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Affinity functions in fuzzy connectedness based
image segmentation

Krzysztof Chris Ciesielski, Jayaram K. Udupa, Senior Member, IEEE, and Ying Zhuge

Abstract— Fuzzy connectedness (FC) constitutes an important
class of image segmentation schemas. Although affinity functions
represent the fundamental aspect (main variability parameter)
of FC algorithms, they have not been studied systematically in
the literature. In this paper, we present a through study to
fill this gap. Our analysis is based on the notion of equivalent
affinities: if any two equivalent affinities are used in the same
FC schema to produce two versions of the algorithm, then these
algorithms are strongly equivalent in the sense that they lead to
identical segmentations. We give a complete characterization of
the affinity equivalence and show that many natural parameters
used in the definitions of affinity functions are redundant in the
sense that different values of such parameters lead to equivalent
affinities. We also show that two main affinity types, homogeneity
based and object feature based, are equivalent, respectively, to
the difference quotient of the intensity function and Rosenfeld’s
degree of connectivity. In addition, we note that any segmentation
obtained via relative fuzzy connectedness (RFC) algorithm can be
viewed as segmentation obtained via absolute fuzzy connectedness
(AFC) algorithm with an automatic threshold detection. We finish
with theoretical and experimental analysis of possible ways of
combining different affinities.

I. INTRODUCTION

Image segmentation — the process of partitioning the image
domain into meaningful object regions — is perhaps the
most challenging and critical problem in image processing
and analysis. Research in this area will probably continue
indefinitely long because the solution space is infinite dimen-
sional, and since any single solution framework is unlikely
to produce an optimal solution (in the sense of the best
possible precision, accuracy, and efficiency) for all possible
application domains. It is important to distinguish between
two types of activities in segmentation research — the first
relating to the development of application domain-independent
general solution frameworks, and the second pertaining to
the construction of domain-specific solutions starting from a
known general solution framework. The latter is not a trivial
task most of the time. Both these activities are crucial, the
former for advancing the theoretical aspects of, and shedding
new light on, segmentation research, and the latter for bringing
the theoretical advances to actual practice. The topic of this
paper touches both of these activities.

General segmentation frameworks [1]–[12] may be broadly
classified into three groups: boundary-based [1]–[5], region-
based [6]–[10], and hybrid [11], [12]. As the nomenclature
indicates, in the first two groups the focus is on recognizing
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and delineating the boundary or the region occupied by the
object in the image. In the third group, the focus is on
exploiting the complementary strengths of each of boundary-
based and region-based strategies to overcome their individual
shortcomings. The segmentation framework discussed in the
present paper belongs to the region-based group and consti-
tutes an extension of the fuzzy connectedness (abbreviated
from now on as FC) methodology [8].

In the FC framework [8], a fuzzy topological construct,
called fuzzy connectedness, characterizes how the spatial
elements (abbreviated as spels) of an image hang together
to form an object. This construct is arrived at roughly as
follows. A function called affinity is defined on the image
domain; the strength of affinity between any two spels depends
on how close the spels are spatially and how similar their
intensity-based properties are in the image. Affinity is intended
to be a local relation. A global fuzzy relation called fuzzy
connectedness is induced on the image domain by affinity as
follows. For any two spels c and d in the image domain, all
possible paths connecting c and d are considered. Each path
is assigned a strength of fuzzy connectedness which is simply
the minimum of the affinities of consecutive spels along the
path. The level of fuzzy connectedness between c and d is
considered to be the maximum of the strengths of all paths
between c and d. For segmentation purposes, FC is utilized in
several ways as described below. (Compare also Section II-C.)
See [13] for a review of the different FC definitions and how
they are employed in segmentation and applications.

