
LINEAR TIME ALGORITHM FOR EXACT
DISTANCE TRANSFORM

K.C. Ciesielski, J.K. Udupa and G.J. Grevera

Medical Image Processing Group
Department of Radiology

University of Pennsylvania

TECHNICAL REPORT NO. MIPG337

November, 2006

Department of

RADIOLOGY
University of Pennsylvania

Linear time algorithm for exact distance
transform

Krzysztof Chris Ciesielski,a,b,∗Jayaram K. Udupa,b,†

and George J. Greverac,b

aDepartment of Mathematics, West Virginia University,

Morgantown, WV 26506-6310
bDepartment of Radiology, MIPG, University of Pennsylvania, Blockley Hall – 4th Floor,

423 Guardian Drive, Philadelphia, PA 19104-6021
cMathematics and Computer Science Department, Saint Joseph’s University,

5600 City Avenue, Philadelphia, PA 19131

Abstract

In 2003 Mauer at al. (see [1]) published a paper describing an al-
gorithm that computes the exact distance transform in a linear time
(with respect to image size) for the rectangular binary images in k-
dimensional space, where distance is measured with respect to a metric
from some class of metrics including Euclidean distance and, in gen-
eral, Lp-metric distance for 1 ≤ p ≤ ∞. However, that algorithm
contains an error which was transformed to its Euclidean metric ITK
implementation of Tustison at al. (see [3]). In this paper we describe
a corrected version of the algorithm for 1 < p < ∞ and prove that it
indeed has the desired properties. We also discuss in details the error
of the algorithm from the paper of Mauer at al. The revised version of
the algorithm will be made available at ITK and as a part of CAVASS
software system developed and maintained at MIPG.

∗MIPG Report # 337. Partially supported by NSF grant DMS-0623906.
E-mail: KCies@math.wvu.edu; web page: http://www.math.wvu.edu/~kcies; partially
supported by NSF grant DMS-0623906.

†Partially supported by DHHS grant NS 37172.

1

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 2

1 Preliminaries

Throughout the paper we fix the following notation: image dimension k ≥ 2,
image scene C = {1, . . . , n1}×· · ·×{1, . . . , nk}, where we assume that ni ≥ 2
for all i ≤ k, and image scene’s size N = n1×· · ·×nk. A binary image I is a
function from C into {0, 1}, where set FI = {c ∈ C : I(c) = 1} is the image
foreground and B = BI = {c ∈ C : I(c) = 0} is its background.

Let ∆ be a distance (metric) in the k-dimensional Euclidean space Rk.
A distance transform DT for image I (with respect to ∆) is a mapping

DT : C → [0,∞] defined as DT (x) = ∆(x, B)
def
= inf{∆(x, b) : b ∈ B}, where

infimum over the empty set ∅ is defined as ∞. A closest feature transform
FT is any function FT : C → B ∪ {∅} ⊂ C ∪ {∅} with the property that
FT (c) = ∅ whenever DT (c) = ∞, while otherwise FT (c) ∈ B is such that
∆(c, FT (c)) = ∆(c, B) = DT (c). Thus, FT determines DT , and DT can
be recovered from FD in O(N) time: for every c ∈ C calculate ∆(c, FT (c)).
(We assume that calculation of ∆(c, d) is of O(1) time.).

For x ∈ C ⊂ Rk symbol xi will stand for its i-th coordinate, that is,
x = (x1, . . . , xk). Also, for an index 1 ≤ d ≤ k and a point x ∈ Rk let
Rd(x) = {c ∈ Rk : ci = xi for all i 6= d} be the one-dimensional row in Rk

parallel to d axis containing x, and let Rd(x) = C∩Rd(x) be its restriction to
a scene C. The distinction between Rd(x) with Rd(x) is an important issue,
since a confusion of these two notions seems to be at the basis of the error
in [1].

The algorithm LTDT (linear time distant transform) that we will con-
struct works properly only for the distance measures ∆ that satisfies the
following two conditions.

(♣) For every d = 1, . . . , k and x, u, v ∈ Rk the following holds. If u is to the
left of v with respect to d-th coordinate (i.e., ud ≤ vd), and x̄ ∈ Rd(x)
is obtained from x by increasing its d-th coordinate (i.e., xd < x̄d and
xi = x̄i for all i 6= d), then ∆(x, u) ≥ ∆(x, v) implies ∆(x̄, u) ≥ ∆(x̄, v)
and ∆(x, u) > ∆(x, v) implies ∆(x̄, u) > ∆(x̄, v).

(♠) For every d = 1, . . . , k and x̄, u, v ∈ Rk the following holds. If u is
strictly left of v with respect to d-th coordinate (i.e., ud < vd), then
there is an xuv ∈ Rd(x̄) such that for every x ∈ Rd(x̄): if xd < (xuv)d,
then ∆(x, u) < ∆(x, v); and if xd > (xuv)d, then ∆(x, u) > ∆(x, v).

