
Linear time algorithms for exact distance transform:
elaboration on Maurer et al. algorithm

Krzysztof Chris Ciesielski,a,b,∗Jayaram K. Udupa,b,† Xinjian Chen,b and George J. Greverac,b

aDepartment of Mathematics, West Virginia University, Morgantown, WV 26506-6310

bDept. of Radiology, MIPG, Univ. of Pennsylvania, Blockley Hall – 4th Floor, 423 Guardian Dr., Philadelphia, PA 19104-6021

cMathematics and Computer Science Department, Saint Joseph’s University, 5600 City Avenue, Philadelphia, PA 19131

ABSTRACT

In 2003, Maurer at al. [7] published a paper describing an algorithm that computes the exact distance transform
in a linear time (with respect to image size) for the rectangular binary images in the k-dimensional space R

k and
distance measured with respect to Lp-metric for 1 ≤ p ≤ ∞, which includes Euclidean distance L2. In this paper
we discuss this algorithm from theoretical and practical points of view. On the practical side, we concentrate
on its Euclidean distance version, discuss the possible ways of implementing it as signed distance transform,
and experimentally compare implemented algorithms. We also describe the parallelization of these algorithms
and the computation time savings associated with such an implementation. The discussed implementations will
be made available as a part of the CAVASS software system developed and maintained in our group [5]. On
the theoretical side, we prove that our version of the signed distance transform algorithm, GBDT , returns, in
a linear time, the exact value of the distance from the geometrically defined object boundary. We notice that,
actually, the precise form of the algorithm from [7] is not well defined for L1 and L∞ metrics and point to our
complete proof (not given in [7]) that all these algorithms work correctly for the Lp-metric with 1 < p < ∞.

1. INTRODUCTION AND PRELIMINARIES

Distance transform in digital spaces is an important tool in image processing [2–4,6,8,10,11]. It finds widespread
use in a variety of operations such as filtering, interpolation, segmentation, registration, shape analysis, and
image compression. For example, the set of points of a fixed distance r from a surface S, treated as a front
propagated with a constant speed, represents the front position at time t = r. Distance transform is most
typically implemented in a signed form, discussed in the next section. (See e.g. [12].)

The key algorithm that we discuss here, the linear time distance transform LTDT , is our version of the
algorithm of Maurer et al. [7]. This algorithm works in any dimension k ≥ 1, on binary images defined on the
rectangular grids C = {x1

0, . . . , x
1
n1−1} × · · · × {xk

0 , . . . , xk
nk−1} ⊂ R

k and for the class of distances Δ, which
includes the Euclidean distance and, more generally, any Lp metric for 1 < p < ∞. Recall that, for 1 ≤ p < ∞,

the Lp metric on R
k is defined by the formula Δ(x, y) =

(∑k
i=1 |xi − yi|p

)1/p

. In particular, the L2 metric is
the standard Euclidean distance.

In what follows we always assume that xd
0 < · · · < xd

nd−1 for every d = 1, . . . , k, although we need not assume
that the images are isotropic, that is, that all numbers xd

i+1 − xd
i can be different. Nevertheless, all our figures

are presented for isotropic images and our implementations are tested in this case. The elements of a grid C will
be referred to as spels, short for space elements.

We start the paper with a discussion of the ways that the LTDT algorithm can be used to create different
versions of distance transform algorithms. The theoretical discussion of LTDT is postponed to the second part
of this article. The paper is finished with an experimental comparison of different forms of the algorithm and
with a description of their parallelization.

∗K.C. Ciesielski was partially supported by NSF grant DMS-0623906. E-mail: KCies@math.wvu.edu;
web page: http://www.math.wvu.edu/~kcies

†J.K. Udupa was partially supported by NIH grant R01-EB004395.

Medical Imaging 2009: Image Processing, edited by Josien P. W. Pluim, Benoit M. Dawant,
Proc. of SPIE Vol. 7259, 72592T · © 2009 SPIE

CCC code: 1605-7422/09/$18 · doi: 10.1117/12.811010

Proc. of SPIE Vol. 7259 72592T-1

.

.

Fig. 1. Left: Geometric boundary Bdg
I of a binary image I on a 5 × 5 rectangular grid C with four foreground spels

marked by large dots. Right: The same binary image on the 9 × 9 double resolution grid C′, where the smallest dots

represent added spels. The digital boundary Bd′
I on C′, marked by stars, consists of the intersection of Bdg

I with C′.

