in noticing that Lp metrics satisfy modified condition (P)
in which, once again, the order relation ≤ is replaced by � in every instance
it is applied to ∆.

Clearly, distance and feature transforms for � are precisely maximal dis-
tance and feature transforms for the standard order ≤.
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With this result, we have the following algorithm, which, for a non-empty
object S in C, returns the pair s, t from S for which ∆(s, t) is exactly equal
to the diameter diam(S) = sup{∆(c, d) : c, d ∈ S} of S. It is easy to see that
it runs in linear time with respect to the size of C.

Algorithm LTdiam
Input: An object S 6= ∅ in a k-dimensional rectangular scene C ⊂ Rk

represented as a background of a binary image I : C → {0, 1}; the
Lp-metric ∆ for some 1 < p <∞.

Output: A pair s, t ∈ S for which ∆(s, t) = max{∆(c, d) : c, d ∈ S}.
begin

1. invoke LTDTmax for I and ∆ returning MDT and MFT ;
2. find an s ∈ S with MDT (s) = max{MDT (c) : c ∈ S};
3. return s and t = MFT (s);

end

Note that by performing the modifications for the GBDT version of DT,
we can get geometric diameter for object S (i.e., the diameter for the object,
in which each spel is replaced by appropriate rectangle/cube).

4 LTDT and its parallelization

The LTDT algorithm, described in this section, is only a minor modification
of the Maurer at al. algorithm from [10]. We describe it here in detail,
formally prove its correctness (i.e., Theorem 1.2), and describe its parallel
version.

The material is presented in a “general to detailed” format, in which
different routines used in LTDT are introduced and discussed in the order
from the most general (last to be used) routine to the most particular one.
Although such presentation has its challenges, it is our belief that it gives
the reader better overview of how the algorithm really works, emphasizing its
general structure (general routines) and only successively exposing the reader
to its deeper, more technical aspects. Thus, even without going through all
details presented in this section, the reader will have a better chance to
recognize the ideas that lie behind LTDT .

Actually, LTDT computes a feature transform FT for I, see (2), and
DT is calculated from FT only at the output stage by calling the function
DT (c) = ∆(c, FT (c)). The computation of FT is done recursively on the
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DimUp input: Row Rd(x) indicators: x ∈ C and 1 ≤ d ≤ k; a function
F : C → BI ∪ {∅} which is a (d − 1)-dimensional approximation of
FT at every c ∈ Rd(x) ∩ C.

DimUp output: A modified F : C → BI ∪{∅} which is a d-dimensional
approximation of FT at every c ∈ Rd(x) ∩ C. The values of F at
points c /∈ Rd(x) remain unchanged.

DimUp running time cost: O(nd), where number nd is the size of the
row Rd(x) ∩ C.

Figure 4. Properties of DimUp routine, used in LTDT , discussed in detail in Section 4.2.

dimension of the image. To express it precisely, we will need the following
notation, in addition to that already introduced earlier. For every number
0 ≤ d ≤ k and x ∈ C, let Hd(x) = {c ∈ C : ci = xi for all d < i ≤ k}
be the d-dimensional hyperplane containing x that results from fixing the
terminal k−d coordinates, that is, the coordinates with indices greater than
d. Also, if 1 ≤ d ≤ k, then Rd(x) will denote a one-dimensional row in Rk

parallel to the d-th axis, that is, Rd(x) = {c ∈ Rk : ci = xi for all i 6= d}.
We say that a function F : C → BI ∪ {∅} is a d-dimensional approximation
of FT at x ∈ C provided F (x) constitutes a value of the feature transform
for I � Hd(x), the image I restricted to Hd(x). We included the empty
set ∅ in the range of F , since BI�Hd(x) = BI ∩ Hd(x) can be empty, even
when BI is not; in such case we put F (x) = ∅, while in all other cases we
require that ∆(x, F (x)) = ∆(x,BI ∩Hd(x)). Such an F is a d-dimensional
approximation of FT provided it is a d-dimensional approximation of FT at
every x ∈ C; that is, when, for every x ∈ C, its restriction F � Hd(x) to
Hd(x) is a feature transform for I � Hd(x). Notice that the k-dimensional
approximation of FT (for a k-dimensional image) is its true FT , while the
0-dimensional approximation F of FT has the property that F (x) is equal
to x for x ∈ BI , and is equal to ∅ otherwise.

4.1 The algorithm outline: dimension step-up

In this subsection, we will construct the LTDT algorithm using a subrou-
tine DimUp described in Figure 4, which is a variant of VoronoiFV routine
from [10]. We will also prove Theorem 1.2, assuming the properties of DimUp
listed in Figure 4, that is, that LTDT indeed returns the distance transform
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and that it runs in time O(n). The detailed description of DimUp and the
proof of the properties listed in Figure 4 are included in the latter part of
this section.

For 1 ≤ d ≤ k, let Cd = {x ∈ C : xd = 1} be the hyperplane passing
through (1, . . . , 1) and perpendicular to Rd(x). Note that Cd has size n/nd.

Algorithm LTDT
Input: Dimension k (≥ 2) of the image; n1, . . . , nk — the size of the

grid; a non-trivial binary image I : C → {0, 1}.
Output: A distance transform DT : C → R for the image I.
Auxiliary
Data:

A feature transform F : C → C∪{∅}. A queue Q of points from
C. Dimension counter d.

begin
1. for all x ∈ C do
2. if I(x) = 0 then F (x) = x else F (x) = ∅;
3. endfor ;
4. for d = 1 to k do
5. push all points from Cd to Q;
6. while Q is not empty do
7. remove a point x from Q;
8. invoke DimUp with x, d, and current F ;
9. endwhile;

10. endfor ;
11. for all x ∈ C do
12. DT (x) = ∆(x, F (x));
13. endfor ;

end

Lines 1-10 of this algorithm represent procedure ComputeFT from [10].
In lines 1-3 we define F as 0-dimensional approximation of FT. Our main
contribution here is the proof of the following lemma.

