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ABSTRACT
In the current vast image segmentation literature, there is a serious lack of methods that would allow theoretical
comparison of the algorithms introduced by using different mathematical methodologies. The main goal of this
article is to introduce a general theoretical framework for image segmentation that would allow such comparison.
The framework is based on the formal definitions designed to answer the following fundamental questions: What
is the relation between an idealized image and its digital representation? What properties a segmentation
algorithm must satisfy to be acknowledged as acceptable? What does it mean that a digital image segmentation
algorithm truly approximates an idealized segmentation model? We use the formulated framework to analyze
the front propagation (FP) level set algorithm of Malladi, Sethian, and Vemuri and compare it with the fuzzy
connectedness family of algorithms. In particular, we prove that the FP algorithm is weakly model-equivalent
with the absolute fuzzy connectedness algorithm of Udupa and Samarasekera used with gradient based affinity.
Experimental evidence of this equivalence is also provided. The presented theoretical framework can be used to
analyze any arbitrary segmentation algorithm. This line of investigation is a subject of our forthcoming work.

1. INTRODUCTION
Image segmentation—the process of partitioning the image domain into meaningful object regions—is perhaps the
most challenging and critical problem in image processing and analysis. Its central position in image processing
comes from the fact that the delineation of objects is usually the first step in other higher level processing
tasks, like image interpretation, diagnosis, analysis, visualization, virtual object manipulation, and often even
registration. Image segmentation may be thought of as consisting of two related processes: recognition and
delineation. Recognition is the high-level process of determining roughly the whereabouts of an object of interest
in the image. Delineation is the low-level process of determining the precise spatial extent and point-by-point
composition (material membership percentage) of the object in the image. The topic of this paper concerns
image delineation.

General segmentation frameworks may be classified into three groups: boundary-based [4, 8, 9, 11, 13, 14, 16],
region-based [2,21,24–26], and hybrid [12]. As the nomenclature indicates, in the first two groups the focus is on
recognizing and delineating the boundary or the region occupied by the object in the image. In the third group,
the focus is on exploiting the complementary strengths of each of boundary-based and region-based strategies to
overcome their individual shortcomings.

The rationale for the development of a general theoretical study of image segmentation methodologies is to
address several serious gaps that currently exist in our knowledge in this subject, which are denoted (G1)–(G3)
in the following: (G1) Are all different families of segmentation methods/models (e.g., functional optimization,
usually implemented via level sets [14,16,20,21], graph-cut [2], active contour [13], live wire [11], active shape [8],
active appearance [9], fuzzy connectedness [6,7,19,24,26], and watershed [22]) really fundamentally independent
or are there similarities, or even theoretical equivalences, among them? Although there are some rare attempts
here and there to compare the methods at a theoretical level, this is largely an open question. (G2) Segmentation
research has two clearly distinct components: the practical, focused on describing efficient segmentation algo-
rithms that can be practically implemented; and theoretical, concerning development and use of sophisticated
tools of infinite (i.e., not discrete) mathematics for the purpose of describing segmentation models of idealized
images. One of the peculiarities of the current state of segmentation research is that these two tracks are not
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connected in any formal way. True, the papers that start with a description of a segmentation model of ideal-
ized images usually transcribe such a model into a digital image segmentation procedure. However, all of these
translations are done only at the intuitive level, without a formal, mathematical argument. In fact, there is even
no evidence of the use of any definition formally connecting idealized images (infinite objects) with their digital
representations (which are finite). (G3) Another element clearly missing from current segmentation research is
a set of certain properties that any digital segmentation algorithm must or should have. For example, it seems
that an output of any reasonable segmentation algorithm should be reasonably stable if it is fed with the digital
approximations of the same idealized image with better and better resolution. It would be also desirable for the
segmentation output to remain reasonably unchanged when applied to the same resolution digital representa-
tions of the same idealized image that was rotated and/or shifted. (This latter aspect becomes important when
we keep in mind that, in many areas such as medical imaging, there is no guarantee that the same object with
subtle and fine features will be digitized in the same manner in repeated scans/digitizations.) So far, there is very
little research done along these lines, especially for the algorithms that were not motivated by idealized image
segmentation models. This paper is a first attempt to fill some of these gaps via the general theory proposed in
Sec. 2.

In the FC framework [26], a fuzzy topological construct, called fuzzy connectedness, characterizes how the
spatial elements (abbreviated as spels) of an image hang together to form an object. This construct is arrived at
roughly as follows. A function called affinity is defined on the image domain; the strength of affinity between any
two spels depends on how close the spels are spatially and how similar their intensity-based properties are in the
image. Affinity is intended to be a local relation. A global fuzzy relation called fuzzy connectedness is induced
on the image domain by affinity as follows. For any two spels c and d in the image domain, all possible paths
connecting c and d are considered. Each path is assigned a strength of fuzzy connectedness which is simply the
minimum of the affinities of consecutive spels along the path. The level of fuzzy connectedness between c and d
is considered to be the maximum of the strengths of all paths between c and d. For segmentation purposes, FC
is utilized in several ways as described below. See [24] for a review of the different FC definitions and how they
are employed in segmentation and applications.

In absolute FC (abbreviated AFC) [26], the support of a segmented object is considered to be the maximal
set of spels, containing one or more seed spels, within which the level of FC is at or above a specific threshold.
To obviate the need for a threshold, relative FC (or RFC) [19] was developed by letting all objects in the image
to compete simultaneously via FC to claim membership of spels in their sets. To avoid treating the core aspects
of an object (that are very strongly connected to its seeds) and the peripheral subtle aspects (that may be less
strongly connected to the seeds) in the same footing, an iterative refinement strategy is devised in iterative RFC
(or IRFC) [6, 25]. The FC family of methods developed to date consists of various combinations of absolute,
relative, and iterative FC. In this paper we will study (in Sec. 3.1) only the AFC algorithm considered with a
gradient based affinity. Note that gradient based affinity is a generalized affinity notion, in a format introduced
and examined in [7]. The other forms of FC algorithms will be examined within the general framework of Sec. 2
in our future work.

