
A GENERAL THEORY OF IMAGE
SEGMENTATION: LEVEL SET SEGMENTATION

IN THE FUZZY CONNECTEDNESS FRAMEWORK

K.C. Ciesielski and J.K. Udupa

Medical Image Processing Group
Department of Radiology

University of Pennsylvania

TECHNICAL REPORT NO. MIPG335

November, 2006

Department of

RADIOLOGY
University of Pennsylvania



A general theory of image segmentation: level
set segmentation in the fuzzy connectedness

framework

Krzysztof Chris Ciesielskia,b,∗and Jayaram K. Udupab,†

aDepartment of Mathematics, West Virginia University,

Morgantown, WV 26506-6310
bDepartment of Radiology, MIPG, University of Pennsylvania, Blockley Hall – 4th Floor,

423 Guardian Drive, Philadelphia, PA 19104-6021

Abstract

In the current vast image segmentation literature, there is a seri-
ous lack of methods that would allow theoretical comparison of the
algorithms introduced by using different mathematical methodologies.
The main goal of this article is to introduce a general theoretical frame-
work for image segmentation that would allow such comparison. The
framework is based on the formal definitions designed to answer the
following fundamental questions: What is the relation between an
idealized image and its digital representation? What properties a seg-
mentation algorithm satisfy have to be acknowledged as acceptable?
What does it mean that a digital image segmentation algorithm truly
approximates an idealized segmentation model?

We use the formulated framework to analyze the front propagation
(FP) level set algorithm of Malladi, Sethian, and Vemuri and compare
it with the fuzzy connectedness family of algorithms. In particular,
we show that the FP algorithm is model-equivalent with the abso-
lute fuzzy connectedness algorithm used with gradient based affinity.
Experimental evidence of this equivalence is also provided.
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The presented theoretical framework can be used to analyze an
arbitrary segmentation algorithm and this line of investigation is a
subject of our forthcoming work.
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1 Introduction

Image segmentation — the process of partitioning the image domain into
meaningful object regions — is perhaps the most challenging and critical
problem in image processing and analysis. Its central position in image pro-
cessing comes from the fact that the delineation of objects is usually the first
step in other higher level processing tasks, like image interpretation, diagno-
sis, analysis, visualization, and virtual object manipulation. Image segmen-
tation may be thought of as consisting of two related processes: recognition
and delineation. Recognition is the high-level process of determining roughly
the whereabouts of an object of interest in the image. Delineation is the low-
level process of determining the precise spatial extent and point-by-point
composition (material membership percentage) of the object in the image.
The topic of this paper concerns image delineation.

General segmentation frameworks may be broadly classified into three
groups: boundary-based [6, 10, 11, 13, 15, 16, 19, 18, 20], region-based [2, 3,
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25, 29, 30, 31, 32], and hybrid [5, 14]. As the nomenclature indicates, in the
first two groups the focus is on recognizing and delineating the boundary or
the region occupied by the object in the image. In the third group, the focus
is on exploiting the complementary strengths of each of boundary-based and
region-based strategies to overcome their individual shortcomings.

The general theoretical framework for image segmentation proposed in
Section 2 can be applied to all of the methods in the literature. We applied it
here (in Section 3) to the analysis of one particular model described within the
fuzzy connectedness methodology [32] and to the comparison of its associated
algorithm with the level set delineation algorithm from [6]. An attempt of
expressing this level set delineation algorithm without PDE can be also found
in [27, 28].

The rationale for the initiation of a general theoretical study of image
segmentation methodologies is to address several serious gaps that currently
exist in our knowledge in this subject, denoted (G1)–(G3) in the follow-
ing: (G1) Are all different families of segmentation methods/models (e.g.
functional optimization, usually implemented via level set [16, 20, 24, 25],
graph-cut [3], active contour [15], live wire [13], active shape [10], active
appearance [11], fuzzy connectedness [8, 9, 23, 30, 32], and watershed [26])
really fundamentally independent or are there similarities, or even theoretical
equivalences, among them? Although there are some rare attempts here and
there to compare the methods at a theoretical level, this is largely an open
question. (G2) Segmentation research has two clearly distinct components:
the practical, focused on describing efficient segmentation algorithms that
can be practically implemented; and theoretical, concerning development
and use of sophisticated tools of infinite (i.e., not discrete) mathematics for
the purpose of describing segmentation models of idealized images. One of
the peculiarities of the current state of segmentation research is that these
two tracks are not connected in any formal way. True, the papers that start
with a description of a segmentation model of idealized images usually tran-
scribe such a model into a digital image segmentation procedure. However,
all of these translations are done only at the intuitive level, without a for-
mal, mathematical argument. In fact, there is even no evidence of the use
of any definition formally connecting idealized images (infinite objects) with
their digital representations (which are finite). (G3) Another element clearly
missing from current segmentation research is a set of certain properties that
any digital segmentation algorithm must or should have. For example, it
seems that an output of any reasonable segmentation algorithm should be
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reasonably stable if it is fed with the digital approximations of the same
idealized image with better and better resolution. It would be also good,
if the segmentation output remained reasonably unchanged when applied to
the same resolution digital representations of the same idealized image that
was rotated and/or shifted. (This latter aspect becomes important when
we keep in mind that, in many areas such as medical imaging, there is no
guarantee that the same object with subtle and fine features will be digitized
in the same manner in repeated scans/digitalizations.) So far, there is very
little research done along these lines, especially for the algorithms that were
not motivated by the idealized image segmentation models. Our approach
to fill the above-mentioned gaps (G1)-(G3) is via development of the general
theory proposed in Section 2.

In the FC framework [32], a fuzzy topological construct, called fuzzy
connectedness, characterizes how the spatial elements (abbreviated as spels)
of an image hang together to form an object. This construct is arrived at
roughly as follows. A function called affinity is defined on the image domain;
the strength of affinity between any two spels depends on how close the
spels are spatially and how similar their intensity-based properties are in the
image. Affinity is intended to be a local relation. A global fuzzy relation
called fuzzy connectedness is induced on the image domain by affinity as
follows. For any two spels c and d in the image domain, all possible paths
connecting c and d are considered. Each path is assigned a strength of fuzzy
connectedness which is simply the minimum of the affinities of consecutive
spels along the path. The level of fuzzy connectedness between c and d is
considered to be the maximum of the strengths of all paths between c and
d. For segmentation purposes, FC is utilized in several ways as described
below. See [30] for a review of the different FC definitions and how they are
employed in segmentation and applications.

In absolute FC (abbreviated AFC) [32], the support of a segmented object
is considered to be the maximal set of spels, containing one or more seed
spels, within which the level of FC is at or above a specific threshold. To
obviate the need for a threshold, relative FC (or RFC) [23] was developed by
letting all objects in the image to compete simultaneously via FC to claim
membership of spels in their sets. To avoid treating the core aspects of an
object (that are very strongly connected to its seeds) and the peripheral
subtle aspects (that may be less strongly connected to the seeds) in the
same footing, an iterative refinement strategy is devised in iterative RFC
(or IRFC) [8, 31]. The FC family of methods developed to date consists of
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various combinations of absolute, relative, and iterative FC. In this paper we
will study (in Section 3.1) only the AFC algorithm considered with a gradient
based affinity. Note, that gradient based affinity is a generalized affinity
notion, in a format introduced and examined in [9]. The other forms of FC
algorithms will be examined within the general framework from Section 2 in
our future work.

The level set method refers to the specific model of evolving front (sur-
face or curve) in a time dependent manner and to the numerical algorithm
tracking such front propagation. The model and the associated narrow band
propagation algorithm were introduced in 1985 by Sethian [24] and made
its way to image segmentation research in 1995 with paper [16]. The pop-
ularity of the level set method in segmentation tasks led to a multitude of
research papers, as exemplified by the books [21, 22, 25]. Although the
level set method in image segmentation is nowadays more often used indi-
rectly to solve the PDE optimizing the segmentation cost functions (see e.g.,
[7, 17, 33]), the original segmentation algorithms are still studied [27, 28].
Therefore, for the purpose of using the theoretical framework for comparing
methods, we have chosen FC, because of our familiarity with it, and the level
set with front propagation because of its popularity.

2 The general image segmentation theory

Despite the enormous volume of image segmentation research, so far there is
no formal, general, and coherent theoretical framework of a segmentation the-
ory that would allow a theoretical comparison of digital image segmentation
algorithms independently of the mathematical framework in which they were
introduced. In this section, we describe a theoretical structure designed for
facilitating such comparisons. Moreover, the framework will help us to iden-
tify the basic properties that any reasonable segmentation algorithm should
satisfy.

In the remainder of the paper, we will examine these properties for sev-
eral specific segmentation models and discuss the associated segmentation
algorithms.
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2.1 Stage set up: What is an image?

In this subsection, we will formalize the notions of an “idealized image” and
the “physical image” associated with it. This formalization is rather stan-
dard in imaging literature. However, most of the imaging papers concentrate
only on one of these two kinds of images, leaving unanswered or hazy the
fundamental question on the relation between them. One of the most im-
portant goals of this paper is to clearly describe such relation in a general
setting and to apply it to each of the segmentation models we consider.