2. SIGNED DISTANCE TRANSFORM ALGORITHMS

Let I be a k-dimensional binary image, that is, a function from Ω ⊂ R
k into {0, 1}. It can be either digital

(i.e., with Ω in the form of a digital grid C) or geometrical (i.e., with Ω equal to R
k.) A Signed Distance

Transform for I is usually defined on Ω as SDTI(x) = (−1)I(x)Δ(x,BdI), where BdI is a boundary between the
image foreground FI = {x ∈ Ω: I(x) = 1} and its background BI = {x ∈ Ω: I(x) = 0}. The main variability
in this formula is caused by use of different definitions of the boundary BdI . More precisely, for geometrical
scenes, the boundary is always defined as the topological (geometrical) boundary, which can be expressed as
Bdg

I = {x ∈ R
k : Δ(x, FI) = Δ(x, BI)}. However, for digital images the set Bdg

I is always disjoint from the
grid C (see Fig. 1), so alternative definitions of the digital boundary are often used. For example, the digital
boundary Bddig

I for I is often defined as the set of all spels c in BI ⊂ C that are adjacent to some foreground
spels. In fact, the ITK implementation of the Maurer’s algorithm [9], called the exact distance transform EDT ,
is in the SDTI form implemented in 3D and uses Bddig

I defined with 18-adjacency (i.e., c, d are adjacent when
||c − d|| <

√
3). We also implemented this version of the algorithm, as LTSDT (linear time signed distance

transform), using our version of LTDT and compared it with EDT . Nevertheless, the following arguments show
that, for most image processing tasks, the SDT g

I , the SDTI used with Bdg
I , should be favored over all possible

different versions of SDTI .

Exact linear time implementation. The exact value of SDT g
I can be calculated in linear time with respect

to the size of C of a binary image — see algorithm GBDT described below.

Agreement with geometric version. The fact that precisely the same formula for SDT can be used for
discrete and geometric images is of particular importance for the energy optimization image segmentation technics
(like level sets or active contour) that find the energy minimizing surface (object boundary) via its evolution
according to the Euler-Lagrange equations. The evolution requires analytic representation of the current position
of the object boundary, which is usually done implicitly as a level set of some function Ψ from R

k (for k-
dimensional image) into R, that is, Bd = {x ∈ R

k : Ψ(x) = 0}. The usual initialization of Ψ is as SDTI , which
in the continuous case is always taken as SDT g

I , and it makes only sense to use the same formula for its digital
version, used in the numerical approximation. Here, the GBDT implementation of SDT g

I in linear time is of
great importance, since during the boundary (front) evolution, the evolving function Ψ is often reinitialized to
SDT of the new position of the front, so the algorithm for calculating SDT is invoked multiple times.

Proc. of SPIE Vol. 7259 72592T-2

Agreement with cube interpretation of spels. It is a common practice to identify each spel c in the
isotropic rectangular digital image with the unit side k-dimensional cube centered at c, and the boundary as a
union of the faces of all such cubes shared by foreground and background points [10]. (See Figure 1.) There are
many advantages of such definitions of a digital boundary (see [11]) in visualization, processing, analysis, and
finding of such surfaces. For example, when distance transforms are used in interpolating object shape [8], it has
been shown that distances determined with respect to boundaries so defined lead to more accurate results [4,6].
The point here is that SDT g

I is equal to the boundary obtained with a cube-based interpretation of spels.

Symmetry with respect to background and foreground. The SDT g
I , and any other version of SDTI used

with the boundary notion for which the boundary of the background is equal to the boundary of the foreground,
have the following reversibility property, where 1 − I is the reversed image of I (i.e. the foreground of I is the
background of 1 − I, and vice versa):

(r) SDTI(x) = −SDT1−I(x) for every x in the domain of image I.

Clearly, any SDT with this property leads to a more consistent distance map when distances from boundary
are needed in an application for both foreground and background points. The problem with EDT implemented
in ITK (or LTSDT), is that it fails to have property (r). In fact, no definition of boundary as a subset of BI

satisfies (r), as shown by the following result.