The level set method refers to the specific model of an evolving front (surface or curve) in a time depen-
dent manner and to the numerical algorithm tracking such propagating fronts. The model and the associated
narrow band propagation algorithm were introduced in 1985 by Sethian [20] which made their way into image
segmentation research in 1995 with paper [14]. The popularity of the level set method in segmentation tasks
led to a multitude of research papers, as exemplified by the books [17, 18, 21]. Although the level set method
in image segmentation is nowadays more often used indirectly to solve the PDE optimizing the segmentation
cost functions (see e.g., [5, 15, 27]), the original segmentation algorithms are still studied [23]. Therefore, in this
paper, for the purpose of using the theoretical framework for comparing methods, we have chosen the level set
method with front propagation, because of its popularity, and FC, because of our familiarity with it.

Our general theoretical framework is described in Sec. 2. Its application to the analysis of a particular model
of FC [26] and to a comparison of its algorithms with the level set delineation algorithm of [14] is presented in
Sec. 3. (An attempt of expressing this level set algorithm [14] without PDE can also be found in [23].) Although
in this paper we focus only on the algorithms of [26] and [14] for a theoretical comparison, the general framework
can be utilized to compare any methods in the literature. In Sec. 4, we present a practical segmentation example
to illustrate the equivalence proved in Sec. 3.

Proc. of SPIE Vol. 6512  65120W-2



2. THE GENERAL IMAGE SEGMENTATION THEORY
Despite the enormous volume of image segmentation research, so far no formal, general, and coherent theoretical
framework of a segmentation theory has been published that would allow a theoretical comparison of segmentation
algorithms independently of the mathematical framework in which they were introduced. In this section, we
describe a theoretical structure designed for facilitating such comparisons. Moreover, the framework will help
us to identify the basic properties that any reasonable segmentation algorithm should satisfy. The specific
application of the theory developed here will be presented in the next section.

2.1. Stage set up: What is an image?
We will start off by formalizing the notions of an “idealized image” and the “physical image” associated with it.
This formalization is rather standard in imaging literature. However, most of the imaging papers concentrate
only on one of these two kinds of images, leaving unanswered or hazy the fundamental question at to what the
relation between them is. One of the most important goals of this paper is to clearly describe such relation in a
general setting and to apply it to each of the segmentation models that is considered here.

There are many different kinds of physical phenomena that lead to images. These include: biological visual
(human or animal) perception leading to internal imagery, different analogue pictures (like those obtained by
standard analog cameras or x-ray films), and digital images (including digital camera pictures, synthesized
computer images, and computed images created from image acquisition devices like ultrasound, CT, PET, and
MRI scanners). Every such image can be identified with an intensity function, say f , associating to each sensor
c from some finite set C of sensors the image intensity value f(c) at c. Note that set C is finite even in the case
of chemical sensors used by analog images, although in this case their number is usually large. We often ignore
the physical dimensions of the sensors once the image is formed, but keep track of their relative position. This
allows us to treat set C as a subset of the Euclidean space R

n of appropriate dimension. Note that we do not
restrict our attention to two-dimensional images, since we are particularly interested in medical imaging, where
three-dimensional images have become a predominant entity of interest lately.

The intensity value f(c) does not need to be expressible as a single number; however, it can usually be treated
as a vector in R

�. For example, f(c) can be a vector of the intensities of different color components recorded at
c. This leads us to the following definition of a “physical” image, to which we refer as a digital image, where
n, � ≥ 1 are arbitrary natural numbers. We will always assume that n ≥ 2, although we will alow it to be larger
than 3, as a time sequence of 3-dimensional images, for example, can be interpreted as a 4-dimensional image.
Definition 2.1. An (n-dimensional) digital image is any function f from a finite subset C of R

n into R
�.

In this definition, we slightly depart from the standard assumption that the coordinates of C are the integer
numbers, that is, that C ⊂ Z

n. Our generality will help us to lay our theory, while it creates no real implemen-
tation difficulty, especially in the most important case when C is a subset of a rectangular grid {hk : k ∈ Z}n,
where h > 0 is a fixed number.

Although Definition 2.1 captures practical, computer driven, aspects of image representation, it misses the
fact that essentially all images we are interested in (with the exception of synthesized computer images) are
representations of some “true” images of some real objects. A digital image of a real object is simply an
approximation of the “true” image, and (in the ideal setting) it usually improves with an improvement of image
acquisition resolution, that is, with increasing number of sensors in C. (We realize that this is somewhat
idealistic. Often, just improving resolution alone may not improve the image; the time duration of acquisition
and the energy used in the imaging process may need to be increased. We assume that such provisions are
made concomitantly with increasing resolution to obtain truly better images.) So, what is the “true” image of
a real object? The simplest and the most common way to represent this idealized notion is to treat it as an
intensity function F defined on some infinite subset (usually open bounded region) Ω of R

n and with the values
in R

�. Here Ω is the geometrical (distance preserving) representation of the depicted object, independent of any
attributed intensity. We will refer to such a “true” image as an idealized image.
Definition 2.2. An (n-dimensional) idealized image is any function F from a bounded connected subset Ω of
the n-dimensional Euclidean space R

n into R
�. In what follows, we will always assume that Ω is an open subset

of R
n, and often it will be just an n-dimensional cube Ω = (a, b)n.

In general, we do not assume any nice properties for function F . However, we will find that for the algorithms
to have desired properties, it will be often necessary to assume that F is continuous or that it has continuous
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derivatives. The relation between these two types of images can be expressed as follows.
Definition 2.3. A digital image f : C → R

� is a digitization of an idealized image F : Ω → R
� provided f is

the restriction F � C of F to C, that is, C ⊂ Ω and f(c) = F (c) for every c ∈ C.

2.2. The segmentation algorithms
The following definition treats a delineation algorithm as a “black box:” Given an input (a digital image map and
the parameters, which may include also some prior knowledge on the segmented object), the only outcome that
is considered is the actual output of the algorithm which is a segmented image. Thus, this definition is general
enough to encompass essentially all possible delineation algorithms. In particular, this definition includes the
fuzzy connectedness, FC, Udupa-Samarasekera algorithms [26] (see Sec. 3.1) as well as level set Malladi-Sethian-
Vemuri algorithm [14] (see Sec. 3.2). Also, we do not restrict the algorithms, as we define them, to any particular
application domain, as it is not important for our considerations. Nevertheless, for practical purposes, many
algorithms are often considered only for some specific applications. Thus, the same (general) algorithm may be
“good” in one application domain, while it may give unacceptable results in another domain. This discrepant
behavior, however, will have no effect on the theory presented below.