In absolute FC (abbreviated AFC) [8], the support of a
segmented object is considered to be the maximal set of spels,
containing one or more seed spels, within which the level of
FC is at or above a specific threshold. To obviate the need for a
threshold, relative FC (or RFC) [14] was developed by letting
all objects in the image to compete simultaneously via FC
to claim membership of spels in their sets. Each co-object is
identified by one or more seed spels. Any spel c in the image
domain is claimed by that co-object with respect to whose
seed spels c has the largest level of FC compared to the level
of FC with the seed sets of all other objects. To avoid treating
the core aspects of an object (that are very strongly connected
to its seeds) and the peripheral subtle aspects (that may be
less strongly connected to the seeds) in the same footing, an
iterative refinement strategy is devised in iterative RFC (or
IRFC) [15]–[18]. This has been shown to lead to better object
definition than RFC with a theoretical construct similar to
that of RFC. The proper design of affinity is crucial to the
effectiveness of the segmentations that ensue, no matter what
type of FC is used. In scale-based [13] and vectorial FC [19],
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which are applicable to all of AFC, RFC, and IRFC, affinity
definition is not based just on the scalar properties of the two
spels under question but also on the vectorial properties of
all spels in the local scale region around the two spels. The
FC family of methods developed to date [13]–[24] consists
of various combinations of absolute, relative, and iterative FC
with scale-based and vectorial versions.

The fundamental construct in any FC method is the affin-
ity function. Its choice determines the effectiveness of the
particular FC method. In the published literature on FC,
affinity functions have not been studied in depth, leaving open
several basic questions relating to their form, parameters, and
effectiveness. In the present paper, we address these issues
in a fundamental manner and make two sets of fundamental
contributions. (1) We define the notion of equivalent affinities
(Section II-B), and prove that if any two equivalent affinities
are used in the same FC schema to produce two versions of the
algorithm, then these algorithms are strongly equivalent in the
sense that they lead to identical segmentations when applied to
any digital image initialized with the same seeds (Section II-
C). The notion of strong equivalence of algorithms is at the
foundation of our more general study of the equivalences
among segmentation algorithms, the theory of which we
initiated in [25]. (2) We present a detailed discussion on how
the two most commonly used affinities, homogeneity based
(Section III-A) and object feature based (Section III-B), should
be properly and intuitively defined. By using these results
we discuss (in Section IV) the possible ways of combining
two or more different affinities into a single affinity and
examine which parameters in the definitions of the combined
affinities are redundant. In the process, we present a host of
new affinity functions and demonstrate that they may lead to
better segmentations. We also show (in Section II-D) that the
RFC segmentation can be viewed to some extent as an AFC
segmentation with an automatic threshold selection.

II. AFFINITIES EQUIVALENT IN THE FC SENSE

The main purpose of this section is to uncover the essence
of the relationship between the local measure of connectedness
of pairs of spels, the affinity function, and the resulting
segmentations obtained via FC algorithms. In particular, we
will introduce the notion of the equivalence (in the sense of
FC) of the affinities and show that equivalent affinities are
indistinguishable from the point of view of FC segmentations.

To make this work complete and useful, our definition of the
affinity function will be more general than the one commonly
used in the literature. However, we will show that each class
of equivalent affinities contains at least one standard (meaning
commonly used) affinity.

A. Preliminary definitions

We will use the following interpretation of the notions of
(hard) functions and relations, which is standard in set theory
(see e.g. [26], [27]) and is used in many calculus books. A
binary relation R from a set X to a set Y is identified with
its graph; that is, R equals {〈x, y〉 ∈ X × Y : xRy holds}.
Since a function f : X → Y is a (special) binary relation

from X to Y , in particular we have f = {〈x, f(x)〉 : x ∈ X}.
With this interpretation, fuzzy sets and fuzzy relations have
the following representations. Let Z be a fuzzy subset of a
hard set X with a membership function µZ : X → [0, 1].
For each x ∈ X we interpret µZ(x) as the degree to which
this x belongs to Z . Usually such a fuzzy set Z is defined
as {〈x, µZ(x)〉 : x ∈ X}, which is the graph of µZ . Thus,
according to our interpretation, Z actually equals µZ . Note
that this interpretation agrees quite well with the situation
when Z is a hard subset Z of X , as then Z = µZ is equal to
the characteristic function χZ of Z (defined as χZ(x) = 1 for
x ∈ Z and χZ(x) = 0 for x ∈ X\Z), and the identification of
Z with χZ is quite common in analysis and set theory. Notice
also that a fuzzy binary relation ρ from X to Y is just a fuzzy
subset of X × Y , so it is equal to its membership function
µρ : X × Y → [0, 1].