The conditions are closely related. In particular, (♠) implies (♣) for the case

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 3

when ud < vd.
Recall that, for 1 ≤ p < ∞, the Lp metric on Rk is defined by a formula

∆(x, y) =
(∑k

i=1 |xi − yi|p
)1/p

. In particular, L2 metric is the standard Eu-

clidean distance. The fact that the Lp metric satisfies both of these properties
is well known. However, for completeness sake, we include its proof in Fact 6.
Condition (♣) is a restatement of Property 4 from [1]. Property (♠) was also
used in the algorithm from [1]. However, despite the fact that the algorithm
from [1] was supposed to work for the L1- and L∞-metrics, property (♠) is
false for these distances. (For R2 and row R1(0, 0), points u = (0, 0) and
v = (1, 1) contradict (†) for L1 metric, and points u = (0, 1) and v = (1, 1)
contradict it for L∞ metric. In both these cases there is a non-trivial interval
of points in R1(0, 0) equidistant from u and v.)

In what follows we will show that for the distances satisfying (♣) and
(♠) our algorithm LTDT returns the exact distant transform. Moreover, it
does it in O(N) time, as long as finding ∆(c, d) and xuv can be done in O(1)
time. Thus, all of this is true for the Lp distances for 1 < p < ∞, including
the Euclidean distance, since all the assumptions are satisfied by these Lp

metrics.

2 The algorithm outline: dimension step-up

In this section we will construct the LTDT algorithm using a subroutine,
called DimUp, which will be described in the next section. We will also
prove (assuming the right properties of DimUp) that LTDT indeed returns
the distant transform and that it runs in time O(N).

For 0 ≤ d ≤ k and x ∈ C let Hd(x) = {c ∈ C : ci = xi for all d < i ≤ k}
be the d-dimensional hyperplane containing x and fixing the terminal k − d
coordinates, that is, the coordinates with indices greater than d. We say that
a function F : C → B∪{∅} is a d-dimensional approximation of FT at x ∈ C
provided F (x) a correct of value of a closest feature transform for I � Hd(x),
the image I restricted to Hd(x), that is, F (x) = ∅ when B ∩ Hd(x) = ∅;
otherwise F (x) ∈ B ∩ Hd(x) and ∆(x, F (x)) = ∆(x, B ∩ Hd(x)). Such an
F is a d-dimensional approximation of FT provided it is a d-dimensional
approximation of FT at every x ∈ C, that is, when for every x ∈ C its
restriction F � Hd(x) to Hd(x) is a true feature transform for I � Hd(x).
Notice that k-dimensional approximation of FT (for a k-dimensional image)

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 4

is its true FT .
We assume that we have a procedure (subroutine) DimUp that has the

following properties. (These are the same properties that the procedure
VoronoiFV from [1] was supposed to have.)

DimUp input: Row Rd(x) indicators: x ∈ C and 1 ≤ d ≤ k; a function
F : C → B ∪ {∅} which is a (d− 1)-dimensional approximation of FT
at every c ∈ Rd(x).

DimUp output: A modified F : C → B ∪ {∅} which is a d-dimensional
approximation of FT at every c ∈ Rd(x). The values of F at spels
c /∈ Rd(x) remain unchanged.

DimUp running time cost: O(nd), where nd is the size of the row Rd(x).

For 1 ≤ d ≤ k let Cd = {x ∈ C : xd = 0} be the hyperplane passing
through (0, . . . , 0) and perpendicular to Rd(x). Note that Cd has size N/nd.

Algorithm LTDT
Input: Dimension k ≥ 2 of the image; a sequence n1, . . . , nk representing

the size of the scene C = {1, . . . , n1} × · · · × {1 . . . , nk}; a binary
image I : C → {0, 1};

Output: A distance transform DT : C → [0,∞] for the image I.
Auxiliary Data
Structures:

A feature transform function F : C → C ∪{∅}. A queue
Q of spels from C. Dimension counter d.

begin
1. for all x ∈ C do
2. if I(x) = 0 then F (x) = 0 else F (x) = ∅;
3. endfor ;
4. for d = 1 to k do
5. push all spels from Cd to Q;
6. while Q is not empty do
7. remove a spel x from Q;
8. invoke DimUp with x, d, and current F ;
9. endwhile;

10. endfor ;
11. for all x ∈ C do
12. if F (x) = ∅ then DT (x) = ∞ else DT (x) = ∆(x, F (x));
13. endfor ;

end

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 5

Lines 1-10 of this algorithm represent procedure ComputeFT from [1].
Our main contribution here is the proof of the following lemma.

Lemma 1 If algorithm DimUp works correctly, then for every binary k-
dimensional image I on C = {1, . . . , n1} × · · · × {1 . . . , nk} algorithm LTDT
returns the exact distance transform F for the image I. It does it in time
O(N), where N is the size of C.

Proof. After execution of lines 1-3 the map F represents the 0-dimensional
approximation of FT for I, as H0(x) = {x}. It part runs in O(N) time.

Next notice that for every d = 1, . . . , k, when program enters lines 5-9,
then F is a (d − 1)-dimensional approximation of FT for I; when it exits
lines 5-9, then F is a d-dimensional approximation of FT for I.

This statement is proved by mathematical induction on d. For d = 1 the
entry requirement is guaranteed by lines 1-3. For d > 1 this is ensured by
the inductive assumption. To finish the argument it is enough to show that
the execution of lines 5-9 transforms (d−1)-dimensional approximation F of
FT for I to the d-dimensional approximation of FT. This is guaranteed by
the assumptions on DimUp: when executing lines 5-9, each row Rd(x) of C is
considered precisely once, and running DimUp for this row changes the values
of F on this (and only this) row from (d− 1)-dimensional approximation of
FT to d-dimensional approximation of FT.