Definition 2.4. A (digital) delineation algorithm A is any effectively defined mapping 〈f, �θ 〉 A�→ S which to any
digital image f : C → R

� (possibly restricted to some subclass) and a parameter vector �θ associates a subset S

of C interpreted as a segment of the image f indicated by the parameters. We will write A(f, �θ ) for the output
S of A applied to 〈f, �θ 〉.

The parameters may include a threshold number θ ∈ R and some subsets of R
n (like a simple closed curve,

as in the case of some level set algorithms) approximating respective subsets of the domain C of f which carry
information on the objects we seek. Often, a seed point s ∈ C is used as a parameter which indicates the
segment S, that is, with the goal that s ∈ S. Some algorithms use also another seed point t ∈ C indicating the
background, that is, with the goal that t /∈ S. We will often treat the parameter set as a pair 〈�θ, �p 〉 of parameter
sequences (i.e., replacing A(f, �θ) with A(f, �θ, �p )), as this is often more suitable for our theory.

We will often refer to a delineation algorithm as a segmentation algorithm. The segmentation algorithm, in
general, can return as an output a finite sequence 〈S1, . . . , Sk〉 of (usually pairwise disjoint) subsets of C, while
a delineation algorithm returns only one set S ⊂ C. The theory presented below is considerably more easily
expressed for the delineation algorithms, while with some effort it can be applied also to any general segmentation
procedure. (Any segmentation algorithm A that returns a k-element sequence A(f, �θ ) = 〈A1(f, �θ ), . . . ,Ak(f, �θ )〉
can be treated as k separate segmentation algorithms A1, . . . ,Ak.)

Next, we will formalize what we believe to be the most fundamental property that any reasonable delineation
algorithm should possess: The better the resolution of the digital approximation of the idealized image, the closer
the algorithm’s output is to the “real object” in the idealized image. To express this intuition formally, we will
use the following definitions.

For a subset A of an underlying space X, a characteristic (or indicator) function χ
A of A is defined as

χ
A(x) = 1 for x ∈ A and χ

A(x) = 0 for x ∈ X \ A. Recall that for a sequence 〈Ai〉∞i=1 of subsets of X we
define lim supi Ai =

⋂∞
j=1

⋃
i≥j Ai. Note that A = lim supi Ai holds precisely when χ

A = lim supi
χ

Ai
. Similarly,

we define lim infi Ai =
⋃∞

j=1

⋂
i≥j Ai and we have A = lim infi Ai precisely when χ

A = lim infi
χ

Ai . The limit
limi Ai exists and is equal to lim supi Ai provided lim supi Ai = lim infi Ai.

For h > 0, let (hZ)n = {hk : k ∈ Z}n be the rectangular grid of points in R
n with the basic distance h. The

most natural (and commonly used) discretization of an idealized image F : Ω → R
� is of the form fh = F � Ωh,

where Ωh = Ω∩(hZ)n. For i = 0, 1, 2, . . . let Ci = Ωh/2i . Thus, we are doubling the resolution when passing from
Ci to Ci+1. In this notation, our intuitive definition requires that any “good” delineation algorithm should have
the property that the sequence Ai = A(F � Ci, �θ ) converges to some single set A ⊂ Ω. Moreover, if the algorithm
approximates an idealized segmentation model M which associates with F and �θ an object M(F, �θ ) ⊂ Ω, then
A should reasonably approximate M(F, �θ ).

The most natural means to express the above intuition in a formal way seems to be to require that the limit
L = limi A(F � Ci, �θ ), as defined above, exists and, if the idealized model M is provided, the limit is a dense
subset of M(F, �θ ) (i.e., the topological closure cl(L) of L contains M(F, �θ )). Unfortunately, even for some of
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the most common algorithms the limit limi A(F � Ci, �θ ) may not exist. Nevertheless, lim supi A(F � Ci, �θ ) can
still reasonably approximate a set M(F, �θ ) if we choose an appropriate notion of approximation. A related way
to solve this difficulty (and the one which we favor in this paper) is to change the notion of the limit so that
the result of the new limiting process applied to the sequence A(F � Ci, �θ ) exists and is dense in M(F, �θ ).
In general, we will denote such a limit as lim∗

i,�θ
A(F � Ci, �θ ), where calculation of lim∗ may require calculation

of several limits in a hierarchical manner, as in the example below. The limit notion that we will use for this
purpose in Subsection 3.1 is defined for the families of sets {Ai(θ) : θ ∈ R & i = 1, 2, 3, . . .} by a formula

limi,θ
∗Ai(θ)

def= limη→0+ (lim supi→∞ Ai(θ − η)) = limη→0+

(⋂∞
j=1

⋃
i≥j Ai(θ − η)

)
, (1)

where we define B = limη→0+ B(η) if and only if χ
B = limη→0+ χ

B(η). However, in Subsection 3.2, the family
of sets Ai will have two real parameters, that is, we will deal with sets {Ai(η, ε) : η, ε ∈ R & i = 1, 2, 3, . . .}.
This will require a modification of lim∗ to lim† defined as: limi,η,ε

†Ai(η, ε) = limε→0+ (limi,η
∗Ai(η, ε)). Notice

that if Ai(η) does not depend on ε, then the two limit notions coincide, that is, limi,η,ε
†Ai(η) = limi,η

∗Ai(η). In
general, different algorithms may require slightly different limiting notions.