Theorem 2.1. If STD is defined via formula SDTJ(x) = (−1)J(x)Δ(x, BdJ) and the property (r) is satisfied
by a digital image I : C → {0, 1}, then BdI ∩C = Bd1−I ∩C. In particular, any spel from BdI ∩C = Bd1−I ∩C
belongs to the background of one of the images I, 1 − I, and to the foreground of the other.

Proof. If x ∈ BdI ∩ C, then Δ(x,Bd1−I) = | − STD1−I(x)| = |STDI(x)| = Δ(x, BdI) = 0, so x ∈ Bd1−I .
This proves BdI ∩ C ⊂ Bd1−I ∩ C. The other inclusion is proved analogously. The additional comment holds
for any spel from C.

Of course, if a boundary BdJ of an image J : C → {0, 1} is defined, for example, as the set of all c ∈ C for
which there is an adjacent d ∈ C in BdJ with J(c)
= J(d), then the property (r) holds for SDTI . However, this
creates a “thick” boundary and some crucial information on the distances close to the geometrical boundary of
the object is lost.

Next, we describe the algorithm GBDT , Geometric Boundary directed Distance Transform, mentioned above.
It works for the Lp distances with 1 < p < ∞. For a grid C = {x1

0, . . . , x
1
n1−1}× · · ·×{xk

0 , . . . , xk
nk−1} define grid

C ′ = {y1
0 , . . . , y1

2n1−2} × · · · × {yk
0 , . . . , yk

2nk−2}, where, for all appropriate d and i, yd
2i = xd

i and yd
2i+1 is the mid

point between yd
2i and yd

2i+2. In other words, we double the resolution of the image grid. Let Bd′I = Bdg
I ∩ C ′

— see Figure 1. The key fact for calculating the exact values of SDTI(c) = (−1)I(c)Δ(c,Bdg
I), c ∈ C, in O(n)

time, and the rationale for GBDT , is the following result.

Theorem 2.2. Δ(c,Bdg
I) = Δ(c,Bd′I) for every c ∈ C.

Proof. Clearly Δ(c,Bdg
I) ≤ Δ(c,Bd′I), since Bd′I ⊂ Bdg

I . To see the other inequality, let c ∈ C and d ∈ Bdg
I

be such that Δ(c, d) = Δ(c,Bdg
I). It is enough to show that d ∈ C ′. This can be justified by a simple geometric

argument sketched below.

Let F ⊂ Bdg
I be a face of a k-dimensional cube centered at c, such that F contains d. Let p be the orthogonal

projection of c onto the (k−1)-dimensional hyperplane containing F . Note that p ∈ C ′, as it has k−1 coordinates
identical with c and one that identifies F , that is, the mid point between some yd

2i and yd
2i+2. If p belongs to

F , then d = p (this is obvious for Euclidean distance L2, but holds also for other Lp distances) and so d ∈ C ′.
Otherwise, d must belong to one of the (k − 2)-dimensional hyperplanes forming the boundary of F , and the
argument may be repeated for this hyperplane. (Formally, the induction on the dimension of a hyperplane should
be used.)

In the algorithm GBDT , we identify the coordinate numbers xd
m with their subscripts m, that is, the grid

C = {x1
0, . . . , x

1
n1−1} × · · · × {xk

0 , . . . , xk
nk−1} is identified with {0, . . . , n1 − 1} × · · · × {0, . . . , nk − 1}. Similar

identification will be done throughout the paper, including also grid C ′ below.

Proc. of SPIE Vol. 7259 72592T-3

Algorithm GBDT

Input: Dimension k (≥ 2) of the image; n1, . . . , nk — the size of the grid; a binary image I : C → {0, 1}.
Output: A signed distance transform SDTI : C → [0,∞], SDTI(c) = (−1)I(c)Δ(c,Bdg

I).