Lemma 4.1 If algorithm DimUp works correctly, then for every non-trivial
binary image I defined on a grid C = {0, . . . , n1− 1}× · · · × {0, . . . , nk− 1},
algorithm LTDT returns the exact distance transform DT for the image I.
It does it in time O(n), where n is the size of C.

Proof. After execution of lines 1-3, the map F represents the 0-dimensional
approximation of FT for I, as H0(x) = {x}. This part runs in O(n) time.
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TRIM input: Spel x ∈ C and number 1 ≤ d ≤ k indicating row R =
Rd(x)∩C; a function F : C → BI∪{∅} which is a (d−1)-dimensional
approximation of FT at every c ∈ R.

TRIM output: A list (q1, . . . , qm), 0 ≤ m ≤ nd, of points from G =
{F (x) : x ∈ R} such that

(i) ∆(x, {qj : 1 ≤ j ≤ m}) = ∆(x,G) for every x ∈ R;

(ii) (qj)d < (qj+1)d for every 1 ≤ j < m, and xqi−1qi ≤ xqiqi+1
for

every 1 < i < m.

TRIM running time cost: O(nd), where nd is the size of the row R.

Figure 5. Properties of TRIM routine, used in DimUp, discussed in Section 4.3.

Next notice that for every d = 1, . . . , k, when LTDT enters lines 5-9, F is
a (d−1)-dimensional approximation of FT for I; when it exits lines 5-9, F is
a d-dimensional approximation of FT for I.

This statement is proved by mathematical induction on d. For d = 1, the
entry requirement is guaranteed by lines 1-3. For d > 1, this is ensured by
the inductive assumption. To finish the argument it is enough to show that
the execution of lines 5-9 transforms (d−1)-dimensional approximation F of
FT for I to the d-dimensional approximation of FT. This is guaranteed by
the assumptions on DimUp: when executing lines 5-9, each row Rd(x) of C is
considered precisely once, and running DimUp for this row changes the values
of F on this (and only this) row from (d− 1)-dimensional approximation of
FT to d-dimensional approximation of FT.

Next note that, for each d, the while loop from lines 6–9 is executed
precisely n/nd many times (the size of Cd), and each time the execution cost
of DimUp is of order O(nd). Thus, each execution of lines 5-9 runs in time
of order (n/nd)O(nd) = O(n). Thus, the total time of running lines 1-10 is
of order O(n) + kO(n) = O(n).

Finally, note that, after the execution of the loop 4-10, F represents k-
dimensional approximation of FT for I, which is the true FT for I. The
execution of the loop 11-13 is still of order O(n) (we assume that calculation
of ∆(x, y) is O(1)) and the resulting DT is indeed an exact distance transform
for I.
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4.2 DimUp procedure: further reduction

The goal of this subsection is to provide a detailed description of the DimUp
routine, using a subroutine TRIM described in Figure 5, and prove, in
Lemma 4.3, that it has the desired properties. The detailed description
of TRIM and the proof of its properties listed in Figure 5 are included in the
latter part of this section.

The main theoretical feature responsible for the correctness of the TRIM
routine is the following result. In its statement it is possible that BI ∩Hd(z)
is empty, in which case ∆(x,BI ∩Hd(z)) = ∆(x, ∅) is interpreted as ∞. In
particular, the lemma says that BI ∩Hd(z) is empty if and only if G is.

Lemma 4.2 Let C = {0, . . . , n1 − 1} × · · · × {0, . . . , nk − 1}, I be a binary
image on C, R = Rd(z) ∩ C be a row in C, and F : C → BI ∪ {∅} be a
(d − 1)-dimensional approximation of FT at every x ∈ R. If metric ∆ has
property (P1) and G = {F (x) ∈ BI : x ∈ R}, then G ⊂ BI ∩ Hd(z) and
∆(x,G) = ∆(x,BI ∩Hd(z)) for every x ∈ R. In particular, for every x ∈ R,
the value of a d-dimensional approximation of FT at x can be chosen from
G ∪ {∅}.

Proof. To see that G ⊂ Hd(z), pick a y ∈ G and let x ∈ R be such that
y = F (x) ∈ Hd−1(x). Then yi = xi for all i ≥ d. Since x ∈ R ⊂ Rd(z) implies
that xj = zj for every j 6= d, we have y` = z` for all ` > d. So, y ∈ Hd(z).

Inclusion G ⊂ BI ∩ Hd(z) clearly implies ∆(x,G) ≥ ∆(x,BI ∩ Hd(z)).
To show the other inequality, choose an arbitrary u ∈ BI ∩Hd(z). We need
to find a v ∈ G such that ∆(x, v) ≤ ∆(x, u). Let y ∈ R ⊂ Hd(z) be such
that yd = ud. Since also, for all ` > d, y` = z` = u`, as y, u ∈ Hd(z), we
conclude that u ∈ Hd−1(y). In particular, BI ∩ Hd−1(y) 3 u is non-empty,
so v = F (y) ∈ G belongs to BI ∩ Hd−1(y) and has a property ∆(y, v) =
∆(y,BI∩Hd−1(y)) ≤ ∆(y, u), since F is a (d−1)-dimensional approximation
of FT at y ∈ R. So, by (P1), ∆(x, u) ≥ ∆(x, v).