The limit notion from (1) will be applied to the segmentation algorithms as follows. We will assume that the
algorithm uses one real parameter θ and some other parameters �p. Thus, the output of the algorithm can be
expressed as A(f, θ, �p ). Then, for a fixed parameter �p and fixed sequence 〈F � Ci〉i of the digital approximations
of an idealized image F : Ω → R

�, we will define Ai(θ) = A(F � Ci, θ, �p ) and require that the limit limi,θ
∗Ai(θ)

exists and is dense in M(F, �θ). For the algorithms which we consider in this paper, these sets Ai(θ) will satisfy
the assumptions of the following fact. (The proofs of all results presented here will be provided in a full version
of the paper.)
Proposition 2.5. Let {Ai(θ) : θ ∈ R & i = 1, 2, 3, . . .} be a family of sets such that Ai(θ′) ⊆ Ai(θ) for every i

and θ′ < θ. Then limi,θ
∗Ai(θ) exists and equals

⋃
η>0

(⋂∞
j=1

⋃
i≥j Ai(θ − η)

)
.

Now, we are ready for our fundamental definitions. In what follows, ε and η denote the real numbers.
Definition 2.6. Let Aε,η(f, �θ ) be a delineation algorithm, where ε, η ∈ R are its parameters, and assume that
Aε,0(f, �θ ) = limη→0+ Aε,η(f, �θ ). If Aε(f, �θ ) = Aε,0(f, �θ ), then we say that the algorithm Aε(f, �θ ) is weakly
acceptable for an idealized image F : Ω → R

� and a parameter �θ provided the limit lim†
i,η,ε Aε,η(F � Ωh/2i , �θ )

exists for every h > 0.
Note that, if the algorithms Aε,η(f, �θ ) = Aη(f, �θ ) are independent of the parameter ε, then A(f, �θ ) =

A0(f, �θ ) = limη→0+ Aη(f, �θ ) is also independent of ε, and A(f, �θ ) is weakly acceptable (for F and �θ) when the
limit lim∗

i,η Aη(F � Ωh/2i , �θ ) exists for every h > 0. Of course, we would prefer convergence to hold for a wider
variety of sequences 〈Ci : i ∈ N〉 approximating Ω. The next definition makes this idea more precise.
Definition 2.7. For a non-empty subset C of a bounded set Ω ⊂ R

n define an Ω-resolution number of C as
rΩ(C) = inf{ε > 0: Ω ⊂ ⋃

c∈C B(c, ε)}, where B(c, ε) = {x ∈ R
n : ||x − c|| < ε} is an open ball in R

n centered
at c and with radius ε. A delineation algorithm A as in Definition 2.6 is acceptable for an image F : Ω → R

� and
parameter �θ provided the limit lim†

i,η,ε Aε,η(F � Ci, �θ ) exists for every increasing sequence 〈Ci : i ∈ N〉 of finite
subsets of Ω for which limi rΩ(Ci) = 0.

Although this last definition is satisfied by many segmentation algorithms and is more desirable than just
weak acceptability, the proofs of the acceptability property are more technically involved. Since a vast majority of
practical algorithms are concerned only with scenes of the form Ωh, we will often start the analysis by considering
the property of weak acceptability.

2.3. Segmentation models and related algorithms
Now, we will define the notion of a segmentation model for an idealized image.

Definition 2.8. A delineation model M for a class F of idealized images is any mapping 〈F, �p 〉 M�→ O which for
any image F : Ω → R

� from F and any parameters �p associates a subset O of Ω interpreted as a segment of the
image F indicated by the parameters. We will write M(F, �p ) for the output O of M applied to 〈F, �p 〉. A segmen-
tation model M that returns k objects is defined as a k-element sequence M(f, �p ) = 〈M1(f, �p ), . . . ,Mk(f, �p )〉
of delineation models Mi.
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Notice that in our definition of a delineation model M there is no assumption of the effectiveness of finding
the object M(F, �p ) despite the fact that this might be considered as a departure from a terminology used in
many mathematical modeling papers. To justify our choice of this terminology, we note that the modeling papers
(including segmentation modeling) frequently start with a non-effectively defined map M, often as an optimizer
(minimizer or maximizer) of some functional, and then proceed to find an effectively defined procedure M̂, often
via a solution of a differential equation and/or using variational methods, which, as a function, is equal to M.
We will refer to such M̂ as a solution to a model M. (In the literature, it is often the procedure M̂ itself that
is designated as the “model.”) Since, treated as functions, M = M̂, our definition can be applied to M̂ as well
as to M. If one plans to use the effective version M̂ of the model to find an algorithm A that approximates
M = M̂, then M̂ is at the center of the investigation and it makes sense to designate M̂ as “the model” of
the process. We think of this modeling schema as a two stage process: M −→ M̂ −→ A. In a large class of
delineation methods (including the model discussed in Sec. 3.2, as well as many optimization models), the value
of M̂ is found via time dependent front propagation, usually approximated numerically with fast marching level
set algorithms. (See e.g. [17, 18].) In many modeling tasks, like modeling of the wave propagation or flame
burning, the time sequence of the consecutive approximations is at least as important as the final position of
the front, making the front propagation approach the most desirable. However, in segmentation tasks, we are
usually not interested in the intermediate stages of object approximation, and we treat the final position of the
front as the only output of the model and the algorithm. Thus, in the investigation of the essential aspects of a
delineation task, it is more productive to follow directly from M to A, that is, forgoing the effective version M̂
of the model and follow the schema M −→ A. This is the central idea behind our investigation.

The following definition is probably the most fundamental in this paper. It formally relates the segmentation
model of an idealized image with the associated segmentation algorithm.
Definition 2.9. A delineation algorithm A represents (weakly represents) a delineation model M for a class
F of idealized images provided, for every F ∈ F and parameter �p appropriate for F , algorithm A is acceptable
(weakly acceptable, respectively) and for every sequence C = 〈Ci : i ∈ N〉 from the definition of (weak) acceptabil-
ity the limit lim†

i,�η,e Aε,η(F � Ci, �p ) is a dense subset of M(F, �p ). A segmentation algorithm A = 〈A1, . . . ,Ak〉
represents a segmentation model M = 〈M1, . . . ,Mk〉 provided each Ai appropriately represents Mi.

