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Abstract

Affinity functions — the measure of how strongly pairs of adjacent spels in the
image hang together — represent the core aspect (main variability parameter) of
the fuzzy connectedness (FC) algorithms, an important class of image segmentation
schemas. In this paper, we present the first ever theoretical analysis of the two stan-
dard affinities, homogeneity and object-feature, the way they can be combined, and
which combined versions are truly distinct from each other. The analysis is based
on the notion of equivalent affinities, the theory of which comes from our paper [8].
We demonstrate that the homogeneity based and object feature based affinities
are equivalent, respectively, to the difference quotient of the intensity function and
Rosenfeld’s degree of connectivity. We also show that many parameters used in the
definitions of these two affinities are redundant in the sense that changing their val-
ues lead to equivalent affinities. We finish with an analysis of possible ways of com-
bining different component affinities that result in non-equivalent affinities. In par-
ticular, we investigate which of these methods, when applied to homogeneity based
and object-feature based components lead to truly new (non-equivalent) affinities,
and how this is affected by different choice of parameters. Since the main goal of the
paper is to identify, by formal mathematical arguments, the affinity functions that
are equivalent, extensive experimental confirmations are not needed — they show
completely identical FC segmentations — and as such, only relevant examples of
the theoretical results are provided. Instead, we focus mainly on theoretical results
within a perspective of the fuzzy connectedness segmentation literature.
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1 Introduction and Preliminaries

The subject of this article is to study the notion of affinity, the main variability
parameter of the image segmentation method known as Fuzzy Connectedness
(FC), see [34,32,10]. Since this paper is a second part of the study, we refer the
reader to its first part [8] for an overview of a segmentation literature and the
role that FC plays within. Similarly, we will present below only the minimum
preliminaries needed to follow this paper, referring to [8] for more detailed
discussion.

1.1 Fuzzy connectedness framework

Digital space: Let n ≥ 2 and let Zn stand for the set of all n-tuples of integer
numbers. By an n-dimensional fuzzy digital space we will understand a pair
〈Zn, α〉, where α is an adjacency relation. We will assume in what follows
that the adjacency relation α is defined as α(c, d) = χ

[0,1](||c − d||); that is,
α(c, d) = 1 when ||c− d|| ≤ 1 and α(c, d) = 0 for ||c− d|| > 1, where ||c− d||
represents the Euclidean distance distance between c and d. Thus, α represents
4-adjacency in two-dimensional space and 6-adjacency in three-dimensional
space. The elements of the digital space are called spels. (For n = 2 also called
pixels, while for n = 3 – voxels.)

Digital scene: A scene over a fuzzy digital space 〈Zn, α〉 is a pair C = 〈C, f〉,
where C =

∏n
j=1[−bj, bj] ⊂ Zn, each bj > 0 being an integer, and f : C → R

is a scene intensity function. 1 The value of f represents either the original
acquired image intensity or an estimate of certain image properties (such as
gradients and texture measures) obtained from the given image.

Affinity: The notion most important for this paper is that of an affinity
function. Let � be a linear order relation [7] on a set L and let C be an arbi-
trary finite non-empty set, representing a domain of a scene intensity function.
We say that a function κ : C × C → L is an affinity function (from C into
〈L,�〉) provided κ is symmetric (i.e., κ(a, b) = κ(b, a) for every a, b ∈ C)
and κ(a, b) � κ(c, c) for every a, b, c ∈ C. Since κ(d, d) � κ(c, c) for every
c, d ∈ C, there exists an element in L, which we will denote by a symbol 1κ,
such that κ(c, c) = 1κ for every c ∈ C. Notice that 1κ is the largest element of
Lκ = {κ(a, b) : a, b ∈ C}, although it does not need to be the largest element
of L. In what follows, the strict inequality related to � will be denoted by ≺,
that is, a ≺ b if and only if a � b and a 6= b.

1 For simplicity, we will restrict our attention to scalar valued images. However, all
presented results can be generalized to the vectorial images.

2



We say that κ is a standard affinity provided 〈L,�〉 = 〈[0, 1],≤〉 and 1κ = 1.
We will also used extensively order 〈L,�〉 = 〈[0,∞],≥〉, in which case the
order relation � is the reversed standard order relation ≥. In such a setting,
“�-stronger” means “less than” in terms of the standard order ≤. Also, the
meanings of the terms min and max are switched: “min in terms of �” means
“max in terms of ≤,” and “max in terms of �” becomes “min in terms of ≤.”
For example, the �-minimum of a set S = {.1, .5, .7} is equal to .7 (since
.7 � .5 and .7 � .1), while .7 is the maximum of S in the standard order ≤.
We will use symbol 1 for denoting the � largest number of these sets, that is,
1 = 1 for 〈[0, 1],≤〉 and 1 = 0 for 〈[0,∞],≥〉.

Affinity as an operator: The affinity function is usually associated with
each scene C according to some specific rule, such as κ(c, d) = e−||f(c)−f(d)||2

for all adjacent c, d ∈ C. (See Section 2.) In such case, we can treat the rule

of such association as an operator 〈C, p〉 K7→ κ = K(C, p), where p represents
all additional parameters like a prior knowledge.

Paths and connectivity measure: Fix an affinity κ : C × C → 〈L,�〉. To
define fuzzy connectedness segmentation of C, we need first to translate the
local measure of connectedness given by κ into the global strength of connect-
edness. For this, we will need the notions of a path and its strength.

A path in A ⊆ C is any sequence 2 p = 〈c1, . . . , cl〉, where l > 1 and ci ∈ A
for every i = 1, . . . , l. (Notice that there is no assumption on any adjacency
of the consecutive spels in a path.) The family of all paths in A is denoted
by PA. If c, d ∈ A, then the family of all paths 〈c1, . . . , cl〉 in A from c to d
(i.e., such that c1 = c and cl = d) is denoted by PA

cd. The strength µκ(p) of
a path p = 〈c1, . . . , cl〉 ∈ PC is defined as the strength of its κ-weakest link;

that is, µκ(p)
def
= min{κ(ci−1, ci) : 1 < i ≤ l}. (Note that, if one follows the

common practice of defining κ(c, d) to be the minimal element of Lκ for any
non-adjacent c and d, then only paths with adjacent consecutive spels can
have non-minimal strength.)

For c, d ∈ A ⊆ C, the (global) κ-connectedness strength in A between c and d
is defined as the strength of a strongest path in A between c and d; that is,

µAκ (c, d)
def
= max

{
µκ(p) : p ∈ PA

cd

}
. (1)

Notice that µAκ (c, c) = µκ(〈c, c〉) = 1κ. We refer to µAκ : C × C → L as a con-
nectivity measure (on A) induced by κ. For c ∈ A ⊂ C and a non-empty

D ⊂ A, we also define µAκ (c,D)
def
= maxd∈D µ

A
κ (c, d). We will write µ for µκ

2 Notice that the paths must have length greater than 1. We make this requirement
to ease some technical difficulties, while it creates no real restriction as, in whatever
we do, a “path” 〈c〉 can be always replaced by a path 〈c, c〉.
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and µA for µAκ when κ is clear from the context. The issue of why µAκ should be
defined from κ by the procedure described above is discussed in detail in [27].

FC segmentations: To define fuzzy objects delineated by FC segmentations,
we start with a family S of non-empty pairwise disjoint subsets of C, where
each S ∈ S represents a set of spels, known as seeds, which will belong to the
object generated by it. Also, fix a threshold θ ∈ L, θ ≤ 1κ. For every S ∈ S,
put W =

⋃
(S \ {S}) and, similarly as in [10] (see also [33]), define

• P κ
Sθ =

{
c ∈ C : θ � µCκ (c, S)

}
;

• P κ
SS =

{
c ∈ C : µCκ (c,W ) ≺ µCκ (c, S)

}
;

• P Iκ
SS =

⋃∞
i=0 P

i,κ
SS , where sets P i,κ

SS are defined inductively by the formulas

P 0,κ
SS = ∅ and P i+1,κ

SS = P i,κ
SS ∪ {c ∈ C \ P i,κ

SS : µ
C\P i,κ

SS
κ (c,W ) ≺ µCκ (c, S)}.

Then absolute fuzzy connectedness AFC, relative fuzzy connectedness RFC,
and iterative relative fuzzy connectedness IRFC segmentations of C are de-
fined, respectively, as Pθκ(S) = {P κ

Sθ : S ∈ S}, Pκ(S) = {P κ
SS : S ∈ S}, and

PIκ(S) =
{
P Iκ
SS : S ∈ S

}
.

Notice that an AFC object P κ
Sθ consists of all spels connected with at least

one seed s in S with the κ-connectivity strength at least θ. An RFC object
is created via competition of seeds for each spel: a spel c belongs to P κ

SS
provided there is a seed s in S for which the κ-connectivity between c and s
exceeds the κ-connectivity between c and any other seed indicating another
object. Finally, IRFC objects are obtained by refining the RFC competition
in iterative manner.

1.2 Affinity equivalence: definition and results

We say that the affinities κ1 : C × C → 〈L1,�1〉 and κ2 : C × C → 〈L2,�2〉
are equivalent (in the FC sense) provided, for every a, b, c, d ∈ C

κ1(a, b) �1 κ1(c, d) if and only if κ2(a, b) �2 κ2(c, d).

The affinity operators K1 and K2 are equivalent provided the associated affini-
ties κ1 = K1(C, p) and κ2 = K2(C, p) are equivalent for all scenes C and ap-
propriate parameters p.

In the following characterization of equivalent affinities ◦ stands for the com-
position of functions, that is, (g ◦ κ1)(a, b) = g(κ1(a, b)).

Proposition 1 [8, Prop. 1 & Cor. 2] Affinity functions κ1 : C×C → 〈L1,�1〉
and κ2 : C × C → 〈L2,�2〉 are equivalent if and only if there exists a strictly
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increasing function g from 〈Lκ1 ,�1〉 onto 〈Lκ2 ,�2〉 such that κ2 = g ◦ κ1.

In particular, if κ : C × C → 〈[0,∞],≥〉 is an affinity, then, for every strictly
decreasing function g from [0,∞] onto [0, 1], a map g ◦ κ : C ×C → 〈[0, 1],≤〉
is an affinity equivalent to κ.

The following results shows that the equivalent affinities are indistinguishable
in FC segmentation framework: if any two equivalent affinities are used in
the same FC schema to produce two versions of the algorithm, then these
algorithms lead to identical segmentations.

Theorem 2 [8, Thm. 5] Let κ1 : C×C → 〈L1,�1〉 and κ2 : C×C → 〈L2,�2〉
be equivalent affinity functions and let S be a family of non-empty pairwise
disjoint subsets of C. Then for every θ1 �1 1κ1 in L1, there exists a θ2 �2 1κ2

in L2 such that, for every S ∈ S and i ∈ {0, 1, 2, . . .}, we have P κ1
Sθ1

= P κ2
Sθ2

,

P κ1
SS = P κ2

SS , and P i,κ1

SS = P i,κ2

SS . In particular, Pθ1κ1
(S) = Pθ2κ2

(S), Pκ1(S) = Pκ2(S),
and PIκ1

(S) = PIκ2
(S). Moreover, if g : C → C is a strictly monotone function

such that κ2 = g ◦ κ1 (which exists by Proposition 1), then we can take
θ2 = g(θ1).