Lemma 4.2 tells us that if we like to upgrade F from being a (d − 1)-
dimensional approximation of FT on R = Rd(z)∩C to being a d-dimensional
approximation of FT on R, the values of this new F can be chosen from the
values of old F on R, that is, from G = {F (x) : x ∈ R}. In our upgrade
procedure, we will need first to further restrict our choice of the values of
new F on R to a subset of G ∪ {∅}. This will be done with the TRIM
procedure with properties listed in Figure 5.
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Using TRIM it is easy to describe the DimUp algorithm. This is actually
a part (lines 15-24) of the VoronoiFT procedure from [10].

Algorithm DimUp
Input: A (d−1)-dimensional approximation F of FT on R = Rd(c)∩C.
Output: A d-dimensional approximation F of FT on R.
Auxiliary Data: A queue Q of points from C. A counter `.
begin

1. invoke TRIM for R and F to get list (q1, . . . , qm);
2. if m > 0 then
3. push all points from R to Q in the increasing order

(i.e., with xd = 1 for the first removed point);
4. initialize ` = 1;
5. while Q is not empty do
6. remove a point x from Q;
7. while ` < m and ∆(x, q`) ≥ ∆(x, q`+1) do
8. ` = `+ 1;
9. endwhile;

10. F (x) = q`;
11. endwhile;
12. endif ;

end

Lemma 4.3 Assume that ∆ satisfies (P2). If algorithm TRIM works cor-
rectly and the input function F for DimUp is a (d− 1)-dimensional approxi-
mation F of FT on R = Rd(c)∩C, then the output version of F for DimUp
is a d-dimensional approximation of FT on R. Moreover, DimUp runs in
O(nd) time, where nd is the size of the row R.

Proof. By our assumptions on TRIM, the execution time of line 1 is of
order O(nd). The total number of times lines 7-9 can be executed during the
entire program run is bounded by m ≤ nd. Since Q has a size nd, this means
that lines 5-11 are executed with O(nd) operations. So, DimUp requires only
O(nd) operations.

Now, m = 0 precisely when F (x) = ∅ for all x ∈ R, in which case
B∩Hd(c) = ∅, and the algorithm correctly leaves all these values unchanged.
So, assume that m > 0, that is, that the set H = {q1, . . . , qm} is non-empty.
We enter the loop from lines 5-11 precisely nd times, and on its ith execution,
we have xd = i for the removed x from the queue Q. Let `i be the value of
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the counter ` upon leaving the ith execution of the loop. Notice, that upon
entering the loop for its ith execution the value of the counter ` is equal to
`i−1, where `0 = 1 by line 4 of the code. We will show, by induction on
i = 1, . . . , nd, that upon leaving the ith execution of the loop, the following
inductive condition holds.

(Ci) F (x) = q`i and for every 1 ≤ j < `i < n ≤ m

∆(x, qj) ≥ ∆(x, q`i) & ∆(x, q`i) < ∆(x, qn), (3)

where x ∈ R is such that xd = i.

Notice that (3) implies that ∆(x, F (x)) = ∆(x, q`i) ≤ ∆(x, {q1, . . . , qm}),
while ∆(x, {q1, . . . , qm}) = ∆(x,G) = ∆(x,B ∩ Hd(x)) is a consequence of
Lemma 4.2 and the property (i) of TRIM output. Therefore, (3) implies
that ∆(x, F (x)) ≤ ∆(x,B ∩ Hd(x)), that is, F becomes a d-dimensional
approximation of FT at x upon leaving the ith execution of the loop from
lines 5-11; remains so, since the value of F at x does not change any more
during the further execution of TRIM. Consequently, the proof of (Ci) will
complete the proof of the lemma.

To prove (Ci) fix an i = 1, . . . , nd and assume that (Ci−1) holds provided
that i > 1. First we will argue for the first inequality. So let 1 ≤ j < `i.
If j < `i−1, then i > 1, since otherwise we would have 1 ≤ j < `0 = 1, a
contradiction. Let x̄ ∈ R be such that x̄d = i − 1. So, by the inductive
assumption (Ci−1), ∆(x̄, qj) ≥ ∆(x̄, q`i−1

).
Since (qj)d < (q`i−1

)d, property (P2) implies that x̄d ≥ xqjq`i−1
. Thus,

as xd = i > i − 1 = x̄d, we have xd > xqjq`i−1
and, by property (P2),

∆(x, qj) ≥ ∆(x, q`i−1
). Moreover, execution of the loop from lines 7-9 insures

that ∆(x, q`i−1
) ≥ ∆(x, qt) ≥ ∆(x, q`i) for every `0 ≤ t ≤ `1. This implies

that ∆(x, qj) ≥ ∆(x, q`1) for every 1 ≤ j < `1.
To show the second inequality, take `i < n ≤ m. Then `i + 1 ≤ n ≤

m and the fact that loop 7-9 stopped means that ∆(x, q`i) < ∆(x, q`i+1).
For n = `i + 1 this finishes the proof. Therefore, assume that we have
s = n − (`i + 1) > 0. Since (q`i)d < (q`i+1)d, property (P2) implies that
xd < xq`iq`i+1

. Then, {xq`i+jq`i+j+1
: j = 0, . . . , s} and {(q`i+j)d : j = 0, . . . , s}

are increasing by the property (ii) of TRIM output, so, property (P2) (used
s-times with the inequalities xd < xq`i+jq`i+j+1

) implies that also the sequence
{∆(x, q`i+j+1) : j = 1, . . . , s} is strictly increasing. In particular, ∆(x, q`i) <
∆(x, q`i+1) < ∆(x, q`i+1+s) = ∆(x, qn), finishing the proof.
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4.3 The TRIM procedure

In this subsection we will provide a detailed description of the TRIM rou-
tine and prove, in Lemma 4.6, that it has the desired properties claimed in
Figure 5. This, together with Proposition 4.4 and Lemmas 4.3 and 4.1, will
complete the proof of Theorem 1.2.