Notice that for any sequence C = 〈Ci : i ∈ N〉 considered in the above definition, the set C =
⋃

i Ci is dense
in Ω. Since D = lim†

i,η,ε Aε,η(F � Ci, �p ) is a subset of C, for D to be dense in M(F, �p ), it is necessary that
C ∩ M(F, �p ) is dense in M(F, �p ). The easiest way to insure this is to guarantee that M(F, �p ) is open in Ω.
Thus, in what follows we will consider only the models which will ensure this property. (More generally, the
same effect is achieved if we guarantee that M(F, �p ) is contained in the closure of its interior, that is, when
M(F, �p ) ⊂ clΩ(intΩ(M(F, �p ))).) Then, the above definition is satisfied precisely when D is a dense subset of
C ∩M(F, �p ). In most of the cases of good models and their associated algorithms, it can be shown that these
two sets are equal. The above definition leads us also to a way of comparing segmentation algorithms on a
theoretical level, the key goal of the paper.
Definition 2.10. The segmentation algorithms A and A′ are model-equivalent (weakly model-equivalent,
respectively) in a class F of idealized images provided there exists a segmentation model M for F such that
both A and A′ represent (weakly represent, respectively) M.

It should be stressed here that the model-equivalent algorithms behave identically only in the limit at the
infinitely best resolution. So, their outputs may still be slightly different for given digital images. This may
be contrasted with strongly-equivalent algorithms (defined and studied in [7]), which have identical outputs.
Note also that equivalent algorithms (in the sense of any of these definitions) may still have very different
computational times and/or memory requirements. Thus, equivalent algorithms should still be compared at
some more subtle level: by analyzing their computational requirements, by estimating computational errors, and
by running comparative simulations. Nevertheless, the equivalence of two segmentation algorithms is a strong
theoretical evidence that they perform quite similarly.

3. GRADIENT BASED EDGE-THRESHOLD SEGMENTATION MODEL M�
In this section, we will show that the front propagation level set algorithm of Malladi, Sethian, and Vemuri
from [14] is model-equivalent to the absolute fuzzy connectedness algorithm of Udupa and Samarasekera [26]
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used with a gradient based affinity. We will start with the description of an idealized segmentation model M�
represented by each of these algorithms. The description of the algorithms and the proofs that they indeed
represent M� are presented in the following subsections.

In the model M�, the edge (i.e., boundary) of the object P ⊂ Ω of interest is identified as the set of points
x at which the image intensity, given by F , changes rapidly. Mathematically, this means that at the edge points
the gradient magnitude |�F (x)| of F is large. Of course, this has a meaning only when the function |�F (x)|
is well defined, that is, when F is differentiable. (A possible meaning of |�F | for non-differentiable F , and
its implication to the presented discussion, is outlined in Sec. 4.) Thus, for this model, we will assume that
F is of the class C1, that is, that F has continuous first order partial derivatives. Also, “large gradient” will
be interpreted here “as greater than or equal to some threshold number θ.” Thus, the object of interest will
be a connected component of the set Ω(θ) = {x ∈ Ω: |�F (x)| < θ}. The component will be indicated by some
connected set S ⊂ Ω(θ) of seeds, usually a single point or a simple closed curve. This component is the result of
applying the model M� and parameters 〈θ, S〉 to F , that is, it is equal to M�(F, θ, S). Note that the continuity
of the gradient implies that this set is open. We will usually denote M�(F, θ, S) as PF

Sθ or just PSθ when F is
clear from the context.

Next, we describe a characterization of PSθ that can be naturally translated into a numerical algorithm of
its approximation. For this, we need the following definitions. A path p in Ω is any continuous injection from an
interval [a, b] into Ω. We say that a path p is from S ⊆ Ω to x ∈ Ω provided p(a) ∈ S and p(b) = x. In this model,
a strength µ(p) of a path p : [a, b] → Ω, which depends on F , is defined as µ(p) = supt∈[a,b] |�F (p(t))|. Notice
that the compactness of [a, b] and the continuity of �F (x) implies that µ(p) = |�F (p(t0))| for some t0 ∈ [a, b].
Theorem 3.1. For every C1 image F : Ω → R

�, θ ∈ R, and a connected set S ⊂ Ω(θ), the object PSθ is equal
to the set of all x ∈ Ω for which there exists a path p from S to x with µ(p) < θ.

The next, robustness, theorem tells us that the form of the object PSθ essentially does not depend on the
choice of the seed set S.
Theorem 3.2. For every C1 image F : Ω → R

�, θ ∈ R, and connected sets S, T ⊂ Ω(θ): PSθ = PTθ 
= ∅ if and
only if there is a path p from S to T with µ(p) < θ. In particular, if T ⊂ PSθ, then PSθ = PTθ.

3.1. First algorithm representing model M�: gradient based Udupa-Samarasekera AFC
algorithm A�
We start here by describing a general form of the absolute fuzzy connectedness, AFC, algorithm of [26]. It is
used to delineate the images identified with the intensity functions f from the finite subset C of R

n into R
�. The

elements of C are referred to as spels. We will think of f as a restriction of some idealized image F : Ω → R
� to a

subset C of Ω. In most practical applications, C is a subset of a rectangular grid (hZ)n = {hk : k ∈ Z}n which,
in terms of the idealized image, can be defined as C = Ωh = Ω∩ (hZ)n. (In fact, for algorithmic implementation,
it is usually assumed that h = 1, that is, that C ⊂ Z

n. This does not change the essence of the algorithm,
since (hZ)n and Z

n can be naturally identified. Nevertheless, to describe the relation of the algorithm with the
model, we need to adhere to the assumption that C ⊂ Ω.) The special case C = Ωh is also easier to handle in
the analysis that follows, so we will give it special attention. We should also stress that, in the algorithm that
follows, we will never use the fact that f is a restriction of an F . This fact will be used only to help our intuition
and to express the convergence theorem. However, we will use Ω as a parameter of the algorithm, unless C = Ωh,
in which case this parameter will be dropped.
Adjacency relation: The domain C of the digital image f , for which Ω ⊃ C is fixed, comes with an adjacency
relation telling us which pairs c, d ∈ C of spels are adjacent, that is, close enough to be considered spatially
connected to each other. In this paper, we will assume that the adjacency relation is expressed in terms of
the Euclidean distance in R

n as follows: for some constant α > 0, the spels c and d are said to be adjacent
provided ||c − d|| ≤ α. We will assume that, for every h ∈ (0, 1], α ∈ (2rΩ(C), n2rΩ(C)] and α ∈ [h, n2rΩ(C)]
when C = Ωh. Thus, in general, the choice of α depends on the domain C of f and the set Ω. However, the
dependency on Ω can be removed in case when C = Ωh, since then we can assume that α = h or, more generally,
that α ∈ [h, n2h). This is important, since the algorithm we will construct depends on f and α. Thus, in the case
when C = Ωh, we can assume that α = h and the algorithm depends only on f . In the general case, however, Ω
will be also a parameter of the algorithm.