2 Two commonly used affinities and their natural definitions

In this section, we will study the two main classes of affinities that have been
employed in the FC literature, namely, homogeneity based and object-feature
based, and examine the connectivity measures they induce. We will consider
them with range 〈L,�〉 = 〈[0,∞],≥〉.

We will work here with a fixed digital space 〈Zn, α〉 and a scene C = 〈C, f〉.
We will also assume that the scene intensity function has scalar values only,
f : C → R. To make our presentation more transparent, we will assume that
f represents not necessarily the original scene intensity function, but rather
a result of any filtering that could have been done on such acquired scene. In
particular, we will not use any scale based approach to the affinity definitions
(see [30]), since any scale-based affinity is essentially equal to a non-scale-based
affinity applied to an appropriately filtered version of the intensity function.
(This is precisely true for the object feature based affinities used in the lit-
erature. In the case of homogeneity based affinities, the affinity obtained by
what we suggest above is slightly different from that defined in [30]; however,
these two versions are very close to each other.)
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2.1 Homogeneity based affinity

Intuitively, this function, denoted ψ(c, d), is defined as the maximum of |f ′(x)|,
with x on the segment joining c and d (where f ′ is the derivative of f): the
higher the magnitude of the slope of f between c and d is, the weaker is the
affinity (connectivity) between c and d. Of course, there is more than one
way to interpret the symbol |f ′(x)|. In this section we will interpret this as a
magnitude of the directional derivative D−→

cd
f(x) in the direction of the vector

−→
cd. This agrees with the standard FC approach used in the research conducted
so far. (See e.g. [34,17,15,22,14].) Alternatively, it is possible to treat |f ′(x)| as
a gradient magnitude. True gradient induced homogeneity based affinity will
be incorporated in our future work. (See e.g. [9].)

The value |f ′(x)| = |D−→
cd
f(x)| is best approximated by a difference quotient

ψ0(c, d) =
∣∣∣f(c)−f(d)

||c−d||

∣∣∣. Although this expression has no sense for c = d, it

should be clear that we should define ψ0(c, c) as equal to 0, the “highest”
possible connectivity in this setting. (Recall that “highest” in terms of �
defined as ≥ translates into “least” in terms of the standard order ≤. That is,
the greater ψ0 is, the weaker is the affinity between c and d.) Is the definition

ψ0(c, d) =
∣∣∣f(c)−f(d)

||c−d||

∣∣∣ what we are looking for?

Certainly this is not a local measurement of connectedness when ||c − d||
is large. In this case, the difference quotient is a poor approximation of the
definition of the derivative. We also have a better way of estimating the highest
slope on the road from c to d: crawl from c to d along a path with steps of
length 1, estimating the slope of each step separately. Because of this, it makes
sense to consider the number ψ0(c, d) as a good value for ψ(c, d) only when
||c − d|| ≤ 1, in all other cases we should assign to it it the worst possible
value; that is, ∞. This leads to the definition ψ(c, d) = ψ0(c, d)/α(c, d); that
is,

ψ(c, d) =

 |f(c)− f(d)| for ||c− d|| ≤ 1

∞ otherwise.
(2)

It is easy to see that ψ satisfies our definition of affinity function. It should
be stressed here that such a function approximates only the magnitude of the

directional derivative of f in the direction
−→
cd, and gives no information on the

slope of f in a direction perpendicular to
−→
cd.

If one likes to express this affinity by an equivalent standard affinity, our def-
inition of ψ can be replaced by g1(ψ(c, d)), where gσ is a Gaussian function
gσ(x) = e−x

2/σ2
. Notice that if α(c, d) = χ

[0,1](||c − d||), as we defined ear-
lier, then g1(ψ(c, d)) = α(c, d) · g1(|f(c) − f(d)|), the formula defining purely
homogeneity based affinity in [30, pp. 149–150]. (We use the weights w1 = 0
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and w2 = 1.) However, if α is an arbitrary fuzzy adjacency relation, then
the formula α(c, d) · g1(|f(c) − f(d)|) disagrees with the derivative intuition.
For example, if α(c, d) = g1(||c − d||), then α(c, d) · g1(|f(c) − f(d)|) =

e−(|f(c)−f(d)|2+||c−d||2) = g1(
√
|f(c)− f(d)|2 + ||c− d||2), rather than the more

appropriate g1

(
|f(c)−f(d)|
||c−d||

)
(possibly multiplied by number α(c, d)).

In what follows, we will use the homogeneity based affinity ψ(c, d) as defined
in (2), rather than g1(ψ(c, d)), as it is more intuitive, and, by Proposition 1,
these two affinities are equivalent. We refer the reader to [8, Fig. 1] for an il-
lustration demonstrating the equivalence of ψ(c, d) and gσ(ψ(c, d)). Thus, the
parameter σ in the homogeneity based affinity ψσ = gσ ◦ ψ is of no conse-
quence for the FC algorithms. However, in all FC literature, this σ has been
considered as a parameter of the method in the description of the methods
and their evaluation, and different settings have been claimed to give different
segmentation accuracies, which has no theoretical basis in view of Theorem 2.

The homogeneity based connectivity measure, µψ = µCψ , can be elegantly
interpreted if our scene C = 〈C, f〉 is considered as a topographical map in
which f(c) represents an elevation at the location c ∈ C. Then, µψ(c, d) is
the highest possible step (a slope of f) that one must make in order to get
from c to d with each step on a location (spel) from C and of unit length.
In particular, the object Pψ

sθ = {c ∈ C : θ ≥ µψ(s, c)} represents those spels
c ∈ C which can be reached from s without ever making a step higher than θ.
Note that all we measure in this setting is the actual change of the altitude
while making the step. Thus, this value can be small, even if the step is made
on a very steep slope, as long as the path approximately follows the altitude
contour lines — this is why on steep hills the roads zigzag, allowing for a small
incline of the motion. On the other hand, the measure of the same step would
be large, if measured with some form of gradient induced homogeneity based
affinity!

2.2 Object feature based affinity

There are two principal differences between the object feature based and the
homogeneity based affinities. (1) The definition of the object feature based
affinity requires some prior knowledge on the intensities of the objects we like
to uncover, while the definition of the homogeneity based affinity is completely
independent of such knowledge. (2) The homogeneity based affinity is repre-
sented in terms of (the approximation of) the derivative f ′ of the intensity
function f , while the object feature based affinity is defined directly from the
intensity function f . In the rest of this subsection, we will consider object
feature based affinity for the cases of single and multiple objects separately.
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2.2.1 Object feature based affinity: single object case

We will start with the definition of the object feature based affinity, denoted
φ(c, d), in terms of only a single object O. To define φ, we need to start
with an approximate expected (average) intensity value m for the spels in the
object. We will also assume that we have a standard deviation σ > 0 of the
distribution of intensity for this object. Then, the intuition behind φ can be
expressed with a pseudo-affinity formula ϕ̄0(c) = |f(c) − m| — the smaller
the value of ϕ̄0(c) is, the closer is c’s intensity to the object intensity, and the
better c is connected to object O. (Since the range of φ is 〈L,�〉 = 〈[0,∞],≥〉,
the notion of “�-stronger” translates into “smaller in the ≤ sense.”) It is also
convenient, for facilitating a definition of the object feature based affinity for
multiple objects, to rescale this formula to ϕ̄(c) = |f(c)−m|/σ. (This is related
to the Mahalanobis distance [13].)

Now, one may attempt to define the strength of a path p = 〈c1, . . . , cl〉 as

µϕ̄(p) = maxi=1,...,l ϕ̄(ci) (3)

and the connectivity measure as µϕ̄(c, d) = minp∈PC
cd
µϕ̄(p). (Once again, the

use of inverse inequality ≥ as �makes the ≤-largest value to be the �-smallest
value.) However, since in this definition we do not assume that the consecu-
tive spels in a path are adjacent, there is nothing local in this definition. In
particular, if f(c) = f(d) = m, then µϕ̄(〈c, d〉) = 0 is not a good connectivity
measure: the best possible connectivity in µϕ̄-sense, µϕ̄(〈c, d〉) = 0, means only
that the intensities at both spels equal m, and it may still happen that such
spels are spatially separated by spels with very different intensities; on the
other hand, if distinct c and d are adjacent (next to each other), then the fact
that f(c) = f(d) = m is very informative — such spels are indeed perfectly
connected.

The situation can be rescued if one considers only the paths from the family
P̄cd of all paths from c to d in which the consecutive spels are distinct and
adjacent. Then, for c 6= d, the formula

µϕ̄(c, d) = minp∈P̄cd
µϕ̄(p) (4)

agrees with our intuition and with the formula for µφ defined below. (See (7).)
So, why can not we use formula (4) as a definition of µφ? Although we could,
there are two inconveniences connected with this approach: first we would need
to replace PC

cd with P̄cd; second, the value of µϕ̄(p) is not defined by using any
affinity function (the pseudo-affinity ϕ̄(ci) used in (3) cannot be treated as
affinity, since it is a function of one variable), so the general results on the FC
theory could not be applied to a connectivity measure so defined. Moreover,
connectivity formula (4) carries some other dangers, which we will mention
below.
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Thus, we will define φ properly, as a function on the pairs 〈c, d〉 of spels. We
like to define φ in such a way that, for every p ∈ P̄cd, the strength µφ(p) of
p equals µϕ̄(p). To ensure this, for distinct adjacent c and d, φ(c, d) must be
defined as max{ϕ̄(c), ϕ̄(d)} = max{|f(c)−m|, |f(d)−m|}/σ. Thus, in general,
we define φ(c, d) = max{ϕ̄(c), ϕ̄(d)}/α(c, d); that is,

φ(c, d) =


0 for c = d

max{|f(c)−m|, |f(d)−m|}/σ for ||c− d|| = 1

∞ otherwise.

(5)

Clearly function φ is an affinity function in the sense of general affinity function
defined in Section 1. Moreover,

µφ(p) = max
i=1,...,l

ϕ̄(ci) for every p = 〈c1, . . . , cl〉 ∈ P̄cd, (6)

since µφ(p) = maxi max{ϕ̄(ci), ϕ̄(ci+1)} = maxi ϕ̄(ci). In particular, by (3),
µφ(p) = µϕ̄(p) for every p ∈ P̄cd.

Notice also that for every c 6= d function µφ agrees with µϕ̄:

µφ(c, d) = µϕ̄(c, d), (7)

since µφ(c, d) = minp∈PC
cd
µφ(p) = minp∈P̄cd

µφ(p) = minp∈P̄cd
µϕ̄(p) = µϕ̄(c, d).