We will start with proving, in Proposition 4.4, that the Lp metrics satisfy
the property (P). Although the actual proof of Lemma 4.6 does not require
this result, the TRIM routine uses the values of xuv from the property (P),
so it may be easier to follow TRIM description having already determined
actual procedures for finding xuv in the practical cases we emphasize.

Proposition 4.4 For 1 < p < ∞, if ∆ is the Lp metric on Rk, then it
satisfies the property (P) defined in Definition 1.1.

Proof. We will use the notation from (P). To see (P1), note that ∆(u, y)p =∑
i 6=d |ui − yi|p and similarly for ∆(v, y)p, since ud = yd = vd. Also, since x

and y belong to the same line parallel to d-axis, xi = yi for all i 6= d. So,
∆(u, x)p = |ud − xd|p +

∑
i 6=d |ui − yi|p = |vd − xd|p + ∆(u, y)p. Similarly,

∆(v, x)p = |vd − xd|p + ∆(v, y)p. So, since function g(x) = xp is strictly
increasing on [0,∞), ∆(u, y) ≤ ∆(v, y) implies ∆(u, y)p ≤ ∆(v, y)p, thus
∆(u, x)p = |vd − xd|p + ∆(u, y)p ≤ |vd − xd|p + ∆(v, y)p = ∆(v, x)p, and also
∆(u, x) ≤ ∆(v, x).

To see (P2), notice that every point x on R parallel to the d-axis is
uniquely determined by its dth coordinate xd. Let h(xd) = ∆(x, u)p −
∆(x, v)p. We will show that h is strictly increasing and that xuv is a zero
point of h. Indeed, it is easy to see that ∆(u, x) < ∆(v, x) precisely when
h(xd) < 0. Thus, a zero of h must satisfy (P2).

Clearly function h(xd) =
∑k

i=1 |xi − ui|p −
∑k

i=1 |xi − vi|p is contin-
uous. To prove that it is strictly increasing, it is enough to show that
it has positive derivative at all points except possibly for xd = ud and
xd = vd. Since h′(xd) = d

dxd
(|xd − ud|p − |xd − vd|p), for ud < vd < xd,

we have h′(xd) = p ((xd − ud)p−1 − (xd − vd)p−1) > 0 as xd − ud > xd −
vd > 0 and function xp−1 is strictly increasing on (0,∞). Similarly, for
xd < ud < vd, we have h′(xd) = p (−(ud − xd)p−1 + (vd − xd)p−1) > 0 as
vd− xd > ud− xd > 0. Finally, for the remaining case ud < xd < vd, we have
h′(xd) = p ((xd − ud)p−1 + (vd − xd)p−1) > 0.

The existence of a zero point for h follows from the Intermediate Value
Theorem and the fact that h attains both positive and negative values. To
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see this last fact, we note that limud→±∞ h(ud) = ±∞. The argument for the
limit requires some algebraic work, but it follows from a simple estimate [13,
Lemma 3, page 121], proven with calculus tools, that (a+ b)p ≥ ap + pbap−1

for non-negative a and b.

Remark 4.5 As the above arguments show, for Lp metrics with 1 < p <∞
the number xuv can be defined as the dth coordinate of the unique point on
the line R equidistant from u and v. In fact, this is the way xuv is defined
in [10, Remark 3]. However, for the L1 metric, such a point need not exist.
On the plane R2 and for line R being the x-axis, this is justified by points
u = (0, 0) and v = (2, 1), for which ∆(x, u)−∆(x, v) = |x1|−|x1−1|−2 ≤ −1
for any x ∈ R. For L∞ metric (defined as ∆∞(u, v) = max{|ui − vi| : i =
1, . . . , k}) number xuv always exists, but it need not be unique. On the plane
and the same line R, this is justified by points u = (0, 1) and v = (1, 1) since
then any point (a, 0) ∈ R with a ∈ [0, 1] is equidistant from u and v.

Although this means that the precise recipe from [10] does not work for
these two metrics, a simple modification of the algorithm (for LTDT the
change needs to be made in the definition of the CHECK subroutine) can
still produce a correct version of the algorithm.

Assume that 1 < p <∞ and a row R = Rd(c) ∩ C is fixed, where c ∈ C
and d = 1, . . . , k. Let u, v ∈ C be such that ud < vd. Then, according to
Proposition 4.4, xuv (for the row R) is the number xd for which the function
h(xd) = ∆(x, u)p −∆(x, v)p =

∑k
i=1 |ui − xi|p −

∑k
i=1 |vi − xi|p is equal to 0.

For a general value of p, this can be found by a simple numerical approxima-
tion. However, for p = 2 — the most important case of the Euclidean dis-
tance, the one which we actually implemented — the equation takes the form
(xd − ud)2 +

∑
i 6=d(xi − ui)2 = (xd − vd)2 +

∑
i 6=d(xi − vi)2, or, equivalently,

(vd − ud)(2xd − ud − vd) =
∑

i 6=d(xi − vi)2 −
∑

i 6=d(xi − ui)2. Thus, xuv = xd
is a solution of this linear equation.1

In what follows, we will use a boolean valued subroutine CHECK(u,v,w),
which depends on a row R, is applied to u, v, w ∈ C with ud < vd < wd, and is
true when there is no integer i = 0, . . . , nd−1 for which xuv ≤ xdj ≤ xvw. Note
that CHECK is a refinement of procedure REMOVEFT from [10] defined as
xuv > xvw. TRIM works correctly with either version of these procedures.