There are many different kinds of physical phenomena that lead to images.
These include: biological visual (human or animal) perception leading to in-
ternal imagery, different analogue pictures (like those obtained by standard
analog cameras or x-ray films), and digital images (including digital camera
pictures, synthesized computer images, and computed images created from
image acquisition devices like ultrasound, CT, PET, and MRI machines).
Every such image can be identified with an intensity function, say f , associ-
ating to each sensor c from some finite set C of sensors the image intensity
value f(c) at c. Note that set C is finite even in the case of chemical sensors
used by analog images, although in this case their number is large. We often
ignore the physical dimensions of the sensors once the image is formed, but
keep track of their relative position. This allows us to treat a set C as a
subset of the Euclidean space Rn of appropriate dimension. Note that we
do not restrict our attention to the two-dimensional images, since we are
particularly interested in medical imaging, where three-dimensional images
have become the dominating object of interest lately.

Concerning the intensity value f(c), it does not need to be expressible as
a single number; however, it can always be treated as a vector in R`. For
example, f(c) can be a vector of the intensities of different color components
recorded at c. This leads us to the following definition of a “physical” image,
to which we refer as a digital image, where n, ` ≥ 1 are arbitrary natural
numbers. We will always assume that n ≥ 2, although we will alow it to be
larger than 3, as a time sequence of three-dimensional images, for example,
can be interpreted as a four-dimensional image.

Definition 1 An (n-dimensional) digital image is any function f from a
finite subset C of Rn into R`.

In this definition, we slightly depart from the standard assumption that
the coordinates of C are the integer numbers, that is, that C ⊂ Zn. This will
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help us to lay our theory, while it creates no real implementation difficulty,
especially in the most important case when C is a subset of a rectangular
grid {hk : k ∈ Z}n, where h > 0 is a fixed number.

Although Definition 1 captures practical, computer driven, aspects of
image representation, it misses the fact that essentially all images we are
interested in (with the exception of synthesized computer images) are rep-
resentations of some “true” images of some real objects. A digital image of
a real object is simply an approximation of the “true” image, and (in the
ideal setting) it generally improves with an improvement of image acquisition
resolution, that is, with increasing number of sensors in C. So, what is the
“true” image of the real object? The simplest and the most common way to
represent this idealized notion is to treat it as an intensity function F defined
on some infinite subset (usually open bounded region) Ω of Rn and with the
values in R`. Here Ω is the geometrical (distance preserving) representation
of the depicted object, independent of any attributed intensity. We will refer
to such a “true” image as an idealized image.

Definition 2 An (n-dimensional) idealized image is any function F from a
bounded connected subset Ω of the n-dimensional Euclidean space Rn into
R`. In what follows, we will always assume that Ω is an open subset of Rn,
and often it will be just an n-dimensional cube Ω = (a, b)n.

Notice that, in general, we do not assume any nice properties for function
F . However, we will find that for the algorithms to have desired properties,
it will be often necessary to assume that F is continuous or that it has
continuous derivatives.

The relation between these two types of images can be expressed as fol-
lows.

Definition 3 A digital image f : C → R` is a digitalization of an idealized
image F : Ω → R` provided f is the restriction F � C of F to C, that is,
C ⊂ Ω and f(c) = F (c) for every c ∈ C.

In what follows, symbol ||x|| will stand for the Euclidean norm of x =
〈x1, . . . , xn〉 ∈ Rn, that is, ||x|| =

√
x2

1 + · · ·+ x2
n.

Remark 4 Possibly the digitalization f : C → R` of a true image F should
be defined more generally by defining f(c) as some appropriate average of F
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around c, e.g., f(c) =
R

Rn F (x)·K(x−c)R
Rn K(x)

for some kernel K. One might use as K

a Gaussian function g(x) = exp(||x||2/σ2) with a constant σ associated with
the resolution of the digital image. (The idea here is that K corresponds
roughly to the point spread function of the imaging device.) Definition 3,
which we will use in this paper, falls under this schema when K is the Dirac
delta.

Remark 5 In all practical digital image acquisitions, some image distortion
due to artifacts such as noise, must be expected. Because of this fact of life,
it is quite common in the imaging literature to assume that the acquired
image intensity is in a form f + n, where f is the “clear” digital image like
in Remark 4 and n is the noise component. Although this approach is very
desirable from the practical application point of view, in what follows, we will
ignore noise in our considerations. The rationale for this is that the main goal
of this paper is to analyze the segmentation algorithms from the theoretical
point of view and the most fundamental situation in which they should work
is the noiseless environment. In other words, including the image noise anal-
ysis in what follows would only obscure the clarity of the presented material.
(Noise will be considered in our future extension of this work.) In partic-
ular, the most commonly occurring non-random components of the image
artifacts, viz., blur and background intensity inhomogeneity (a slow-varying
image intensity component that modulates the observed image intensity),

can be modeled as f(c) =
R

Rn β(x)[F (x)·K(x−c)]R
Rn K(x)

+γ(x), where β and γ model the

background variation component in a general manner. (In MR imaging, for
example, it is known that this component is multiplicative so that γ(x) = 0.)

2.2 The segmentation algorithms

The following definition treats a delineation algorithm as a “black box:”
Given an input (a digital image map and the parameters, which may include
also some prior knowledge on the segmented object), the only outcome that is
considered is the actual output of the algorithm which is a segmented image.
Thus, this definition is general enough to encompass essentially all possi-
ble delineation algorithms. In particular, this definition includes the fuzzy
connectedness, FC, segmentation algorithms [32] (see Section 3.1) as well as
level set Malladi-Sethian-Vemuri algorithm [16] (see Section 3.2). Also, we
do not restrict the algorithms, as we define them, to any particular applica-
tion domain, as it is not important for our considerations. Nevertheless, for
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practical purposes any algorithm is always considered only for some specific
application. Thus, the same (general) algorithm may be “good” in one ap-
plication domain, while it may give unacceptable results in another domain.
This discrepancy, however, will have no effect on the theory presented below.

Definition 6 A (digital) delineation algorithm A is any effectively defined

mapping 〈f, ~θ 〉 A7→ S which to any digital image f : C → R` (possibly re-

stricted to some subclass) and a parameter vector ~θ associates a subset S of
C interpreted as a segment of the image f indicated by the parameters. We
will write A(f, ~θ ) for the output S of A applied to 〈f, ~θ 〉.

The parameters may include a threshold number θ ∈ R and some subsets
of Rn (like a simple closed curve, as in the case of some level set algorithms)
approximating respective subsets of the domain C of f which carry informa-
tion on the objects we seek. Often, a seed point s ∈ C is used as a parameter
which indicates the segment S, that is, with the goal that s ∈ S. Some al-
gorithms use also another seed point t ∈ C indicating the background, that
is, with the goal that t /∈ S. We will often treat the parameter set as a pair
〈~θ, ~p 〉 of parameter sequences (i.e., replacing A(f, ~θ) with A(f, ~θ, ~p )), as this
is often more suitable for our theory.

We will often refer to a delineation algorithm as a segmentation algorithm.
The segmentation algorithm, in general, can return as an output any finite
partition of C, while a delineation algorithm returns only one set S ⊂ C,
which can be identified with a two-element partition {S,C \ S}. The theory
presented below is considerably more easily expressed for the delineation
algorithms, while with some effort it can be applied also to any general
segmentation procedure. (Any segmentation algorithm A that returns a k-

element segmentation A(f, ~θ ) = {A1(f, ~θ ), . . . ,Ak(f, ~θ )} can be treated as
k separate segmentation algorithms A1, . . . ,Ak.)

Next, we will formalize what we believe to be the most fundamental prop-
erty that any reasonable delineation algorithm should possess: The better the
resolution of the digital approximation of the idealized image, the closer the
algorithms output is to the “real object” in the idealized image. To express
this intuition formally, we will use the following definitions.

For a subset A of an underlying space X, a characteristic (or indicator)
function χ

A of A is defined as χA(x) = 1 for x ∈ A and χ
A(x) = 0 for

x ∈ X \ A. Recall that for a sequence 〈Ai〉∞i=1 of subsets of X we define
lim supiAi =

⋂∞
j=1

⋃
i≥j Ai. Note that A = lim supiAi holds precisely when
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χ
A = lim supi

χ
Ai

. Similarly, we define lim infiAi =
⋃∞

j=1

⋂
i≥j Ai and we

have A = lim infiAi precisely when χ
A = lim infi

χ
Ai

. The limit limiAi

exists and is equal to lim supiAi provided lim supiAi = lim infiAi.
For h > 0, let (hZ)n = {hk : k ∈ Z}n be the rectangular grid of points

in Rn with the basic distance h. The most natural (and commonly used)
discretization of an idealized image F : Ω → R` is of the form fh = F � Ωh,
where Ωh = Ω ∩ (hZ)n. For i = 0, 1, 2, . . . let Ci = Ωh/2i . Thus, we are
doubling the resolution when passing from Ci to Ci+1. In this notation, our
intuitive definition requires that any “good” delineation algorithm should
have the property that the sequence Ai = A(F � Ci, ~θ ) converges to some
single set A ⊂ Ω. Moreover, if the algorithm approximates an idealized seg-
mentation model M which associates with F and ~θ an object M(F, ~θ ) ⊂ Ω,

then A should reasonably approximate M(F, ~θ ).
The best and the most natural way to express the above intuition in a

formal way seems to be to require that the limit L = limiA(F � Ci, ~θ ), as
defined above, exists and, if the idealized model M is provided, the limit is
a dense subset of M(F, ~θ ) (i.e., the topological closure cl(L) of L contains

M(F, ~θ )). Unfortunately, even for some of the most natural algorithms (see

comment preceding Example 19), the limit limiA(F � Ci, ~θ ) may not exist.