Here the first and the last equations come from (1) and (4), respectively.
The third equation follows from the above argument, while the second one is
justified by the fact that for every q ∈ Pcd either µφ(q) = ∞ (when q contains
non-adjacent consecutive spels) or µφ(q) = µφ(p) for p ∈ P̄cd obtained from q
by collapsing all constant consecutive subsequences of q to a single occurrence
of the repeated value.

Note that, in reference [30], for distinct adjacent spels c and d the authors

define φ(c, d) as
∣∣∣f(c)+f(d)

2
−m

∣∣∣ in place of max{ϕ̄(c), ϕ̄(d)}. Although this

carries similar intuitions, the averaging of the values of f(c) and f(d) loses
information on how far the intensity of each spel is from m. For example, if
f(c) = m + r and f(d) = m− r for some r > 0, then

∣∣∣f(c)+f(d)
2

−m
∣∣∣ = 0 and

µφ(〈c, d〉) associated with such affinity equals 0, which does not satisfy (6) and
is counterintuitive for large values of r. Another difficulty with affinity defined
as κ(c, d) =

∣∣∣f(c)+f(d)
2

−m
∣∣∣ is shown in Figure 1. Object P κ

s,6 delineated with

κ includes spels c2, c3, c4, c5, but no other spels adjacent to c5. (The intensity
averages of the consecutive spels in the path 〈c1, c2, c3, c4, c5〉 are respectively
37.5, 42.5, 40, 45, that is, closer to m = 40 than θ = 6. It does not include any
other spel c adjacent to c5, since for such c the average f(c)+f(c5)

2
= 60 is 20 > θ

units from m.) Both including the spels c3, c4, c5 in the object as well as, after
including c5, excluding other spels adjacent to c5 defies intuitions behind the
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object feature based affinity. Notice also that, the object P φ
s,6 delineated with

φ does not include c3, since φ(c2, c3) = max{|35−40|, |50−40|} = 10 > 6 = θ.

(a) (b) (c)

Fig. 1. (a) A schematic scene with each rectangular cell representing a single spel.
A number in each spel indicates its intensity. We delineate an object indicated by a
seed s = c1, assuming that its average intensity is m = 40. We also assume σ = 1.
In (b) the shaded area depicts object P φ

s,6 (i.e., with θ = 6) delineated with the
affinity φ defined in (5). The region correctly excludes spel c3, since the difference
between its intensity and m exceeds threshold value θ = 6. The shaded region in
(c) represents object P κ

s,6, where κ(c, d) =
∣∣∣f(c)+f(d)

2 −m
∣∣∣. Not only it incorrectly

leaks all the way to spel c5, but it also abruptly stops there, after reaching an area
of uniform intensity.

Once again, we can replace φ(c, d) with gσ(φ(c, d)) for some Gaussian-like
function to get an equivalent affinity in the standard form. In particular, for

gσ(x) = e−x
2/σ2

this leads to ϕ̄(c) = e−
(f(c)−m)2

σ2 , one of the formulas used
in [30]. (See also [34,26,29,41].)

The difference between φ and κ that was illustrated in Figure 1 above is also
demonstrated on the 2D CT slice of a human knee in the following Figure 2.
Figs 2 (b) and (c) show, respectively, the connectivity image and AFC object
corresponding to the affinity gσ ◦ φ which, for distinct adjacent c and d, is

equal to gσ(φ(c, d)) = min
{
e−

(f(c)−m)2

σ2 , e−
(f(c)−m)2

σ2

}
. Figs 2 (d) and (e) are

similar images obtained for the affinity κ̂ defined, for distinct adjacent c and
d, as gσ

(
f(c)+f(d)

2
−m

)
. The object shown in (f), generated with affinity κ̂, is

slightly bigger than that for gσ ◦φ, shown in (c). Fig. 2(f) shows the symmetric
difference between these two segmentation results.

The object feature based connectivity measure of one object has also a nice
topographical map interpretation. For understanding this, consider a modified
scene C̄ = 〈C, |f(·)−m|〉 (called membership scene in [34]) as a topographical
map. Then the number µφ(c, d) represents the lowest possible elevation (in C̄)
which one must reach (a mountain pass) in order to get from c to d, where
each step is on a location from C and is of unit length. Notice that µφ(c, d) is
precisely the degree of connectivity as defined by Rosenfeld [23–25]. (Compare
also with [21], where it is used under the name pass value.) By the above
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analysis, we brought Rosenfeld’s connectivity also into the affinity framework
introduced by [34], particularly as another object feature component of affinity.

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) A 2D scene — a CT slice of a human knee, with an indicated seed. (b),
(c) Connectivity scene and an AFC object corresponding to the indicated seed and
affinity gσ ◦ φ. (d) and (e): same as in (b) and (c) but for the affinity defined as
gσ

(
f(c)+f(d)

2 −m
)
. (f) shows the symmetric difference between images (c) and (e).

2.2.2 Object feature based affinity: case of multiple objects

The single object connectivity measure µφ can be useful in object definition
only if we define it by using absolute connectedness definition, AFC. To find
an object via RFC or IRFC methods, we need to have µφ defined for at
least two objects. So, suppose that the scene consists of n > 1 objects with
expected average intensities m1, . . . ,mn and standard deviations σ1, . . . , σn,
respectively. Then we have n different object feature based affinities φ̂i(c, d),

defined for c 6= d as max{ϕ̄i(c), ϕ̄i(d)}/α(c, d), where ϕ̄i(c) = |f(c)−mi|
σi

, and

their respective connectivity measures µφ̂i
. We like to combine affinities φ̂i to

get the cumulative object feature based affinity φ. (Obtaining a single affinity
at the end becomes essential in order to fulfill the theoretical requirements of
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fuzzy connectedness. See [26,29].) But how to define such a φ? We will build
our intuition for such a φ by assuming that each object Oi is generated by
a single seed si with f(si) = mi. Although this situation is not general, any
discussion of this subject must include this important case. Therefore, we will
decide on the form of a definition of φ in this situation first, and then argue
that the notion we come up with has the desired properties without requiring
any extra assumptions.

First note that σi’s help us to compare different φ̂i’s. Specifically, each num-
ber ϕ̄i(c) measures the distance |f(c) −mi| of the image intensity f(c) from
the average intensity mi of the i-th object. However, if we like to compare
the numbers ϕ̄i(c) for different i’s, we need to fix a reasonable measuring
unit. The most natural measuring unit for ϕ̄i is the associated standard devi-
ation σi: with our definition ϕ̄i(c) = |f(c)−mi|

σi
, the equation ϕ̄i(c) = K means

that the intensity f(c) at c is K standard deviations apart from mi (like the
Mahalanobis distance [13]). Then, equation ϕ̄1(c) = ϕ̄2(c) caries the correct
intuition: f(c) is the same number of σi’s apart from mi for i = 1 and i = 2.

Now, by equation (6), if p = 〈c1, . . . , cl〉 ∈ P̄sic and si 6= c, then the
strength of the i-th object connectivity between si and c on this path p is
given by µφ̂i

(p) = maxt=1,...,l ϕ̄i(ct). Similarly, the strength of the j-th ob-

ject connectivity between sj and c 6= sj on a path q = 〈d1, . . . , d`〉 ∈ P̄sjc

is equal to µφ̂j
(q) = maxt=1,...,` ϕ̄j(dt). Therefore, by the analysis given in

the above paragraph, the i-th object connectivity strength µφ̂i
(p) of p ex-

ceeds (in the � sense) the j-th object connectivity strength µφ̂j
(q) of q pro-

vided µφ̂i
(p) = maxt=1,...,l ϕ̄i(ct) < maxt=1,...,` ϕ̄j(dt) = µφ̂j

(q). So, by (4),

c is better φ̂i-connected to si than it is φ̂j-connected to sj precisely when
µφ̂i

(si, c) < µφ̂j
(sj, c).

The key results of FC theory (see [26,29,10,27]) insure that the FC objects
have the following nice and highly desirable properties.

• Robustness: If an FC delineated object P is indicated by a seed s and a spel
t belongs to P (or its core, in case of IRFC), then the algorithm returns the
same object when seed s is replaced by t.

• Path Connectedness: If an FC delineated object P is indicated by a seed s,
spel t belongs to P , and a path p from s to t insures that t is in P (has the
best strength), then every spel from p belongs to P .

To guarantee these properties, we need to arrive at one affinity defined over
the whole scene. We shall examine this issue at the higher level in Section 3.
In this section, our goal is to focus on a lower level, that is, to study how to
combine the affinities φ̂i into a single object feature based affinity φ so that
it preserves the information given by all affinities φ̂i to the fullest possible
extent. (The reason why we cannot confidently use two different affinities
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and define an object via inequality µφ̂i
(si, c) < µφ̂j

(sj, c) is explained below.)

In particular, since for every i, the value of µφ(si, c) should approximate, as
much as possible, the i-th object connectivity strength between si and c, it
would be most desirable if we could have insured that µφ(si, c) = µφ̂i

(si, c).
In particular, we would like to insure that µφ(si, c) < µφ(sj, c) if and only if
µφ̂i

(si, c) < µφ̂j
(sj, c). Unfortunately, we will see below that there is no way to

have such a strong property, since in the process of combining φ̂i’s we always
lose some information. Nevertheless, at the very least, we should insure that
inequality µφ(si, c) < µφ(sj, c) never happens when µφ̂i

(si, c) ≥ µφ̂j
(sj, c). This

can be expressed as

µφ(si, c) < µφ(sj, c) implies µφ̂i
(si, c) < µφ̂j

(sj, c). (8)

This implication represents the most fundamental property that we will impose
on the definition of φ. In particular, in what follows we will define the object
based affinity φ which satisfies (8) under some simple assumptions connecting
each sk with mk. We will also argue (see Example 7 in Appendix) that other
seemingly natural definitions of φ, like the one used in [26] (compare also [30]),
do not satisfy this property.

Another way to look at property (8) is that, when n = 2, it insures that the
RFC object P φ

si{sj} is contained in a set Oij = {c ∈ C : µφ̂i
(si, c) < µφ̂j

(sj, c)}.
One may wonder whether we should consider sets Oij (or their intersections
Oi =

⋂
j 6=iOij, if n > 2) as our objects. The argument against this consider-

ation can be given at two levels. The simple one is that there is a very nice
theory for the objects defined with a single connectivity measure and this the-
ory does not extend, in general, to sets defined as in Oij. (Of course, IRFC
sets are also defined in this form, but the different connectivity measures used
there have a very specific form.)

A slightly deeper argument is that the sets Oij do not have nice properties.

For example, it was proved in [26] that, unlike P φ
si{sj}, the object Oij has

neither robustness nor path connectedness property. In fact, the failure of path
property for O1,2 can also be seen in a scene in which the spels s1, s2, c are on
a consecutive path (with s1 and c not adjacent), have respective intensities
0, 10, 18, they are surrounded by spels with intensities equal to 300, and we
have m1 = 0, m2 = 10, σ1 = 3, σ2 = 1 — we have c ∈ O1,2 and µφ̂1

(s1, c) =

6 < 8 = µφ̂2
(s2, c), while the unique φ̂1-strongest path from s1 to c goes

through s2 /∈ O1,2. Note also that the segmentation of this scene becomes the
undesirable pair {O1,2, O2,1} if the algorithm from paper [6] is applied to it.

