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Abstract

Fuzzy connectedness (FC) constitutes an important class of image segmentation
schemas. Although affinity functions represent the core aspect (main variability
parameter) of FC algorithms, they have not been studied systematically in the lit-
erature. In this paper, we began filling this gap by introducing and studying the
notion of equivalent affinities: if any two equivalent affinities are used in the same
FC schema to produce two versions of the algorithm, then these algorithms are
equivalent in the sense that they lead to identical segmentations. We give a com-
plete and elegant characterization of the affinity equivalence. We also demonstrate
that any segmentation obtained via a relative fuzzy connectedness (RFC) algorithm
can be viewed as segmentation obtained via absolute fuzzy connectedness (AFC)
algorithm with an automatic and adaptive threshold detection. Since the main goal
of the paper is to identify, by formal mathematical arguments, the affinity functions
that are equivalent, extensive experimental confirmations are not needed — they
show completely identical segmentations — and as such, only relevant examples of
the theoretical results are provided.
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1 Introduction

Image segmentation — the process of partitioning the image domain into
meaningful object regions — is perhaps the most challenging and critical
problem in image processing and analysis. Research in this area will probably
continue indefinitely long because the solution space is infinite dimensional,
and since any single solution framework is unlikely to produce an optimal so-
lution (in the sense of the best possible precision, accuracy, and efficiency) for
all possible application domains. It is important to distinguish between two
types of activities in segmentation research — the first relating to the devel-
opment of application domain-independent general solution frameworks, and
the second pertaining to the construction of domain-specific solutions starting
from a known general solution framework. The latter is not a trivial task most
of the time. Both these activities are crucial, the former for advancing the
theoretical aspects of, and shedding new light on, segmentation research, and
the latter for bringing the theoretical advances to actual practice. The topic
of this paper touches both of these activities, but has more pertinence to the
former than the latter.

General segmentation frameworks [1]–[12] may be broadly classified into three
groups: boundary-based [1]–[5], region-based [6]–[10], and hybrid [11,12]. As
the nomenclature indicates, in the first two groups, the focus is on recog-
nizing and delineating the boundary or the region occupied by the object in
the image. In the third group, the focus is on exploiting the complementary
strengths of each of boundary-based and region-based strategies to overcome
their individual shortcomings. The segmentation framework discussed in the
present paper belongs to the region-based group and constitutes an extension
of the fuzzy connectedness (abbreviated from now on as FC) methodology [8].

In the FC framework [8], a fuzzy topological construct, called fuzzy connect-
edness, characterizes how the spatial elements (abbreviated as spels) of an
image hang together to form an object. This construct is arrived at roughly
as follows. A function called affinity is defined on the set C ×C of all pairs of
spels from the image domain C; the strength of affinity between any two spels
depends on how close the spels are spatially and how similar their intensity-
based properties are in the image. Affinity is intended to be a local relation.
A global fuzzy relation called fuzzy connectedness is induced on the image
domain by affinity as follows. For any two spels c and d in the image domain,
all possible paths connecting c and d are considered. Each path is assigned
a strength of connectedness which is simply the minimum of the affinities of
consecutive spels along the path. The level of fuzzy connectedness between c
and d is considered to be the maximum of the strengths of all paths between c
and d. For segmentation purposes, FC is utilized in several ways as described
below. (Compare also Section 2.3.) See [13] for a review of the different FC
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definitions and how they are employed in segmentation and applications.

In absolute FC (abbreviated AFC) [8], the support of a segmented object is
considered to be the maximal set of spels, containing one or more seed spels,
within which the level of FC is at or above a specific threshold. To obviate the
need for a threshold, relative FC (or RFC) [14] was developed by letting all
objects in the image to compete simultaneously via FC to claim membership
of spels in their sets. Each co-object is identified by one or more seed spels.
Any spel c in the image domain is claimed by that co-object with respect to
whose seed spels c has the largest level of FC compared to the level of FC
with the seed sets of all other objects.

To avoid treating the core aspects of an object (that are very strongly con-
nected to its seeds) and the peripheral subtle aspects (that may be less strongly
connected to the seeds) in the same footing, an iterative refinement strategy
is devised in iterative RFC (or IRFC) [15]–[18]. This has been shown to lead
to better object definition than RFC with a theoretical construct similar to
that of RFC. The proper design of affinity is crucial to the effectiveness of
the segmentations that ensue, no matter what type of FC is used. In scale-
based [29] and vectorial FC [19], which are applicable to all of AFC, RFC,
and IRFC, affinity definition is not based just on the scalar properties of the
two spels under question but also on the vectorial properties of all spels in the
local scale region around the two spels. The FC family of methods developed
to date [13]–[24] consists of various combinations of absolute, relative, and
iterative FC with scale-based and vectorial versions.

The fundamental construct and core in any FC method is the affinity func-
tion. Its choice determines the effectiveness of the particular FC method. In
the published literature on FC, affinity functions have not been studied in
depth, leaving open several fundamental questions relating to their form, pa-
rameters, and effectiveness. A side effect and a manifestation of this gap is
that, sometimes, certain modifications of affinities and their parameters are
construed to result in improved FC segmentations, while, in reality, they lead
to theoretically equivalent segmentations. These cannot be identified as such
empirically.

In the present paper, we make a fundamental contribution toward a solution
to this problem by creating theoretical tools to address these issues. More
precisely, we define the notion of equivalent affinities (Section 2.2), and prove
that if any two equivalent affinities are used in the same FC schema to produce
two versions of the algorithm, then these algorithms are equivalent in the sense
that they lead to identical segmentations when applied to any digital image
initialized with the same seeds (Section 2.3). The resulting characterization
of equivalent affinities is used in the second part of this paper [25] to analyze
two main affinity types, homogeneity based and object feature based, to study
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the way they can be combined, and to determine which of these combinations
lead to truly distinct segmentations.