Nevertheless, lim supiA(F � Ci, ~θ ) can still reasonably approximate a set

M(F, ~θ ) if we choose an appropriate notion of approximation. A related
way to solve this difficulty (and the one which we favor in this paper) is to
change the notion of the limit so that the result of the new limiting process
applied to the sequence A(F � Ci, ~θ ) exists and is dense in M(F, ~θ ). In gen-

eral, we will denote such a limit as lim∗
i,~θ
A(F � Ci, ~θ ), where calculation of

lim∗ may require calculation of several limits in a hierarchical manner, as in
the example below. The limit notion that we will use for this purpose in Sub-
section 3.1 is defined for the families of sets {Ai(θ) : θ ∈ R & i = 1, 2, 3, . . .}
by a formula

lim
i,θ

∗Ai(θ)
def
= lim

η→0+

(
lim sup

i→∞
Ai(θ − η)

)
= lim

η→0+

(
∞⋂

j=1

⋃
i≥j

Ai(θ − η)

)
, (1)

where B = limη→0+ B(θ) if and only if χB = limη→0+ χB(θ). However, in
Subsection 3.2 we will use a similar, but slightly different limit notion, since
the LS algorithm considered there uses an extra parameter ε > 0. In general,
different algorithms may require different limiting processes to be considered.
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The limit notion from (1) will be applied to the segmentation algorithms
as follows. We will assume that the algorithm uses one real parameter θ and
some other parameters ~p. Thus, the output of the algorithm can be expressed
as A(f, θ, ~p ). Then, for a fixed parameter ~p and fixed sequence 〈F � Ci〉i of
the digital approximations of an idealized image F : Ω → R`, we will define
Ai(θ) = A(F � Ci, θ, ~p ) and require that the limit limi,θ

∗Ai(θ) exists and is

dense in M(F, ~θ). For the algorithms which we consider in this paper, these
sets Ai(θ) will satisfy the assumptions of the following fact.

Proposition 7 Let {Ai(θ) : θ ∈ R & i = 1, 2, 3, . . .} be a family of sets such
that Ai(θ

′) ⊆ Ai(θ) for every i and θ′ < θ. Then limi,θ
∗Ai(θ) exists and

equals
⋃

η>0

(⋂∞
j=1

⋃
i≥j Ai(θ − η)

)
.

Proof. Let B(θ) =
⋂∞

j=1

⋃
i≥j Ai(θ − η). Then, B(θ′) ⊆ B(θ) for every

θ′ < θ. So, the limit limη→0+ B(θ − η) exists and is equal
⋃

η>0B(θ − η).

Now, we are ready for our fundamental definitions.

Definition 8 A segmentation algorithm A(f, ~θ, ~p ) is weakly acceptable for
an idealized image F : Ω → R` (considered with parameters ~p and with

respect to the limit notion lim∗) provided lim∗
i,~θ
A(F � Ωh/2i , ~θ, ~p ) exists for

every h > 0.
In particular, for the limit defined by formula (1), we say that a seg-

mentation algorithm A(f, θ, ~p ) is weakly acceptable for an idealized image
F : Ω → R` provided lim∗

i,θ A(F � Ωh/2i , θ, ~p ) exists for every h > 0 and for
every parameter ~p for which enough among the sets A(F � Ωh/2i , θ, ~p ) are
defined to make the limit sensible.

Of course, we would prefer convergence to hold for a wider variety of
sequences 〈Ci : i ∈ N〉 approximating Ω, where N = {1, 2, 3, . . .} is the set of
natural numbers. The next definition makes this idea more precise.

Definition 9 For a non-empty subset C of a bounded set Ω ⊂ Rn define an
Ω-resolution number of C as rΩ(C) = inf{ε > 0: Ω ⊂

⋃
c∈C B(c, ε)}, where

B(c, ε) = {x ∈ Rn : ||x−c|| < ε} is an open ball in Rn centered at c and with
radius ε.

A segmentation algorithm A is acceptable for an image F : Ω → R` (con-
sidered with parameters ~p and with respect to the limit notion lim∗) pro-

vided the limit lim∗
i,~θ
A(F � Ωh/2i , ~θ, ~p ) exists for every increasing sequence

〈Ci : i ∈ N〉 of finite subsets of Ω for which limi rΩ(Ci) = 0.
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Although this last definition is satisfied by many segmentation algorithms
and is more desirable than just weak acceptability, the proofs of the accept-
ability property are more technically involved. Since a vast majority of prac-
tical algorithms are concerned only with scenes of the form Ωh, we will often
start the analysis by considering the property of weak acceptability.

2.3 Segmentation models and related algorithms

Now, we will define the notion of a segmentation model for an idealized image.
(We will use here terms “segmentation” and “delineation” interchangeably
despite the fact that only the term “delineation” is formally correct.)

Definition 10 A segmentation model M for a class F of idealized images

is any mapping 〈F, ~p 〉 M7→ O which for any image F : Ω → R` from F and
any parameters ~p associates a subset O of Ω interpreted as a segment of the
image F indicated by the parameters. We will write M(F, ~p ) for the output
O of M applied to 〈F, ~p 〉.

Notice that in this definition there is no assumption of the effectiveness of
finding the segmentM(F, ~p ) despite the fact that this might be considered as
a departure from a terminology used in many mathematical modeling papers.
To justify our choice of this terminology, we note that the modeling papers
(including segmentation modeling) frequently start with a non-effectively de-
fined map M, often as an optimizer (minimizer or maximizer) of some func-
tional, and then proceed to find an effectively defined procedure M̂, often via
a solution of a differential equation and/or using variational methods, which
as a function is equal to M. We will refer to such M̂ as a solution to a model
M. (In the literature, it is often the procedure M̂ itself that is designated
as the “model.”) Since, treated as functions, M = M̂, our definition can
be applied to M̂ as well as to M. If one plans to use the effective version
M̂ of the model to find an algorithm A that approximates M = M̂, then
M̂ is at the center of the investigation and it makes sense to designate M̂
as “the model” of the process. We think of this modeling schema as a two
stage process: M −→ M̂ −→ A. In a large class of delineation methods
(including the model discussed in Section 3.2, as well as many optimization
models), the value of M̂ is found via time dependent front propagation, usu-
ally approximated numerically with fast marching level set algorithms. (See
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e.g. [21, 22].) In many modeling tasks, like modeling of the wave propaga-
tion or flame burning, the time sequence of the consecutive approximations
is at least as important as the final position of the front, making the front
propagation approach the most desirable. However, in segmentation tasks,
we are usually not interested in the intermediate stages of object approxi-
mation, and we treat the final position of the front as the only output of the
model and the algorithm. Thus, in the investigation of the essential aspects
of a delineation task, it is more productive to follow directly from M to A,
that is, forgoing the effective version M̂ of the model and follow the schema
M −→ A. This is the central idea behind our investigation presented in
Section 3.

The following definition is probably the most fundamental definition in
this paper. It formally relates the segmentation model of an idealized image
with the associated segmentation algorithm.

Definition 11 A segmentation algorithm A represents (weakly represents) a
segmentation model M for a class F of idealized images (and with respect to
the limit notion lim∗) provided, for every F ∈ F and parameter ~p appropriate
for F , algorithm A is acceptable (weakly acceptable, respectively) and for
every sequence C = 〈Ci : i ∈ N〉 from the definition of (weak) acceptability

the limit lim∗
i,~θ
A(F � Ci, ~θ, ~p ) is a dense subset of M(F, ~θ, ~p ).

Notice that for any sequence C = 〈Ci : i ∈ N〉, we consider in the above

definition the set C =
⋃

iCi is dense in Ω. Since D = lim∗
i,~θ
A(F � Ci, ~θ, ~p )

is a subset of C, for D to be dense in M(F, ~θ, ~p ), it is necessary that

C ∩ M(F, ~θ, ~p ) is dense in M(F, ~θ, ~p ). The easiest way to insure this is

to guarantee that M(F, ~θ, ~p ) is open in Ω. Thus, in what follows we will
consider only the models which will ensure this property. (More generally,

the same effect is achieved if we guarantee that M(F, ~θ, ~p ) is contained in

the closure of its interior, that is, when M(F, ~θ, ~p ) ⊂ clΩ(intΩ(M(F, ~θ, ~p ))).)
Then, the above definition is satisfied precisely when D is a dense subset of
C ∩M(F, ~θ, ~p ). In most of the cases of good models and their associated
algorithms, it can be shown that these two sets are equal.

The above definition leads us also to a way of comparing segmentation
algorithms on a theoretical level.

Definition 12 The segmentation algorithms A and A′ are model-equivalent
(weakly model-equivalent, respectively) in a class F of idealized images (and
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with respect to the limit notion lim∗) provided there exists a segmentation
model M for F such that both A and A′ represent (weakly represent, re-
spectively) M.