The idea behind the formula for φ is to define φ(c, d) as the best among
all numbers φ̂i(c, d). One possible choice for φ(c, d) is mini=1,...,n φ̂i(c, d). The

problem with this choice is that we never know which value of φ̂i(c, d) was
used to determine φ(c, d). Since the values of φ̂i(c, d) = max{ϕ̄i(c), ϕ̄i(d)}/σi
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are the most valuable when this number is small and because difficulties occur
when φ̂i(c, d) = φ̂j(c, d) for i 6= j, we will eliminate the information in ϕ̄i(c)
when this value exceeds ϕ̄j(c) for some j. This is made formal below.

Fig. 3. The graphs of three functions ϕ̄i with m1 = 0, m2 = 7, m3 = 10, σ1 = 0.5,
σ2 = 1, and σ3 = 2. We have δ3

1 = 2 < δ2
1 , leading to I1 = (−2, 2). Also, ε2 = δ3

2 = 1,
so I2 = (6, 8) and ε3 = δ2

3 = 2 leading to I3 = (8, 12).

For distinct i, j ∈ {1, . . . , n}, let δji ≥ 0 be the largest number with the

property that |x−mi|
σi

< |x−mj |
σj

for every x ∈ (mi−δji ,mi+δ
j
i ). (If σi = σj, then δji

is just half of the distance between mi and mj.) Thus, if xji ∈ {mi−δji ,mi+δ
j
i }

is between mi and mj, then for each c ∈ C

ϕ̄i(c) <
|xj

i−mi|
σi

=
δj
i

σi
=

|xj
i−mj |
σj

< ϕ̄j(c) (9)

provided |f(c)−mi| < δji . Let εi = minj 6=i δ
j
i and Ii = (mi−εi,mi+εi). Then

intervals Ii, i ∈ {1, . . . , n}, are pairwise disjoint. Function ϕi is defined as a
truncation of ϕ̄i to the interval Ii, that is, by a formula

ϕi(c) = ϕIii (c) =

 ϕ̄i(c) for f(c) ∈ Ii
∞ otherwise.

Then ϕi(c) <∞ implies f(c) ∈ Ii = (mi − εi,mi + εi). Fig. 3 gives an example
of the graphical representation for numbers δji and intervals Ii. For c 6= d
put φi(c, d) = max{ϕi(c), ϕi(d)}/α(c, d); that is, φi(c, d) = 0 when c = d,
φi(c, d) = max{ϕi(c), ϕi(d)} for ||c− d|| = 1, and φi(c, d) = ∞ otherwise, and
let

φ(c, d) = mini=1,...,n φi(c, d). (10)

We define µφ(p) for a path p and a connectivity measure µAφ according to
our general method. The following theorem shows that φ so defined satisfies
(8) we promised. The proof of this theorem and the associated machinery are
provided in Appendix Section 6.
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Theorem 3 Fix i ∈ {1, . . . , n} and c, si, sj ∈ C such that f(si) /∈
⋃
k 6=i Ik. If

µφ(si, c) < µφ(sj, c), then µφ̂i
(si, c) < µφ̂k

(sj, c) for every k ∈ {1, . . . , n}.

The role of a seed si is not only to indicate an approximate position of an
object but also to indicate its approximate average intensity mi. This is the
only way to insure that si indicates the correct object. Thus, if one allows the
situation in which si ∈ Ij for some j 6= i, then si would really represent j’s
object and µφ(si, c) would be represented by µφ̂j

(si, c) rather than by µφ̂i
(si, c).

Not surprisingly, in such a situation, the conclusion of the theorem cannot be
expected. This explains our assumption f(si) /∈ ⋃

k 6=i Ik. In fact, we could
as well assume f(si) ∈ Ii, as otherwise (i.e., when f(si) belongs to no Ik)
µφ(si, c) = ∞ for every c, so µφ(si, c) caries no valuable information, and the
conclusion of the theorem is satisfied in void.

Clearly, truncating each ϕ̄i to ϕi = ϕIii is causing the loss of some information.
In fact, the most common definition of φ used in the literature till now, see
e.g. [26], coincides with ours if one drops the matter of truncation: define
φ̄(c, d) = mini=1,...,n φ̄i(c, d), where φ̄i(c, d) = max{ϕ̄i(c), ϕ̄i(d)}/α(c, d) for
c 6= d. Then µφ̄ is defined as usual. Clearly, at the first glance it seems that
affinity φ̄ is superior to its truncated version φ defined above and that the
information truncation makes the ability to distinguish among objects weaker.
Although, to some extent, this is a legitimate concern, it should be noted that
the objects obtained with the use of φ̄ may be bigger than those obtained
with the use of φ. However, since φ̄ is not required to satisfy (8), it is possible

that a spel c is assigned to object P φ̄
siθ

while it truly belongs to another object.
(See Example 7.) Thus, under the circumstances, we believe that it is better to
leave c unassigned to any object, rather than to run into the risk of assigning it
to an incorrect object. (Nevertheless, in practical applications there is always
some noise in the image and the errors should be expected. Therefore, for noisy
images the benefit of removing some incorrect assignments by using truncated
ϕ’s may be of only small practical benefit.)

Another possible way for defining object feature based connectivity, µϕ̄, is to
put ϕ̄(c) = mini=1,...,n ϕ̄i(c) and define it as in (3) and (4). Although µϕ̄ is
equal to µφ̄ when n = 1, in general this is not the case. This is best seen
in Example 6 in Appendix, which fully discredits µϕ̄ as a valid definition
of an object feature based connectivity measure. Example 7 shows that the
motivational implication (8) fails for µφ̄.

In summary, the proper choice of the object feature based affinity is a delicate
mater. The natural requirement of the path connectedness property of delin-
eated objects dictates the use of a single affinity function. If it is also desirable
to completely ensure property (8) (to guarantee that the RFC object P φ

si{sj}
is contained in a set Oij = {c ∈ C : µφ̂i

(si, c) < µφ̂j
(sj, c)}), then the trun-

cated version of φ (or its gaussian modification) must be used. Nevertheless,
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in practical image segmentation tasks, perfection is an unachievable goal, due
to different imperfections at image acquisition. This means that, in practice,
the irregularity that the truncation is theoretically preventing, may appear
any way. Therefore, in some applications, the use of untruncated version φ̄
of the object feature based affinity may be beneficial, especially taking into
consideration that the examples as presented in Example 6 are not likely to
be found in real life images.

2.3 Homogeneity versus object feature based affinity

First note that the homogeneity based connectivity measure µψ and the ob-
ject feature based connectivity measure µφ, although related (as function f
is related to its derivative f ′), behave quite differently. For example, µψ, un-
like µφ, is not very sensitive to the slow background intensity variation often
found in medical images as an artifact. To see this, imagine that the image
consists of a long straight tube (say an artery) with the intensity of each spel
in a tube around 10, and the intensity of each spel outside the tube around
20. Now, assume that a slow (spatially) changing artifact is applied to the
image. This artifact is often multiplicative in nature. For simplicity, assume
that it is additive and that it changes along the length of the tube from 0 to
20. Then, the beginning of the tube will have intensity around 10, while its
end will have a value around 30. Now, the artifact we added changes little the
value of µψ, so the entire tube can still be easily obtained as Osθ or Ost if one
uses µψ as a connectivity measure. On the other hand, if s is a seed located at
the beginning of the tube and Osθ = {c ∈ C : µφf(s)

(s, c) ≤ θ} contains a spel
t from the end of the tube, then θ ≥ µφf(s)

(s, t) ≈ 20. Therefore, Osθ must
contain also many spels outside the tube, since for any spel c outside the tube
close to the beginning, we have f(c) ≈ 20, so µφf(s)

(s, c) ≈ 10 < θ.

On the other hand, if a scene C contains seeds s and t with |f(s)− f(t)| being
large, it still may happen that there is a long path p from s to t along which
the intensity changes very slowly. Then µψ(s, t) ≤ µψ(p) is very small, which
makes it nearly impossible to distinguish s and t by means of homogeneity
based connectivity measure alone. However, since µφ(s, t) is large, we can
easily distinguish s and t with the help of object feature based connectivity
measure.

As pointed out in [30], these two concepts — one related to homogeneity (a
derivative f ′(c) concept) and another related to the intensity f(c) — are fun-
damental to any segmentation methods that are based purely on information
derived from the given image. In FC in particular, as illustrated above, both
components are needed for effective segmentation. This is one of the reasons
why we dealt with the theory relating to the two components separately. This
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naturally leads us to the next section which will study how these components
may be utilized in the same FC segmentation algorithm.

3 How to combine different affinities?

In this section, we will discuss the issue of how to combine two or more different
affinities of the sort described in the previous section into one affinity. We will
also examine which parameters in the definitions of the combined affinity are
redundant, in the sense that their change leads to an equivalent affinity.

3.1 Affinity combining methods

Assume that for some k ≥ 2 we have affinity functions κi : C × C → 〈Li,�i〉
for i = 1, . . . , k. For example, we can have k = 2, κ1 = ψ, and κ2 = φ. The
most flexible way of combining all these affinities into a single affinity κ is to
put κ(c, d) = 〈κ1(c, d), . . . , κk(c, d)〉 and define an appropriate linear order �
on L = L1× · · · ×Lk. To understand this formalism better, we will start with
the following examples, which also constitute our practical approach to the
affinity combining problem.

Example 4 (Weighted Averages) Assume that all linear orderings Li are
equal to the same ordering 〈L0,�0〉 which is either 〈[0,∞],≥〉 or 〈[0, 1],≤〉
and fix a vector w = 〈w1, . . . , wk〉 of numbers from [0, 1] (weights) such that
w1 + · · · + wk = 1; we allow a weight wi to be equal to 0 (meaning “ignore
influence of κi”) assuming that 0 · ∞ = 0 and 00 = ∞0 = 1.

Additive Average: Let haddw (a) = w1a1+ · · ·+wkak for a = 〈a1, . . . , ak〉 ∈ (L0)
k.

If a ≤add
w b ⇔ haddw (a) �0 h

add
w (b), then κ : C×C → 〈L,≤add

w 〉 is equivalent to
κaw : C × C → 〈L0,�0〉 defined as κaw(c, d) = haddw (κ1(c, d), . . . , κk(c, d)). Note
that, for k = 2, the affinity κaw = w1κ1 + w2κ2 has been already considered
in [30].

Multiplicative Average: Let hmulw (a) = aw1
1 · · · awk

k for a = 〈a1, . . . , ak〉 ∈ (L0)
k.