1In the calculation of the number xuv, the distinction of the spel real coordinates
〈xd

id
〉kd=1 from their index representation 〈id〉kd=1 is of importance for the anisotropic images,

see Remark 2.3.
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However, our experiments show that the implementation with CHECK works
slightly faster.

We implemented the algorithm for isotropic scenes and identified coordi-
nates xd0, . . . , x

d
nd−1 with the indices 0, . . . , nd − 1. In this case, we were able

to implement CHECK(u,v,w) simply as d(xuv)de > b(xvw)dc, where dre is
the smallest integer greater than or equal to r, and brc is the greatest integer
less than or equal to r.

Algorithm TRIM
Input: Row R = Rd(x)∩C indicators: x ∈ C and 1 ≤ d ≤ k; a function

F : C → BI ∪{∅} which is a (d− 1)-dimensional approximation
of FT at every c ∈ R.

Output: A list Q = (q1, . . . , qm) of points from G = {F (x) ∈ BI : x ∈ R}
satisfying (i) and (ii).

Auxiliary
Data:

Counters i,m and point pointers u, v. Q is obtained by removing
some points from the list G.

begin
1. set m = 0;
2. for i = 1 to nd do
3. if F (xi) 6= ∅ then
4. set m = m+ 1;
5. set qm = F (xi);
6. if m > 1 then
7. set u = qm−1;
8. set v = qm;
9. if xuv ≥ nd then

10. set m = m− 1;
11. else
12. while m > 2 and CHECK(qm−2, qm−1, qm) do
13. set qm−1 = qm;
14. set m = m− 1;
15. endwhile;
16. if m = 2 then
17. set u = q1;
18. set v = q2;
19. if xuv < 0 then
20. set q1 = q2;
21. set m = 1;
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22. endif ;
23. endif ;
24. endif ;
25. endif ;
26. endif ;
27. endfor ;
28. return sequence (q1, . . . , qm) for the current value of m;

end

Lemma 4.6 Assume that ∆ satisfies (P). Then TRIM works correctly and
runs in O(nd) time.

Proof. The TRIM procedure should be viewed as starting with G as a first
approximation of the queue Q and removing some of its terms to ensure the
second part of condition (ii) from TRIM output requirement (property (Ci)
below), while preserving (i) (condition (Bi)). The first part of (i) (property
(Ai)) is preserved by any pruning, since G has already this property.

To see that TRIM runs in O(nd) time, note that it enters the loop from
lines 2-27 precisely nd times. The i-th run time of this loop is of order
O(1)+2Pi, where Pi is the number of runs of the loop from lines 12-15. Since
each time this loop is run, one value from the set {F (xi) : i = 1, . . . , nd} is
removed, we have P1 + · · ·+Pnd

≤ nd. Therefore, TRIM indeed runs in time∑nd

i=1(O(1) + 2Pi) = O(nd).
To prove that the output of TRIM satisfies (i) and (ii), we will show, by

induction on i = 1, . . . , nd, that, after completing the i-th run of a loop from
lines 2-27, the following holds, where mi stands for the value of m at this
point of program execution, and Gi = {F (xj) ∈ B : 1 ≤ j ≤ i}.

(Ai) (qj)d < (qj+1)d for every 1 ≤ j < mi, and all these qj’s belong to Gi.

(Bi) ∆(x, {qj : 1 ≤ j ≤ mi}) = ∆(x,Gi) for every x ∈ R.

(Ci) xqj−1qj ≤ xqjqj+1
for every 1 < j < m.

This will finish the proof, since then TRIM’s output value of m is equal
to mnd

, the set Gnd
equals G from TRIM’s output description, and so, the

conditions (And
)-(Cnd

) are the restatement of (i) and (ii).
Assume that m0 = 0. Then G0 and the q-sequence are empty, so con-

ditions (A0)-(C0) are satisfied. Thus, we just need to show that, for every
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i = 1, . . . , nd, if conditions (Ai−1)-(Ci−1) are satisfied upon entering the code
lines 2-27, then (Ai)-(Ci) hold upon finishing their execution.

Note that, after each execution of lines 2-27, the q-sequence may have
more than mi elements. However, only the first mi of its elements are of
consequence, and these first mi elements constitute the q-sequence (possibly
empty) satisfying (Ai)-(Ci).

If F (xi) = ∅, then Gi = Gi−1 and none of lines 4-25 is executed, so
mi = mi−1 and the q-sequence remains unchanged. This clearly implies
(Ai)-(Ci). So, for the rest of the proof, assume that F (xi) 6= ∅.

The execution of lines 3-4 temporarily extends the q-sequence (by as-
signing to mi = m value mi−1 + 1) and puts F (xi) at its end. This initial
assignment ensures (Ai) and (Bi). However, (Ci) may be false at this stage,
and the sequence may need to be trimmed to ensure (Ci) while preserving
(Bi). This is done in lines 6-25.