Next note that for each d the while loop from lines 6–9 is executed pre-
cisely N/nd many times (the size of Cd) and each time the execution cost of
DimUp is of order O(nd). Thus, each execution of lines 5-9 runs in time of
order N/ndO(nd) = O(N). This, the total time of running lines 1-10 is of
order O(N) + kO(N) = O(N).

Finally, note that after the execution of the loop 4-10 F represents k-
dimensional approximation of FT for I, which is the true FT for I.

The execution of the loop 11-13 is still of order O(N) (we assume that
calculation of ∆(x, y) is O(1)) and the resulted DT is indeed an exact distance
transform for I.

Remark 2 Note that if metric ∆ is the Lp distance where p is a natural
number (in particular, when ∆ is the Euclidean distance), and when in line 12
we replace DT (x) = ∆(x, F (x)) with its pth power: DT (x) = ∆(x, F (x))p =∑k

i=1 |xi−yi|p, then LTDT algorithm can be run with only integer arithmetic,
as long as this can be done for DimUp subroutine.

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 6

3 DimUp procedure: further reduction

The main theoretical feature responsible for the correctness of the algorithm
is the following fact.

Lemma 3 Let I be a binary image on C = {1, . . . , n1} × · · · × {1 . . . , nk},
R = Rd(z) be a row in I, and F : C → B ∪ {∅} be a (d − 1)-dimensional
approximation of FT at every x ∈ R. If metric ∆ has property (♣) and
G = {F (x) ∈ B : x ∈ R}, then G ⊂ B∩Hd(z) and ∆(x, G) = ∆(x, B∩Hd(z))
for every x ∈ R. In particular, for every x ∈ R the value of a d-dimensional
approximation of FT at x can be chosen from G ∪ {∅}.

Proof. To see that G ⊂ Hd(z) pick a y ∈ G and let x ∈ R be such that
y = F (x) ∈ Hd−1(x). Then yi = xi for all i ≥ d. Since x ∈ R = Rd(z) implies
that xj = zj for every j 6= d, we have y` = z` for all ` > d. So, y ∈ Hd(z).

Inclusion G ⊂ B ∩Hd(z) clearly implies ∆(x, G) ≥ ∆(x, B ∩Hd(z)). To
show the other inclusion, choose an arbitrary u ∈ B ∩ Hd(z). We need to
find a v ∈ G such that ∆(x, v) ≤ ∆(x, u). Let x̄ ∈ R be such that x̄d = ud.
Combining this with u ∈ Hd(z) = Hd(x̄) we conclude that u ∈ Hd−1(x̄). In
particular, B∩Hd−1(x̄) 3 u is non-empty, so v = F (x̄) belongs to B∩Hd−1(x̄)
and G and has a property ∆(x̄, v) = ∆(x̄, B∩Hd−1(x̄)) ≤ ∆(x̄, u), since F is
a (d− 1)-dimensional approximation of FT at x̄ ∈ R. So, ∆(x̄, u) ≥ ∆(x̄, v).
Also, u, v ∈ Hd−1(x̄) implies that ud = x̄d = vd. We will consider three cases.

If x̄d < xd, then, by (♣) (with roles of x and x̄ exchanged), we have
∆(x, u) ≥ ∆(x, v), as ud ≤ vd.

If x̄d = xd, then x̄ = x and clearly inequality ∆(x̄, u) ≥ ∆(x̄, v) implies
∆(x, u) ≥ ∆(x, v).

Finally, if xd < x̄d, then inequality ∆(x, v) > ∆(x, u) is impossible, since
then, by (♣) and vd ≤ ud, we would conclude ∆(x̄, v) > ∆(x̄, u), contradict-
ing ∆(x̄, u) ≥ ∆(x̄, v). Thus, in this case we also have ∆(x, u) ≥ ∆(x, v).

Lemma 3 tell us that if we like to upgrade F from being (d−1)-dimensional
approximation of FT on R = Rd(z) to being a d-dimensional approximation
of FT on R, the values of this new F can be chosen from the values of old
F on R, that is, from F [R] = {F (x) : x ∈ R}. In our upgrade procedure we
will need first to further restrict our choice of the values of new F on R to a
subset of G ∪ {∅}. This will be done with the TRIM procedure having the
following properties.

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 7

TRIM input: Row R = Rd(c) indicators: c ∈ C and 1 ≤ d ≤ k; a function
F : C → B ∪ {∅} which is a (d− 1)-dimensional approximation of FT
at every x ∈ Rd(c).

TRIM output: A list (q1, . . . , qm), 0 ≤ m ≤ nd, of spels from the set
G = {F (x) ∈ B : x ∈ R} such that

(i) (qj)d < (qj+1)d for every 1 ≤ j < m;

(ii) ∆(x, {qj : 1 ≤ j ≤ m}) = ∆(x, G) for every x ∈ R;

(iii) for every 1 ≤ j ≤ m there is an x ∈ R with ∆(x, qj) = ∆(x, G).

TRIM running time cost: O(nd), where nd is the size of the row Rd(c).

Using TRIM it is easy to describe the DimUp algorithm. This is actually
a part (lines 15-24) of the VoronoiFT procedure from [1].