If C = Ωh and α = h, then we deal with 4-adjacency for n = 2, and with 6-adjacency for n = 3. If C = Ωh
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and α =
√

3h, then we deal with 8-adjacency for n = 2, and with 26-adjacency for n = 3. The idea behind the
adjacency relation is to capture the blurring effect of the “point spread function” of imaging devices; that is,
that the neighborhood size α should relate to the width of the point spread function.
A path in a digital scene: The choice of α as above ensures the following important property, where B[T, ε] =
{x ∈ R

n : dist(T, x) ≤ ε} is a generalized closed ball in R
n centered at T ⊂ R

n and with radius ε > 0. Recall
that a path p in C is any sequence 〈c1, . . . , ck〉 of spels in C, where consecutive ci and ci+1 are adjacent; p is
from c ∈ C to d ∈ C if c1 = c and ck = d; it is from S ⊂ C to T ⊂ C if c1 ∈ S and ck ∈ T .
Lemma 3.3. For every path p̂ : [a, b] → Ω from s ∈ C to d ∈ C and ε ≥ 2nα, if B[range(p̂), ε] ⊂ Ω, then there
exists a path p = 〈c1, . . . , ck〉 in C from s to d which is contained in B[range(p̂), ε].
Affinity function: Recall that any FC algorithm starts with an affinity function—a symmetric function κ
defined on C × C for which the value κ(c, d) represents a strength of local connectedness of the spels c, d ∈ C.
We will use here an approach similar to that from the paper [7] and consider for affinity any symmetric function
κ from C × C into any linearly ordered set 〈L,�〉; however, in general, we will not assume that κ is reflexive
(which, in [7], is expressed as a property that κ(a, b) � κ(c, c) for every a, b, c ∈ C). We drop the assumption
of reflexivity of κ since only in this setting we can find an FC-type of algorithm representing A�. Although
this change will restrict our ability to cite any prior results concerning the FC theory results, this will be of
no consequence to us, since we will not use any such result. In this particular subsection we will assume that
〈L,�〉 = 〈[0,∞],≥〉. Thus, the strongest connectedness (in the sense of �) will be given by the value 0, and the
weakest connectedness by ∞. Note that in the literature usually only standard affinities are considered, that
is, those with the range 〈L,�〉 = 〈[0, 1],≤〉 and such that κ(c, c) = 1 for every c ∈ C. However, any reflexive
affinity κ as above can be translated into a standard affinity by a formula κσ(c, d) = (gσ ◦ κ)(c, d) = gσ(κ(c, d)),
where gσ(x) = e−x2/σ2

is a Gaussian function for some σ > 0. In this situation affinities κ and κσ are naturally
equivalent (lead to strongly equivalent algorithms) in a sense defined precisely in [7].
Digital path strength and AFC object: The affinity function κ represents the main parameter of the FC
algorithms and can be defined differently for different applications. In the algorithm A�, the definition of κ will
be based on the gradient approximation of f . In general, any AFC algorithm, including A�, depends on the
definition of κ as follows. The strength of a path p = 〈c1, . . . , ck〉 in C is defined as the �-weakest link in p:

µ(p) = max
i=1,...,k−1

κ(ci, ci+1). (2)

We define the AFC object as Psθ = {c ∈ C : there is a path p in C from s to c with µ(p) < θ}, where θ ∈
R is a threshold and s ∈ C is a seed. In other words, if we denote our algorithm by a symbol A�, then
A�(f, θ, s) = Psθ. Our goal is to show that, for an appropriately defined function κ, this algorithm represents
a segmentation model M�. Note that if µ̂(p) equals mini=1,...,k−1 κσ(ci, ci+1) and we put θ̂ = gσ(θ), then
Psθ = {c ∈ C : there is a path p from s to c with µ̂(p) > θ̂}. This is essentially the usual definition of an AFC
object defined with the use of the standard affinity κσ, except that we use here the strict inequality > rather
than the more common ≥. This change is essential for the proof of our convergence theorem.
Gradient based path strength: Our definition of κ will be based on the formula |�f(c)| for the approximation
of the magnitude of the gradient of F at c. It will have a property that, under appropriate assumptions on F ,
the limit limrΩ(C)→0 |�(F � C)(c)| converges uniformly to |�F (c)| in a sense that: for every ε > 0 and compact
set B ⊂ Ω, there is a δ > 0 such that for every finite C ⊂ Ω with rΩ(C) < δ and every c ∈ C

||�F (c)| − |�(F � C)(c)|| < ε when |�(F � C)(c)| ∈ R, and �(F � C)(c)| ∈ R when c ∈ B ∩ C. (3)

It is relatively easy to find such a formula for functions f defined on the sets C = Ωh. However, the general case
is a bit technical and we will postpone the actual definition of |�f(c)| to the full version of the paper. Thus, in
what follows, we assume that |�f(c)| is already defined and that it satisfies (3). From this, we define gradient
based affinity as κ(c, d) = max{|�f(c)|, |�f(d)|} for adjacent c and d, and κ(c, d) = ∞ otherwise. In particular,
for such affinity, formula (2) for the strength of a path p = 〈c1, . . . , ck〉 reduces to µ(p) = maxi=1,...,k |�f(ci)|.