We also show (in Section 3) that the RFC segmentation can be viewed to some
extent as an AFC segmentation with an automatic threshold selection.

The notion of equivalence of algorithms, that stands behind the notion of
equivalent affinities, is at the foundation of our more general study of the
equivalences among segmentation algorithms, the theory of which we initiated
in [26].

2 Affinities equivalent in the FC sense

The main purpose of this section is to uncover the essence of the relation-
ship between the local measure of connectedness of pairs of spels, the affinity
function, and the resulting segmentations obtained via FC algorithms. In par-
ticular, we will introduce the notion of the equivalence (in the sense of FC)
of the affinities and show that equivalent affinities are indistinguishable from
the point of view of FC segmentations, no matter what the empirical results
indicate.

To make this work complete and useful, our definition of the affinity function
will be more general than the one commonly used in the literature. How-
ever, we will show that each class of equivalent affinities contains at least one
standard (meaning commonly used) affinity.

2.1 Preliminary definitions

Fuzzy sets and relations: We will use the following interpretation of the
notions of (hard) functions and relations, which is standard in set theory (see
e.g. [27,28]) and is used in many calculus books. A binary relation R from
a set X to a set Y is identified with its graph; that is, the relation R equals
{〈x, y〉 ∈ X×Y : xRy holds}. Since a function f : X → Y is a (special) binary
relation from X to Y , in particular we have f = {〈x, f(x)〉 : x ∈ X}. With
this interpretation, fuzzy sets and fuzzy relations have the following represen-
tations. Let Z be a fuzzy subset of a hard set X with a membership function
µZ : X → [0, 1]. For each x ∈ X we interpret µZ(x) as the degree to which x
belongs to Z. Usually such a fuzzy set Z is defined as {〈x, µZ(x)〉 : x ∈ X},
which is the graph of µZ . Thus, according to our interpretation, Z actually
equals µZ . Note that this interpretation agrees quite well with the situation
when Z is a hard subset Z of X, as then Z = µZ is equal to the characteristic
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function χZ of Z (defined as χZ(x) = 1 for x ∈ Z and χZ(x) = 0 for x ∈ X\Z),
and the identification of Z with χZ is quite common in analysis and set theory.
Notice also that a fuzzy binary relation ρ from X to Y is just a fuzzy subset
of X × Y , so it is equal to its membership function µρ : X × Y → [0, 1].

Adjacency and digital space: Let n ≥ 2 and let Zn stand for the set of
all n-tuples of integer numbers. A binary fuzzy relation α on Zn is said to
be a fuzzy adjacency if α is symmetric (i.e., α(c, d) = α(d, c)) and reflexive
(i.e., α(c, c) = 1). The value of α(c, d) depends only on the relative spatial
position of c and d. Usually α(c, d) is decreasing with respect to the distance
function ||c − d||. In most applications, α is just a hard case relation like 4-
adjacency relation for n = 2 or 6-adjacency in the three-dimensional case,
defined as α(c, d) = 1 for ||c − d|| ≤ 1 and α(c, d) = 0 for ||c − d|| > 1. By
an n-dimensional fuzzy digital space we will understand a pair 〈Zn, α〉. The
elements of the digital space are called spels. (For n = 2 also called pixels,
while for n = 3 – voxels.)

Digital scene: Let k ≥ 1. A scene over a fuzzy digital space 〈Zn, α〉 is a pair
C = 〈C, f〉, where C =

∏n
j=1[−bj, bj] ⊂ Zn, each bj > 0 being an integer, and

f : C → Rk is a scene intensity function. The value of f represents either the
original acquired image intensity or an estimate of certain image properties
(such as gradients and texture measures) obtained from the given image.

Standard affinity functions: An affinity function for a scene C, defined in
its general form in the next subsection, is usually denoted by κ and it assigns
to any pair 〈c, d〉 ∈ C × C of spels the strength κ(c, d) of their local hang-
ing togetherness in C. Within this class, a special role is played by standard
affinities, that is, mappings κ : C × C → [0, 1] which, treated as fuzzy binary
relations, are symmetric and reflexive. In all practical applications, the value
of κ(c, d) depends on the adjacency strength α(c, d) of c and d (i.e., on the
spatial relative position of c and d) as well as on the intensity function f . So
far, only standard affinities have been used in applications in the literature. 1

Of those, the most prominent are [29]: (1) the homogeneity based affinity

ψσ(c, d) = α(c, d) e−||f(c)−f(d)||2/σ2

, where σ > 0, c, d ∈ C (1)

with its value being close to 1 (meaning that c and d are well connected)
when the spels are spatially close and have very similar intensity values; (2)
the object feature based affinity (single object case, with an expected intensity
m for the object)

φσ(c, d) = α(c, d) e−max{||f(c)−m||,||f(d)−m||}2/σ2

, where σ > 0, c, d ∈ C (2)

with its value being close to 1 when the spels are spatially close and both

1 The exceptions are [17,23] wherein an asymmetric affinity was employed.
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have intensity values close to m. The weighted averages of these two forms of
standard affinity — either additive or multiplicative — have also been used.

It has been demonstrated [14] that, in the standard FC algorithms of AFC and
RFC (defined below), to fulfill certain desirable properties of segmentations
(such as robustness with respect to seed points), affinities must be symmetric.
In this paper, therefore, we will restrict ourselves to symmetric affinities. How-
ever, we will go quite afar from previous publications otherwise in considering
affinity in its very general form.