Clearly, by the inductive assumption (Ai−1), at this stage the sequence
satisfies (Ai), since (F (xi))d > xd for every x ∈ Gi−1. To see that the
execution of lines 6-25 preserves (Ai), it is enough to note that the only
changes to this sequence in lines 6-25 are either through dropping the last
sequence element (in line 10) or by replacing the second to the last of its
elements by the last one and shortening the sequence by 1 (lines 13-14 or
20-21). These operations clearly preserve (Ai).

Now, if we enter line 6 with m = mi = 1, then mi−1 = 0, and, by
(Bi−1), we have Gi−1 = ∅. Although, at this case, the condition in line
6 insures that no other lines are executed, this implies that mi = 1 and
Gi = {F (xi)} = {q1}, so (Bi) and (Ci) hold. So, assume that at line 6 we
have mi = m > 1, that is, that the q-sequence has at least two elements.
Next we will decide whether its last element is in the proper position and, if
not, modify the sequence.

Thus, when entering line 7 we know that our q-sequence has at least two
elements. In lines 7-11 we check whether there is any reason to keep qm
in the sequence.2 If not, we can simply remove it. More precisely, since
Gi = Gi−1 ∪ {F (xi)}, condition (Bi−1) implies that for every x ∈ R we have
∆(x,Gi) = ∆(x,Gi−1 ∪ {qm}) = ∆(x, {qj : 1 ≤ j ≤ m}). Assume that the
condition from line 9 is satisfied. Then, the only executed line in the rest
of the loop is line 10, which discards the last element of the sequence. This

2Execution of lines 9-10 is not necessary for insuring correct output (i)-(ii) of TRIM.
However, it may remove some unnecessary redundancy from the queue Q.



Ciesielski at al., Linear Time DT Algorithms 10/6/2010 26

means that mi = m = mi−1. Now, to show that this sequence satisfies (Bi)
and (Ci), note that xuv is to the right of every x ∈ R. This means that
for m = mi−1 + 1 we have ∆(x, qm−1) = ∆(x, u) ≤ ∆(x, v) = ∆(x, qm). In
particular, ∆(x,Gi) = ∆(x, {qj : 1 ≤ j ≤ m}) = ∆(x, {qj : 1 ≤ j ≤ mi−1})
is equal to ∆(x,Gi−1) for every x ∈ R. Therefore, in this case, (Bi−1) and
(Ci−1) imply (Bi) and (Ci) for mi = mi−1.

Next, we assume that the condition from line 9 fails. Thus, we enter
the key program loop of lines 12-15. We claim that upon exiting the loop,
condition (Bi) is preserved, while (Ci) is already satisfied. Indeed, each
time the lines 13-14 are executed, the second to the last element, qm−1, is
removed from the current queue (q1, . . . , qm) and the length indicator m is
properly reduced. This operation does not influence the condition (Bi), since
satisfaction of the predicate CHECK(qm−2, qm−1, qm) means that for every
x ∈ R either ∆(x, qm−2) < ∆(x, qm−1) (when xd < xqm−2qm−1) or ∆(x, qm) ≥
∆(x, qm−1) (when xd > xqm−1qm), and therefore ∆(x, {q1, . . . , qm−2, qm}) =
∆(x, {q1, . . . , qm−2, qm−1, qm}). Thus, property (Bi) survives execution of the
loop. Also, upon leaving the loop, either m = 2, in which case (Ci) is satisfied
in void, or m > 2 and CHECK(qm−2, qm−1, qm) is false, which implies that
xqm−2qm−1 ≤ xqm−1qm . This, together with the inductive assumption of (Ci−1)
insures (Ci).

To finish the proof, it is enough to show that execution of lines 16-26
preserves conditions (Bi) and (Ci). This is obvious, when m > 2 after com-
pleting line 15. So, assume that we have m = 2 when entering line 16. Then,
the situation is analogous to that from lines 9-10. The q-sequence consists of
just two elements, q1 and q2 = q̂. This sequence remains unchanged, unless
xq1q2 < 0, in which case we remove q1 from the queue. This preserves (Bi),
since xq1q2 < 0 implies that ∆(x, q1) > ∆(x, q2) for all x ∈ R.

4.4 Algorithm parallelization

A parallel version of LTDT is easy to create, since the task of finding FT
by this algorithm is done recursively for each hyperplane H in Rk and the
calculations are independent of each other for disjoint hyperplanes. Thus, the
simplest way to parallelize algorithm LTDT with m processors or threads of
execution is to proceed with the following steps, where LTDT ∗ returns FT
instead of DT , that is, it is run with only the first 10 lines of LTDT .

(S1) Split nk hyperplanes Hk−1(x)∩C perpendicular to the kth axis into m
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disjoint families Hj of approximately equal size of nk/m.

(S2) For each j = 1, . . . ,m and each hyperplane H from Hj apply LTDT ∗

on the j-th processor to calculate FT for the image I � H. Each
such part is calculated in time of O(n/nk). Since the multiproces-
sors are run simultaneously, all calculations will be completed in time
O(nk/m)O(n/nk) = O(n/m).

(S3) After step (S2) is finished, apply lines 5-9 of LTDT with d = k. Then
execute lines 11-13 to return DT .

This algorithm returns proper DT , and, assuming that nk ≥ m, runs in time
O(n/m). Moreover, if in any of the algorithms we replace LTDT by its
parallel version described above, the running time of the resulting algorithm
will be reduced m-fold.

5 The experiments

In this section, we report the experimental results of applying some of the
discussed algorithms on real medical image data for calculating the signed
distance transform SDTI(x) = (−1)I(x)∆(x,BdI) for two different definitions
of the image boundary: Bd′I (which is equivalent to using geometric boundary
BdgI) and BddigI .