Let n ≥ 2 and let Zn stand for the set of all n-tuples of
integer numbers. A binary fuzzy relation α on Zn is said to
be a fuzzy adjacency binary relation if α is symmetric (i.e.,
α(c, d) = α(d, c)) and reflexive (i.e., α(c, c) = 1). The value
of α(c, d) depends only on the relative spatial position of c and
d. Usually α(c, d) is decreasing with respect to the distance
function ||c − d||. In most applications, α is just a hard case
relation like 4-adjacency relation for n = 2 or 6-adjacency in
the three-dimensional case. By an n-dimensional fuzzy digital
space we will understand a pair 〈Zn, α〉. The elements of the
digital space are called spels. (For n = 2 also called pixels,
while for n = 3 – voxels.)

Let k ≥ 1. A scene over a fuzzy digital space 〈Zn, α〉 is
a pair C = 〈C, f〉, where C =

∏n
j=1[−bj , bj ] ⊂ Zn, each

bj > 0 being an integer, and f : C → Rk is a scene intensity
function. The value of f represents either the original acquired
image intensity or an estimate of certain image properties
(such as gradients and texture measures) obtained from the
given image. The notion most important for this paper is
that of an affinity function. The affinity function, defined in
its general form in the next subsection, is usually denoted
by κ and it associates to any pair 〈c, d〉 ∈ C2 of spels
the strength κ(c, d) of their local hanging togetherness in C.
Within this class, a special role is played by standard affinities,
that is, mappings κ : C × C → [0, 1] which, treated as fuzzy
binary relations, are symmetric and reflexive. In all practical
applications, the value of κ(c, d) depends on the adjacency
strength α(c, d) of c and d (i.e., on the spatial relative position
of c and d) as well as on the intensity function f . So far,
only standard affinities have been used in applications in
the literature. The exception is [17] wherein an asymmetric
affinity was employed. It has been demonstrated [14] that to
fulfill certain desirable properties of FC segmentations (such
as robustness with respect to seed points), affinities must be
symmetric. In this paper, therefore, we will restrict ourselves
to symmetric affinities. However, we will go quite afar from
previous publications otherwise in considering affinity in its
very general form.

B. Equivalent affinities
In this subsection we define the notion of the affinity

function in its general form and introduce the concept of
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equivalent affinities. The motivation for developing equivalent
affinities comes from our desire to recognize those differences
among affinities that are inessential and therefore lead to the
same FC segmentations from those that are essential and may
give rise to different segmentations.

Let � be a linear order relation on a set L and let C
be an arbitrary finite non-empty set. We say that a function
κ : C × C → L is an affinity function (from C into 〈L,�〉)
provided κ is symmetric (i.e., κ(a, b) = κ(b, a) for every
a, b ∈ C) and κ(a, b) � κ(c, c) for every a, b, c ∈ C.
Clearly, any standard affinity, as defined above, is an affinity
function with 〈L,�〉 = 〈[0, 1],≤〉. Note that κ(d, d) � κ(c, c)
for every c, d ∈ C. So, there exists an element in L, which
we will denote by a symbol 1κ, such that κ(c, c) = 1κ
for every c ∈ C. Notice that 1κ is the largest element of
Lκ = {κ(a, b) : a, b ∈ C}, although it does not need to be
the largest element of L. In what follows, the strict inequality
related to � will be denoted by ≺, that is, a ≺ b if and only
if a � b and a 6= b.

Certainly, in image processing, C will be always the domain
of the scene intensity function. In all specific cases used in
this paper, we will take 〈L,�〉 as either the standard range
〈[0, 1],≤〉 or, more often, 〈[0,∞],≥〉. Note that, in this second
case, the order relation � is the reversed standard order
relation ≥. We say that the affinities κ1 : C × C → 〈L1,�1〉
and κ2 : C × C → 〈L2,�2〉 equivalent (in the FC sense)
provided, for every a, b, c, d ∈ C

κ1(a, b) �1 κ1(c, d) if and only if κ2(a, b) �2 κ2(c, d)

or, equivalently,

κ1(a, b) ≺1 κ1(c, d) if and only if κ2(a, b) ≺2 κ2(c, d).