The following theorem shows that the algorithm A� indeed represents the segmentation model M�. Note
that the assumption of uniform continuity of |�F | is satisfied if F is a restriction of a C1 function defined on the
closure cl(Ω) of Ω.
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Theorem 3.4. Let F : Ω → R
� be an idealized C1 image, where Ω is a convex bounded open subset of R

n.
Assume that |�F | is uniformly continuous on Ω. Then for every θ > θ′ > 0, finite set C ⊂ Ω, and s ∈ C, there
exists a δ > 0 such that for every finite set D ⊂ Ω containing C for which rΩ(D) < δ, we have

C ∩ PF
sθ′ ⊆ A�(F � D, θ′, s) ⊆ PF

sθ.

In particular, if 〈Ci ⊂ Ω: i ∈ N〉 is an increasing sequence of finite subsets of Ω with limi rΩ(Ci) = 0, then
lim∗

i,θ A�(F � Ci, θ, s) = PF
sθ ∩

⋃
i Ci for every s ∈ C1.

Corollary 3.5. The gradient based AFC algorithm A� represents the segmentation model M� for the class
of all functions F from convex bounded open subsets of Ω of R

n into R
� which can be extended to a C1 function

defined on an open set Ω containing cl(Ω).

3.2. Second algorithm representing model M�: Malladi-Sethian-Vemuri level set
algorithm ALS

In this subsection, we will argue that the level set algorithm ALS , which is essentially the fast marching algorithm
described by Malladi, Sethian, and Vemuri in [14] (compare [21, Chapter 17]), also represents the segmentation
model M� for the appropriate class of C1 functions F : Ω → R

�. Thus, both algorithms A� and ALS are model-
equivalent. We use in the above a vague term “argue” rather than “proof,” since the model and the algorithm
presented in [14] (as well as in essentially all other papers describing this method, see e.g. books [4,17,18]) are in
several aspects only sketched, leaving considerable leeway for interpretation. We will choose the interpretations
that are the most favorable for our formalism, and only briefly discuss the problems with other interpretations.
Moreover, the theoretical justification for the level set algorithm seems not to be fully completed yet. Since we
are arguing here that a simple algorithm A� does the same job as its level set counterpart ALS even under the
assumption that all theoretical gaps for the level set theory can be patched, we feel no need for a completion of
the level set theory framework.

The level set delineation model MLS of the idealized image is described in terms different from the model
M�. Thus, we will start with its description. The model MLS is applied to an ideal image F : Ω → R, where
Ω is an open convex bounded subset of R

n. Basically, to use MLS we pick a smooth simple closed surface Γ0

(diffeomorphic with (n− 1)-dimensional sphere) inside the region that is to be delineated—it plays the role of a
seed—and then we let Γ0 propagate outward until it reaches the boundary of the region we seek. The propagation
is controlled by the speed function v which indicates at every point z on the front the speed v(z) at which this
point propagates in the direction normal to the front. The set of points inside the final position of the front
represents the output of MLS . The front Γt at time t ≥ 0 is represented as the zero level set {z ∈ Ω: Ψ(z, t) = 0}
for some function Ψ: Ω × [0,∞) → R. To make region Rt inside the front easier to identify, it is also assumed
that Ψ is negative inside Γt and positive outside Γt. In other words, Rt = {z ∈ Ω: Ψ(z, t) < 0}. In [14], the
authors define Ψ at time t = 0 as a signed distance from Γ0, that is, ψ(z, 0) = dist(z,Γ0) for z outside Γ0, and
ψ(z, 0) = −dist(z,Γ0) for z inside Γ0.

The boundary of the object is defined as the set of points where the image intensity changes rapidly, that is,
when the magnitude of the gradient |�F | is “large.” To force the front propagation “...to stop in the vicinity of
the desired objects’ boundaries...” the propagation speed v is defined in such a way that v goes to zero precisely
when |�F | approaches the “large” threshold value θ ∈ (0,∞].† Neither “large value” θ nor formula for v is
uniquely defined in [14]. Formulas (13) and (16) from [14] suggest that the speed should be reduced to zero at
the points z ∈ Ω when |�F |(z) is equal to the maximum M of |�F | on Ω, which means that θ = M . (The
authors of [14] do not explain why such maximum should exist.) Alternatively, formulas (14), (15), and (17)
from [14] suggest that the speed should be a product of a positive factor independent of F and a number of the
form (1+ |�F |)−1; that is, the propagation speed should go to zero only as |�F | goes to ∞, meaning that θ = ∞.
The first from these options suggests that MLS(F,Γ0) is equal to M�(F,M,Γ0). The second makes MLS(F,Γ0)
equal M�(F,∞,Γ0) which, for C1 function F , is equal to the entire Ω. To stop the algorithm associated with
MLS(F,Γ0) = M�(F,∞,Γ0), the authors arbitrarily introduce the maximum number of algorithm iterations
(see [14, page 164]), which produces an algorithm completely inadequate for a theoretical analysis that we wish
to attempt. Both of these approaches can be reconciled making the value of MLS dependent on θ and reducing

†Quote comes from the first paragraph of [14, Section III]. A similar statement can be also found in [21, page 220].
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the propagation speed v to 0, when |�F | reaches θ. For example, we may define v(x) = (|�F |(x) − θ)2. Then,
we define MLS(F, θ, Γ0) as the set of all points of Ω that are eventually inside the propagating curve, that is,
MLS(F, θ, Γ0) =

⋃
t≥0 Rt. This general setup allows us to relate models M� and MLS as follows.