All algorithms were implemented for the Euclidean distance and isotropic
images. The programs were implemented on a cluster using the MPI/Open
MPI standard. Each computer in the cluster is a Dell Optiplex GX620, which
consists of a 3.6 GHz Intel Pentium D dual core [24] processor with 2 GB
of RAM, running the Windows XP OS. These computers are connected by
an inexpensive 1-gigabit switch (Dell Power-Connect 2608 8-port Ethernet
switch). In our presentation of results, “Gold” denotes the gold standard
method wherein distances are calculated via an exhaustive comparison. This
method is not usable on large data sets and the symbol ‘> nhr’ means that we
have terminated the execution of the program after n hours. In addition, for
each tested image we compared the outputs of all tested algorithms, when
appropriate, to experimentally confirm that their outputs actually agree,
which should be the case for the exact DT algorithms. No discrepancies
were detected.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Slices from some of the 3D binary images used in the experiments and their

respective distance transform images. (a,b): pelvic vessels; (a) shows a 3D rendition of

the vessel tree and (b) shows the DT in a slice located near the bottom of the vessel tree.

(c,d): talus bone of the foot. (e,f): gray matter. (g,h): white matter. (i,j): head soft

tissue. (k,l): skull.
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Image Size No. of spels Object Source
I1 256× 256× 256 16, 777, 216 Pelvic vessels MRI
I2 254× 214× 65 3, 533, 140 Talus bone MRI
I3 256× 256× 46 3, 014, 656 Gray matter MRI
I4 256× 256× 46 3, 014, 656 White matter MRI
I5 256× 256× 46 3, 014, 656 Head soft tissue MRI
I6 512× 512× 90 23, 592, 960 Pelvic bone CT
I7 512× 512× 90 23, 592, 960 Pelvic soft tissue CT
I8 512× 512× 256 67, 108, 864 Pelvic bone CT
I9 512× 512× 256 67, 108, 864 Pelvic soft tissue CT
I10 512× 512× 459 120, 324, 096 Pelvic bone CT
I11 512× 512× 459 120, 324, 096 Pelvic soft tissue CT
I12 1023× 1023× 128 133, 955, 712 Head soft tissue CT
I13 1023× 1023× 128 133, 955, 712 Skull CT

Table 1. A description of the binary images used in our experiments.

The binary images used in our experiments are obtained by threshold-
ing patient MR and CT images of the head and pelvis from a variety of
past/ongoing clinical research projects. For example, the MRI brain images
pertain to Multiple Sclerosis patients, where our goal was to study the effec-
tiveness of image-based markers in characterizing the disease. In the MRI
pelvic images, our goal was to display the vessels free from clutter. In the
pelvic and foot images, our goal was to create statistical models of the shape
of the objects in these body regions for their automatic segmentation, de-
lineation, and motion analysis. A description of these images, including the
objects they represent and their sizes, is summarized in Table 1. Some bi-
nary image slices from these objects, together with their distance transforms
obtained via LTSDT, are displayed in Figure 6.

Tables 2 and 3 summarize the experiments performed on eleven 3D binary
images. Performances of both sequential and parallel algorithms are listed
in these tables. The times reported in Table 2 constitute total computation
time for the entire process — taking a binary image as input, doing all nec-
essary operations, and producing a gray distance image as an output. The
algorithm L2 (i.e., LTSDT with FT) computes the signed distance transform
SDTI(x) = (−1)I(x)∆(x,BddigI ), where ∆(x,BddigI ) is computed with LTDT ,
in which FT is recorded. The algorithm L1 (LTSDT with no FT) computes
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No. of Algo- Running time in seconds
processors rithm I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13

1 E1 4 4 4 24 27 70 77 125 145 133 155
1 L1 3 3 2 20 26 56 77 105 141 125 145
1 L2 3 4 3 23 30 66 87 128 153 147 157
3 P-L2 3 3 3 24 30 67 90 127 170 155 161
7 P-L2 4 4 3 24 30 58 83 107 150 136 145
11 P-L2 4 4 4 24 32 55 78 101 145 131 138

Table 2. Comparison of running times of the SDTI algorithms used with the non-

symmetric boundary BddigI , see Sec. 2. Algorithms: E1 — EDT from ITK, output only dis-

tance transform, no feature transform; L1 — Our proposed LTSDT, output only distance

transform, no feature transform; L2 — Our proposed LTSDT, output distance transform

and feature transform; P-L2: Our proposed parallel LTSDT, output distance transform

and feature transform.

the same values with LTDT ∗, in which the value of the feature transform
function F that LTDT and DimUp return is replaced by the distance trans-
form function F ∗. This reduces memory use, and, slightly, the running time.
The reduction works for the Lp distances, since in such settings the value

∆(x, q`) can be easily calculated: ∆(x, q`) = ((xd − yd)p + F ∗(y)p)1/p, where
y is on the line parallel to the d-axis passing through x and q` = F (x).