Auxiliary
Data
Structures:

A grid C ′ = {0, . . . , 2n1 − 2} × · · · × {0, . . . , 2nk − 2} having double resolution with respect to C,
where we identify I with its copy Î defined on Ĉ = {0, 2, . . . , 2n1−2}×· · ·×{0, 2, . . . , 2nk−2} ⊂ C ′

by Î(2x) = I(x), where x = (x1, . . . , xk) ∈ C is arbitrary and 2x = (2x1, . . . , 2xk). A binary image
I ′ on C ′ indicating points of Bd′I of Î (upon such identification) as the 0-value points.

begin
1. set I ′(c) = 1 for all c ∈ C ′;
2. for all x ∈ C and 1 ≤ d ≤ k do
3. for i = 1 to k do
4. if i
= d then yi = xi else yi = xi + 1;
5. endfor ;
6. if y ∈ C and I(x)
= I(y) then
7. set I ′(c) = 0 for every c ∈ C ′ on the boundary face between x and y;
8. endif ;
9. endfor ;

10. invoke LTDT with I ′ and appropriate Δ returning DT defined on C ′;
11. for every x ∈ C set SDTI(x) = (−1)I(x) · DT (2x);
12. return SDTI ;

end

Theorem 2.3. Algorithm GBDT invoked with the Lp distance, 1 < p < ∞ on binary rectangular digital image
I returns the signed distance to the geometric boundary Bdg

I between foreground and background. Moreover,
GBDT runs in O(n) time.

Proof. The execution time of line 1 is of order O(2kn) = O(n). Each execution of lines 3-8 requires O(k) +
O(2k) = O(1) operations. Since this loop is entered kO(n) times, execution of lines 1 − 9 is done with O(n)
operations. Since LTDT applied to I ′ runs in O(2kn) = O(n) time, and execution of line 11 requires n operations,
GBDT indeed runs in O(n) time.

Next, note that after the execution of lines 1-9, map I ′ is as desired: I ′(c) = 0 when c ∈ Bd′I , and I ′(c) = 1
for all remaining c ∈ C ′. Indeed, after the initiation, in line 1, of I ′ with value 1 for all c ∈ C ′, we examine
(see lines 2-5) all pairs x, y ∈ C of coordinate distance 1 (i.e., sharing a face of associated cubes), one from
foreground, another from background. Then, in lines 6-8, we insure that, for all points c ∈ C ′ on the common
face between 2x and 2y, the value I ′(c) is adjusted to 0.

After the execution of line 10, for every c ∈ C ′ we have FT (c) = Δ(c,Bd′I) = Δ(c,Bdg
I), where the second

equation comes from Theorem 2.2. To finish the proof, it is enough to note that, in line 11, the factor (−1)I(x)

fixes correctly the sign for the signed distance transform.

3. LTDT AND ITS PARALLELIZATION

The LTDT algorithm represents our implementation, with minor modifications, of the Maurer at al. algorithm
from [7]. Therefore, we describe here only its parts necessary for describing its parallelization. The full description
of LTDT and a complete proof of its correctness will be presented in a full journal version of this paper. (But
see also [1].)

Actually, LTDT calculates a feature transform FT for I, that is, a function FT : C → BI∪{∅} ⊂ C∪{∅} with
FT (c) = ∅ whenever DT (c) = ∞, while otherwise, FT (c) ∈ BI is such that Δ(c, FT (c)) = Δ(c,BI) = DT (c).
Only at the output stage DT is calculated from FT by calling the function DT (c) = Δ(c, FT (c)).

The calculation of FT is done recursively on the dimension of the image. To express it precisely, we will
need the following notation, in addition to that already introduced earlier. For 0 ≤ d ≤ k and x ∈ C, let
Hd(x) = {c ∈ C : ci = xi for all d < i ≤ k} be the d-dimensional hyperplane containing x that results from fixing

Proc. of SPIE Vol. 7259 72592T-4

the terminal k−d coordinates, that is, the coordinates with indices greater than d. Also, if 1 ≤ d ≤ k, then Rd(x)
will denote one-dimensional row in R

k parallel to the d-th axis, that is, Rd(x) = {c ∈ R
k : ci = xi for all i
= d}.

We say that a function F : C → BI ∪{∅} is a d-dimensional approximation of FT at x ∈ C provided F (x) is the
correct value of a closest feature transform for I � Hd(x), the image I restricted to Hd(x). That is, F (x) = ∅
when BI ∩ Hd(x) = ∅; otherwise, F (x) ∈ BI ∩ Hd(x) and Δ(x, F (x)) = Δ(x,BI ∩ Hd(x)). Such an F is a
d-dimensional approximation of FT provided it is a d-dimensional approximation of FT at every x ∈ C; that
is, when, for every x ∈ C, its restriction F � Hd(x) to Hd(x) is a true feature transform for I � Hd(x). Notice
that the k-dimensional approximation of FT (for a k-dimensional image) is its true FT , while the 0-dimensional
approximation F of FT has the property that F (x) is equal to x for x ∈ BI , and is equal to ∞ otherwise.