Affinity as an operator: The affinity function is usually associated with
each scene C according to some specific rule, such as in the examples (1) and
(2). In such case, we can treat the rule of such association as an operator

〈C, p〉 K7→ κ = K(C, p), where p represents all additional parameters like a prior
knowledge (e.g. m in (2)) or other parameters (e.g. σ).

2.2 Equivalent affinities

In this subsection, we define the notion of the affinity function in its gen-
eral form, without just confining to the basis of standard affinities as in (1)
and (2), and introduce the concept of equivalent affinities. The motivation for
developing equivalent affinities comes from our desire to recognize those dif-
ferences among affinities that are inessential, and, therefore, lead to the same
FC segmentations, from those that are essential and may give rise to different
segmentations.

We refrain from formally defining equivalent affinities as “leading to the same
FC segmentations in all FC schemas” since the term “all FC schemas” may
change in time, leading to a confusion. Nevertheless, Theorem 5 and Remark 6
show that this intuitive definition fully agrees with our formal definition given
below.

Let � be a linear order relation [27] on a set L and let C be an arbitrary finite
non-empty set. We say that a function κ : C × C → L is an affinity function
(from C into 〈L,�〉) provided κ is symmetric (i.e., κ(a, b) = κ(b, a) for every
a, b ∈ C) and κ(a, b) � κ(c, c) for every a, b, c ∈ C. Clearly, any standard
affinity, as defined above, is an affinity function with 〈L,�〉 = 〈[0, 1],≤〉. Note
that κ(d, d) � κ(c, c) for every c, d ∈ C. So, there exists an element in L,
which we will denote by a symbol 1κ, such that κ(c, c) = 1κ for every c ∈ C.
Notice that 1κ is the largest element of Lκ = {κ(a, b) : a, b ∈ C}, although
it does not need to be the largest element of L. In what follows, the strict
inequality related to � will be denoted by ≺, that is, a ≺ b if and only if a � b
and a 6= b. Certainly, in image processing, C will be always the domain of the
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scene intensity function. In all specific cases examined so far (compare [25]),
we take 〈L,�〉 as either the standard range 〈[0, 1],≤〉 or 〈[0,∞],≥〉.

We say that the affinities κ1 : C × C → 〈L1,�1〉 and κ2 : C × C → 〈L2,�2〉
are equivalent (in the FC sense) provided, for every a, b, c, d ∈ C

κ1(a, b) �1 κ1(c, d) if and only if κ2(a, b) �2 κ2(c, d)

or, equivalently,

κ1(a, b) ≺1 κ1(c, d) if and only if κ2(a, b) ≺2 κ2(c, d).

For example, it can be easily seen that for any constants σ, τ > 0 the homo-
geneity based affinities ψσ and ψτ , see (1), are equivalent, since for any pairs
〈a, b〉 and 〈c, d〉 of adjacent spels,

ψσ(a, b) < ψσ(c, d) ⇔ ||f(a)−f(b)|| > ||f(c)−f(d)|| ⇔ ψτ (a, b) < ψτ (c, d).
(3)

(Symbol ⇔ means “if and only if.”)

We say that the affinity operators K1 and K2 are equivalent provided the
associated affinities κ1 = K1(C, p) and κ2 = K2(C, p) are equivalent for all
scenes C and appropriate parameters p.

Equivalent affinities can be characterized as follows, where ◦ stands for the
composition of functions, that is, (g ◦ κ1)(a, b) = g(κ1(a, b)).

Proposition 1 Affinities κ1 : C × C → 〈L1,�1〉 and κ2 : C × C → 〈L2,�2〉
are equivalent if and only if there exists a strictly increasing function g from
〈Lκ1 ,�1〉 onto 〈Lκ2 ,�2〉 such that κ2 = g ◦ κ1.

Proof. If κ1 and κ2 are equivalent, define g by putting g(κ1(a, b)) = κ2(a, b)
for every a, b ∈ C. Note that g is well defined, since κ1(a, b) = κ1(c, d) im-
plies that κ2(a, b) = κ2(c, d). Also, inequality κ1(a, b) �1 κ1(c, d) implies that
κ2(a, b) �2 κ2(c, d), so g is a strictly increasing map from Lκ1 onto Lκ2 .

Conversely, if κ2 = g ◦ κ1, where g is strictly increasing, then κ1 is equivalent
to κ2 since for every a, b, c, d ∈ C we have:

κ2(a, b) �2 κ2(c, d) ⇔ g(κ1(a, b)) �2 g(κ1(c, d)) ⇔ κ1(a, b) �1 κ1(c, d).

Notice that when two affinity operators K1 and K2 are equivalent, then, for all
appropriate pairs 〈C, p〉, the affinities K1(C, p) and K2(C, p) are equivalent and,
by Proposition 1, there exists an increasing function gC,p for which K2(C, p) =
gC,p ◦ K1(C, p). However, in general, there is no single increasing function g,
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independent of 〈C, p〉, for which

K2(C, p) = g ◦ K1(C, p) for all appropriate pairs 〈C, p〉. (4)

(An example can be constructed from the affinity operator obtained by com-
bining two affinities via lexicographical order, see [25, Example 5].) Neverthe-
less, an increasing function g, independent of 〈C, p〉 and satisfying (4), can
often be found for equivalent affinity operators K1 and K2, as seen in Exam-
ple 4 and in [25].

One of the specific conclusions from Proposition 1 is the following fact.

Corollary 2 If κ : C × C → 〈[0,∞],≥〉 is an affinity, then, for every strictly
decreasing function g from [0,∞] onto [0, 1], a map g ◦ κ : C ×C → 〈[0, 1],≤〉
is an affinity equivalent to κ.