If a ≤mul
w b ⇔ hmulw (a) �0 h

mul
w (b), then κ : C ×C → 〈L,≤mul

w 〉 is equivalent
to κmw : C×C → 〈L0,�0〉 defined as κmw(c, d) = hmulw (κ1(c, d), . . . , κk(c, d)). For
k = 2, the affinity κmw = κw1

1 κw2
2 has been already considered in [30].

Recall that the lexicographical order ≤lex on L = L1 × · · · × Lk is defined for
distinct a = 〈a1, . . . , ak〉,b = 〈b1, . . . , bk〉 ∈ L as

a <lex b ⇔ ai ≺i bi, where i = min{j : aj 6= bj}.
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Example 5 (Lexicographical Order) Affinity function κlex : C × C →
〈L,≤lex〉 establishes the strongest possible hierarchy between the coordinate
affinities κi: in establishing whether κlex(a, b) ≤lex κlex(c, d), the values κi(a, b)
and κi(c, d) are completely irrelevant, unless κj(a, b) = κj(c, d) for all j < i,
in which case κi(a, b) ≺i κi(c, d) implies κlex(a, b) <lex κlex(c, d).

Notice that κlex cannot be expressed in the form of h(κ1, . . . , κk) for any
continuous function on [0, 1]k or on [0,∞]k. In what follows, we will restrict
our attention to the situation when k = 2. In this case the lexicographical
order is defined as 〈a1, a2〉 <lex 〈b1, b2〉 provided either a1 ≺1 b1 or a1 = b1
and a2 ≺2 b2.

The lexicographical order approach is quite appealing in case when κ1 = ψ
and κ2 = φ as the decision whether µκ(c, s) ≤lex µκ(c, t) becomes hierarchical
in nature: if µψ(c, s) < µψ(c, t), then µκ(c, s) ≤lex µκ(c, t) independent of the
values of µφ(c, s) and µφ(c, t); only when the homogeneity based connectivity
measure cannot decide the matter, that is, when µψ(c, s) = µψ(c, t), we decide
on the direction of ≤lex between µκ(c, s) and µκ(c, t) based on the direction of
�2 between µφ(c, s) and µφ(c, t). Thus, we treat the homogeneity based con-
nectivity measure as dominant over object feature based connectivity measure.
(Note that this will become reversed if κ1 = φ and κ2 = ψ.) However, there
is more to it. If µψ(c, s) = µψ(c, t), then we decide about µκ(c, s) ≤lex µκ(c, t)
only along the paths p ∈ Pcs and q ∈ Pct with µψ(p) = µψ(q) = µψ(c, s).
Only to these paths we apply µφ measure. Thus, we use the object based fea-
ture measure in this schema in a considerably a more sophisticated way than
what is suggested by the threshold-like interpretation described in Section 2.
It should be also clear that, if we agree that we should give priority to homo-
geneity based connectivity measure in the RFC approach, this is precisely the
way we should proceed.

Next, consider the coordinate order preserving property of the combined affin-
ity κ(c, d) = 〈κ0(c, d), κ1(c, d)〉:

(C) for every i = 0, 1 and c, d, c′, d′, if κi(c, d) = κi(c
′, d′), then κ(c, d) ≺ κ(c′, d′)

⇔ κ1−i(c, d) ≺1−i κ1−i(c
′, d′).

Property (C) says that if one of the coordinate affinities does not distinguish
between two pairs of spels, then the combined affinity decides on this pair
according to the other coordinate affinity. This seems to be a very natural and
desirable property. It is easy to see that, by design, the κlex affinity has this
property. However, in general, (C) is not satisfied for the multiplicative average
κmw: if κi(c, d) = κi(c

′, d′) = 0, then κmw(c, d) = κmw(c′, d′) = 0 independently
of the value of κ1−i on these pairs. A similar problem arises for κi(c, d) =
κi(c

′, d′) = ∞, although for κi(c, d) = κi(c
′, d′) ∈ (0,∞) the equivalence from

(C) is satisfied. This creates a problem especially with the truncated version
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of the object-feature based affinity, since, in this case, affinity is equal to ∞ for
many adjacent pairs of spels. Condition (C) also fails for κaddw when κaddw (c, d) =
κaddw (c′, d′) = ∞, although for κaddw (c, d) = κaddw (c′, d′) < ∞ the equivalence is
satisfied. In particular, (C) holds for κaddw formed with the coordinate affinities
with range 〈[0, 1],≤〉.

Notice that the property (C) fails only if we allow values 0 or ∞ in the range
of κ’s. Therefore, if we like to insure (C), we can always replace κi’s with their
equivalent forms with the range in (0,∞) (e.g. by replacing ∞ with some large
but finite number), which will insure (C) in the above described combining
methods.

3.2 Counting essential parameters

Next, let us turn our attention to the determination of the number of param-
eters essential in defining the affinities presented in the previous section. We
will consider here only the parameters explicitly mentioned there, since any
implicit parameters (like the parameters for getting intensity function from the
actual acquisition data) could not be handled by the methods we will employ.
This exercise is useful in tuning the FC segmentation methods to different
applications. It is also useful in comparing these methods with others. Recall
that for a σ ∈ (0,∞) we defined gσ : [0,∞] → [0, 1] by gσ(x) = e−x

2/σ2
.

Homogeneity based affinity, ψ, is defined as ψ(c, d) = |f(c) − f(d)| for
||c − d|| ≤ 1 and ψ(c, d) = ∞ otherwise. As such, there are no parameters
in this definition. In its standard form, gσ ◦ ψ, the parameter σ is redundant,
since, by Proposition 1, gσ ◦ψ is equivalent to ψ. This beautiful characteristic
says that FC partitioning of a scene utilizing homogeneity based affinity is an
inherent property of the scene and is independent of any parameters, beside
a threshold in case of AFC.

Object feature based affinity for one object, φ, is defined by a formula
φ(c, d) = max{|f(c) − m1|, |f(d) − m1|}/σ1 for ||c − d|| = 1, φ(c, d) = 0 for
c = d, and φ(c, d) = ∞ otherwise. From the two parameters, m1 and σ1,
present in this definition, only m1 is essential. Parameter σ1 is redundant,
since function σ1 ·φ is independent of its value and σ1 ·φ is equivalent to φ, as
σ1 · φ = h ◦ φ for an increasing function h(x) = σ1x. As before, the standard
form gσ ◦ φ of φ is equivalent to it, so the only essential parameter in the
definition of gσ ◦ φ is the number m1.

Object feature based affinity for multiple objects. Suppose that the
affinity is defined for n > 1 different objects for which m̄ = 〈m1, . . . ,mn〉 and
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σ̄ = 〈σ1, . . . , σn〉 represent their average intensities and standard deviations,
respectively. Let φm̄,σ̄ represent the object feature affinity in its main truncated
form and let φ̄m̄,σ̄ stand for its untruncated version. (See Section 2.2.2.) Then
σ1 · φm̄,σ̄ = φm̄,δ̄ and σ1 · φ̄m̄,σ̄ = φ̄m̄,δ̄, where δ̄ = 〈1, δ2, . . . , δn〉 and δi = σi/σ1.
Since σ1 · φm̄,σ̄ is equivalent to φm̄,σ̄, affinity φm̄,σ̄ depends essentially only on
2n − 1 parameters m1, . . . ,mn, δ2, . . . , δn. The same is true for its standard
form gσ ◦φm̄,σ̄ as well as for their untruncated counterparts φ̄m̄,σ̄ and gσ ◦ φ̄m̄,σ̄.

In what follows, we will assume that w, σ, τ ∈ (0, 1) and that φ is equal to
either φm̄,δ̄ or to φ̄m̄,δ̄, so it has 2n− 1 essential parameters. Then we have the
following methods of combining, denoted m1–m5, for homogeneity and object
feature based affinities.

m1 The additive average κ = (1 − w)ψ + wφ of ψ and φ has 2n parameters.
It is equivalent to ψ + xφ, where x = w

1−w ∈ (0,∞). Note that if φ is
replaced by an equivalent affinity σ1φ, then the resulting average affinity
(1 − w)ψ + wσ1φ is also equivalent to ψ + xφ with x ∈ (0,∞). Note also
that κ does not satisfy property (C), unless we insure that ψ and φ admit
no ∞ value.

m2 The additive average κ = (1 − w)gσ ◦ ψ + wgτ ◦ φ of gσ ◦ ψ and gτ ◦ φ
has 2n + 2 essential parameters. Since κ = eln(1−w)−ψ2/σ2

+ elnw−φ
2/τ2

, this
operation strangely mixes additive and multiplicative modifications of ψ
and φ. The additional two parameters, σ and τ , are of importance in this
mix. This affinity does satisfy property (C).

m3 The multiplicative average κ = ψ(1−w)φw of ψ and φ has 2n parameters and
it is equivalent to ψφx, where x = w

1−w ∈ (0,∞), as κ = (ψφx)1−w. If φ is

replaced by an equivalent affinity σ1φ, then the resulting average (ψσx1φ
x)1−w

is also equivalent to ψφx with x ∈ (0,∞), since function h(t) = (σx1 t)
1−w

is increasing as a composition of two increasing functions. This κ does not
satisfy property (C), unless we insure that ψ and φ admit no 0 and ∞
values.

m4 The multiplicative average κ = (gσ ◦ψ)(1−w)(gτ ◦φ)w of gσ ◦ψ and gτ ◦φ has
2n + 2 parameters, but only 2n of them are essential. This is so since κ =(
e−ψ

2/τ2
)1−w (

e−φ
2/σ2

)w
=

(
e−ψ

2−xφ2
)(1−w)/τ2

, where x = τ2

σ2
w

1−w ∈ (0,∞),

is equivalent to ψ2 + xφ2. The same is true if φ is replaced by σ1φ. This κ
does not satisfy property (C), unless we insure that ψ and φ admit no ∞
value.

m5 There are only two essential possibilities for lexicographical order of ψ and
φ: 〈ψ, φ〉 and 〈φ, ψ〉, even if we allow replacement of each of the coordinate
affinities by any of their equivalent forms, including but not restricted to
gσ ◦ ψ and σ1φ, gτ ◦ φ, or gτ ◦ (σ1φ). This follows from Proposition 1, since
for any pair 〈ψ∗, φ∗〉 such that ψ∗ is equivalent to ψ and φ∗ is equivalent
to φ, there are strictly monotone functions g and h such that ψ∗ = g ◦ ψ
and φ∗ = h ◦ φ, and then 〈ψ∗, φ∗〉 = 〈g, h〉 ◦ 〈ψ, φ〉, so 〈g, h〉 establishes the
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equivalence of 〈ψ, φ〉 and 〈ψ∗, φ∗〉.

4 Affinity functions used in the literature

In this section, we present a short review of the literature pertinent to the
above discussion. In particular, we will emphasize different affinity functions
used in the published papers as well as any generalizations of the FC algo-
rithms.