The key recursively used subroutine of LTDT , called DimUp (a variant of VoronoiFV from [7]), has the
following properties.

DimUp input: Row Rd(x) indicators: x ∈ C and 1 ≤ d ≤ k; a function F : C → BI ∪ {∅} which is a (d − 1)-
dimensional approximation of FT at every c ∈ Rd(x) ∩ C.

DimUp output: A modified F : C → BI ∪ {∅} which is a d-dimensional approximation of FT at every c ∈
Rd(x) ∩ C. The values of F at points c /∈ Rd(x) remain unchanged.

DimUp running time cost: O(nd), where number nd is the size of the row Rd(x) ∩ C.

The full description of DimUp and the proof that it has the above mentioned properties can be found in the
preprint [1]. It will be also published in the full journal version of this paper.

For 1 ≤ d ≤ k, let Cd = {x ∈ C : xd = 1} be the hyperplane passing through (1, . . . , 1) and perpendicular to
Rd(x). Note that Cd has size n/nd.

Algorithm LTDT

Input: A binary image I : C → {0, 1}; dimension k (≥ 2) of the image; n1, . . . , nk — the size of the
grid.

Output: A distance transform DT : C → [0,∞] for the image I.

Auxiliary Data: A feature transform F : C → C ∪ {∅}. A queue Q of points from C. Dimension counter d.

begin
1. for all x ∈ C do
2. if I(x) = 0 then F (x) = x else F (x) = ∅;
3. endfor ;
4. for d = 1 to k do
5. push all points from Cd to Q;
6. while Q is not empty do
7. remove a point x from Q;
8. invoke DimUp with x, d, and current F ;
9. endwhile;

10. endfor ;
11. for all x ∈ C do
12. if F (x) = ∅ then DT (x) = ∞ else DT (x) = Δ(x, F (x));
13. endfor ;

end

Lines 1-10 of this algorithm represent procedure ComputeFT from [7]. In lines 1-3, we define F as 0-
dimensional approximation of FT. Our main contribution here is the proof of the following Theorem. In its
proof, we assume that the algorithm DimUp works correctly.

Theorem 3.1. For every binary image I on a rectangular grid C = {0, . . . , n1 − 1} × · · · × {0, . . . , nk − 1}, the
algorithm LTDT returns the exact distance transform F for the image I. It does it in time O(n), where n is
the size of C.

Proc. of SPIE Vol. 7259 72592T-5

Proof. After execution of lines 1-3, the map F represents the 0-dimensional approximation of FT for I, as
H0(x) = {x}. This part runs in O(n) time.

Next notice that for every d = 1, . . . , k, when LTDT enters lines 5-9, F is a (d−1)-dimensional approximation
of FT for I; when it exits lines 5-9, F is a d-dimensional approximation of FT for I.

This statement is proved by mathematical induction on d. For d = 1, the entry requirement is guaranteed
by lines 1-3. For d > 1, this is ensured by the inductive assumption. To finish the argument, it is enough to
show that the execution of lines 5-9 transforms the (d − 1)-dimensional approximation F of FT for I to the
d-dimensional approximation of FT. This is guaranteed by the assumptions on DimUp: when executing lines
5-9, each row Rd(x) of C is considered precisely once, and running DimUp for this row changes the values of F
on this (and only this) row from (d − 1)-dimensional approximation of FT to d-dimensional approximation of
FT.

Next note that, for each d, the while loop from lines 6–9 is executed precisely n/nd times (the size of Cd)
and each time the execution cost of DimUp is of order O(nd). Thus, each execution of lines 5-9 runs in time of
order (n/nd)O(nd) = O(n). Thus, the total time of running lines 1-10 is of order O(n) + kO(n) = O(n).

Finally, note that, after the execution of the loop 4-10, F represents the k-dimensional approximation of FT
for I, which is the true FT for I. The execution of the loop 11-13 is still of order O(n) (we assume that the
calculation of Δ(x, y) is O(1)) and the resulting DT is indeed an exact distance transform for I.