Our interest in equivalent affinities comes from the fact (see Theorem 5) that
any FC segmentation of a scene C remains unchanged if an affinity on C used
to get the segmentation is replaced by an equivalent affinity. Keeping this in
mind, it makes sense to find for each affinity function an equivalent affinity in
a nice form:

Theorem 3 Every affinity function is equivalent (in the FC sense) to a stan-
dard affinity.

Proof. Let κ : C ×C → 〈L,�〉 be an arbitrary affinity. Note that there is a
strictly increasing function g : Lκ → [0, 1] with g(1κ) = 1. (If Lκ = {l1, . . . , lm}
with l1 = 1κ, then such a g can be constructed by an easy induction on m.) Let
κ2(c, d) = g(κ(c, d)) for every c, d ∈ C. Then, by Proposition 1, κ is equivalent
to the standard affinity κ2 : C × C → 〈[0, 1],≤〉.

Once we agree that equivalent affinities lead to the same segmentations, The-
orem 3 says that we can restrict our attention to standard affinities without
losing any generality of our method. Then, one may wonder why study other
affinities at all. The answer to this question is simple — in most cases, it is
more natural to define an affinity function with a more abstract range, and
any translation of such affinity to the standard one is a redundant step adding
only unnecessary computational burden, although some researchers may be-
lieve, that it helps intuitive understanding. Moreover, in some of these cases
there is no simple (i.e., continuous) translation of the natural affinity to the
standard one. (See [25, Example 5].) On the other hand, Theorems 3 and 5
tell us that all the theoretical results that are true for the standard affinities
hold also for the affinities as we defined them. Thus, there is no particular
reason to restrict our attention to the affinities in the standard form.

The following constitutes an example of two equivalent forms of the homo-
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geneity based affinity (1), each form treated as an affinity operator. (See [25]
for more examples.)

(a) (b) (c)

(d) (e)

Fig. 1. Illustration of equivalent affinities. (a) A 2D scene — a CT slice of a human
knee. (b), (c) Connectivity scenes corresponding to affinities ψσ with σ = 1 and
σ = 10.8, respectively, and the same seed spel (indicated by + in (a)) specified in a
soft tissue region of the scene in (a). (d), (e) Identical AFC objects obtained from
the scenes in (b) and (c), respectively.

Example 4 For a scene C = 〈C, f〉, a natural form of the homogeneity based
affinity is a function ψ : C×C → 〈[0,∞],≥〉 given by ψ(c, d) = ||f(c)− f(d)||
for adjacent spels c, d ∈ C and ψ(c, d) = ∞ otherwise. (See also [25].) The
more commonly used version of the homogeneity based affinity is the standard
affinity ψσ(c, d) = e−ψ(c,d)2/σ2

, which is the composition of ψ with the Gaussian
function gσ(x) = e−x

2/σ2
. Note that, by Corollary 2, ψ and ψσ are equivalent,

independently of the value of the parameter σ, since gσ is strictly decreasing
from [0,∞] onto [0, 1]. (Compare also with (3), which constitutes a direct
argument.)

In particular, the parameter σ in the definition of ψσ is totally non-essential
from the FC segmentation point of view (see Theorem 5), as varying σ results
in a different (non-linear) scaling of the strength of connectedness. Therefore,
for example, the same segmentation of a given image is obtained by using
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AFC algorithm with (a) affinity ψ and threshold θ; (b) affinity ψσ and thresh-
old gσ(θ), independently of the value of σ. This phenomenon is illustrated in
Figure 1 on a 2D scene — a CT slice of a human knee, Fig. 1(a). In Figs. 1
(d) and (e) segmented binary scenes are shown, resulting from the use of ψσ
with σ = 1 and σ = 10.8, respectively, and the corresponding thresholds gσ(θ).
The results are identical. Figs. 1(b) and (c) show the corresponding connectiv-
ity scenes, in which the intensity of each spel c represents the ψσ-connectivity
strength between the seed and c (i.e., the strength of the strongest path joining
the seed and c).

2.3 FC segmentations for equivalent affinities

Fix an affinity κ : C×C → 〈L,�〉. To define fuzzy connectedness segmentation
of C, we need first to translate the local measure of connectedness given by κ
into the global strength of connectedness. For this, we will need the notions
of a path and its strength. A path in A ⊆ C is any sequence 2 p = 〈c1, . . . , cl〉,
where l > 1 and ci ∈ A for every i = 1, . . . , l. (Notice that there is no
assumption on any adjacency of the consecutive spels in a path.) The family
of all paths in A is denoted by PA. If c, d ∈ A, then the family of all paths
〈c1, . . . , cl〉 in A from c to d (i.e., such that c1 = c and cl = d) is denoted
by PA

cd.

The strength µκ(p) of a path p = 〈c1, . . . , cl〉 ∈ PC is defined as the strength of

its κ-weakest link; that is, µκ(p)
def
= min{κ(ci−1, ci) : 1 < i ≤ l}. (Note that, if

one follows the common practice of defining κ(c, d) to be the minimal element
of Lκ for any non-adjacent c and d, then only paths with adjacent consecutive
spels can have non-minimal strength.) For c, d ∈ A ⊆ C, the (global) κ-
connectedness strength in A between c and d is defined as the strength of a
strongest path in A between c and d; that is,

µAκ (c, d)
def
= max

{
µκ(p) : p ∈ PA

cd

}
. (5)

Notice that µAκ (c, c) = µκ(〈c, c〉) = 1κ. We will often refer to the function
µAκ : C × C → L as a connectivity measure (on A) induced by κ. For c ∈ A ⊂ C

and a non-empty D ⊂ A, we also define µAκ (c,D)
def
= maxd∈D µ

A
κ (c, d). We will

write µ for µκ and µA for µAκ when κ is clear from the context. The issue of why
µAκ should be defined from κ by the procedure described above is discussed in
detail in [30]. Note that if κ is a hard binary relation (i.e., when L = {0, 1}),
then µCκ is a relation (or, more precisely, its characteristic function) known as a

2 Notice that the paths must have length greater than 1. We make this requirement
to ease some technical difficulties, while it creates no real restriction as, in whatever
we do, a “path” 〈c〉 can be always replaced by a path 〈c, c〉.
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transitive closure of κ, which is defined as the set of all pairs 〈c, d〉 ∈ C×C for
which there exists a sequence c = c0, c1, . . . , cm = d such that κ(ci, ci+1) = 1
for every i < m.