Our motivation to parallelize distance transform algorithms was that, in
several segmentation and registration methods, DT is called repeatedly (100s
of times). Therefore, even if each (sequential) application were to take only
a few minutes, the total time before the main application is completed could
be prohibitive. Thus parallelization has the potential to save a considerable
amount of time in such precesses. Although all algorithms presented here
run in linear time with respect to the number of spels, this is not born
out in Table 2. Surprisingly, this is mainly due to the fact that the actual
distance computation part for the algorithm is a small fraction (4% - 25%)
of the total time. A bulk of the time is taken up by the three house keeping
operations — creating boundary image for the input binary image (30%
- 50%), network transmission of image chunks between Master and Slaves
(17% - 21%), combining results and producing output (25% - 40%). A break
up of these factors is listed in Table 3 for the four largest images. It is
clear that the actual DT computation time is inversely proportional to the
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No. of Running time in sec No. of processors
Image

processors C1 C2 C3 C4 times C2
3 35 33 19 40 99

I10 7 35 14 18 40 98
11 35 9 17 40 99
3 70 30 22 48 90

I11 7 70 13 19 48 81
11 70 8 19 48 88
3 62 25 33 35 75

I12 7 62 11 28 35 77
11 62 7 27 35 77
3 70 22 31 38 66

I13 7 70 9 28 38 63
11 70 6 24 38 66

Table 3. Break up of the four component times in the parallel implementation. C1 –

boundary finding initial operation, C2 – actual calculation of DT, for two-dimensional

(co-dimension one) hyperplanes, C3 – image data transfer between Master and Slaves,

C4 – combination of the results, including finding DT for the last dimension. The last

column represents the combined time the slaves use to calculate DT, which, as expected, is

approximately the same for each image, independently of the number of processors used.

number of processors used and linear with respect to the image size. It is
also clear that, since the actual DT valuation is very rapid, speed up in DT
operations on binary images can be harnessed only by parallelizing some of
the house-keeping, particularly the boundary finding, operations.

The fact that the maximal running times of EDT and LTSDT from Ta-
ble 2 are of linear order of magnitude with respect to the image size suggests
that the actual times should also be approximately linearly dependent on
the image size. To test this hypothesis, we displayed the times estimated
in our experiments, as functions of image size, in Figure 7 for the sequen-
tial implementation. Indeed, for all algorithms the relation is approximately
linear.
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Figure 7. A plot of the running time of sequential algorithms: LTSDT (both versions)

and EDT with respect to image size for the sequential algorithms. As expected, the

relation is approximately linear. (We display here the results for only images I5, I6, I7,

I10, and I13.)

Figure 7 and Tables 1-3 also show that both versions of LTSDT out-
perform EDT, the difference in performance being greater as the image size
increases.

No. of Running time in sec
processors

Algorithm
J1 J2 J3

1 Gold 5125 > 10hr > 10hr
1 GBDT 3 18 161
3 parallel GBDT 3 19 175
7 parallel GBDT 3 18 153
11 parallel GBDT 3 18 149

Table 4. Comparison of running times of the SDTI algorithms used with the geometric

boundary BdgI , implemented with Bd′I , see Sec. 2.

Table 4 reports the experimental comparison of GBDT and a version of
“Gold” for this setting. The grid size is increased 8-fold (doubled in each
dimension), so we ran the experiments on smaller 3D binary images J1-J3 of
respective sizes: 128× 128× 24, 256× 256× 46, and 512× 512× 96. Notice
that the size of images J2 and I3 are the same, so the actual image on which
GBDT calculates DT is 8 times the size of that for LTSDT . The actual
running time of GBDT in that image is 13 times that of LTSDT , rather
than the expected 8 times. This perhaps has something to do with some
peculiarity of our implementations.
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diameter in mm of the
Object

digital object geometric object
I1: pelvic vessels 298.6719 298.8380
I2: talus bone 51.0434 51.3698
I3: gray matter 211.8546 212.2860
I4: white matter 213.0751 213.5265
I5: head soft tissue 215.8026 216.2616
I6: pelvic bone 344.0323 344.4512
I13: skull 149.8486 150.2962

Table 5. Object diameter (in mm) calculated using LTdiam for the seven objects listed in

Table 1. The object is defined as digital or geometric, as explained in the text.

Although the Gold completed calculation of DT only for the smallest
image J1, it should be stressed that its output fully agreed with that from
GBDT . Note also that for GBDT the relation between image size and
running time seems also to be linear in nature.

The diameters of 7 objects listed in Table 1 obtained by LTdiam algo-
rithm are listed in Table 5. For each image I : C → {0, 1} we identified its
foreground in two different ways: as a digital object FI = {c ∈ C : I(c) = 1},
and as a geometric version F g

I of FI , which is defined as a union of all unit
cubes centered at spels c from FI . Actually, the diameter of F g

I is equal to
the diameter of the object F ′I = F g

I ∩ C ′, where the C ′ is the double resolu-
tion scene. (The argument for this is similar to that for Theorem 2.2.) Thus,
to calculate its diameter we actually apply LTdiam to F ′I . Notice that the
diameters of F g

I are slightly larger than those for FI , as can be expected.

6 Concluding remarks

Distance transform is a computationally expensive but ubiquitously needed
operation in image processing. Given its extensive use, expense, the ever
increasing spatial and temporal resolution of medical images, and the need
to handle 2D, 3D, and 4D concepts for objects and boundaries in relation
to DT, efficient, generalizable, and parallelizable schemas for DT are very
crucial. The algorithm of Maurer et al. [10] was an important contribution
from these considerations. In this paper, we have extended their method
in two ways. First, we have constructed a full theoretical justification of
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those ideas. Second, we have designed a new DT definition with respect
to the geometric boundary, which affords nicer theoretical properties and
more refined distance values, and we have shown that the ideas underlying
[10] can be extended to this new design. Although it is computationally
more expensive, the new algorithm GBDT is a preferred method for an
accurate, true, and a theoretically consistent distance transform. Note that
this becomes especially important when measurements are made based on
DT. Finally, since the actual DT operations in the family studied here are
extremely rapid, parallelization for saving considerable amount of time on
repeated use of DT (100s of times) on binary images should focus on house-
keeping operations that support DT.
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