A parallel version of LTDT is easy to create, since the task of finding FT by this algorithm is done recursively
for each hyperplane H in R

k and the calculations are independent of each other for disjoint hyperplanes. Thus,
the simplest way to parallelize algorithm LTDT with m processors or threads of execution is to proceed with
the following steps, where LTDT∗ returns FT instead of DT , that is, it is run with only the first 10 lines of
LTDT .

(1) Split nk hyperplanes Hk−1(x)∩C perpendicular to the kth axis into m disjoint families Hj of approximately
equal size of nk/m.

(2) For each j = 1, . . . ,m and each hyperplane H from Hj apply LTDT∗ on the j-th processor to calculate
FT for the image I � H. Each such part is calculated in time of O(n/nk). Since the multiprocessors are
run simultaneously, all calculations will be completed in time O(nk/m)O(n/nk) = O(n/m).

(3) After step (2) is finished, apply lines 5-9 of LTDT with d = k. Then execute lines 11-13 to return DT .

This algorithm returns proper DT and, assuming that nk ≥ m, runs in time O(n/m). Moreover, if in any of
the algorithms we replace LTDT with its parallel version described above, the running time of the resulting
algorithm will be reduced m-fold.

4. THE EXPERIMENTS

In this section we report the experimental results of applying on real medical image data some of the discussed al-
gorithms for calculating the signed distance transform SDTI(x) = (−1)I(x)Δ(x,BdI) for two different definitions
of the image boundary: Bd′I (which is equivalent to using geometric boundary Bdg

I) and Bddig
I .

All algorithms were implemented for the Euclidean distance and isotropic images. The programs were run
on an Intel Pentium IV PC with 3.4 GHZ DuoCore CPU, 2.0G RAM on Windows XP OS. Our experimental
results are presented in the following tables. “Gold” denotes the gold standard method wherein distances are
calculated via an exhaustive comparison. This method is not usable on large data sets and the symbol ‘> n hr’
means that we have terminated the execution of the program after n hours. In addition, for each tested image
we compared the outputs of all tested algorithms to experimentally confirm that their outputs actually agree,
which should be the case for the exact DT algorithms. No discrepancies were detected.

Table 1 reports the experiments performed on the 3D binary images I1-I6, created from actual medical images,
of respective sizes: 256 × 256 × 46, 512 × 512 × 203, 512 × 512 × 459, 1023 × 1023 × 128, 1023 × 1023 × 224,
and 1023× 1023× 256. Some slices of the original MR image I1 of a human brain, its binary version with white

Proc. of SPIE Vol. 7259 72592T-6

matter segmented approximately by simple thresholding, and the resulting DT (distance from the object) are
displayed in Fig. 2. Note that, for larger images, LTSDT outperforms EDT .

Fig. 2. Top row: Three typical MR slices of the image I1 of a human brain. Middle row: The same slices of the binary

image obtained from the original via thresholding for highlighting of the white matter. Bottom row: The values of the

distance transform for the entire 3D image displayed on the slices from the middle row. The values are presented in the

form of pixel intensities: the lighter the pixel, the larger is its distance from the foreground (so, the white matter appears

darker). For better clarity, we display the output of LTDT , rather than of a signed DT. Also, the area outside the head

was left uniformly dark for better contrast and its intensity does not reflect the value of DT.

Running time in secAlgorithm
I1 I2 I3 I4 I5 I6

Gold 2810 > 2hr > 2hr > 2hr > 2hr > 2hr
EDT (from ITK) 10 231 550 561 1135 1213

LTSDT 10 247 572 511 987 1156

Table 1. Comparison of running times of the SDTI algorithms used with the non-symmetric boundary Bddig
I ,

see Sec. 2.

The fact that the maximal running times of EDT are LTSDT are of linear order of magnitude with respect
to the image size suggests that the actual times should also be approximately linearly dependent on the image

Proc. of SPIE Vol. 7259 72592T-7

2000

1600

1600

1400

1200

1000

800

0.5 1 1.5 2

Image size (pixels num)
2.5 3

S 10

size. To test this hypothesis, we displayed the times of our experiments, as functions of image size, in Figure 3.
Indeed, for both algorithms the relation is approximately linear.

Fig. 3. The display of running time of LTSDT and EDT with respect to image size. As expected, the relation is

approximately linear.