To define fuzzy objects delineated by FC segmentations, we start with a family
S of non-empty pairwise disjoint subsets of C, where each S ∈ S represents a
set of spels, known as seeds, which will belong to the object generated by it.
Also, fix a threshold θ ∈ L, θ ≤ 1κ. For every S ∈ S, put W =

⋃
(S \ {S})

and, similarly as in [18] (see also [31]), define

• P κ
Sθ =

{
c ∈ C : θ � µCκ (c, S)

}
;

• P κ
SS =

{
c ∈ C : µCκ (c,W ) ≺ µCκ (c, S)

}
;

• P Iκ
SS =

⋃∞
i=0 P

i,κ
SS , where sets P i,κ

SS are defined inductively by the formulas

P 0,κ
SS = ∅ and P i+1,κ

SS = P i,κ
SS ∪ {c ∈ C \ P i,κ

SS : µ
C\P i,κ

SS
κ (c,W ) ≺ µCκ (c, S)}.

Then AFC, RFC, and IRFC segmentations of C are defined, respectively, as
Pθκ(S) = {P κ

Sθ : S ∈ S}, Pκ(S) = {P κ
SS : S ∈ S}, and PIκ(S) =

{
P Iκ
SS : S ∈ S

}
.

Notice that an AFC object P κ
Sθ consists of all spels connected with at least

one seed s in S with the κ-connectivity strength at least θ. An RFC object is
created via competition of seeds for each spel: a spel c belongs to P κ

SS provided
there is a seed s in S for which the κ-connectivity between c and s exceeds
the κ-connectivity between c and any other seed indicating another object.
Finally, IRFC objects are obtained by refining the RFC competition: a spel c
is unassigned to any RFC object provided there is a tie between two seeds s
and t from different objects, e.g., µCκ (c, w) � µCκ (c, s) = µCκ (c, t) for any seed
w. However, such a tie can be resolved if the strongest paths justifying µCκ (c, s)
and µCκ (c, t) cannot pass through the spels already assigned to another object.
Upon such resolution, the spel under question is assigned to the winning object
in the next iteration of IRFC.

Now we can formalize our (previous) main claim, and a central result of this
paper, that the fuzzy connectedness segmentations (i.e., those obtained via
AFC, RFC, and IRFC algorithms) are unchanged if an affinity function is
replaced by an equivalent one.

Theorem 5 Let κ1 : C × C → 〈L1,�1〉 and κ2 : C × C → 〈L2,�2〉 be equiv-
alent affinity functions and let S be a family of non-empty pairwise disjoint
subsets of C. Then for every θ1 �1 1κ1 in L1, there exists a θ2 �2 1κ2 in
L2 such that, for every S ∈ S and i ∈ {0, 1, 2, . . .}, we have P κ1

Sθ1
= P κ2

Sθ2
,

P κ1
SS = P κ2

SS , and P i,κ1

SS = P i,κ2

SS . In particular, Pθ1κ1
(S) = Pθ2κ2

(S), Pκ1(S) = Pκ2(S),
and PIκ1

(S) = PIκ2
(S).

Moreover, if g : C → C is a strictly monotone function such that κ2 = g ◦ κ1

(which exists by Proposition 1), then we can take θ2 = g(θ1).
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Proof. First note that, for any paths p = 〈c1, . . . , cl〉 and q = 〈d1, . . . , dm〉
from PC , we have 3

µκ1(p) �1 µκ1(q)⇔ (∀1 < j ≤ m) (∃1 < i ≤ l) κ1(ci−1, ci) �1 κ1(dj−1, dj)

⇔ (∀1 < j ≤ m) (∃1 < i ≤ l) κ2(ci−1, ci) �2 κ2(dj−1, dj)

⇔µκ2(p) �2 µκ2(q).

Similarly, for every a, c ∈ A ⊆ C and b, d ∈ B ⊆ C, we have

µAκ1
(a, c) �1 µ

B
κ1

(b, d)⇔
(
∀p ∈ PA

ac

) (
∃q ∈ PB

bd

)
µκ1(p) �1 µκ1(q)

⇔
(
∀p ∈ PA

ac

) (
∃q ∈ PB

bd

)
µκ2(p) �2 µκ2(q)

⇔µAκ2
(a, c) �2 µ

B
κ2

(b, d).

If, in addition, ∅ 6= W ⊆ A and S ⊆ B, then also

µAκ1
(a,W ) �1 µ

B
κ1

(b, S)⇔ (∀c ∈ W ) (∃d ∈ S) µAκ1
(a, c) �1 µ

B
κ1

(b, d)

⇔ (∀c ∈ W ) (∃d ∈ S) µAκ2
(a, c) �2 µ

B
κ2

(b, d) (6)

⇔µAκ2
(a,W ) �2 µ

B
κ2

(b, S).