Equivalent affinities can be characterized as follows, where ◦
stands for the composition of functions, that is, (g◦κ1)(a, b) =
g(κ1(a, b)).

Proposition 1: Affinities κ1 : C × C → 〈L1,�1〉 and
κ2 : C×C → 〈L2,�2〉 are equivalent if and only if there exists
a strictly increasing function g from 〈Lκ1 ,�1〉 onto 〈Lκ2 ,�2〉
such that κ2 = g ◦ κ1.
PROOF. If κ1 and κ2 are equivalent, define g by putting
g(κ1(a, b)) = κ2(a, b) for every a, b ∈ C. Note that g is
well defined, since κ1(a, b) = κ1(c, d) implies that κ2(a, b) =
κ2(c, d). Also, inequality κ1(a, b) �1 κ1(c, d) implies that
κ2(a, b) �2 κ2(c, d), so g is a strictly increasing map from
Lκ1 onto Lκ2 . Conversely, if κ2 = g ◦ κ1, where g is
strictly increasing, then κ1 is equivalent to κ2 since for
every a, b, c, d ∈ C we have: κ2(a, b) �2 κ2(c, d) ⇔
g(κ1(a, b)) �2 g(κ1(c, d)) ⇔ κ1(a, b) �1 κ1(c, d).

One of the specific conclusions from Proposition 1 is the
following fact.

Corollary 2: If κ : C ×C → 〈[0,∞],≥〉 is an affinity, then,
for every strictly decreasing function g from [0,∞] onto [0, 1],
a map g ◦ κ : C ×C → 〈[0, 1],≤〉 is an affinity equivalent to κ.

Our interest in equivalent affinities comes from the fact (see
Theorem 4) that any FC segmentation of a scene C remains
unchanged if an affinity on C used to get the segmentation
is replaced by an equivalent affinity. Keeping this in mind, it

makes sense to find for each affinity function an equivalent
affinity in a nice form:

Theorem 3: Every affinity function is equivalent (in the FC
sense) to a standard affinity.
PROOF. Let κ : C×C → 〈L,�〉 be an arbitrary affinity. Note
that there is a strictly increasing function g : Lκ → [0, 1] with
g(1κ) = 1. (If Lκ = {l1, . . . , lm} with l1 = 1κ, then such a g
can be constructed by an easy induction on m.) Let κ2(c, d) =
g(κ(c, d)) for every c, d ∈ C. Then, by Proposition 1, κ is
equivalent to the standard affinity κ2 : C ×C → 〈[0, 1],≤〉.

Once we agree that equivalent affinities lead to the same
segmentations, Theorem 3 says that we can restrict our at-
tention to standard affinities without losing any generality of
our method. Thus, one may wonder why study other affinities
at all. The answer to this question is simple — in most
cases, it is more natural to define an affinity function with
more abstract range, and any translation of such affinity to
the standard one is a redundant step adding only unnecessary
computational burden. Moreover, in some of these cases there
is no simple (i.e., continuous) translation of the natural affinity
to the standard one. (See Example 10.) On the other hand,
Theorems 3 and 4 tell us that all the theoretical results that
are true for the standard affinities hold also for the affinities as
we defined them. Thus, there is no particular reason to restrict
our attention to the affinities in the standard form.

We will discuss several examples of equivalent affinities in
Section III. For now, as an example, consider the so called
homogeneity based affinity [30]. Its natural form for a scene
C = 〈C, f〉 is a function ψ : C × C → 〈[0,∞,≥] defined in
(3), given by ψ(c, d) = |f(c)− f(d)| for adjacent spels c, d ∈
C and ψ(c, d) = ∞ otherwise. The more commonly used
version of the homogeneity based affinity [30] is the standard
affinity ψσ(c, d) = e−ψ(c,d)2/σ2

, which is the composition of
ψ with the Gaussian function gσ(x) = e−x

2/σ2
. Note that,

by Corollary 2, ψ and ψσ are equivalent, independently of
the value of the parameter σ, since gσ is strictly decreasing
from [0,∞] onto [0, 1]. In particular, the parameter σ in the
definition of ψσ is non-essential from the FC segmentation
point of view.