Algorithm DimUp
Input: A (d− 1)-dimensional approximation F of FT on Rd(c).
Output: A d-dimensional approximation F of FT on Rd(c).
Auxiliary Data Structures: A queue Q of spels from C. A counter `.
begin

1. invoke TRIM for Rd(c) and F to get list (q1, . . . , qm);
2. if m > 0 then
3. push all spels from Rd(c) to Q in the increasing order

(i.e., with xd = 1 for the first removed spel);
4. initialize ` = 1;
5. while Q is not empty do
6. remove a spel x from Q;
7. while ` < m and ∆(x, q`) ≥ ∆(x, q`+1) do
8. ` = ` + 1;
9. endwhile;

10. F (x) = q`;
11. endwhile;
12. endif ;

end

Lemma 4 Assume that ∆ satisfies (♣). If algorithm TRIM works correctly
and the input function F for DimUp is a (d− 1)-dimensional approximation
F of FT on Rd(c), then the output version of F for DimUp is a d-dimensional
approximation of FT on Rd(c). Moreover, DimUp is running in O(nd) time.

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 8

Proof. By our assumptions on TRIM, the execution time of line 1 is of order
O(nd). The total number of times the lines 7-9 can be executed during the
entire program run is bounded by m ≤ nd. Since Q has a size nd, this means
that lines 5-11 are executed with O(np) operations. So, DimUp requires only
O(nd) operations.

Now, m = 0 precisely when F (x) = ∅ for all x ∈ Rd(c), in which case
B ∩Hd(c) = ∅, and program correctly leaves all these values unchanged.

So, assume that m > 0, that is, that the set H = {q1, . . . , qm} is non-
empty. We will enter loop from lines 5-11 precisely nd times and on ith
entering we will have xd = i for the removed x from the queue Q. We will
show, by induction on i, that upon leaving the loop we will have

∆(x, qj) ≥ ∆(x, q`) & ∆(x, q`) < ∆(x, n) for every 1 ≤ j < ` < n ≤ m. (1)

In particular, this shows that ∆(x, F (x)) = ∆(x, q`) ≤ ∆(x, {q1, . . . , qm}),
which, by Lemma 3 and property (ii), is equal to ∆(x, B ∩Hd(x)). Thus, F
becomes a d-dimensional approximation of FT at x, and remains so, since
the value of F at x does not change any more.

To prove (1) let `0 be the value of ` upon entering the loop and `1 its
value upon leaving it. First we will argue for the first inequality. Let 1 ≤
j < `1. If j < `0, then i > 1, since for i = 1 we have `0 = 1. Let x̄ ∈
Rd(c) be such that x̄d = i − 1. So, by the inductive assumption, ∆(x̄, qj) ≥
∆(x̄, q`0). Since (qj)d < (q`0)d and x̄d < xd, condition (♣) implies that
∆(x, qj) ≥ ∆(x, q`0). Moreover, execution of the loop from lines 7-9 insure
that ∆(x, q`0) ≥ ∆(x, qt) ≥ ∆(x, q`1) for every `0 ≤ t ≤ `1. This implies that
∆(x, qj) ≥ ∆(x, q`1) for every 1 ≤ j < `1.

To show the second inequality take `1 < n ≤ m. Then `1+1 ≤ n ≤ m and
the fact that loop 7-9 stopped means that ∆(x, q`1) < ∆(x, q`1+1). By way
of contradiction assume that ∆(x, q`1) ≥ ∆(x, qn). We will show that this
implies that q`1+1 fails to satisfy condition (ii) for the output of TRIM. So,
choose an x̄ ∈ R. It is enough to prove that ∆(x̄, q`1+1) > ∆(x̄, B ∩Hd(x)).
Let x̄d = j. We will consider three cases.

If i < j, then xd < x̄d. Since ∆(x, q`1+1) > ∆(x, qn) and (q`1+1)d ≤ (qn)d,
condition (♣) implies ∆(x̄, q`1+1) > ∆(x̄, qn) ≥ ∆(x̄, B ∩Hd(x)).

If i = j, then x = x̄ and ∆(x̄, q`1+1) = ∆(x, q`1+1) > ∆(x, q`1) =
∆(x̄, q`1) ≥ ∆(x̄, B ∩Hd(x)).

Finally, if j < i, then x̄d < xd. Notice that ∆(x̄, q`1) < ∆(x̄, q`1+1),
since otherwise, by (♣), ∆(x̄, q`1) ≥ ∆(x̄, q`1+1) and (q`1)d ≤ (q`1+1)d imply

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 9

∆(x, q`1) ≥ ∆(x, q`1+1), contradicting ∆(x, q`1) < ∆(x, q`1+1). Thus, once
again, ∆(x̄, q`1+1) > ∆(x̄, q`1) ≥ ∆(x̄, B ∩Hd(x)).

4 The TRIM procedure

In what follows we will use a simple relation CHECK(u,v,w), which depends
on a row R = Rd(c). It is applied to u, v, w ∈ C with ud < vd < wd and is true
when there is no integer n for which (xuv)d ≤ n ≤ (xvw)d, or, equivalently,
when d(xuv)de > b(xvw)dc, where dre is the smallest integer greater than or
equal to r, and brc is the greatest integer less than or equal to r. Notice that
if CHECK(u,v,w) is true, then ∆(x, v) > ∆(x, {u, w}) for every x ∈ Rd(c).
In other words, if u, v, w ∈ G, then v cannot be in the sequence returned by
TRIM.