Let a, b ∈ C be such that κ1(a, b) = min{κ1(x, y) : x, y ∈ C & θ1 �1 κ1(x, y)}
and put θ2 = κ2(a, b). Note that θ2 = g(θ1) whenever κ2 = g ◦ κ1. Then

P κ1
Sθ1

=
{
c ∈ C : θ1 �1 µ

C
κ1

(c, S)
}

=
{
c ∈ C : κ1(a, b) �1 µ

C
κ1

(c, S)
}

=
{
c ∈ C : κ2(a, b) �2 µ

C
κ2

(c, S)
}

=P κ2
Sθ2
.

Similarly, we have

P κ1
SS =

{
c ∈ C : µCκ1

(c,W ) ≺1 µ
C
κ1

(c, S)
}

=
{
c ∈ C : µCκ2

(c,W ) ≺2 µ
C
κ2

(c, S)
}

=P κ2
SS .

The final equation we need to prove is P i,κ1

SS = P i,κ2

SS . This will be proved by
induction on i ≥ 0. For i = 0 this is true, since by definition both sets are
empty. So assume that for some i we have P i,κ1

SS = P i,κ2

SS . Then

3 Quantifiers ∀ and ∃ stands for “for all” and “there exists,” respectively.
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P i+1,κ1

SS =P i,κ1

SS ∪
{
c ∈ C \ P i,κ1

SS : µ
C\P i,κ1

SS
κ1 (c,W ) ≺1 µ

C
κ1

(c, S)
}

=P i,κ2

SS ∪
{
c ∈ C \ P i,κ2

SS : µ
C\P i,κ2

SS
κ1 (c,W ) ≺1 µ

C
κ1

(c, S)
}

=P i,κ2

SS ∪
{
c ∈ C \ P i,κ2

SS : µ
C\P i,κ2

SS
κ2 (c,W ) ≺2 µ

C
κ2

(c, S)
}

=P i+1,κ2

SS ,

where the second equation follows from the inductive assumptions and the
third one is implied by (6). The equality of the segmentations associated with
κ1 and κ2 follows directly from the definitions of Pθκ(S), Pκ(S), and PIκ(S).

2.4 Remarks on and consequences of Theorems 3 and 5

In summary, Theorem 3 says that for every affinity function there is a standard
affinity equivalent to it, while Theorem 5 says that for any two equivalent
affinities we get the same FC segmentations in each of AFC, RFC, and IRFC.
To further illustrate this, we examine the previous example in Fig. 1 for AFC
by using two affinities ψσ, with σ = 1 and σ = 10.8. Figures 1(b) and (c)
display the connectivity scenes Cκ = 〈C, fk〉 for the 2D scene of Fig. 1(a),
where for any c ∈ C and the same fixed spel s ∈ C, fκ(c) = µCκ (c, s), where
κ is either ψ1 or ψ10.8. The resulting identical AFC objects are displayed in
(d) and (e) as binary scenes. Of course, different thresholds were used in
producing scenes (d) and (e) from those in (b) and (c), respectively, which
precisely makes our point that segmented object information in Figures 1(b)
and (c) is identical.

Remark 6 It can be proved, under some natural assumptions on affinity op-
erators K1 and K2 satisfied by all currently used affinities, that the equivalence
of κ1 = K1(C0, p) and κ2 = K2(C0, p) is not only sufficient, but also necessary
for the conclusion of Theorem 5. More specifically, for such affinities, if κ1 and
κ2 are not equivalent and C0 = 〈C, f0〉, then there exist a scene C = 〈C, f〉, a
non-empty set of seeds S ⊂ C, and θ1 �1 1κ1 such that P κ1

Sθ1
6= P κ2

Sθ2
for every

θ2 �2 1κ2 .

Note also that, in general, conclusion of Theorem 5 may hold also for the
affinities that are not equivalent. Indeed, it is easy to find a standard affinity
κ1 on a scene C = 〈C, f〉 for which: (a) between any two spels there is a path of
maximal strength 1, while (b) there are many pairs 〈a, b〉 of adjacent spels in
C with κ1(a, b) < 1. Now, if κ2 is obtained from κ1 by changing only its values
on adjacent pairs 〈a, b〉 with κ1(a, b) < 1, then the conclusion of Theorem 5
will still hold, while we can insure that κ1 and κ2 are not equivalent.
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Practical Considerations: The equivalence theorems say that, if a function
g is strictly monotone, then the affinities κ and g ◦ κ are equivalent and they
lead to identical segmentations. However, the segmentations are insured to be
identical only when there are no rounding errors. In actual implementations,
it is feasible that for distinct numbers x and y in the range of κ, the actual
values g(x) and g(y) are so close that the implemented algorithm identifies
g(x) with g(y). In such implementations some information is lost when passing
from κ to g ◦ κ, which may lead to different segmentations. This problem
must be considered, when performing any experimental comparisons. Note
also that, even when there is no rounding error in the algorithm that influences
our theoretical results, a human operator may have an impression that some
information is lost when passing from κ to g ◦ κ, due to the limited resolution
perception of the human eye. This phenomenon can be noticed in Figures 1(b)
and (c): it is easier for human eyes to identify the object in Fig. 1(c) than it
is in Fig. 1(b).

Notice, that all the results presented in this section are applicable to the
vectorial images (compare [19]), since we allow the image intensity value to
be vectors from Rk. In addition, with minor modifications to the definition
of general affinities, the scale-based version of standard affinity [29] can also
be covered under Theorems 3 and 5. (Any scale-based affinity is essentially
equal to a non-scale-based affinity applied to an appropriately filtered version
of the intensity function.) This implies that those results are applicable to all
currently known FC schemas involving different combinations of scale-based
and/or vectorial AFC, RFC, and IRFC.