C. FC segmentations for equivalent affinities
Fix an affinity κ : C × C → 〈L,�〉. To define fuzzy

connectedness segmentation of C, we need first to translate
the local measure of connectedness given by κ into the global
strength of connectedness. For this, we will need the notions
of a path and its strength. A path in A ⊆ C is any sequence1

p = 〈c1, . . . , cl〉, where l > 1 and ci ∈ A for every i =
1, . . . , l. (Notice that there is no assumption on any adjacency
of the consecutive spels in a path.) The family of all paths
in A is denoted by PA. If c, d ∈ A, then the family of all
paths 〈c1, . . . , cl〉 in A from c to d (i.e., such that c1 = c
and cl = d) is denoted by PAcd. The strength µκ(p) of a path
p = 〈c1, . . . , cl〉 ∈ PC is defined as the strength of its κ-
weakest link; that is, µκ(p)

def= min{κ(ci−1, ci) : 1 < i ≤ l}.

1Notice that the paths must have length greater than 1. We make this
requirement to ease some technical difficulties, while it creates no real
restriction as, in whatever we do, a “path” 〈c〉 can be always replaced by
a path 〈c, c〉.
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(Note that, if one follows the common practice of defining
κ(c, d) to be the minimal element of Lκ for any non-adjacent
c and d, then only paths with adjacent consecutive spels can
have non-minimal strength.) For c, d ∈ A ⊆ C, the (global)
κ-connectedness strength in A between c and d is defined as
the strength of a strongest path in A between c and d; that is,

µAκ (c, d) def= max
{
µκ(p) : p ∈ PAcd

}
. (1)

Notice that µAκ (c, c) = µκ(〈c, c〉) = 1κ. We will often refer to
function µAκ : C × C → L as a connectivity measure (on A)
induced by κ. For c ∈ A ⊂ C and a non-empty D ⊂ A, we
also define µAκ (c,D) def= maxd∈D µAκ (c, d). We will write µ
for µκ and µA for µAκ when κ is clear from the context. The
issue of why µAκ should be defined from κ by the procedure
described above is discussed in detail in [28]. Note that if κ
is a hard binary relation (i.e., when L = {0, 1}), then µCκ is a
relation (or, more precisely, its characteristic function) known
as a transitive closure of κ, which is defined as the set of
all pairs 〈c, d〉 ∈ C × C for which there exists a sequence
c = c0, c1, . . . , cm = d such that κ(ci, ci+1) = 1 for every
i < m.

(a) (b) (c)

(d) (e)
Fig. 1. Illustration of equivalent affinities. (a) A 2D scene — a CT slice of
a human knee. (b), (c) Connectivity scenes corresponding to affinities ψ and
ψσ (σ = 1), respectively, and the same seed spel (indicated by + in (a))
specified in a soft tissue region of the scene in (a). (d), (e) Identical AFC
objects obtained from the scenes in (b) and (c), respectively.

To define fuzzy objects delineated by FC segmentations, we
start with a family S of non-empty pairwise disjoint subsets
of C, where each S ∈ S represents a set of spels, known as
seeds, which will belong to the object generated by it. Also,
fix a threshold θ ∈ L, θ ≤ 1κ. For every S ∈ S, put W =⋃

(S \ {S}) and, similarly as in [18] (see also [29]), define
• PκSθ =

{
c ∈ C : θ � µCκ (c, S)

}
;

• PκSS =
{
c ∈ C : µCκ (c,W ) ≺ µCκ (c, S)

}
;

• P IκSS =
⋃∞
i=0 P

i,κ
SS , where sets P i,κSS are defined induc-

tively by the formulas P 0,κ
SS = ∅ and P i+1,κ

SS = P i,κSS ∪
{c ∈ C \ P i,κSS : µC\P

i,κ
SS

κ (c,W ) ≺ µCκ (c, S)}.
Then AFC, RFC, and IRFC segmentations of C are de-
fined, respectively, as Pθκ(S) = {PκSθ : S ∈ S}, Pκ(S) =
{PκSS : S ∈ S}, and PIκ(S) =

{
P IκSS : S ∈ S

}
. Now we can

formalize our previous claim that the fuzzy connectedness
segmentations (i.e., those obtained via AFC, RFC, and IRFC
algorithms) are unchanged if an affinity function is replaced
by an equivalent one.