Lemma 3.6. MLS(F, θ, Γ0) ⊂ M�(F, θ, Γ0) for every C1 image F : Ω → R
�, θ ∈ R, and smooth simple closed

surface Γ0 such that Γ0 ∪ R0 ⊂ M�(F, θ, Γ0).
The assumption Γ0 ∪ R0 ⊂ M�(F, θ, Γ0) ensures that every point z of the initiation set Γ0 ∪ R0 satisfies the
thresholding condition |�F (z)| < θ. The proof of Lemma 3.6 is topological in nature. The other inclusion is
also true, but its proof depends on some missing details concerning the definition of MLS . In particular, we
need to clarify the meaning of front propagation, as described in [14]. For every z ∈ Γ0, let Tz : [0,∞) → Ω
be a trajectory of z propagated according to the rules described above. Then Ψ(Tz(t), t) = 0 for every z and
t. So, its derivative d

dtΨ(Tz(t), t) = 0 is also equal to 0. By using chain rule, it is easy to transform this last
equation (see [14] or [21]) to ∂Ψ

∂t (Tz(t), t) + v(Tz(t)) · |�Ψ| (Tz(t), t) = 0, where the gradient �Ψ concerns only
spatial variables. In particular, any solution of the PDE

∂Ψ
∂t (x, t) + v(x) · |�Ψ| (x, t) = 0, x ∈ Ω, t ≥ 0 (4)

with the initial condition Ψ(·, 0) = Ψ0 leads to the unique front propagation and the model MLS .
Unfortunately, even in very simple cases, (4) does not need to have a smooth solution. (See e.g. [21].) Thus,

the authors in [14] consider its weak solution, which satisfies (4) only at the points of differentiability of Ψ. This
is good enough, but there are some difficulties. First, in general, the weak solution of (4) does not need to be
unique. However, its viscosity solution, introduced by Crandall and Lions [10], is unique and this is the solution
chosen in [14]. The viscosity solution of (4) is defined in [14] as a limit Ψ = limε→0+ Ψε, where Ψε is a solution of

∂Ψ
∂t + (1 − εK)v · |�Ψ| = 0, Ψ(·, 0) = Ψ0, (5)

where K = � · Ψ
|�Ψ| is the curvature of the level surface. The theoretical value of this approach is based on the

following two claims, which were not proved in [14] and which we were unable to locate in the literature in that
generality, despite the intensive search and a correspondence with professor Sethian.

(I) PDE (5) has a global smooth solution for smooth Γ0 and v.
The existence of such a solution is known for some simple speed functions v, but we were not able to find it in
that generality required for most imaging tasks. Note that the algorithm from [14] requires only the existence
of the solution locally, near the front.
(II) The solutions Ψε of (5) converge to the viscosity solution for (4).

A proof of existence of the viscosity solution for (4) can be found in [1], although the solution is not described
as a limit from (II). (Paper [10] contains a proof of uniqueness of the viscosity solution in a general setting, but
not the existence.) In what follows we will assume that (I) and (II) are true. With their help we can prove the
equality between models M� and MLS .
Theorem 3.7. MLS(F, θ, Γ0) = M�(F, θ, Γ0) for every C1 image F : Ω → R

�, θ ∈ R, and smooth simple closed
surface Γ0 such that Γ0 ∪ R0 ⊂ M�(F, θ, Γ0).

The delineation algorithm ALS described in [14] depends on ε > 0 and finds its value from a numerical
approximation for Ψε. In order to prove formally that ALS weakly represents MLS , we should first show that,

(III) Aε
LS weakly represents Mε

LS for the class F of C1 images with uniformly continuous gradient

in a sense that for every appropriate F : Ω → R
�, Γ0, and θ, ε, h > 0 the limit lim∗

i,η Aε
LS(F � Ωh/2i , θ − η, Γ0)

exists and is a dense subset of the idealized model Mε
LS(F, θ, Γ0) outcome {z ∈ Ω: ψε(z, t) < 0 for some t ≥ 0}.

However, once again, we will assume that (III) is true, without proving it. (This fact is the foundation for the
entire level set theory. However, we found no proof for it in the published literature.) Notice that the property
(II) and Theorem 3.7 imply that limε→0+ Mε

LS = MLS . Therefore, if we define Aε,η
LS(f, θ, Γ0) = Aε

LS(f, θ−η, Γ0),
then we have lim†

i,η,ε Aε,η
LS(F � Ωh/2i , θ,Γ0) = limε→0+ Mε

LS(F, θ, Γ0) = MLS(F, θ, Γ0) for appropriate F , Γ0,
and θ. In particular, ALS weakly represents MLS . This can be rephrased as follows.
Corollary 3.8. Algorithms A� and ALS are weakly model-equivalent in the class F of all C1 images F : Ω → R

�

having uniformly continuous gradient and such that Ω ⊂ R
n is bounded, open, and convex. In this class, both

these algorithms represent model M� = MLS .
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4. EXPERIMENT
Having proved their model equivalence, we wanted to examine how this equivalence is manifested in actual image
segmentation by using A� and ALS . So, we compared algorithms A� and ALS at the experimental level. The
goal in this paper is not really a formal practical evaluation of the segmentation. Therefore, we provide practical
qualitative example illustrating the stronger theoretical results.

We applied the algorithms to a 2D proton density weighted brain MR image, Fig. 1(a), to delineate the
white matter object. The image had 20% background non uniformity and 3% noise. The level set results,
displayed in Fig. 1(c), were obtained with a version of the algorithm ALS implemented in the open source
software ITK [28]. This algorithm has four steps: (i) it applies a Gaussian filter to the original image; (ii)
it calculates gradient magnitude of the filtered image; and (iii) it applies to this image f a non-linear filter
f̂(c) = (Max − Min) · (

1 + e−(f(c)−β)/α
)

+ Min, where Min and Max are the minimum and the maximum
of the input image f , respectively, and the default parameter values, that we used, were α = −0.3 and β = 2.
To this modified image f̂ the curve propagation step is applied. The results of the application of the fuzzy
connectedness algorithm A� to the same image f̂ are presented at Fig. 1(b). To make the comparison fair, we
calculated the path connectivity strength from the filtered gradient image f̂ from step (iii) described above, rather
than from the original gradient magnitude image f . The subtle differences seen in the delineated objects are
due to different approximations involved in the otherwise equivalent algorithms. In particular, some object areas
accessible from its main part by narrow passages (e.g., lower left) are correctly recognized by the AFC algorithm
A� but not by the LS algorithm ALS . This is due to the fact that ALS propagates by using a curvature factor
εK. The constant ε must approach 0 to get the same result as the algorithm A�. However, at the resolution of
the provided image (pixel size = 1 × 1mm2), decreasing ε further does not produce the desirable results.

(a) (b) (c)
Fig. 1. The white matter (the region with darker intensities) in a 2D proton density weighted brain MR image (left)

delineated with A� (center) and ALS (right) algorithms.
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