Theorems 3 and 5 also imply that any result proved for the FC segmentations
in the context of standard affinities remains valid for the affinities in our
general setting, that is, the FC algorithms used with our general affinities
have all nice properties that the FC algorithms have when used with the
standard affinities. For example, the properties listed in Corollary 7 below are
the translation of some of the results from [18]. Property from (a) is technical,
and will be used in the proof of one of the following results. The robustness
property (b) says, that the output of the AFC algorithm remains unchanged
when some seeds are replaced by other seeds within the same object. This is
of considerable practical importance, since seeds, whether chosen by a human
operator or automatically by an algorithm, are likely to be different in different
instances of running the algorithm. Nevertheless, according to the robustness
property, the segmentation results remain identical, as long as the indicated
seeds will be chosen within the respective objects. The last property (c) insures
that the distinct objects delineated by IRFC and RFC are disjoint.

In what follows, if affinity κ is clear from the context, we will drop the symbol
κ from the object symbols P κ

Sθ, P
κ
SS, and P Iκ

SS .
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Corollary 7 Let κ : C × C → 〈L,�〉 be an arbitrary affinity function.

(a) For any a, b, c ∈ A ⊆ C, if µA(b, c) ≺ µA(a, b), then µA(a, c) = µA(b, c).
(b) (Robustness) Let S = {S1, . . . , Sm} be a family of singletons, and for every

i ∈ {1, . . . ,m}, let Ti ⊂ PSiS be a singleton. If T = {T1, . . . , Tm}, then
PTiT = PSiS for every i ∈ {1, . . . ,m}.

(c) For any family S of pairwise disjoint non-empty subsets of C, we have P I
SS∩

P I
US = ∅ for every distinct S, U ∈ S.

Proof. This follows directly from our remark above and, respectively, from
[18, Proposition 2.1], [18, Proposition 2.2], and [18, Theorem 2.4].

3 Relative fuzzy connectedness segmentation as absolute fuzzy con-
nectedness segmentation

In AFC, to obtain the FC object P κ
Sθ, a threshold θ for the strength of connect-

edness must be specified. This threshold is obviated in defining RFC objects
P κ
SS (see definition above) simply by determining the membership of a spel c

in an object by its largest strength of connectedness with respect to the seed
sets assigned to the different objects. In this section, we will show that the
RFC segmentation can be viewed to some extent as an AFC segmentation
wherein the required threshold is determined automatically.

Theorem 8 Let κ : C × C → 〈L,�〉 be an arbitrary affinity function and S
be a non-empty family of pairwise disjoint, non-empty sets of seeds in C. Fix
an S ∈ S and let W =

⋃
(S \ {S}). For every s ∈ S let θs = µCκ (s,W ). Then

PSS =
⋃
s∈S

⋃
θs≺θ P{s}θ.

Proof. Note that, by Corollary 7(a), for every c, s, w ∈ C,

µCκ (c, w) ≺ µCκ (c, s) if and only if µCκ (s, w) ≺ µCκ (c, s).

Thus

PSS = {c ∈ C : µCκ (c,W ) ≺ µCκ (c, S)}
= {c ∈ C : (∃s ∈ S) (∀w ∈ W ) µCκ (c, w) ≺ µCκ (c, s)}
= {c ∈ C : (∃s ∈ S) (∀w ∈ W ) µCκ (s, w) ≺ µCκ (c, s)}
= {c ∈ C : (∃s ∈ S) µCκ (s,W ) ≺ µCκ (c, s)}
=

⋃
s∈S{c ∈ C : θs ≺ µCκ (c, s)}

=
⋃
s∈S

⋃
θs≺θ

{c ∈ C : θ � µCκ (c, s)} =
⋃
s∈S

⋃
θs≺θ

P{s}θ.
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For an affinity κ : C ×C → 〈L,�〉 and θ < 1κ, let θ+ be the smallest element

of Lκ = {κ(a, b) : a, b ∈ C} greater than θ; that is, θ+ def
= min{ρ ∈ Lκ : θ ≺ ρ}.

Theorem 8 has the nicest form when each object is initiated by just one single
seed spel.

Corollary 9 Let 〈C, κ,�〉 be an arbitrary affinity structure and S be a non-
empty family of singletons in C such that µCκ (s, t) 6= 1κ for every distinct
S = {s} and T = {t} from S. For S = {s} ∈ S, let θS = µCκ (s,

⋃
(S \ {S})).

Then PSS = PSθ+S
for every S ∈ S. In particular, Pκ(S) = {PSθ+S : S ∈ S}.

Proof. Let S = {s} ∈ S. Then θS = θs and, by Theorem 8, we have PSS =⋃
θS≺θ PSθ =

{
c ∈ C : θS ≺ µCκ (c, S)

}
=

{
c ∈ C : θ+

S � µCκ (c, S)
}

= PSθ+S
.

Notice that if for a family S containing only singletons there exist distinct

S, T ∈ S such that µCκ (S, T )
def
= maxs∈S µ

C
κ (s, T ) = 1κ, then PSS = PTS = ∅.

That is, in this case, S and T are in the same object, and therefore, the sets
that contain S and T and that separate them in the FC sense are obviously
empty. In all practical cases we are interested only in the families S of seeds
for which µCκ (S, T ) 6= 1κ for any distinct S, T ∈ S. In fact, if S and T are in
different object regions in a scene, then we expect the strength of connected-
ness µCκ (S, T ) between them to be low. Thus, this assumption in Corollary 9
does not really restrict its usefulness, but actually warrants it from practical
requirements.