Theorem 4: Let κ1 : C × C → 〈L1,�1〉 and κ2 : C × C →
〈L2,�2〉 be equivalent affinity functions and let S be a family
of non-empty pairwise disjoint subsets of C. Then for every
θ1 �1 1κ1 in L1, there exists a θ2 �2 1κ2 in L2 such that, for
every S ∈ S and i ∈ {0, 1, 2, . . .}, we have Pκ1

Sθ1
= Pκ2

Sθ2
,

Pκ1
SS = Pκ2

SS , and P i,κ1
SS = P i,κ2

SS . In particular, Pθ1κ1
(S) =

Pθ2κ2
(S), Pκ1(S) = Pκ2(S), and PIκ1

(S) = PIκ2
(S).

PROOF. First note that, for any paths p = 〈c1, . . . , cl〉 and
q = 〈d1, . . . , dm〉 from PC , we have

µκ1(p) �1 µκ1(q)
⇔ (∀j) (∃i) κ1(ci−1, ci) �1 κ1(dj−1, dj)
⇔ (∀j) (∃i) κ2(ci−1, ci) �2 κ2(dj−1, dj)
⇔ µκ2(p) �2 µκ2(q).

Similarly, for every a, c ∈ A ⊆ C and b, d ∈ B ⊆ C, we have

µAκ1
(a, c) �1 µ

B
κ1

(b, d)

⇔
(
∀p ∈ PAac

) (
∃q ∈ PBbd

)
µκ1(p) �1 µκ1(q)

⇔
(
∀p ∈ PAac

) (
∃q ∈ PBbd

)
µκ2(p) �2 µκ2(q)

⇔ µAκ2
(a, c) �2 µ

B
κ2

(b, d).

If, in addition, ∅ 6= W ⊆ A and S ⊆ B, then also

µAκ1
(a,W ) �1 µ

B
κ1

(b, S)

⇔ (∀c ∈W ) (∃d ∈ S) µAκ1
(a, c) �1 µ

B
κ1

(b, d)

⇔ (∀c ∈W ) (∃d ∈ S) µAκ2
(a, c) �2 µ

B
κ2

(b, d) (2)

⇔ µAκ2
(a,W ) �2 µ

B
κ2

(b, S).

Let a, b ∈ C be such that κ1(a, b) = minθ1�1κ1(x,y) κ1(x, y)
and put θ2 = κ2(a, b). Then Pκ1

Sθ1
=

{
c : θ1 �1 µ

C
κ1

(c, S)
}

={
c : κ1(a, b) �1 µ

C
κ1

(c, S)
}

=
{
c : κ2(a, b) �2 µ

C
κ2

(c, S)
}

=
Pκ2
Sθ2

. Similarly, Pκ1
SS =

{
c ∈ C : µCκ1

(c,W ) ≺1 µ
C
κ1

(c, S)
}

={
c ∈ C : µCκ2

(c,W ) ≺2 µ
C
κ2

(c, S)
}

= Pκ2
SS . The final equa-

tion we need to prove is P i,κ1
SS = P i,κ2

SS . This will be proved
by induction on i ≥ 0. For i = 0 this is true, since by
definition both sets are empty. So assume that for some i we
have P i,κ1

SS = P i,κ2
SS . Then P i+1,κ1

SS equals

P i,κ1
SS ∪ {c ∈ C \ P i,κ1

SS : µC\P
i,κ1
SS

κ1 (c,W ) ≺1 µ
C
κ1

(c, S)}

= P i,κ2
SS ∪ {c ∈ C \ P i,κ2

SS : µC\P
i,κ2
SS

κ1 (c,W ) ≺1 µ
C
κ1

(c, S)}

= P i,κ2
SS ∪ {c ∈ C \ P i,κ2

SS : µC\P
i,κ2
SS

κ2 (c,W ) ≺2 µ
C
κ2

(c, S)

= P i+1,κ2
SS ,

where the first equation follows from the inductive assump-
tions and the second from (2).