Papers coming from our MIPG group (e.g. [34,26,30]) utilized the affinities
described in (m2) and (m4), although the object feature based affinity com-
ponent used in [30] was defined in format discussed in Section 2.2.2, which
is slightly different from our recommended format. In additional, the affinity
components used in 2.2.2 were scale-based, which is essentially (but not pre-
cisely) equal to a non-scale-based affinity applied to an appropriately filtered
version of the intensity function.

Paper [40] interestingly utilizes the atlas based prior knowledge on the image
to influence the FC image segmentation. To achieve this, the object feature
and homogeneity feature affinity components are modified with the probabil-
ity distribution Pk and the difference probability distribution DPk functors,
respectively. The resulting components were combined into final affinity via
the (m3) method with weight w = 1/2. Prior knowledge is also incorporated
to FC segmentations as presented in [16].

In [22] the authors use the AFC algorithm with the following modification of
κ defined according to the (m2) schema. First, for every principal direction ~r
of the scene the authors choose some modification coefficient m(~r) and they
modify the standard homogeneity based affinity ψ(c, d) according to the co-

efficient m(~cd). Although the precise modification is not specified in [22], it

seems that they use ψ∗(c, d) = m(~cd) ·ψ(c, d) as a modified homogeneity based
affinity. Note that ψ∗ is not equivalent to ψ, unless all coefficients m(~r) are
equal. This may be a good approach for images with constant slow varying
intensity change in one direction. Further on, they apply the weighted average
to gσ1 ◦ ψ∗ and gσ2 ◦ ϕ with weights w1 and w2 varying, depending on the
intensity values at the spels c and d. Once again, the obtained modification is,
in general, significant. However, the justification for the specific formula for
wi’s is not provided in the paper.

In paper [1], the fuzzy connectedness approach, used with the affinity defined
via (m2) format, is combined with the artificial neural network approach.

In paper [15] (see page 465), the authors employ different affinity for each

21



object to be delineated—a modified version of the single object feature based
affinity, in its Gaussian modified form. These affinities are not combined into a
single affinity and the resulting segmentations do have the path connectedness
property discussed in Section 2.2. If used with the same affinity for all objects,
the result of the algorithm from [15] is identical with that from the IRFC
algorithm [28,29,10] (after reassignment of not-uniquely-assigned spels to non-
assigned status). The same approach and affinity functions (see page 67) are
used in [6], see page 67. (Note, that the comparison with RFC and IRFC
presented in [6, section 6] is incorrect, since the paper uses incorrect definition
of RFC objects: the inequality in formula (17) should have been strict!) Paper
[5] uses affinity defined by formula (m2) with w = 1/2.

Paper [31] uses the following affinities: (1) In the background, a shifted version
of homogeneity based affinity. The shift is redundant, according to our theory.
(2) In the foreground, a directional version of the object-feature-based affinity,
which is only a small adjustment of the standard affinity as we use. The authors
write about affinities: “The exact values turned out to be not very critical—the
segmentation result is nearly identical over a relatively wide range of µ0 and
σ,” which, in case of σ is clear, as it is a redundant parameter according to
our results. Interestingly, the paper does not explain as to how to decide the
areas in which to use foreground affinity and background affinity.

Paper [4] proves that, in a general setting, the watershed and FC segmentation
algorithms are equivalent. They do not restrict affinity functions to any specific
format. A discussion of FC methods, used with affinity defined via (m2), and
its practical comparison with watershed method is also present in [12].

Other applications of fuzzy connectedness can be found in: [14] (no specifi-
cation of affinity), [51] (a combination of ψ and φ is used, the details are
missing), [39] (used with standard (m2) defined affinity), [37,36,19] (use mul-
tiple affinities for each segmentation), [38] (uses (m4)-defined affinity), [18,2]
(the homogeneity based affinity component is shifted by its mean value), [3]
(uses vectorial affinity).

5 Concluding remarks

Theorem 2 and Proposition 1 imply that, from the perspective of FC method-
ology, the only essential attribute of an affinity function is its order. In partic-
ular, many transformations (like gaussian) of the natural affinity definitions
(like derivative-driven homogeneity based affinity) are of esthetic value only
and do not influence the FC segmentation outcomes. Nevertheless, such trans-
formations may play a role in combining different affinities, as can be seen in
methods m1 and m2, since only one of them has the property (C).
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The investigation presented in Section 3 shows which parameters in the def-
initions of homogeneity and object-feature based affinities, as well as their
combinations, are of importance. In particular, we uncovered that many of
the parameters in these definitions are of no consequence. Thus, for the tasks
of application-driven optimization of the parameters, the number of parame-
ters to be optimized is reduced. This aspect of setting values of parameters
for segmentation methods is ridden with confusion. There are no scientific and
systematic solutions for this problem. We indicated a solution in [35] which
consisted of simultaneously minimizing false positive and false negative re-
gions as a function of the parameter values. It makes sense, therefore, to first
identify what the essential parameters of a segmentation method are, since
such an attempt does not seem to have been made in the literature. This es-
pecially is relevant if we choose optimal parameter settings as mentioned by
an optimization process.

In Section 2, we discussed two commonly used affinities, homogeneity and
object-feature based, and interpreted them, respectively, as approximations
of the directional derivatives and the distance from the object’s average in-
tensities. We also pointed out some theoretical deficiencies with the standard
format of the object-feature based affinity in the case of multiple objects and
proposed a truncated version of such affinity, which avoids theoretical difficul-
ties, but loses some information along the way.

In Section 3, combining the results from the previous sections, we discussed
five distinct ways of constructing full affinity functions (m1-m5). Our analysis
of FC literature in Section 4 shows that, while forms denoted m1-m4 or their
slight variations have been used in segmentation, form m5 is a novel strategy
which remains to be evaluated.

We did not undertake any empirical evaluation studies in this paper. A the-
oretical study preceding such an evaluation becomes essential to understand
what affinity forms are distinct, what are redundant, and what parameters are
essential/redundant. This paper constitutes a first such step. Analysis simi-
lar to the one conducted in this paper for FC can be carried out for other
frameworks, such as level sets [48], watersheds [47], and graph cuts [49].

Other possible ways of defining affinities. Note that in the definition
of the “object feature based affinity,” described in Section 2, the only prior
knowledge of the object we used was the image intensity distribution of the
object. More elaborate object feature affinity can use some other prior knowl-
edge on the object(s) to be delineated. For example, the general shape of the
object(s) can constitute such prior knowledge. If shape for the family of the
object under consideration is modeled in a statistical manner [11], then we can
consider a model based component of affinity β(c, d) between c and d to be
higher only if c and d are inside or close to the boundary of the mean shape,
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and smaller otherwise. A simple strategy based on the distance from mean
shape boundary has been employed in [20] in an attempt to bring in prior
shape information into FC. This discussion of how to properly define β and
how to combine this with ψ and φ, however, requires fundamental investigation
along the lines of this paper.

Also, as mentioned in Section 2.1, in the definition of the homogeneity based
affinity it makes sense to use the notion of the gradient as a base for its
definition, instead of the notion of the directional derivative. The discussion
of the gradient induced homogeneity based affinity is a part of our forthcoming
paper.

6 Appendix

The following example fully discredits µϕ̄ as a valid definition of an object fea-
ture based connectivity measure, while Example 7 shows that the motivational
implication (8) fails for µφ̄.

Example 6 Let C be a binary scene with two intensities m2 > m1 = 0 and
σ1 = σ2 = 1. We will consider C as a two object scene: for i = 1, 2 object Oi

consists of all spels with the intensity mi. Then for every c, d ∈ C we have
µϕ̄(c, d) = 0, while µφ̄(c, d) = m2 > 0 provided f(c) 6= f(d).

Example 7 Let p = 〈s1, a, c, b, s2〉 be a sequence of spels in scene C in which
only consecutive spels are adjacent and assume that 〈0, 8, 14, 20± 13, 20〉 rep-
resents their intensities, respectively. We also assume that any other spel in
C adjacent to one listed in p has the intensity at least 80. Consider s1 and
s2 as the seeds of objects O1 and O2 with averages m1 = f(s1) = 0 and
m2 = f(s2) = 20 and standard deviations σ1 = σ2 = 1, respectively. Then
µφ̄(s1, c) = 12 < 13 = µφ̄(s2, c). However, µφ̂1

(s1, c) = 14 > 13 = µφ̂2
(s2, c).

Proof. For adjacent s and t we have

φ̄(s, t) = min{max{|f(s)|, |f(t)|},max{|20−f(s)|, |20−f(t)|}}. So, φ̄(s1, a) =
min{8, 20} = 8, φ̄(a, c) = min{14, 12} = 12, and µφ̄(s1, c) = µφ̄(〈s1, a, c〉) =
max{8, 12} = 12. Similarly φ̄(s2, b) = min{max{20, 20±13},max{0, |±13|}} =
13 and φ̄(b, c) = min{max{20 ± 13, 14},max{| ± 13|, 6}} = 13, which leads
to µφ̄(s2, c) = µφ̄(〈s2, b, c〉) = max{13, 13} = 13. On the other hand, by
property (6), we have µφ̂1

(s1, c) = µφ̂1
(〈s1, a, c〉) = max{0, 8, 14} = 14, while

µφ̂2
(s2, c) = µφ̂2

(〈s2, b, c〉) = max{0, 13, 6} = 13.

To understand this example better, let x2
1 be as in (9); that is, such that

|x2
1−m1|
σ1

=
|x2

1−m2|
σ2

. So, in the setting of Example 7, we have δ1 = δ2 = x2
1 = 10.
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The key characteristics of this example, that allows us to negate property (8),
is that the intensities present in the path q = 〈s2, b, c〉 (i.e., {f(s2), f(b), f(c)})
are not in I2 = (m2 − ε2,m2 + ε2), despite the fact that f(s2), f(c) ∈ I2.
Indeed, if the equation µφ̂2

(s2, c) = µφ̂2
(q) was satisfied with the intensities of

all spels in q belonging to J2, then (by Lemmas 8 and 9) we would have had
µφ(s2, c) = µφ̂2

(s2, c) < µφ(s1, c) and µφ(s2, c) = µφ̂2
(s2, c) < µφ̂1

(s1, c), which
is in agreement with (8).

In case when f(b) = 20−13 = 7, all the intensities under question are between
m1 and m2. Moreover, f(b) is just barely below the threshold m2−δ2. (A slight
modification of the example can make it arbitrarily close to m2−δ2.) The case
when f(b) = 20+13 = 33 shows that it is not enough to stay within the interval

I = (m2−δ2,∞), for which we have |x−m1|
σ1

> |x−m2|
σ2

for every x ∈ I. Thus, the
symmetry of Ii’s around mi’s is essential in proving (8). In other words, the
above discussion shows that, if φ is defined via the truncation technique, then
the intervals Ii are the largest with which we can still prove property (8).

For the rest of the discussion, we will assume that f(si) ∈ Ii for every i. What
is the format of the objects generated with µφ under such assumption? First
notice that in the case of the absolute connectedness definition we get

P φ
siθ

=

 {c ∈ C : θ ≥ µφi
(si, c)} for θ < εi

σi
,{

c ∈ C : εi

σi
> µφi

(si, c)
}

for εi

σi
≤ θ.