If S from Corollary 9 has just two elements, say S = {{s}, {t}}, then θ{s} = θ{t}
and for θ = θ+

{s} we have Pκ(S) = {PSθ : S ∈ S} = Pθκ(S). Thus, in this case,

the RFC segmentation Pκ(S) is just an AFC segmentation Pθκ(S), where θ was
automatically set by the RFC procedure. However, when there are more than
two objects involved in RFC and S contains three or more singletons, the
thresholds θ+

S , S ∈ S, need not be equal. In this case, each PSS from Pκ(S) is
an AFC object PSθ+S

, where the different thresholds are automatically tailored

to the different objects under consideration. In other words, in general, it is
not possible to derive RFC objects via AFC segmentation Pθκ(S). That is the
beauty of RFC compared to AFC.

We illustrate this property of RFC vis-a-vis AFC in a schematic (Figure 2), as
well as in an actual medical image (Figure 3). In both figures, we consider three
objects, indicated by seeds s, t, and u. In Figure 2, region W is more strongly
connected to seed u than to either s or t. As such, RFC correctly assigns it
to the region Pu,{s,t,u} indicated by u, as shown in Fig. 2(b). However, there is
no single threshold that could lead to an AFC segmentation coinciding with
the RFC segmentation: a threshold θ below (.6)+ causes objects Ps,θ and Pt,θ
to be equal and too big, as shown in Fig. 2(d), while θ ≥ (.6)+ cuts region
W from Pu,θ, see Fig. 2(c). Nevertheless, every RFC delineated object is also

16



equal to appropriate AFC object: Ps,{s,t,u} = Ps,(.6)+ , Pt,{s,t,u} = Pt,(.6)+ , and
Pu,{s,t,u} = Pu,(.5)+ .

(a) (b)

(c) (d)

Fig. 2. (a) A schematic scene with a uniform background and four distinct areas
denoted by S, T , U , W , and indicated by seeds marked by ×. It is assumed that
each of these areas is uniform in intensity and the connectivity strength within each
of these areas has the maximal value of 1, the connectivity between the background
and any other spel is ≤ .2, while the connectivity between the adjacent regions is
as indicated in the figure: µ(s, t) = .6, µ(s, u) = .5, and µ(u,w) = .6. (b) The RFC
segmentation of three objects indicated by seeds s, t, and u, respectively. (c) Three
AFC objects indicated by the seeds s, t, u and delineated with threshold θ = (.6)+.
Notice that while Ps,{s,t,u} = Ps,(.6)+ and Pt,{s,t,u} = Pt,(.6)+ , object Pu,(.6)+ is smaller
than RFC indicated Pu,{s,t,u}. (d) Same as in (c) but with θ = (.5)+. Note that while
Pu,{s,t,u} = Pu,(.5)+ , objects Ps,(.5)+ and Pt,(.5)+ coincide and lead to an object bigger
than Ps,{s,t,u} and Pt,{s,t,u}.

In Figure 3, we concentrate on the objects indicated by seeds s and t, corre-
sponding to soft tissue regions. The third object is the rest of the background
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and is denoted by seed u. The 2D scene is the one employed in Fig. 1. Identical
seed spels denoted by +’s in Fig. 3(a) were specified for AFC and RFC. The
two connectivity scenes corresponding to the two AFC objects are displayed in
Fig. 3(b) and (c), and the resulting AFC objects obtained with two different
thresholds θ+

S from the scenes in (b) and (c) are shown in Fig. 3(e) and (f).
The RFC objects obtained appear in Fig. 3(d), wherein the two objects of
interest are identical to the AFC objects in (e) and (f) obtained via different
thresholds.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) A 2D scene, same as in Fig. 1(a), with three indicated seeds. (b), (c)
Connectivity scenes corresponding to the two AFC objects indicated by s and t.
(d) The RFC segmentation for the three indicated objects. (e) The AFC objects
initiated with seeds s and t obtained with the threshold θ{s} < θ{t} determined
automatically by RFC. Although the result is a binary image, the two objects are
shown at two gray levels. The object indicated by seed s agrees with its counterpart
in (d). The smaller threshold caused the t-indicated object to be slightly smaller
than in (d). (f) Same as (e) but with threshold θ{t}. The object indicated by seed
t agrees with its counterpart in (d). However, the larger threshold caused the s-
indicated object (grey) to leak to a big part of the scene.

Note also that the main reason we could represent RFC objects in terms
of AFC objects was that two appearances of c in the inequality µCκ (c, w) ≺
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µCκ (c, s) could be reduced to one: µCκ (s, w) ≺ µCκ (c, s), as both these inequali-
ties are equivalent. In the case of IRFC, the defining inequality is µAκ (c, w) ≺
µCκ (c, s) for an appropriate A ⊂ C, and there is no equivalent form of this
inequality with just one appearance of c. Thus, no natural AFC representa-
tion of IRFC object seems possible. Although increasing sophistication from
AFC to RFC to IRFC has been previously demonstrated via segmentation
experiments [14,16,18], in this section we have now given a mathematical jus-
tification of that behavior.

4 Concluding remarks

The presented analysis shows that, from the perspective of FC methodology,
the only essential attribute of an affinity function is its order. In particular,
many transformations (like gaussian) of the natural affinity definitions (like
derivative-driven homogeneity based affinity) are of esthetic value only and do
not influence the FC segmentation outcomes.

The analysis forms also the foundation of the investigation of the second part
of this paper [25], which discusses homogeneity and object-feature based affini-
ties, as well as their combinations. In particular, we show there that many of
the parameters in these definitions are of no consequence.

We did not undertake any empirical evaluation studies in this paper. A the-
oretical study preceding such an evaluation becomes essential to understand
what affinity forms are distinct, what are redundant, and what parameters are
essential/redundant. This paper constitutes a first such step. Analysis similar
to the one conducted in this paper for FC can also be carried out for other
frameworks, such as level sets [9], watersheds [7], and graph cuts [10].
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