Algorithm TRIM
Input: Row R = Rd(c) and a function F : C → B ∪ {∅} which is a

(d− 1)-dimensional approximation of FT at every x ∈ Rd(c).
Output: A list (q1, . . . , qm) of spels from {F (x) ∈ B : x ∈ R} satisfying

(i)-(iii).
Auxiliary Data Structures: Counters i, m and spel pointers u, v.
begin

1. set m = 0;
2. for i = 1 to nd do
3. if F (xi) 6= ∅ then
4. set m = m + 1;
5. set qm = F (xi);
6. if m > 1 then
7. set u = qm−1;
8. set v = qm;
9. if (xuv)d ≥ nd then

10. set m = m− 1;
11. else
12. while m > 2 and CHECK(qm−2, qm−1, qm) do1

13. set qm−1 = qm;
14. set m = m− 1;
15. endwhile;

1In the implementation insure that CHECK doesn’t freeze the program when m = 2.

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 10

16. if m = 2 then
17. set u = q1;
18. set v = q2;
19. if (xuv)d < 0 then
20. set q1 = q2;
21. set m = 1;
22. endif ;
23. endif ;
24. endif ;
25. endif ;
26. endif ;
27. endfor ;
28. return sequence (q1 . . . , qm) for the current value of m;

end

Lemma 5 Assume that ∆ satisfies (♣). Then TRIM works correctly and
DimUp is running in O(nd) time.

Proof. To see that TRIM runs in O(nd) time note that it enters the loop
from lines 2-27 precisely nd times. The i-th run time of this loop is of order
O(1)+2Pi, where Pi is the number of runs of the loop from lines 12-15. Since
each time this loop is run, one value from the set {F (xi) : i = 1, . . . , nd} is
removed, we have P1 + · · ·+Pnd

≤ nd. Therefore, TRIM indeed runs in time∑nd

i=1(O(1) + 2Pi) = O(nd).
To prove that the output of TRIM satisfies (i)-(iii), we will show, by

induction on i = 1, . . . , nd, that after completing i-th run a loop from lines
2-27 the following holds, where mi stands for the value of m at this point
program execution and Gi = {F (xj) ∈ B : 1 ≤ j ≤ i}.

(Ai) (qj)d < (qj+1)d for every 1 ≤ j < mi and all these qj’s belong to Gi;

(Bi) ∆(x, {qj : 1 ≤ j ≤ mi}) = ∆(x, Gi) for every x ∈ R.

(Ci) for every 1 ≤ j ≤ mi there is an x ∈ R such that ∆(x, qj) = ∆(x, Gi).

This will finish the proof, since then TRIM’s output value of m is equal to
mnd

, the set Gnd
equals to G from TRIM’s output description, and so, the

conditions (And
)-(Cnd

) are the restatement of (i)-(iii).
Assume that m0 = 0. Then G0 and the q-sequence are empty, so con-

ditions (A0)-(C0) are satisfied. Thus, we just need to show that, for every

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 11

i = 1, . . . , nd, if conditions (Ai−1)-(Ci−1) are satisfied upon entering the code
lines 2-27, then (Ai)-(Ci) hold upon finishing their execution.

Note that after each execution of lines 2-27 the sequence the q-sequence
may have more than mi elements. However, only the first mi of its elements
are of consequence, and these first mi elements constitute the q-sequence
(possibly empty) satisfying (Ai)-(Ci).

If F (xi) = ∅, then Gi = Gi−1 and none of lines 4-25 is executed, so
mi = mi−1 and the q-sequence remains unchanged. This clearly implies
(Ai)-(Ci). So, for the rest of the proof assume that F (xi) 6= ∅.

The execution of lines 3-4 temporarily extends the q-sequence (by as-
signing to mi = m value mi−1 + 1) and puts F (xi) at its end. This initial
assignment ensures (Ai) and (Bi). However, (Ci) may be false at this stage,
and the sequence may need to be trimmed to ensures it. This is done in
lines 6-25.

Clearly, by the inductive assumption (Ai−1), at this stage the sequence
satisfies condition (Ai), since (F (xi))d = i > xd for every x ∈ Gi−1. To see
that the execution of lines 6-25 preserves (Ai), it is enough to note that the
only changes to this sequence in lines 6-25 are either through dropping the
last sequence element (in line 10) or by replacing the second to the last of
its elements by the last one and shortening the sequence by 1 (lines 13-14 or
20-21). These operations clearly preserve (Ai).

Now, if we enter line 6 with m = mi = 1, then mi−1 = 0 and, by (Bi−1),
we have Gi−1 = ∅. Although at this case condition in line 6 insures that no
other lines are executed, this implies that mi = 1 and Gi = {F (xi)} = {q1},
so (Bi) and (Ci) hold. So, assume that at line 6 we have mi = m > 1, that is,
that the q-sequence has at least two elements. Next we will decide whether
its last element is in the proper position and, if not, modify the sequence.

Thus, entering line 7 we know that our q-sequence has at least two el-
ements. In lines 7-11 we check whether there is any reason to keep qm

in the sequence. If not, we can simply remove it. More precisely, since
Gi = Gi−1 ∪ {F (xi)}, condition (Bi−1) implies that for every x ∈ R we have
∆(x, Gi) = ∆(x, Gi−1 ∪ {qm}) = ∆(x, {qj : 1 ≤ j ≤ m}). Assume that the
condition from line 9 is satisfied. Then, the only executed line in the rest
of the loop is line 10, which discards the last element of the sequence. This
means that mi = m = mi−1. Now, to show that this sequence satisfies (Bi)
and (Ci), note that xuv is to the right of every x ∈ R. This means that
for m = mi−1 + 1 we have ∆(x, qm−1) = ∆(x, u) ≤ ∆(x, v) = ∆(x, qm). In
particular, ∆(x, Gi) = ∆(x, {qj : 1 ≤ j ≤ m}) = ∆(x, {qj : 1 ≤ j ≤ mi−1})

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 12

is equal to ∆(x, Gi−1) for every x ∈ R. Therefore, in this case (Bi−1) and
(Ci−1) imply (Bi) and (Ci) for mi = mi−1.