It should be stressed here that the model-equivalent algorithms behave
identically only in the limit at the infinitely best resolution. So, their outputs
may still be slightly different for given digital images. This may be contrasted
with strongly-equivalent algorithms (defined and studied in [9]), which have
identical outputs. Note also that equivalent algorithms (in the sense of any
of these definitions) may still have very different computation times and/or
memory requirements. Thus, equivalent algorithms should still be compared
at some more subtle level: by analyzing their computational requirements, by
estimating computational errors, and by running comparative simulations.
Nevertheless, the equivalence of two segmentation algorithms is a strong
theoretical evidence that they perform quite similarly.

3 Gradient Based Edge-Threshold Segmen-

tation Model MO

In this section, we will show that the front propagation level set algorithm of
Malladi, Sethian, and Vemuri from [16] is model-equivalent to the absolute
fuzzy connectedness algorithm of Udupa and Samarasekera [32] used with
a gradient based affinity. We will start with the description of an idealized
segmentation model MO represented by each of these algorithms. The de-
scription of the algorithms and the proofs that they indeed represent MO is
presented in the following subsections.

In the model MO, the edge (i.e., boundary) of the object P ⊂ Ω of
interest is identified as the set of points x at which the image intensity, given
by F , changes rapidly. Mathematically, this means that at the edge points the
gradient magnitude |OF (x)| of F is large. Of course, this has a meaning only
when the function |OF (x)| is well defined, that is, when F is differentiable.
(A possible meaning of |OF | for non-differentiable F , and its implication to
the presented discussion, is outlined in Section 4.) Thus, for this model, we
will assume that F is of the class C1, that is, that F has continuous first order
partial derivatives. Also, “large gradient” will be interpreted here “as greater
than or equal to some threshold number θ.” Thus, the object of interest
will be a connected component of the set Ω(θ) = {x ∈ Ω: |OF (x)| < θ}.
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The component will be indicated by some connected set S ⊂ Ω(θ) of seeds,
usually a single point or a simple closed curve. This component is the result
of applying the model MO to F and parameters 〈θ, S〉, that is, it is equal to
MO(F, θ, S). Note that the continuity of the gradient implies that this set is
open. We will usually denote MO(F, θ, S) as P F

Sθ or just PSθ when F is clear
from the context.

Next, we describe a characterization of PSθ that can be naturally trans-
lated into a numerical algorithm of its approximation. For this, we need
the following definitions. A path p in Ω is any continuous injection from
an interval [a, b] into Ω. We say that a path p is from S ⊆ Ω to x ∈ Ω
provided p(a) ∈ S and p(b) = x. In this model, a strength1 µ(p) of a path
p : [a, b] → Ω, which depends on F , is defined as

µ(p) = sup
t∈[a,b]

|OF (p(t))|.

Notice that the compactness of [a, b] and the continuity of OF (x) implies
that µ(p) = |OF (p(t0))| for some t0 ∈ [a, b].

Theorem 13 For every C1 image F : Ω → R`, θ ∈ R, and a connected set
S ⊂ Ω(θ), the object PSθ is equal to the set of all x ∈ Ω for which there
exists a path p from S to x with µ(p) < θ.

Proof. Let x ∈ PSθ. To find an appropriate path, notice that PSθ is path
connected, since it is a connected open subset of Rn. Thus, for every s ∈ S
there exists a path p : [0, 1] → PSθ from s to x. So, for every t0 ∈ [0, 1] we
have |OF (p(t0))| < θ, since p(t0) ∈ PSθ ⊆ Ω(θ). In particular, µ(p) < θ.

Conversely, let p : [a, b] → Ω be a path from S to x with µ(p) < θ.
We need to show that x ∈ PSθ. Indeed, the range range(p) of p (defined as
range(p) = {p(t) : t ∈ [a, b]}) is connect (as a continuous image of a connected
set) and it intersects S. So, S∪ range(p) ⊂ Ω(θ) is connected, and it must be
a subset of PSθ, since PSθ is the largest connected subset of Ω(θ) containing
S. So, x ∈ range(p) ⊂ PSθ.

The next, robustness, theorem tells us that the form of the object PSθ

essentially does not depend on the choice of the seed set S.

1More formally we should use here the term �-strength, where � denotes the reverse
standard inequality (i.e., ≥), since the path strength usually denotes its weakest link.
However, we will not use the prefix �- in this context, despite the fact that this leads to
some language awkwardness. (Compare also (3) and the following comment.)
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Theorem 14 For every C1 image F : Ω → R`, θ ∈ R, and connected sets
S, T ⊂ Ω(θ),

PSθ = PTθ 6= ∅ if and only if there is a path p from S to T with µ(p) < θ.

In particular, if T ⊂ PSθ, then PSθ = PTθ.

Proof. “=⇒” Let x ∈ PSθ = PTθ. Then there are the paths p1 : [a, b] → Ω
from S to x and p2 : [b, c] → Ω from x to T with µ(pi) < θ for i = 1, 2. Then
p = p1 ∪ p2 is as desired.

“⇐=” The set ∅ 6= S ∪ range(p) ∪ T ⊂ Ω(θ) is connected, and PSθ and
PTθ intersect it. So, since each of these sets is a component of Ω(θ), we must
have PSθ = PTθ ⊃ S ∪ range(p) ∪ T .

3.1 First algorithm representing model MO: gradient
based absolute fuzzy connectedness algorithm AO

We start here by describing a general form of the absolute fuzzy connected-
ness, AFC, algorithm of [32]. Its scene is identified with the intensity function
f from the finite subset C of Rn into R`. The elements of C are referred to
as spels.

We will think of f as a restriction of some idealized image F : Ω → R` to
a subset C of Ω. In most practical applications, C is a subset of a rectangular
grid (hZ)n = {hk : k ∈ Z}n which, in terms of the idealized image, can be
defined as C = Ωh = Ω ∩ (hZ)n. (In fact, for algorithmic implementation, it
is usually assumed that h = 1, that is, that C ⊂ Zn. This does not change
the essence of the algorithm, since (hZ)n and Zn can be naturally identified.
Nevertheless, to describe the relation of the algorithm with the model, we
need to adhere to the assumption that C ⊂ Ω.) The special case C = Ωh

is also easier to handle in the analysis that follows, so we will give it special
attention. We should also stress that, in the algorithm that follows, we will
never use the fact that f is a restriction of an F . This fact will be used only
to help our intuition and to express the convergence theorem. However, we
will use Ω as a parameter of the algorithm, unless C = Ωh, in which case this
parameter will be dropped.

Adjacency relation: The domain C of the digital image f , for which
Ω ⊃ C is fixed, comes with an adjacency relation telling us which pairs
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c, d ∈ C of spels are adjacent, that is, close enough to be considered spatially
connected to each other. In this paper, we will assume that the adjacency
relation is expressed in terms of the Euclidean distance in Rn as follows: for
some constant α > 0 the spels c and d are said to be adjacent provided
||c− d|| ≤ α. We will assume that for every h ∈ (0, 1]

α ∈ (2rΩ(C), n2rΩ(C)] and α ∈ [h, n2rΩ(C)] when C = Ωh. (2)

Thus, in general, the choice of α depends on the domain C of f and the set
Ω. However, the dependency on Ω can be removed in case when C = Ωh,
since then we can assume that α = h or, more generally, that α ∈ [h, n2h).
This is important, since the algorithm we will construct depends on f and
α. Thus, in the case when C = Ωh, we can assume that α = h and the
algorithm depends only on f . In the general case, however, Ω will be also a
parameter of the algorithm.

If C = Ωh and α = h, then we deal with 4-adjacency for n = 2, and
with 6-adjacency for n = 3. If C = Ωh and α =

√
3h, then we deal with

8-adjacency for n = 2, and with 26-adjacency for n = 3. The idea behind
adjacency relation is to capture blurring effect of the “point spread function”
of imaging devices; that is, that the neighborhood size α should relate to the
width of the point spread function.

A path in a digital scene: The choice of α as in (2) ensures the following
important property, where B[T, ε] = {x ∈ Rn : dist(T, x) ≤ ε} is a general-
ized closed ball in Rn centered at T ⊂ Rn and with radius ε > 0. Recall that
a path p in C is any sequence 〈c1, . . . , ck〉 of spels in C, where consecutive ci
and ci+1 are adjacent; p is from c ∈ C to d ∈ C if c1 = c and ck = d; it is
from S ⊂ C to T ⊂ C if c1 ∈ S and ck ∈ T .

Lemma 15 For every path p̂ : [a, b] → Ω from s ∈ C to d ∈ C and ε ≥ 2nα,
if B[range(p̂), ε] ⊂ Ω, then there exists a path p = 〈c1, . . . , ck〉 in C from s
to d which is contained in B[range(p̂), ε].

Proof. First, assume that α ∈ (2rΩ(C), n2rΩ(C)]. Let ε̂ > rΩ(C) be
such that 2rΩ(C) < 2ε̂ < α. Then, by the definition of number rΩ(C),
range(p̂) ⊂ Ω ⊂

⋃
c∈C B(c, ε̂). Define C0 = {c ∈ C : B(c, ε̂) ∩ range(p̂) 6= ∅}

and let B = {B(c, ε̂) : c ∈ C0}. Then
⋃
B is connected, since it is a union

of connected sets, each intersecting a connected set range(p̂) ⊂
⋃
B. Also
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⋃
B ⊂ B[range(p̂), ε] since each B(c, ε̂) ∈ B intersects range(p̂) and has

diameter 2 ε̂ < α ≤ ε. Let D be the collection of all balls B(c, ε̂) ∈ B
such that there exists a sequence 〈c1, . . . , ck〉 in C0 from s to c for which
||ci+1 − ci|| < 2ε̂ for every i = 1, 2, . . . , k − 1. Notice that D = B.