In other words, P φ
siθ

can be expressed in terms of the objects defined via AFC

with respect to the affinity φi: P
φi
siθ

= {c ∈ C : θ ≥ µφi
(si, c)}. It is also

easy to see that the i-th object defined via RFC is the largest among the
above objects:

⋂
j 6=i P

φi

si{sj} =
{
c ∈ C : εi

σi
> µφi

(si, c)
}

=
⋃
θ<

εi
σi

P φi
siθ

. The same

remains true for the IRFC case.

Since the above reduces RFC and IRFC objects defined with respect to φ
to the unions of absolute connectedness objects P φi

siθ
with respect to φi, one

might wonder whether there is any sense at all in defining object feature based
affinity φ. However, the full definition of φ is necessary in order to amalgamate
φ with any other affinity, as discussed in Section 3.

The remainder of this paper is devoted to the proof of Theorem 3.

Lemma 8 Let p = 〈c1, . . . , cl〉 ∈ P̄cs and i ∈ {1, . . . , n}. If f(ck) ∈ Ii for
every k ∈ {1, . . . , l}, then µφ(p) = µφ̂i

(p) < εi

σi
.

Proof. Notice that for every distinct i, j ∈ {1, . . . , n} and for every index
k ∈ {1, . . . , l−1} we have φj(ck, ck+1) = max{ϕj(ck), ϕj(ck+1)} ≥ ϕj(ck) = ∞,
since f(ck) /∈ Ij. So, φ(ck, ck+1) = minj=1,...,n φj(ck, ck+1) = φi(ck, ck+1) =
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max{ϕi(ck), ϕi(ck+1)} = max{ϕ̄i(ck), ϕ̄i(ck+1)} = φ̂i(ck, ck+1) and thus µφ(p) =

maxk=1,...,l−1 φ(ck, ck+1) = maxk=1,...,l−1 φ̂i(ck, ck+1) = µφ̂i
(p). In addition, by

(6), we have µφ̂i
(p) = maxk=1,...,l ϕ̄i(ck). So, there is a k ∈ {1, . . . , l} for which

µφ̂i
(p) = ϕ̄i(ck) = |f(ck)−mi|

σi
< εi

σi
, since f(ck) ∈ Ii = (mi − εi,mi + εi).

Lemma 9 Let p = 〈c1, . . . , cl〉 ∈ P̄cs be such that µφ(p) <∞. Then, for every
i ∈ {1, . . . , n}, the following conditions are equivalent.

(a) f(c) ∈ Ii.
(b) f(ck) ∈ Ii for every k ∈ {1, . . . , l}.
(c) µφ(p) = µφ̂i

(p) < εi

σi
< ϕ̄j(c) for every j 6= i.

(d) µφ(p) = µφ̂i
(p).

Moreover, there is an i ∈ {1, . . . , n} for which each of these conditions holds.

Proof. Note that α(ck, ck+1) = 1 for every k = 1, . . . , l− 1, since p ∈ P̄cs. To
see that µφ(p) <∞ implies that f(c) ∈ Ii for some i, note that ∞ > µφ(p) =
maxk=1,...,l−1 φ(ck, ck+1) ≥ φ(c1, c2) = mini=1,...,n φi(c1, c2). So, there exists an

i ∈ {1, . . . , n} with ∞ > φi(c1, c2) = max{ϕi(c1),ϕi(c2)}
α(c1,c2)

. Thus, ∞ > ϕi(c1) and

f(c) = f(c1) ∈ Ii.

“(a)=⇒(b)” Let Z = {k ∈ {1, . . . , l} : f(ck) ∈ Ii}. Then (a) says that 1 ∈ Z.
We need to prove that Z = {1, . . . , l}. By way of contradiction, assume that
this is not the case and let m ∈ {1, . . . , l} be the smallest such that m /∈ Z.
Then m > 1, as 1 ∈ Z, so k = m − 1 ∈ Z. In particular, f(ck) ∈ Ii, so, for
j ∈ {1, . . . , n},

ϕj(ck) <∞ ⇔ j = i.

Since ∞ > µφ(p) ≥ φ(ck, ck+1) = minj=1,...,n φj(ck, ck+1), there exists a j
with ∞ > φ(ck, ck+1) = φj(ck, ck+1) = max{ϕj(ck), ϕj(ck+1)}/α(ck, ck+1). In
particular, ∞ > ϕj(ck) and ∞ > ϕj(ck+1). Hence, from the first of these
inequalities, we get j = i. Therefore, the second inequality becomes ∞ >
ϕi(ck+1) = ϕi(cm), implying that m ∈ Z, contrary to our assumption. Thus,
Z = {1, . . . , l} and (b) holds.

“(b)=⇒(c)” By Lemma 8, we have µφ(p) = µφ̂i
(p) < εi

σi
. Also, since f(c) ∈ Ii =

(mi−εi,mi+εi) ⊆ (mi−δji ,mi+δ
j
i ), condition (9) implies that εi

σi
≤ δj

i

σi
< ϕ̄j(c).

Implication “(c)=⇒(d)” is obvious.

“(d)=⇒(a)” Condition (d) implies that µφ(p) < ∞. So, by the first remark,
f(c) ∈ Ij for some j. If j = i, we are done. So, by way of contradiction,
assume that j 6= i. Then, using the implication “(a)=⇒(c), ” we have µφ(p) =

µφ̂j
(p) <

|xk
j−mj |
σj

< ϕ̄k(c) for every k 6= j. In particular, for k = i we get

µφ(p) < ϕ̄i(c) ≤ maxk=1,...,l ϕ̄i(ck) = µφ̂i
(p) = µφ(p), a contradiction.
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Lemma 10 Let p, q ∈ P̄cs and i ∈ {1, . . . , n}. If µφ̂i
(q) ≤ µφ̂i

(p) = µφ(p),
then µφ(q) = µφ̂i

(q). In particular, if µφ̂i
(p) = µφ(p) = µφ(s, c), then also

µφ̂i
(s, c) = µφ̂i

(p) = µφ(s, c).

Proof. Let us choose two paths, p = 〈c1, . . . , cl〉 and q = 〈d1, . . . , dm〉. Since
we have µφ(p) = µφ̂i

(p) < ∞ (remember that φ̂i is a non-truncated version
of the object feature base affinity for the i-th object) we can apply Lemma 9.
Since Lemma 9(d) holds, so must also Lemma 9(c). Hence, by (6), for every in-

dex k ∈ {1, . . . ,m} we have |f(dk)−mi|
σi

= ϕ̄i(dk) ≤ maxj=1,...,l ϕ̄i(dj) = µφ̂i
(q) ≤

µφ(p) = µφ̂i
(p) < εi

σi
. Thus, f(dk) ∈ Ii for every k ∈ {1, . . . ,m}. So, again by

Lemma 9, we have µφ(q) = µφ̂i
(q).

The additional part is obvious when s = c, since then µφ̂i
(p) = µφ(s, c) = 0 =

µφ̂i
(s, c). So, assume that s 6= c and that µφ̂i

(p) = µφ(p) = µφ(s, c). Then,

by (7), there exists a path q ∈ P̄cs with µφ̂i
(s, c) = µφ̂i

(q). Then µφ̂i
(q) =

µφ̂i
(s, c) ≤ µφ̂i

(p) = µφ(p). So, by the first part, µφ(q) = µφ̂i
(q) = µφ̂i

(s, c) ≤
µφ̂i

(p) = µφ(s, c) ≤ µφ(q), proving that µφ̂i
(s, c) = µφ̂i

(p).

To see the additional part, assume that µφ̂i
(p) = µφ(p) = µφ(s, c). Take q ∈ P̄cs

with µφ̂i
(s, c) = µφ̂i

(q). Then µφ̂i
(q) = µφ̂i

(s, c) ≤ µφ̂i
(p) = µφ(p). So, by the

first part, µφ(q) = µφ̂i
(q) = µφ̂i

(s, c) ≤ µφ̂i
(p) = µφ(s, c) ≤ µφ(q), proving that

µφ̂i
(s, c) = µφ̂i

(p).

Proof of Theorem 3. Assume that c, si, sj ∈ C are as in the theorem, that
is, such that f(si) /∈ ⋃

k 6=i Ik and µφ(si, c) < µφ(sj, c). Fix a k ∈ {1, . . . , n}.
We need to show that µφ̂i

(si, c) < µφ̂k
(sj, c).

Note that sj 6= c, since otherwise µφ(si, c) < µφ(sj, c) = 0, which is impossible.
Thus, by (7), there exists a q = 〈d1, . . . , dm〉 ∈ P̄csj

such that µφ̂k
(sj, c) =

µφ̂k
(q). Also, if si = c then, by the definition (10) of µφ, we have µφ̂i

(si, c) =
0 = µφ(si, c) < µφ(sj, c) ≤ µφ̂k

(sj, c). Thus, we can assume that si 6= c. In
particular, using the argument utilized in the proof of (7), we can show that
there exists a p = 〈c1, . . . , cl〉 ∈ P̄csi

such that µφ(p) = µφ(c, si).

We have µφ(p) = µφ(si, c) < µφ(sj, c), so µφ(p) <∞. Thus, by Lemma 9, there
exists an i′ for which f(si) = f(cl) ∈ Ii′ . Therefore i′ = i, since f(si) /∈

⋃
k 6=i Ik.

So, by Lemma 9(c), µφ(si, c) = µφ(p) = µφ̂i
(p) < εi

δi
< ϕ̄j(c) for every j 6= i.

Also, by Lemma 10, we have µφ̂i
(si, c) = µφ(si, c).

Now, if k 6= i, then, by (9) and the above, µφ̂i
(si, c) ≤ µφ̂i

(p) < ϕ̄k(c) ≤
maxr=1,...,m ϕ̄k(dr) = µφ̂k

(q) = µφ̂k
(sj, c). So, assume that k = i. If there is

an r ∈ {1, . . . ,m} for which f(dr) /∈ Ii, then, by Lemma 9(c), µφ̂i
(si, c) ≤

µφ̂i
(p) < εi

σi
< |f(dr)−mi|

σi
= ϕ̄i(dr), so we have µφ̂i

(si, c) < ϕ̄i(dr) = ϕ̄k(dr) ≤
maxr=1,...,m ϕ̄k(dr) = µφ̂k

(q) = µφ̂k
(sj, c). So, assume that f(dr) ∈ Ii for every

r ∈ {1, . . . ,m}. Then, by Lemma 8, µφ̂i
(q) = µφ(q). So, µφ̂i

(si, c) = µφ(si, c) <
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µφ(sj, c) ≤ µφ(q) = µφ̂i
(q) = µφ̂k

(q) = µφ̂k
(sj, c) finishing the proof.