Note that the condition from line 9 can be viewed as checking whether
q̂ = F (xi) can satisfy (Ci). Next, we assume that the condition from line 9
fails. This means that we are entering execution of the lines 12-23 and that
at this stage we have ∆(qmi

, xnd
) < ∆(qmi−1

, xnd
). We need to see that

∆(qmi
, xnd

) < ∆(qj, xnd
) for every 1 ≤ j ≤ mi−1. (2)

So, take a j < mi−1. By (Ci−1), there exists an x ∈ R such that
∆(x, qmi−1

) = ∆(x, Gi−1). In particular, ∆(x, qj) ≥ ∆(x, qmi−1
). So, by (♣),

∆(xnd
, qj) ≥ ∆(xnd

, qmi−1
) > ∆(qmi

, xnd
), proving (2).

Note that (2) shows that no matter what trimming to the q-sequence will
be done, q̂ = F (xi) will satisfy (Ci).

Now, we consider execution of the lines 12-23. In their execution we
will discard from the sequence q1, . . . , qmi−1

some of its terminal part. More
precisely, we will search for an index m̄ ∈ {1, . . . ,mi−1 + 1}, redefine qm̄ as
q̂ = F (xi), and define mi as m̄. Our resulting exit q-sequence will be of the
form q1, . . . , qm̄−1, qm̄ = q̂, where the initial part, possible empty, consists
of spels listed at in the q-sequence from the i − 1 step. Note that, by (2),
we need to insure condition (Ci) only for j < m̄. We need also to preserve
condition (Bi).

First we concentrate on the loop 12-15. Initially m = mi−1 + 1. As-
sume that the condition from line 12 is satisfied. Then the execution of
lines 13-14 removes qm−1 from the sequence. Note, that under the condi-
tion from the line 12, this preserve (Bi). Indeed, to see this fact, we need
to argue only that ∆(x, {q1, . . . , qm−2, qm−1, qm}) = ∆(x, {q1, . . . , qm−2, qm})
for every x ∈ R, that is, that ∆(x, qm−1) ≥ ∆(x, {q1, . . . , qm−2, qm}). Let
u = qm−2, v = qm−1, and w = qm. Since, by the condition from the line
12, no x from R is between xuv and xvw, one of the following two cases
apply. (1) xd ≤ (xuv)d, in which case ∆(x, qm−1) = ∆(x, v) ≥ ∆(x, u) =
∆(x, qm−2) ≥ ∆(x, {q1, . . . , qm−2, qm}). (2) xd ≥ (xvw)d and ∆(x, qm−1) =
∆(x, v) ≥ ∆(x, w) = ∆(x, qm) ≥ ∆(x, {q1, . . . , qm−2, qm}). All of this means
that upon completion of the loop from lines 12-15, condition (Bi) holds for
the current sequence q1, . . . , qm̄−1, qm̄ = q̂.

Upon finishing the loop from lines 12-15, either m = 2 or else condition
CHECK(qm−2, qm−1, qm) is false. Assume first that m > 2. In this case the
sequence is not modified any more in lines 16-23, so we need to prove that

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 13

it satisfies (Bi). We know it holds for qm = q̂. To see that it holds for
qm−1 note that the negation of CHECK(qm−2, qm−1, qm) implies that there
exists an x ∈ R such that (xuv)d < xd < (xvw)d. We will show that this
x satisfies (Bi) for qm−1. The last two inequalities imply immediately that
∆(x, qm−1) = ∆(x, v) < ∆(x, w) = ∆(x, qm) and ∆(x, qm−1) = ∆(x, v) <
∆(x, u) = ∆(x, qm−2). Let 1 ≤ j ≤ m− 2. To see that ∆(x, qm−1) ≤ ∆(x, qj)
it is enough to show that ∆(x, qm−2) ≤ ∆(x, qj). Let x̄ ∈ R satisfy (Bi−1)
for qm−2. Then ∆(x̄, qj) ≥ ∆(x̄, qm−2). So, x̄d ≤ (xuv)d < xd and, by (♣),
∆(x, qj) ≥ ∆(x, qm−2). Thus, qm−2 satisfies (Bi). To show that (Bi) holds
for qj, let x̂ ∈ R satisfy (Bi−1) for qj. Then, ∆(x̂, qj) ≤ ∆(x̂, q`) for all
1 ≤ l ≤ m−1. We need to show that also ∆(x̂, qj) ≤ ∆(x̂, qm), which follows
from ∆(x̂, qm−1) ≤ ∆(x̂, qm), which, in turn, is equivalent to x̂d ≤ (xvw)d.
By way of contradiction, assume that (xvw)d < x̂d. Then x̄d ≤ (xuv)d <
xd < (xvw)d < x̂d. Since, by the definition of x̄, ∆(x̄, qj) ≥ ∆(x̄, qm−2),
condition (♣) implies that ∆(x̂, qj) ≥ ∆(x̂, qm−2). Also, (xuv) < x̂d implies
that ∆(x̂, qm−2) = ∆(x̂, u) > ∆(x̂, v) = ∆(x̂, qm−1). Therefore, ∆(x̂, qj) >
∆(x̂, qm−1), what contradicts the choice of x̂. This completes the proof of
the case when after completing line 15 we have m > 2.