Indeed, assume by way of contradiction that E = B \ D 6= ∅. Then the
sets

⋃
D and

⋃
E are non-empty and open. They cannot be disjoint, since

this would constitute a partition of a connected set
⋃
B. So, there are balls

B(c, ε̂) ∈ D and B(ĉ, ε̂) ∈ E intersecting each other. But this means that
B(ĉ, ε̂) ∈ D, since this is justified by a path 〈c1, . . . , ck, ĉ〉, where 〈c1, . . . , ck〉
justifies that B(c, ε̂) ∈ D. So, E = ∅ and indeed D = B.

Now, since B(d, ε̂) ∈ B = D, we conclude that there exists a sequence
p = 〈c1, . . . , ck〉 in C0 from s to d with ||ci+1 − ci|| < 2ε̂ < α for every
i = 1, 2, . . . , k − 1. This is our desired path.

Next assume that C = Ωh = Ω∩ (hZ)n for some h > 0. Put ε̂ = h and let
ρ be a max metric on Rn, that is, ρ(x, y) = maxi=1,...,n |xi−yi|. Let C0 be the
set of all c ∈ C for which the ρ-open ball Bρ(c, ε̂) = {x ∈ Rn : ρ(c, x) < ε̂}
intersects range(p̂) and let B̂ be the family of all such balls. Notice that
range(p̂) ⊂

⋃
B̂ since for every x ∈ Rn there exists a c ∈ (hZ)n such that

ρ(c, x) < h and if x ∈ range(p̂), then such a c belongs to C, since in such
a case c ∈ B[range(p̂), ε] ∩ (hZ)n ⊂ Ω ∩ (hZ)n = C. So, as above,

⋃
B̂ is

connected. Moreover,
⋃
B̂ ⊂ B[range(p̂), ε] since each Bρ(c, ε̂) ∈ B̂ intersects

range(p̂) and has diameter 2
√
nε̂ < 2nα ≤ ε. Let D̂ be the collection of all

ρ-balls Bρ(c, ε̂) ∈ B̂ such that there exists a sequence 〈d1, . . . , dm〉 in C0 from
s to c such that ρ(di+1, di) < 2ε̂ for every i = 1, 2, . . . ,m− 1. The argument
as above shows that D̂ = B̂.

Now, since B(d, ε̂) ∈ B̂ = D̂, there exists a sequence 〈d1, . . . , dm〉 in C0

from s to d such that ρ(di+1, di) < 2ε̂ for every i = 1, 2, . . . ,m − 1. Fix
an i = 1, 2, . . . ,m − 1 and note that ρ(di+1, di) ≤ h. Since the closed ρ-
ball Bρ[di, h] = {x ∈ Rn : ρ(di, x) ≤ h} is contained in B[range(p̂), ε] and it
contains di+1, there exists a path pi in B[range(p̂), ε]∩ (hZ)n from di to di+1

where consecutive spels are of distance h ≤ α. Then the path p formed as a
consecutive sequence of all paths p1, . . . , pm−1 is as desired.

Affinity function: Recall that any fuzzy connectedness, FC, algorithm
starts with an affinity function — a symmetric function κ defined on C ×C
for which the value κ(c, d) represents a strength of local connectedness of the
spels c, d ∈ C. We will use here an approach similar to that from the paper [9]
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and consider as an affinity any symmetric function κ from C × C into any
linearly ordered set 〈L,�〉; however, in general, we will not assume that κ is
reflexive (which, in [9], is expressed as a property that κ(a, b) � κ(c, c) for ev-
ery a, b, c ∈ C). We drop the assumption of reflexivity of κ since only in this
setting we can find an FC-type of algorithm representing AO. Although this
change will restrict our ability to cite any prior results concerning the FC the-
ory results, this will be of no consequence to us, since we will not use any such
result. In this particular subsection we will assume that 〈L,�〉 = 〈[0,∞],≥〉.
Thus, the strongest connectedness (in the sense of �) will be given by the
value 0, and the weakest connectedness by ∞. Note that in the literature
usually only standard affinities are considered, that is, those with the range
〈L,�〉 = 〈[0, 1],≤〉 and such that κ(c, c) = 1 for every c ∈ C. However,
any reflexive affinity κ as above can be translated into a standard affinity
by a formula κσ(c, d) = (gσ ◦ κ)(c, d) = gσ(κ(c, d)), where gσ(x) = e−x2/σ2

is a Gaussian function for some σ > 0. In this situation affinities κ and κσ

are naturally equivalent (lead to strongly equivalent algorithms) in a sense
defined precisely in [9].

Digital path strength and AFC object: The affinity function κ repre-
sents the main parameter of the FC algorithms and can be defined differently
for different applications. In the algorithm AO, the definition of κ will be
based on the gradient approximation of f . In general, any AFC algorithm,
including AO, depends on the definition of κ as follows. The strength of a
path p = 〈c1, . . . , ck〉 in C is defined as the �-weakest link in p, that is,

µ(p) = max
i=1,...,k−1

κ(ci, ci+1). (3)

For θ ∈ R and a seed s ∈ C we define the AFC object as

Psθ = {c ∈ C : there is a path p in C from s to c with µ(p) < θ}.

In other words, if we denote our algorithm byAO, thenAO(f, θ, s) = Psθ. Our
goal is to show that, for appropriately defined κ, this algorithm represents
a segmentation model MO. Note that if µ̂(p) = mini=1,...,k−1 κσ(ci, ci+1) and

θ̂ = gσ(θ), then Psθ = {c ∈ C : there is a path p from s to c with µ̂(p) > θ̂}.
This is essentially the usual definition of an AFC object defined with the use
of the standard affinity κσ, except that we use here the strict inequality >
rather than more common ≥. This change is essential for the proof of our
convergence theorem.
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Gradient based path strength: Our definition of κ will be based on the
formula |Of(c)| for the approximation of the magnitude of the gradient of
F at c. It will have a property that, under appropriate assumptions on F ,
the limit limrΩ(C)→0 |O(F � C)(c)| converges uniformly to |OF (c)| in a sense
that: for every ε > 0 and compact set B ⊂ Ω there is a δ > 0 such that for
every finite C ⊂ Ω with rΩ(C) < δ

||OF (c)| − |O(F � C)(c)|| < ε for every c ∈ C with |O(F � C)(c)| ∈ R (4)

and
|O(F � C)(c)| ∈ R for every c ∈ B ∩ C. (5)

It is relatively easy to find such a formula for functions f defined on the sets
C = Ωh. However, the general case is a bit technical, so we will postpone
the actual definition of |Of(c)| till the end of this subsection. In the mean
time we will assume that |Of(c)| is already defined and that it satisfies (4)
and (5). From this, we define gradient based affinity by a formula

κ(c, d) =

{
max{|Of(c)|, |Of(d)|} for adjacent c and d

∞ otherwise.
(6)

In particular, for the affinity defined this way, formula (3) for the strength
of a path p = 〈c1, . . . , ck〉 reduces to

µ(p) = max
i=1,...,k

|Of(ci)|. (7)

The following theorem shows that the algorithm AO indeed represents the
segmentation model MO. Note that the assumption of uniform continuity of
|OF | is satisfied if F is a restriction of a C1 function defined on the closure
cl(Ω) of Ω.

Theorem 16 Let F : Ω → R` be an idealized C1 image, where Ω is a convex
bounded open subset of Rn. Assume that |OF | is uniformly continuous on
Ω. Then for every θ > θ′ > 0, finite set C ⊂ Ω, and s ∈ C, there exists a
δ > 0 such that for every finite set D ⊂ Ω containing C for which rΩ(D) < δ,
we have

C ∩ P F
sθ′ ⊆ AO(F � D, θ′, s) ⊆ P F

sθ.

In particular, if 〈Ci ⊂ Ω: i ∈ N〉 is an increasing sequence of finite subsets
of Ω with limi rΩ(Ci) = 0, then lim∗

i,θ AO(F � Ci, θ, s) = P F
sθ ∩

⋃
iCi for every

s ∈ C1.
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Proof. Note that it is enough to find separately δ′ > 0 and δ′′ > 0 for
which, respectively, the first and the second inclusions hold, since then the
number δ = min{δ′, δ′′} guarantees both inclusions.

We will begin with the proof of the first inclusion. So, take a c ∈ C∩P F
sθ′ .

We will show that there is a δc > 0 such that

c ∈ AO(F � D, θ′, s) for all finite C ⊆ D ⊂ Ω with rΩ(D) < δc.

This will do, since then δ′ = min{δc : c ∈ C ∩ P F
sθ′} is as desired.