In summary, Theorem 3 says that for every affinity function
there is a standard affinity equivalent to it, while Theorem 4
says that for any two equivalent affinities we get the same FC
segmentations in each of AFC, RFC, and IRFC. To further
illustrate this, we present an example in Fig. 1 for AFC by
using two affinities ψ and ψσ defined at the end of Section II-
B. Figures 1(b) and (c) display the connectivity scenes Cκ =
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〈C, fk〉 for the 2D scene of Fig. 1(a), where for any c ∈ C
and the same fixed spel s ∈ C, fκ(c) = µCκ (c, s), where κ
is either ψ or ψσ . The resulting identical AFC objects are
displayed in (d) and (e) as binary scenes. Of course, different
thresholds were used in producing scenes (d) and (e) from
those in (b) and (c), respectively, which precisely makes our
point that segmented object information in Figures 1(b) and
(c) is identical.

Theorems 3 and 4 also imply that any result proved for the
FC segmentations in the context of standard affinities remains
valid for the affinities in our general setting. For example, the
following is a translation of some of the results from [18].
In what follows, if affinity κ is clear from the context, we
will drop the symbol κ from the object symbols PκSθ, PκSS ,
and P IκSS .

(a) (b) (c)

(d) (e) (f)
Fig. 2. (a) A 2D scene, same as in Fig. 1(a), with three indicated seeds. (b),
(c) Connectivity scenes corresponding to the two AFC objects indicated by s
and t. (d) The RFC segmentation for the three indicated objects. (e) The AFC
objects initiated with seeds s and t obtained with the threshold θ{s} < θ{t}

determined automatically by RFC. Although the result is a binary image, the
two objects are shown at two gray levels. The object indicated by seed s agrees
with its counterpart in (d). The smaller threshold caused the t-indicated object
to be slightly smaller than in 2d. (f) Same as (e) but with threshold θ{t}. The
object indicated by seed t agrees with its counterpart in (d). However, the
larger threshold caused the s-indicated object (grey) to leak to a big part of
the scene.

Corollary 5: Let κ : C×C → 〈L,�〉 be an arbitrary affinity
function.
(a) For any a, b, c ∈ A ⊆ C, if µA(b, c) ≺ µA(a, b), then

µA(a, c) = µA(b, c).
(b) (Robustness) Let S = {S1, . . . , Sm} be a family of

singletons, and for every i ∈ {1, . . . ,m}, let Ti ⊂ PSiS
be a singleton. If T = {T1, . . . , Tm}, then PTiT = PSiS
for every i ∈ {1, . . . ,m}.

(c) For any family S of pairwise disjoint non-empty subsets of
C, we have P ISS ∩ P IUS = ∅ for every distinct S,U ∈ S.

PROOF. This follows directly from our remark above and,
respectively, from [18, Proposition 2.1], [18, Proposition 2.2],
and [18, Theorem 2.4].

D. Relative fuzzy connectedness segmentation as absolute
fuzzy connectedness segmentation

In AFC, to obtain the FC object PκSθ, a threshold θ for the
strength of connectedness must be specified. This threshold is
obviated in defining RFC objects PκSS (see definition above)
simply by determining the membership of a spel c in an object
by its largest strength of connectedness with respect to the seed
sets assigned to the different objects. In this subsection, we
will show that the RFC segmentation can be viewed to some
extent as an AFC segmentation wherein the required threshold
is determined automatically.

Theorem 6: Let κ : C ×C → 〈L,�〉 be an arbitrary affinity
function and S be a non-empty family of pairwise disjoint,
non-empty sets of seeds in C. Fix an S ∈ S and let W =⋃

(S \ {S}). For every s ∈ S let θs = µCκ (s,W ). Then
PSS =

⋃
s∈S

⋃
θs≺θ P{s}θ.

PROOF. Note that, by Corollary 5(a), for every c, s, w ∈ C,

µCκ (c, w) ≺ µCκ (c, s) if and only if µCκ (s, w) ≺ µCκ (c, s).