To finish the proof, assume that after completing line 15 we have m = 2.
Thus, the q-sequence consists of just two elements, q1 and q2 = q̂. We also
know that conditions Ci and (2) are satisfied. The final outcome depends
on the condition from line 19. If (xuv)d < 0, then ∆(x, {q1, q̂}) = ∆(x, {q̂})
for every x ∈ R, and we can safely remove q1 from the sequence preserving
(Bi); in this case condition (Ci) trivially holds. If (xuv)d ≥ 0, then the
first element of R satisfies (Ci) for q1, so no change is required, and the two
element sequence is returned.

5 Comments on CHECK and LTDT

Assume that ∆ the Lp metric. Although the algorithm is set up under the
assumption that C = {1, . . . , n1} × · · · × {1 . . . , nk}, we can as well take
C = C1 × · · · ×Ck, where Ci is any finite (say of size ni) subset of R. Then,
when Ci = {ci

1, . . . , c
i
ni
} is naturally identified with its index set {1, . . . , ni},

and C = C1 × · · · ×Ck with C̃ = {1, . . . , n1} × · · · × {1 . . . , nk}. In this case
the naturally modified Lp distance ∆̃ on C is given by a formula

∆̃((p1, . . . , pk), (q1, . . . , qk)) = ∆((c1
p1

, . . . , ck
pk

), (c1
q1

, . . . , ck
qk

)).

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 14

This approach is of particular interest, when the image is anisotropic, though
uniform with respect to each coordinate. In this case there are weights wi ∈
(0,∞) such that ∆̃((p1, . . . , pk), (q1, . . . , qk)) = k

√∑k
i=1(wi|pi − qi|)|p. Our

algorithm works perfectly in this setting, especially in case of the Euclidean
distance. (See comments below.) However, in the rest of the discussion we
assume, for simplicity, that wi = 1 for all i’s.

Some difficulty with using CHECK relation is in finding points xvw for
the given line R = Rd(z). Its dth coordinate constitutes the solution of the
equation |xd− ud|p +

∑
i6=d |zi− ui|p = |xd− vd|p +

∑
i6=d |zi− vi|p. For p = 2,

the case of Euclidean distance, this equation reduces to a linear equation
(vd − ud)(2x− u− v) =

∑
i6=d |zi − vi|p −

∑
i6=d |zi − ui|p, and so the values of

dxde and bxdc, all that we are looking for, can be found quickly (certainly in
O(1) time) and within the integer arithmetic realm. For general p, however
(even integer p > 4, in which case the equation is a polynomial of degree
greater than 4) the problem is slightly more complicated. (Since we are
interested in the solutions between 1, . . . , nd, a brute-force algorithm can be
run in log2 nd time.)

In practical imaging applications the distance transform is often defined
as a distance of a foreground point x ∈ F to the boundary Bd between
foreground and the background B (i.e., as ∆(x, Bd)) rather than as a distance
between x and B (i.e., as ∆(x, B)). In the non-digital setting, these are the
same notions. However, in the digital case you often identify each spel with
the unit side k-dimensional cube centered at x, and the boundary as a union
of all such cube’s faces shared by foreground and background spels. In such
interpretation it can be shown that ∆(x, Bd) = ∆(x, Bd0), where Bd0 is the
set of all points that eiher are at the center of a face used in Bd, or one of
its corners. (Thus, each face in Bd is replaced by 1 + 2k−1 points.) Then,
one can use the LTDT algorithm to compute ∆(x, Bd0) for every x ∈ F .
However, the center points belong only to double density grid (with respect
to the original C), so before running LTDT to find ∆(x, Bd0), ione should
double each side of C, increasing the total size of C by a magnitude of 2k.

6 Error in the algorithm of Mauer at al.

DimUp subroutine (which is equivalent to a part of the procedure VoronoiFV
from [1]) works properly only when its input q-sequence have properties (i)-
(iii). For example, algorithm DimUp always assigns q1 to the first element

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 15

of the row R = Rd(z). If (iii) is not satisfied for q1, this assignment must
be incorrect. This is precisely the error that appears in the algorithm from
[1]. More specifically, the version of our CHECK algorithm appears also as
a part of the procedure VoronoiFV from [1]. However, the authors insure in
it only that between any appropriate u, v, and w, there is a point in Rd(z)
(rather than in Rd(z)) between xuv and xvw. (They just check the inequality
(xuv)d < (xvw)d. There is no checking for the first element of the sequence or
its last element.)