By Theorem 13, there is a path p̂ : [a, b] → Ω from s to c with µ(p̂) < θ′.
Then the range range(p̂) of p̂ is contained in the set P F

sθ′ . Since range(p̂)
is a compact subset of an open set P F

sθ′ , there exists an ε > 0 such that
the closed ball B = B[range(p̂), ε] = {x ∈ Rn : dist(range(p̂), x) ≤ ε} is a
subset of P F

sθ′ . Since |OF (x)| < θ′ for every x ∈ P F
sθ′ , the compactness of

B[range(p̂), ε] insures that there exists an ε̂ > 0 such that |OF (x)| < θ′ − ε̂
for every x ∈ B[range(p̂), ε]. By (4) and (5), there exists a δc ∈ (0, ε/2n3)
such that∣∣|OF (x)| − |O(F � D)(x)|

∣∣ < ε̂ for every x ∈ B ∩D ⊂ Ω with rΩ(D) < δc.

To see that δc is as desired, take a finite subset D of Ω containing C with
rΩ(D) < δc < ε/2n3. Then ε > 2n3rΩ(D) ≥ 2nα since, by (2), α ≤ n2rΩ(D).
So, by Lemma 15, there exists a path p = 〈c1, . . . , ck〉 in D from s to c con-
tained in B = B[range(p̂), ε]. To see that c belongs to AO(F � D, θ′, s),
it is enough to show that µ(p) = maxi=1,...,k |O(F � D)(ci)| < θ′. But
|O(F � D)(ci)| ≤

∣∣|O(F � D)(ci)| − |OF (ci)|
∣∣ + |OF (ci)| < ε̂ + (θ′ − ε̂) = θ′

for every i = 1, . . . , k. This finishes the proof of the first inclusion.
For the second inclusion, put ε = (θ − θ′)/2. Since |OF (x)| is uniformly

continuous on Ω, there is a δ1 > 0 such that
∣∣|OF (c)| − |OF (x)|

∣∣ < ε for
every c, x ∈ Ω with ||x− c|| ≤ δ1. Use (4) to find a δ′′ ∈ (0, δ1/n

2) such that
for every finite D ⊂ Ω with rΩ(D) < δ′′∣∣|OF (c)| − |O(F � D)(c)|

∣∣ < ε for every c ∈ D with |O(F � D)(c)| ∈ R.

To see that for such δ′′ the second inclusion holds, take set D as above,
choose a c ∈ AO(F � D, θ′, s), and let p = 〈c1, . . . , ck〉 be a path in D from
s to c such that µ(p) = maxi=1,...,k |O(F � D)(ci)| < θ′. Let p̂ : [0, 1] → Rn

be a path from c1 = s to ck = c which is a linear segment between any two
consecutive spels in p. Then range(p̂) ⊂ Ω, since Ω is convex and contains
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all spels ci. We will show that µ(p̂) = supt∈[0,1] |OF (p̂(t))| < θ, which will

prove that c ∈ P F
sθ. Thus, let x = p(t) be on the segment joining ci and

ci+1. Notice that ||x − ci|| ≤ ||ci+1 − ci|| ≤ α ≤ n2rΩ(D) < n2δ′′ < δ1, so∣∣|OF (ci)| − |OF (x)|
∣∣ < ε. But

|OF (ci)| ≤
∣∣|OF (ci)| − |O(F � D)(ci)|

∣∣+ |O(F � D)(ci)| < ε+ θ′

since |O(F � D)(ci)| ≤ µ(p) < θ′. Therefore, as ||x− ci|| < δ1,

|OF (x)| ≤
∣∣|OF (x)| − |OF (ci)|

∣∣+ |OF (ci)| < ε+ (ε+ θ′) = θ,

which finishes the proof of the second inclusion.
Let C =

⋃
iCi. To show that lim∗

i,θ AO(F � Ci, θ, s) = P F
sθ ∩ C for

appropriate Ci’s and s, notice that, by what we have proved, for every η > 0
and i, there exists an i0 > i such that, for every j > i0, we have

Ci ∩ P F
s,θ−η ⊆ AO(F � Cj, θ − η, s) ⊆ P F

sθ ∩ C.

Thus, Ci∩P F
s,θ−η ⊆

⋂∞
j=1

⋃
k≥j AO(F � Ck, θ− η, s) ⊆ P F

sθ ∩C for every η > 0

and i, so P F
s,θ−η ∩ C ⊆

⋂∞
j=1

⋃
k≥j AO(F � Ck, θ − η, s) ⊆ P F

sθ ∩ C. Hence

P F
s,θ ∩ C =

⋃
η>0

P F
s,θ−η ∩ C ⊆

⋃
η>0

∞⋂
j=1

⋃
k≥j

AO(F � Ck, θ − η, s) ⊆ P F
sθ ∩ C.

So, lim∗
i,θ AO(F � Ci, θ, s) =

⋃
η>0

⋂∞
j=1

⋃
k≥j AO(F � Ck, θ − η, s) = P F

sθ ∩ C
holds by Proposition 7.

Gradient magnitude |Of |: Now, let C = Ωh = Ω∩ (hZ)n for some h > 0
and Ω ⊂ Rn, and let f : C → R` be a digital image. For i = 1, . . . , n let ei

be the unit vector in the direction of the ith variable. For c ∈ C we define
an approximate partial derivative Dif(c) with respect to the ith variable as
∞ if none of the spels c± hei belongs to C and by a formula

Dif(c) = max

{∣∣∣∣f(c)− f(d)

h

∣∣∣∣ : d = c± hei ∈ C
}
, (8)

otherwise. Then the approximation of the gradient magnitude is defined as

|Of(c)| = |〈D1f(c), . . . , Dnf(c)〉| =
√
|D1f(c)|2 + · · ·+ |Dnf(c)|2. (9)
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Lemma 17 Let F be a function from an open set Ω ⊂ Rn into R` and
assume that F can be extended to a C1 function F̂ defined on an open set Ω̂
containing the closure cl(Ω) of Ω.

The formula given by (9) and (8) satisfies property (4): for every ε > 0
there is a δ > 0 such that for every finite C ⊂ Ω with rΩ(C) < δ∣∣|OF (c)| − |O(F � C)(c)|

∣∣ < ε for every c ∈ C with |O(F � C)(c)| ∈ R,

and property (5). Moreover, the appropriate formula can be also found in
the general case.

Proof. For every index i = 1, . . . , n define a function qi from the set
Ui = {〈x, y〉 ∈ cl(Ω)× cl(Ω) : xj = yj for all j 6= i} into R` by a formula

qi(x, y) =

{
F̂ (x)−F̂ (y)

xi−yi
if xi 6= yi,

DiF̂ (x) otherwise.

The existence and continuity of the partial derivative DiF̂ implies that qi
is continuous on Ui. (The continuity at points 〈x, x〉 follows from the Mean
Value theorem.) In particular, since Ui is compact, |qi| is uniformly continu-
ous. So, for every ε̂ > 0 there is a δi > 0 such that for every c ∈ Ω∣∣∣∣∣∣∣∣F (c)− F (c+ h0ei)

h0

∣∣∣∣− |DiF (c)|
∣∣∣∣ < ε̂ (10)

for every real number h0 with 0 < |h0| < δi for which c+ h0ei ∈ Ω.
Let Mi be the largest value between the numbers {|qi(x, y)| : 〈x, y〉 ∈ Ui}.

It is finite, since Ui is compact. Let M = maxi=1,...,nMi. Since function

g(x1, . . . , xn) =
√
x2

1 + · · ·+ x2
n is uniformly continuous on [0,M ]n, there is

an ε̂ > 0 such that |g(x) − g(y)| < ε for every x, y ∈ [0,M ]n for which
maxi |xi−yi| < ε̂. Let δi be as above for this particular ε̂ and let δ = mini δi.
Then this δ satisfies (4). To insure (5) it is enough to take δ less than the
distance between B and the complement of Ω, since then h ≤ rΩ(C) < δ and
for every c ∈ B ∩ C the numbers c± hei are in C.

The idea behind the definition of |Of(c)| in the general case, as well as
the argument required to prove (4) and (5), are similar. However, we need
to use the directional derivatives in place of partial derivatives. So, assume
that for some c ∈ C and for every i = 1, . . . , n we have chosen ci ∈ C
such that the vectors ci − c are linearly independent. Let ui = ci−c

|ci−c| be
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the unit vector in the direction of ci − c. Then the directional derivative of
F at c in the direction of vector ui is equal to Dui

F (c) = ui · OF (c). Let
A be an n × n matrix whose rows are formed by the coordinates of ui’s.
Then [Du1F (c), . . . , DunF (c)]T = A · OF (c), where OF (c) is considered as
a vertical matrix and T stands for matrix transposition operation. Notice
that A−1 exists, since vectors ui’s are linearly independent. Thus, OF (c) =
A−1 ·DuF (c), where DuF (c) = [Du1F (c), . . . , DunF (c)]T .

Let Dui
f(c) = f(ci)−f(c)

|ci−c| , put Duf(c) = [Du1f(c), . . . , Dunf(c)]T , and de-
fine

Of(c) = A−1 ·Duf(c).

Then
∣∣|OF (c)| − |Of(c)|

∣∣ ≤ |OF (c) − Of(c)| = |A−1 · (DuF (c) − Duf(c))|.
Next, we will show that under some assumption on the choice of vectors ui,
there is a constant K such that

|A−1 · w| ≤ K|w| (11)

for every vector w ∈ Rn. So
∣∣|OF (c)| − |Of(c)|

∣∣ ≤ K|DuF (c) − Duf(c)|.
By the version of (10) for arbitrary directional derivative, there is a δ0 > 0
such that |DuF (c)−Duf(c)| < ε/K whenever |ci − c| < δ0. Thus, to finish
the proof, we need to describe the choice of ci’s that insures (11) and the
inequality |ci − c| < δ0 whenever rΩ(C) < δ.