References

[1] Admasu, F., Al-Zubi, S., Toennies, K., Bodammer, N., Hinrichs, H.,
“Segmentation of multiple sclerosis lesions from MR brain images using the
principles of fuzzy-connectedness and artificial neuron networks” International
Conference on Image Processing, 2003. ICIP 2003. Proceedings. 2003; Volume:
2, On page(s): II- 1081-4 vol.3.

[2] Tanja Alderliesten, Wiro J. Niessen, Koen L. Vincken, J. B. Antoine Maintz,
Floor Jansen, Onno van Nieuwenhuizen, and Max A. Viergever, “Objective
and reproducible segmentation and quantification of tuberous sclerosis lesions
in FLAIR brain MR images, ” Proc. SPIE Int. Soc. Opt. Eng. 4322, 1509 (2001)

[3] Elsa D. Angelini-Casadevall, Celina Imielinska, Yinpeng Jin, and Andrew
F. Laine, “Improving statistics for hybrid segmentation of high-resolution
multichannel images,” Proc. SPIE Int. Soc. Opt. Eng. 4684, 401 (2002).

[4] R. Audigier and R.A. Lotufo, “Duality between the watershed by image
foresting transform and the fuzzy connectedness segmentation approaches,” in
Proceedings of the 19th Brazilian Symposium on Computer Graphics and Image
Processing (SIBGRAPI06), Manaus (AM), Brazil, 2006.

[5] B.M. Carvalho, C.J. Gau, G.T. Herman, and Y.T. Kong, Algorithms for fuzzy
segmentation. Pattern Analysis and Applications 2 (1999), 73–81.

[6] B.M. Carvalho, G.T. Herman, and Y.T. Kong, Simultaneous fuzzy segmentation
of multiple objects. Discrete Applied Mathematics 151 (2005), 65–77.

[7] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc.
Stud. Texts 39, Cambridge Univ. Press, Cambridge, 1997.

[8] K.C. Ciesielski and J.K. Udupa, Affinity functions in fuzzy connectedness based
image segmentation I: Equivalence of affinities, submitted.

[9] K.C. Ciesielski and J.K. Udupa, A general theory of image segmentation:
level set segmentation in the fuzzy connectedness framework. Technical
Report MIPG-335, Medical Image Processing Group, Department of Radiology,
University of Pennsylvania, Philadelphia, 2006.

[10] K.C. Ciesielski, J.K. Udupa, P.K. Saha, and Y. Zhuge, Iterative Relative Fuzzy
Connectedness for Multiple Objects, Allowing Multiple Seeds. Computer Vision
and Image Understanding 107(3) (2007), 160–182.

[11] T. Cootes, C. Taylor, and D. Cooper, Active shape models-their training and
application. Computer Vision and Image Understanding 61 (1995), 38–59.

28



[12] J. Cutrona and N. Bonnet, Two methods for semi-automatic image
segmentation based on fuzzy connectedness and watersheds, Visualization,
Imaging and Image Processing (VIIP 2001), pp 467-471. Marbella, Spain, 2001.

[13] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, (2nd Edition),
John Wiley and Sons, 2001.

[14] X. Fan, J. Yang, and L. Cheng, A novel segmentation method for MR brain
images based on fuzzy connectedness and FCM. Lecture Notes in Computer
Science 3613 (2005), 505–513.

[15] G.T. Herman and B.M. Carvalho, Multiseeded segmentation using fuzzy
connectedness. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23 (2001), 460–474.

[16] Mark A. Horsfield, Rohit Bakshi, Marco Rovaris, Mara A. Rocca, Venkata S.
R. Dandamudi, Paola Valsasina, Elda Judica, Fulvio Lucchini, Charles R. G.
Guttmann, Maria Pia Sormani, and Massimo Filippi, “Incorporating Domain
Knowledge Into the Fuzzy Connectedness Framework: Application to Brain
Lesion Volume Estimation in Multiple Sclerosis,” IEEE Trans Medical Imaging
26(12) (2007), 1670–1680.

[17] C. Imielinska, D. Metaxas, J.K. Udupa, Y. Jin, and T. Chen, Hybrid
segmentation of anatomical data. In: Proceedings of MICCAI (2001), 1048–
1057.

[18] Jens N. Kaftan, Atilla P. Kiraly, Annemarie Bakai, Marco Das, Carol L. Novak,
and Til Aach, “Fuzzy pulmonary vessel segmentation in contrast enhanced CT
data.” Proc. SPIE Int. Soc. Opt. Eng. 6914, 69141Q (2008).

[19] Despina Kontos, Qiang Wang, Vasileios Megalooikonomou, Alan H. Maurer,
Linda C. Knight, Steve Kantor, Robert S. Fisher, Hrair P. Simonian, and Henry
P. Parkman, “A 3D image analysis tool for SPECT imaging,” Proc. SPIE Int.
Soc. Opt. Eng. 5744, 839 (2005).

[20] Seong-Jee Lim, Hybrid Method of Fuzzy Connectedness and Active Shape Model
Algorithms for Three-dimensional Medical Image Segmentation. PhD Thesis,
Kwangju Institute of Science and Technology (South Korea), Department of
Information & Communications, March 30, 2006.

[21] L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics and the
emergence paradigm. Discrete Applied Math. 147 (2005), 301–324.

[22] A. Pednekar, I.A. Kakadiaris, Image segmentation based on fuzzy connectedness
using dynamic weights. IEEE Trans Image Process. 15(6) (2006), 1555–1562.

[23] A. Rosenfeld, Fuzzy digital topology. Information and Control 40 (1979), 76–87.

[24] A. Rosenfeld, On connectivity properties of grayscale pictures. Pattern
Recognition 16 (1983), 47–50.

[25] A. Rosenfeld, The fuzzy geometry of image subsets. Pattern Recognition Letters
2 (1984), 311–317.

29



[26] P.K. Saha and J.K. Udupa, Relative fuzzy connectedness among multiple
objects: Theory, algorithms, and applications in image segmentation. Computer
Vision and Image Understanding 82(1) (2001), 42–56.

[27] P.K. Saha and J.K. Udupa, Fuzzy connected Object Delineation: Axiomatic
Path Strength Definition and the Case of Multiple Seeds. Computer Vision and
Image Understanding 83 (2001), 275–295.

[28] P.K. Saha and J.K. Udupa, Iterative relative fuzzy connectedness and object
definition: theory, algorithms, and applications in image segmentation. In
Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image
Analysis, Hilton Head, South Carolina 2002, 28–35.

[29] J.K. Udupa, P.K. Saha, and R.A. Lotufo, Relative fuzzy connectedness and
object definition: Theory, algorithms, and applications in image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (2002),
1485–1500.

[30] P.K. Saha, J.K. Udupa, and D. Odhner, Scale-Based Fuzzy Connectedness
Image Segmentation: Theory, Algorithms, and Validation. Computer Vision
and Image Understanding 77 (2000), 145–174.

[31] Juerg Tschirren, Eric A. Hoffman, Geoffrey McLennan, and Milan Sonka,
“Intrathoracic Airway Trees: Segmentation and Airway Morphology Analysis
From Low-Dose CT Scans,” IEEE Trans Med Imaging. 2005 December; 24(12):
1529-1539.

[32] J.K. Udupa and P.K. Saha, Fuzzy connectedness in image segmentation.
Proceedings of the IEEE, 91(10) (2003), 1649–1669.

[33] J.K. Udupa and P.K. Saha, Fuzzy Connectedness. In: Insight into Images:
Principles and Practice for Segmentation, Registration, and Image Analysis,
ed. Terry Yoo, A K Peters Ltd (2004).

[34] J.K. Udupa and S. Samarasekera, Fuzzy connectedness and object definition:
theory, algorithms, and applications in image segmentation. Graphical Models
and Image Processing 58(3) (1996), 246–261.

[35] J.K. Udupa and Y. Zhuge, Delineation operating characteristic (DOC) curve
for assessing the accuracy behavior of image segmentation algorithms, SPIE
Proceedings 5370(1) (2004), 640-647.

[36] Qiang Wang, Eirini Karamani Liacouras, Erickson Miranda, Uday S.
Kanamalla, and Vasileios Megalooikonomou, “Classification of brain tumors
using MRI and MRS data,” Proc. SPIE Int. Soc. Opt. Eng. 6514, 65140S (2007).

[37] Qiang Wang and Vasileios Megalooikonomou, “A clustering algorithm for
intrusion detection, ” Proc. SPIE Int. Soc. Opt. Eng. 5812, 31 (2005).

[38] Luduan Zhang and Krishna Subramanyan, “Vessel addition using fuzzy
technique in CT angiography, ” Proc. SPIE Int. Soc. Opt. Eng. 5747, 1933
(2005).

30



[39] Xiaona Zhang, Yunjie Zhang, Weina Wang, and Yi Li, “A Novel Approach
for Fuzzy Connected Image Segmentation,” Book Series: Advances in Soft
Computing Volume 40/2007; Book Fuzzy Information and Engineering; Pages
89-97.

[40] Y. Zhou and J. Bai, Atlas-Based Fuzzy Connectedness Segmentation and
Intensity Nonuniformity Correction Applied to Brain MRI, IEEE Trans
Biomedical Eng., vol 54, pp122-129, 2007.

[41] Y. Zhuge, J.K. Udupa, and P.K. Saha, Vectorial scale-based fuzzy connected
image segmentation. Computer Vision and Image Understanding 101 (2006),
177–193.

31



Not cited papers, to be removed.

[42] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models. Int.
J. Comput. Vision 1 (1987), 321–331.

[43] T. McInerney and D. Terzopoulos, Deformable models in medical image
analysis: A survey. Medical Image Analysis 1(2) (1996), 91–108.

[44] A.X. Falcão, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsch, and
R. Lotufo, User-steered image segmentation paradigms: live wire and live lane.
Graph. Models Image Process 60(4) (1998), 233–260.

[45] T. Cootes, G. Edwards, and C. Taylor, Active appearance models. IEEE Trans.
Pattern Anal. Machine Intell. 23(6) (2001), 681–685.

[46] M. Trivedi and J. Bezdek, Low-level segmentation of aerial images with fuzzy
clustering. IEEE Trans. Systems, Man, and Cybernetics 16(4) (1986), 589–598.

[47] S. Beucher, The watershed transformation applied to image segmentation.
In: 10th Pfefferkorn Conf. Signal and Image Processing in Microscopy and
Microanalysis (1992), 299–314.

[48] J.A. Sethian, Fast Marching Methods and Level Sets Methods. Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science, Cambridge Univ. Press, 1999.

[49] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Machine Intell. 23(11) (2001), 1222–
1239.

[50] A. Chakraborty, L. Staib, and J. Duncan, Deformable boundary finding in
medical images by integrating gradient and region information. IEEE Trans.
Med. Imag. 15(6) (1996), 859–870.

[51] J. Betancur, F. Prieto, Fuzzy Connectedness applied to Coffee Fruit Image
Segmentation. Technical Report, National University of Colombia at Manizales.

[52] K. Kunen, Set Theory, North-Holland, Amsterdam, 1983.

32