The following table contains a comparison of Maurer and Danielsson dis-
tance transforms as independently implemented in ITK. The binary input im-
age size is 100×100×100 pixels with a pixel spacing specified as 1.0×1.0×1.0
units. This 3D data set consists of 10,000 random points sampled from a
normal distribution to simulate a spherical object with a nonuniform (and
possibly disconnected) border. The time indicates the elapsed time in sec-
onds required for execution. The count is the number of pixels in the distance
transform result that differ from the gold standard. The max is the magni-
tude of the single, largest difference and the rmse is the root mean squared
error (difference). The gold standard is calculated via an exhaustive com-
parison and is therefore not usable for large data sets.

algorithm time (sec) count max rmse
gold 41.1 0 0 0.00000

danielsson 7.4 1179 1 0.02704
maurer 1.6 1006 1 0.02701

7 Phantom example

Example of the image that gives error in the algorithm from [1]:
center of the image. Consider feature points P = (−a, a), Q = (0, b) and
R = (a, a+1) and let L0 = R×{0}. Let (0, xPQ) ∈ L0 be a point equidistant
from P and Q. Then, solution of equation (xPQ + a)2 + a2 = x2 + b2 gives

xPQ = b2−2a2

2a
. Similarly, if point (0, xQR) ∈ L0 is equidistant from Q and R,

then xQR solves (xQR − a)2 + (a + 1)2 = x2 + b2, so xQR = 1 + 1
2a
− b2−2a2

2a
.

In particular, if a = 24 and b = 34, then xPQ ≈ 0.15 and xQR ≈ 0.94. This
means, that interval (xPQ, xQR) is non-empty, but contains no integer.

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 16

If the binary image I : {−30,−29, . . . , 30} × {0, . . . , 60} → {0, 1} is such
that P , Q, and R, are its only background pixels, then Q is not a feature
point for L0∩{−30,−29, . . . , 30}×{0, . . . , 60}, though algorithm VoronoiFT
treats it as such, leading to associating it to as a feature point to (1, 0).

Example of the image that gives error in the algorithm from [1]:
boundary of the image. Run the algorithm for the diagonal binary im-
age I : {1, . . . , 10} × {1, . . . , 10} → {0, 1} with background being exactly its
diagonal: {(i, i) : i = 1, . . . , 10}. Then VoronoiFT algorithms assign the spel
(1, 1) as the closest to every spel (i, 1), which is incorrect for all i > 1.

8 Appendix

Fact 6 For 1 < p < ∞ if ∆ is the Lp metric on Rk, then it satisfies the
properties (♣) and (♠).

Proof. When ud = vd, we have u = v, in which case (♣) is trivially
satisfied. So, in what follows we will consider only the case when ud < vd.
Let h(xd) = ∆(x, u)p − ∆(x, v)p and notice that it is enough to show that
function h is strictly increasing.

Indeed, to show that this implies (♣) assume that ∆(x, u) > ∆(x, v).
Since xp is strictly increasing, ∆(x, u)p > ∆(x, v)p, and so h(xd) > 0. Hence
h(x̄d) > 0, as xd < x̄d. But h(x̄d) = ∆(x̄, u)p −∆(x̄, v)p, since xi = x̄i for all
i 6= d. Thus, ∆(x̄, u)p−∆(x̄, v)p > 0, that is, that ∆(x̄, u)p > ∆(x̄, v)p. From
this we conclude that ∆(x̄, u) > ∆(x̄, v). The argument for the implication
∆(x, u) ≥ ∆(x, v) =⇒ ∆(x̄, u) ≥ ∆(x̄, v) is essentially the same.

To see (♠), note that h is continuous and that limud→±∞ h(ud) = ±∞.
(The argument for the limit requires some algebra work. It follows from
a simple estimate [2, Lemma 3, page 121], proven with calculus tools, that
(a+b)p ≥ ap+pbap−1 for non-negative a and b.) Thus, by Intermediate Value
Theorem (see e.g. [2]), there exists an x̂ ∈ R with h(x̂) = 0. Let xuv ∈ Rd(x̄)
be such that (xuv)d = x̂. Then, for every x ∈ Rd(x̄) if xd < (xuv)d, then
∆(x, u)p−∆(x, v)p = h(x̄d) < h((xuv)d) = 0, so ∆(x, u) < ∆(x, v). Similarly,
xd > (xuv)d implies ∆(x, u) > ∆(x, v), so xuv satisfies (♠).

To prove that h(xd) =
∑k

i=1 |xi−ui|p−
∑k

i=1 |xi−vi|p is strictly increasing
it is enough to show that it has non-negative derivative at all points except
possibly for xd = ud and xd = vd. Since h′(xd) = d

dxd
(|xd − ud|p − |xd − vd|p),

Ciesielski at al., Linear Time Distance Transform Algorithm Nov. 2006 17

for ud ≤ vd < xd we have h′(xd) = p ((xd − ud)
p−1 − (xd − vd)

p−1) ≥ 0 as
xd−ud ≥ xd−vd > 0 and function xp−1 is non-decreasing on (0,∞). Similarly,
for xd < ud ≤ vd we have h′(xd) = p (−(ud − xd)

p−1 + (vd − xd)
p−1) ≥ 0 as

vd − xd ≥ ud − xd > 0. Finally, h′(xd) = p ((xd − ud)
p−1 + (vd − xd)

p−1) > 0
for the remaining case ud < xd < vd.

References

[1] Maurer, C.R., Jr., Qi, R., and Raghavan, V.: A linear time algorithm
for computing exact Euclidean distance transforms of binary images
in arbitrary dimensions, IEEE Transactions on Pattern Analysis and
Machine Intelligence 25(2) (2003), 265–270.

[2] H.L. Royden, Real Analysis, MacMillan Publishing Company, New York,
1988.

[3] Tustison, N.J., Siqueira, M., and Gee, J.C.: N-D Linear Time Exact
Signed Euclidean Distance Transform, Penn Image Computing and Sci-
ence laboratory, UPenn, February 17, 2006.