So, let r = rΩ(C). For every c ∈ C and i = 1, . . . , n, we will chose ci ∈ C
in a ball B(c + 2nrei, r) if it exists. Otherwise we will put Duf(c) = ∞.
Note that, by the definition of rΩ(C), such ci exists when c + 2nrei ∈ Ω
and that this happens for every c ∈ B provided the distance ρ from B to the
complement of Ω exceeds 2nrΩ(C). Thus, to insure (5) it is enough to choose
δ < ρ/2n. Now, this choice of ci insures that for ui = ci−c

|ci−c| = 〈u1
i , . . . , u

n
i 〉

we have |ui
i|/n > |uj

i | for all j 6= i. It is not very difficult to see that this
condition implies (11).

Indeed, first note that for A defined with such ui’s we have

|A · v| ≥ 1

2n2
|v|.
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To see this, let i be such that |vi| ≥ |vj| for all j. For simplicity of notation,
we assume that i = 1. Then, since |u1

1| > 1/2 and |v| ≤
√
n|v1|,

|A · v| =

∣∣∣∣∣
〈∑

j

uj
1vj, . . . ,

∑
j

uj
nvj

〉∣∣∣∣∣
≥

∣∣∣∣∣∑
j

uj
1vj

∣∣∣∣∣
≥ |u1

1v1| − (|u2
1v2|+ · · ·+ |un

1vn|)
≥ |u1

1v1| − (n− 1)(|u1
1|/n)|v1|

= |u1
1||v1|/n > |v1|/2n

≥ 1

2n2
|v|.

Now, putting v = A−1 ·w in the above we get |w| ≤ 1
2n2 |A−1 ·w|, that is, (11)

holds for K = 2n2.

Corollary 18 The gradient based AFC algorithm AO represents the seg-
mentation model MO for the class of all functions F from convex bounded
open subsets of Ω of Rn into R` which can be extended to a C1 function
defined on an open set Ω containing cl(Ω).

Why complicated limit lim∗? In Theorem 16, we proved that algorithm
AO represents model MO with respect to the limit notion lim∗. Does this
representation result hold for a simple limit? The following example shows
that the answer to this question is negative. More precisely, it gives a simple
example of F for which the limit L = limiAO(F � Ω2−i , θ, s) exists but
its closure is considerably larger than MO(F, θ, s). It is also possible to
construct a C1 function F for which the limit L does not exist. However,
such an example must be more complicated than the one provided below.

Example 19 Let Ω = (−1, 1)2, F (x, y) = 3x − x3, s = 〈.5, 0〉, and θ = 1.
Then MO(F, θ, s) = (0, 1) × (−1, 1) while L = limiAO(F � Ω2−i , θ, s) exists
and is dense in the entire Ω.

Proof. Note that |OF (x, y)| = 3 − 3x2 on Ω. It has a maximum value
1 attained on a line x = 0. Then indeed MO(F, θ, s) = (0, 1) × (−1, 1).
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Moreover, for every i ≥ 1, AO(F � Ω2−i , θ, s) = Ω2−i , since |OF � Ω2−i|(c) is
always less than the maximum value θ = 1 of |OF | on Ω. (This follows from

the Mean Value Theorem, as |OF � Ω2−i|(c) =
∣∣∣F (x1,0)−F (x2,0)

x1−x2

∣∣∣ < 1 for some

〈x1, 0〉, 〈x2, 0〉 ∈ Ω2−i .) Thus, L =
⋃

i Ω2−i exists and is dense in Ω.

3.2 Second algorithm representing modelMO: Malladi-
Sethian-Vemuri level set algorithm ALS

In this subsection, we will argue that the level set algorithm ALS, which is
essentially the fast marching algorithm described by Malladi, Sethian, and
Vemuri in [16] (compare [25, Chapter 17]), also represents the segmentation
model MO for the appropriate class of C1 functions F : Ω → R`. Thus, both
algorithms AO and ALS are model-equivalent.

We use in the above a vague term “argue” rather than “proof,” since
the model and the algorithm presented in [16] (as well as in essentially all
other papers describing this method, see e.g. books [6, 21, 22]) are in several
aspects only sketched, leaving considerable leeway for interpretation. We
will choose the interpretations that are the most favorable for our formalism,
and only briefly discuss the problems with other interpretations. Moreover,
the theoretical justification for the level set algorithm seems not to be fully
completed yet. Since we are arguing here that a simple algorithm AO does
the same job as its level set counterpart ALS even under the assumption that
all theoretical gaps for the level set theory can be patched, we feel no need
for a completion of the level set theory framework.

The level set delineation modelMLS of the idealized image is described in
terms different from the model MO. Thus, we will start with its description.
The model MLS is applied to an ideal image F : Ω → R, where Ω is an
open convex bounded subset of Rn. Basically, to use MLS we pick a smooth
simple closed surface Γ0 (diffeomorphic with (n − 1)-dimensional sphere)2

inside the region that is to be delineated — it plays the role of a seed —
and then we let Γ0 propagate outward until it reaches the boundary of the
region we seek. The propagation is controlled by the speed function v which
indicates at every point z on the front the speed v(z) at which this point
propagates in the direction normal to the front. The set of points inside the
final position of the front represents the output of MLS. The front Γt at

2In the plane, it is a smooth simple closed curve.
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time t ≥ 0 is represented as the zero level set {z ∈ Ω: Ψ(z, t) = 0} for some
function Ψ: Ω × [0,∞) → R. To make region Rt inside the front easier to
identify, it is also assumed that Ψ is negative inside Γt and positive outside
Γt. In other words, Rt = {z ∈ Ω: Ψ(z, t) < 0}. In [16], the authors define Ψ
at time t = 0 as a signed distance from Γ0, that is, ψ(z, 0) = dist(z,Γ0) for
z outside Γ0, and ψ(z, 0) = −dist(z,Γ0) for z inside Γ0.

The boundary of the object is defined as the set of points where the image
intensity changes rapidly, that is, when the magnitude of the gradient |OF |
is “large.” To force the front propagation “...to stop in the vicinity of the
desired objects’ boundaries...” the propagation speed v is defined in such a
way that v goes to zero precisely when |OF | approaches the “large” thresh-
old value θ ∈ (0,∞].3 Neither “large value” θ nor formula for v is uniquely
defined in [16]. Formulas (13) and (16) from [16] suggest that the speed
should be reduced to zero at the points z ∈ Ω when |OF |(z) is equal to the
maximum M of |OF | on Ω, which means that θ = M . (The authors of [16]
do not explain why such maximum should exist.) Alternatively, formulas
(14), (15), and (17) from [16] suggest that the speed should be a product of a
positive factor independent of F and a number of the form (1+ |OF |)−1; that
is, the propagation speed should go to zero only as |OF | goes to ∞, mean-
ing that θ = ∞. The first from these options suggests that MLS(F,Γ0) is
equal to MO(F,M,Γ0). The second makes MLS(F,Γ0) equal MO(F,∞,Γ0)
which, for C1 function F , is equal to the entire Ω. To stop the algorithm
associated with MLS(F,Γ0) = MO(F,∞,Γ0), the authors arbitrarily intro-
duce the maximum number of algorithm iterations (see [16, page 164]), which
produces an algorithm completely inadequate for a theoretical analysis that
we wish to attempt. Both of these approaches can be reconciled making the
value of MLS dependent on θ and reducing the propagation speed v to 0,
when |OF | reaches θ. For example, we may define v(x) = (|OF |(x) − θ)2.
Then, we define MLS(F, θ,Γ0) as the set of all points of Ω that are eventually
inside the propagating curve, that is, MLS(F, θ,Γ0) =

⋃
t≥0Rt.

This general setup allows us to relate models MO and MLS as follows.

Lemma 20 MLS(F, θ,Γ0) ⊂ MO(F, θ,Γ0) for every C1 image F : Ω → R`,
θ ∈ R, and smooth simple closed surface Γ0 such that Γ0∪R0 ⊂MO(F, θ,Γ0).

The assumption Γ0 ∪ R0 ⊂ MO(F, θ,Γ0) ensures that every point z of the
initiation set Γ0 ∪R0 satisfies the thresholding condition |OF (z)| < θ.

3Quote comes from the first paragraph of [16, Section III]. A similar statement can be
also found in [25, page 220].
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Proof. For θ ≤ 0, there is nothing to prove. So, assume that θ > 0. Then
MLS(F, θ,Γ0) is connected, since it is a union of connected sets Γ0 ∪ R0

and the trajectories of points z ∈ Γ0. Thus, it is enough to prove that
MLS(F, θ,Γ0) ⊂ Ω(θ), as MO(F, θ,Γ0) is the largest connected subset of
Ω(θ) containing Γ0. To see that MLS(F, θ,Γ0) is contained in Ω(θ), first
note that

v(z) 6= 0 for every z ∈MLS(F, θ,Γ0). (12)

Indeed, take a z ∈ Ω with (|OF (z)| − θ)2 = v(z) = 0. Then, by our assump-
tion, z /∈ R0. Let t̂ = sup{t ≥ 0: z /∈ Rt}. If t̂ = ∞, then z /∈ MLS(F, θ,Γ0)
as desired. If t̂ <∞, then z belongs to Γt for every t ≥ t̂, since the speed of
propagation of front at z is 0. Then, once again, z /∈MLS(F, θ,Γ0), finishing
the proof of (12).