Table 2 reports the experimental comparison of GBDT and a version of “Gold” for this setting. The grid
size is increased 8-fold (doubled in each dimension), so we run the experiments on the smaller 3D binary images
J1-J3 of respective sizes: 128 × 128 × 24, 256 × 256 × 46, and 512 × 512 × 96. Notice, that the size of images J2

and I1 are the same, so the actual image on which GBDT calculates DT is 8 times the size of that for LTSDT .
The actual running time of GBDT in that image is 13 times that of LTSDT , rather that expected 8 times. This
perhaps has something to do with some peculiarity of our implementations.

Although the Gold completed calculation of DT only for the smallest image J1, it should be stressed that
its output fully agreed with that from GBDT . Note also, that for GBDT the relation between image size and
running time seems also to be linear in nature.

Running time in secAlgorithm
J1 J2 J3

Gold 24669 > 10hr > 10hr
GBDT 17 130 1202

Table 2. Comparison of running times of the SDTI algorithms used with the geometric boundary Bdg
I ,

implemented with Bd′I , see Sec. 2.

5. CONCLUDING REMARKS

Distance transform is a computationally expensive but ubquitously needed operation in image processing. Given
its extensive use, expense, the ever increasing spatial and temporal resolution of medical images, and the need
to handle 2D, 3D, and 4D concepts for objects and boundaries in relation to DT, efficient, generalizable, and
parallelizable schemas for DT are very crucial. The algorithm of Maurer et al. [7] was an important contribution
from these considerations. In this paper, we have extended their method in two ways. First, we have constructed
a full theoretical justification of those ideas. Second, we have designed a new DT definition with respect to
the geometric boundary, which affords nicer theoretical properties and more refined distance values, and have
shown that the ideas underlying [7] can be extended to this new design. Although it is computationally more
expensive, the new algorithm GBDT is a preferred method for accurate, true, and theoretically consistent
distance transform.

Proc. of SPIE Vol. 7259 72592T-8

REFERENCES
1. Ciesielski, K.C., Udupa, J.K., and Grevera, G.: Linear time distance transform algorithm, MIPG Technical

Report #337, Medical Image Processing Group, Department of Radiology, University of Pennsylvania,
Philadelphia, 2006.

2. Cuisenaire, Olivier: Distance transformations: fast algorithms and applications to medical image processing,
Dissertation, 1999.

3. Grevera, G.J.: Chapter 2: Distance Transform, in Parametric and Geometric Deformable Models: An
application in Biomaterials and Medical Imagery, Springer Publishers, Jasjit S. Suri and Aly Farag, editors.

4. Grevera, G.J. and Udupa, J.K.: Shape-based interpolation of multidimensional grey-level images, IEEE
Transactions on Medical Imaging 15(6) (1996), 881–892.

5. Grevera, G., Udupa, J., Odhner, D., Zhuge, Y., Souza, A., Iwanaga, T., and Mishra, S.: CAVASS: a
Computer Assisted Visualization and Analysis Software System, J. Digital Imaging 20(1) (2007), 101–118.

6. Herman, G.T., Zheng, J., and Bucholtz, C.A.: Shape-based interpolation, IEEE Computer Graphics and
Applications 12(3) (1992), 69–79.

7. Maurer, C.R., Jr., Qi, R., and Raghavan, V.: A linear time algorithm for computing exact Euclidean
distance transforms of binary images in arbitrary dimensions, IEEE Transactions on Pattern Analysis and
Machine Intelligence 25(2) (2003), 265–270.

8. Raya, S.P. and Udupa, J.K.: Shape-based interpolation of multidimensional objects, IEEE Transactions on
Medical Imaging 9(1) (1990), 32–42.

9. Tustison, N.J., Siqueira, M., and Gee, J.C.: N-D Linear Time Exact Signed Euclidean Distance Transform,
Insight Journal, January-June, 2006 (http://hdl.handle.net/1926/171).

10. Udupa, J.K.: Multidimensional digital boundaries, Graphical Models Image Processing 56(4) (1994), 311–
323.

11. Udupa, J.K. and Grevera, G.J.: Go digital, go fuzzy, Pattern Recognition Letters 23 (2002), 743–754.
12. Ibanez, L. and Schroder, W.: The ITK Software Guide 2.4, chapter 6, Kitware Inc., 2005.

Proc. of SPIE Vol. 7259 72592T-9