Now, if there was z ∈ MLS(F, θ,Γ0) with |OF (z)| ≥ θ, then, in view of
property (12), each of the open sets {z ∈ MLS(F, θ,Γ0) : |OF (z)| < θ} and
{z ∈MLS(F, θ,Γ0) : |OF (z)| > θ} would be non-empty and they would form
a partition of MLS(F, θ,Γ0), contradicting its connectedness. Therefore,
MLS(F, θ,Γ0) ⊂ Ω(θ) and MLS(F, θ,Γ0) ⊂MO(F, θ,Γ0).

The above proof is topological in nature. The other inclusion is also true,
but its proof depends on some missing details concerning the definition of
MLS. In particular, we need to clarify the meaning of front propagation, as
described in [16]. For every z ∈ Γ0, let Tz : [0,∞) → Ω be a trajectory of
z propagated according to the rules described above. Then Ψ(Tz(t), t) = 0
for every z and t. So, its derivative d

dt
Ψ(Tz(t), t) = 0 is also equal to 0. By

using chain rule, it is easy to transform this last equation (see [16] or [25]) to
∂Ψ
∂t

(Tz(t), t) + v(Tz(t)) · |OΨ| (Tz(t), t) = 0, where the gradient OΨ concerns
only spatial variables. In particular, any solution of the PDE

∂Ψ

∂t
(x, t) + v(x) · |OΨ| (x, t) = 0, x ∈ Ω, t ≥ 0 (13)

with the initial condition Ψ(·, 0) = Ψ0 leads to the unique front propagation
and the model MLS.

Unfortunately, even in very simple cases, (13) does not need to have a
smooth solution. (See e.g. [25].) Thus, the authors in [16] consider its weak
solution, which satisfies (13) only at the points of differentiability of Ψ. This
is good enough, but there are some difficulties. First, in general, the weak
solution of (13) does not need to be unique. However, its viscosity solution,
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introduced by Crandall and Lions [12], is unique and this is the solution
chosen in [16].

The viscosity solution of (13) is defined in [16] as a limit Ψ = limε→0+ Ψε,
where Ψε is a solution of

∂Ψ

∂t
+ (1− εκ)v · |OΨ| = 0, Ψ(·, 0) = Ψ0, (14)

where κ = O · Ψ
|OΨ| is the curvature of the level surface. The theoretical value

of this approach is based on the following two claims, which were not proved
in [16] and which we were unable to locate in the literature in that generality,
despite the intensive search and a correspondence with professor Sethian.

(I) PDE (14) has a global smooth solution for smooth Γ0 and v.

The existence of such a solution is known for some simple speed functions v,
but we were not able to find it in that generality required for most imaging
tasks. Note that the algorithm from [16] requires only the existence of the
solution locally, near the front.

(II) The solutions Ψε of (14) converge to the viscosity solution for (13).

A proof of existence of the viscosity solution for (13) can be found in [1],
although the solution is not described as a limit from (II). (Paper [12] contains
a proof of uniqueness of the viscosity solution in a general setting, but not
the existence.)

In what follows we will assume that (I) and (II) are true. With their help
we can prove the equality between models MO and MLS.

Theorem 21 MLS(F, θ,Γ0) = MO(F, θ,Γ0) for every C1 image F : Ω → R`,
θ ∈ R, and smooth simple closed surface Γ0 such that Γ0∪R0 ⊂MO(F, θ,Γ0).

Proof. Inclusion MLS(F, θ,Γ0) ⊂ MO(F, θ,Γ0) was proved in Lemma 20.
The other inclusion follows, with little work, from [4, lemma 4.4] and prop-
erties (I) and (II).

The delineation algorithm ALS described in [16] depends on ε > 0 and
finds its value from a numerical approximation for Ψε. In order to prove for-
mally thatALS representsMLS, we should first show that, for an appropriate
limit notion lim†, its outputAε

LS satisfies the property: “lim†Aε
LS(F � C, θ,Γ0)

is a dense subset of {z ∈ Ω: ψε(z, t) < 0 for some t ≥ 0}.” However, we
will take this for granted. From this, we can conclude MLS(F, θ,Γ0) =
limε→0+ lim†Aε

LS(F � C, θ,Γ0), so ALS(F � C, θ,Γ0, ε) = Aε
LS(F � C, θ,Γ0)

represents MLS.
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4 Experiments, discussion, and conclusions

Experiment. We compared algorithms AO and ALS at the experimental
level. The results of the comparison are present at Figure 1. We applied the
algorithms to a 2D proton density weighted brain MR image, Fig. 1(a), to de-
lineate the white matter object. The level set results, presented at Fig. 1(c),
were obtained with a version of the algorithm ALS from the open source
software ITK [34]. Prior to segmentation, this algorithm uses a non-linear
filtering of the image. The results of the applications of the fuzzy connect-
edness algorithm AO to the same filtered version of the image are presented
at Fig. 1(b). The subtle differences seen in the segmentations are due to
different approximations involved in the otherwise equivalent algorithms. In
particular, some object areas accessible from its main part by narrow pas-
sages (e.g., lower left) are correctly recognized by the AFC algorithm AO but
not by the LS algorithm ALS. This is due to the fact that ALS propagates
by using a curvature factor εκ. The constant ε must approach 0 to get the
same result as the algorithm AO. However, at the resolution of the provided
image, decreasing ε further does not produce the desirable results.

(a) (b) (c)
Fig. 1. The white matter (the region with darker intensities) in a 2D proton density
weighted brain MR image (left) delineated with AO (center) and ALS (right) algorithms.

Robustness and computational cost of AO and ALS. One of the dis-
advantages of the level set algorithm ALS is its high computational cost.
This was recognized by Shi and Karl [27, 28], who devised a fast delineation
algorithm ASK without a simulation of PDE solution, which is the key com-
ponent of ALS. It is easy to see that AO is simpler and faster than ASK ,
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which in turn is simpler and faster than ALS. Moreover, the output of AO is
robust (i.e., does not depend on the initialization seed set, as long as the set
is within the delineated object), as this is true for all AFC algorithms [23].
This is a problem of the other two algorithms (see [27]), although, by Theo-
rems 14 and 21, the limit lim†ALS is robust, assuming that it indeed is equal
to MLS. The main algorithmic difference between ASK and AO is that ASK

is roughly equivalent (but not in any sense defined in this paper) to Aε
LS,

while AO is roughly equivalent to the limit limε→0+ Aε
LS. In other words,

ASK is ensuring the smoothness of the propagating front, while we consid-
ered smoothness imposed by the term εκ as an artifact of the method —
non-existence of smooth solution to PDE (13) — so we did not include it in
the model. Note, that it is still possible to apply some smoothing Gaussian
filter, similar to that described in [27, 28], to the boundary of the output of
AO, if smoothness of the output boundary is desired. Such modification of
AO is faster than ASK and remains robust (in a sense that the output of the
algorithm remains unchanged, if the seed set S is replaced by another seed
set from the core of the delineated object, that is, the output of AO).

Differentiability issue. In models from the previous section we assumed
that the image intensity function F is differentiable, so that the thresholding
function G(x) = |OF |(x) is well defined. However, the function Ḡ(x) =

lim supz→x
||F (z)−F (x)||

||z−x|| is always well defined and agrees with G(x) whenever

G(x) is well defined. Thus, in principle, we can define the model MO for
arbitrary image intensity functions. However, in order to prove that AO

represents MO, some version of property (4) must be satisfied. Similarly,
there is no chance for a good behavior of ALS and MLS in a general setting.
Nevertheless, the representation theorem remains true if we require the limit
in Ḡ(x) to exist, but allow it to be infinite. Moreover, the proof of the
representation results can be repeated under weaker assumptions than full
continuity of Ḡ.

Fuzzy connectedness, AO, versus level set, ALS, algorithms. In Sec-
tion 3, we argued that the algorithm AO is model-equivalent to the level set
delineation algorithm ALS. Since AO is considerably simpler than ALS, and
since the theory leading to ALS is not yet fully justified, there is no doubt
that algorithm AO is superior to ALS. This, however, does not undermine
the entire level set front propagation theory, which is used in multitudes of
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different image analysis tasks besides image segmentation. Even in image
segmentation theory, the level set approach is often used for functional op-
timization, which is not immediately related to AO algorithm. Interesting
question arise as to the possibilities of extending the FC framework also to
other image analysis tasks.

General segmentation theory. The general theoretical framework for-
mulated in Section 2 sets up the stage for theoretical analysis and compar-
isons of different delineation and segmentation algorithms, independent of the
framework in which they were originally formulated. The comparison from
Section 3 is just the first such example. We are currently working on similar
analysis concerning other segmentation methods: different forms of level set
related algorithms, different versions of fuzzy connectedness algorithms, as
well as algorithms that use graph cut and watershed frameworks.
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