Thus PSS = {c ∈ C : µCκ (c,W ) ≺ µCκ (c, S)} equals

{c ∈ C : (∃s ∈ S) (∀w ∈W ) µCκ (c, w) ≺ µCκ (c, s)}
= {c ∈ C : (∃s ∈ S) (∀w ∈W ) µCκ (s, w) ≺ µCκ (c, s)}
= {c ∈ C : (∃s ∈ S) µCκ (s,W ) ≺ µCκ (c, s)}
=

⋃
s∈S{c ∈ C : θs ≺ µCκ (c, s)}

=
⋃
s∈S

⋃
θs≺θ

{c ∈ C : θ � µCκ (c, s)} =
⋃
s∈S

⋃
θs≺θ

P{s}θ.

For an affinity κ : C × C → 〈L,�〉 and θ < 1κ, let θ+ be
the smallest element of Lκ = {κ(a, b) : a, b ∈ C} greater than
θ; that is, θ+ def= min{ρ ∈ Lκ : θ ≺ ρ}.

Theorem 6 has the nicest form when each object is initiated
by just one single seed spel.

Corollary 7: Let 〈C, κ,�〉 be an arbitrary affinity structure
and S be a non-empty family of singletons in C such that
µCκ (s, t) 6= 1κ for every distinct S = {s} and T = {t} from S.
For S = {s} ∈ S, let θS = µCκ (s,

⋃
(S \ {S})). Then PSS =

PSθ+S
for every S ∈ S. In particular, Pκ(S) = {PSθ+S : S ∈ S}.

PROOF. Let S = {s} ∈ S. Then θS = θs and, by Theorem 6,
we have PSS =

⋃
θS≺θ PSθ =

{
c ∈ C : θS ≺ µCκ (c, S)

}
={

c ∈ C : θ+S � µCκ (c, S)
}

= PSθ+S
.

Notice that if for a family S containing only single-
tons there exist distinct S, T ∈ S such that µCκ (S, T ) def=
maxs∈S µCκ (s, T ) = 1κ, then PSS = PTS = ∅. That is, in this
case, S and T are in the same object, and therefore, the sets
that contain S and T and that separate them in the FC sense are
obviously empty. Thus, in all practical cases we are interested
only in the families S of seeds for which µCκ (S, T ) 6= 1κ for
any distinct S, T ∈ S. Thus, this assumption in Corollary 7
does not really restrict its usefulness.

If S from Corollary 7 has just two elements, say S =
{{s}, {t}}, then θ{s} = θ{t} and for θ = θ+{s} we have
Pκ(S) = {PSθ : S ∈ S} = Pθκ(S). Thus, in this case, the
RFC segmentation Pκ(S) is just an AFC segmentation Pθκ(S),
where θ was automatically set by the RFC procedure. How-
ever, when there are more than two object involved in RFC and
S contains three or more singletons, the thresholds θ+S , S ∈ S,
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need not be equal. In this case each PSS from Pκ(S) is an AFC
object PSθ+S , where the different thresholds are automatically
tailored for the different objects under consideration. That is
the beauty of RFC compared to AFC.

To illustrate this property of RFC vis-a-vis AFC, in Fig. 2,
we consider three objects. The first two objects, denoted by
seeds s and t, correspond to soft tissue regions and are really
our objects of interest in this example. The third object is the
rest of the background and is denoted by seed u. The 2D scene
is the one employed in Fig. 1. Identical seed spels denoted by
+’s in Fig. 2(a) were specified for AFC and RFC. The two
connectivity scenes corresponding to the two AFC objects are
displayed in Fig. 2(b) and (c), and the resulting AFC objects
obtained with two different thresholds θ+S from the scenes in
(b) and (c) are shown in Fig. 2(e) and (f). The RFC objects
obtained appear in Fig. 2(d), which are identical to the AFC
objects in (e) and (f).

Note also that the main reason we could represent RFC
objects in terms of AFC objects was that two appearances
of c in the inequality µCκ (c, w) ≺ µCκ (c, s) could be reduced
to one: µCκ (s, w) ≺ µCκ (c, s), as both these inequalities are
equivalent. In the case of IRFC, the defining inequality is
µAκ (c, w) ≺ µCκ (c, s) for an appropriate A ⊂ C, and there is no
equivalent form of this inequality with just one appearance of
c. Thus, no natural AFC representation of IRFC object seems
possible. Although increasing sophistication from AFC to RFC
to IRFC has been previously demonstrated qualitatively via
segmentation experiments [14], [16], [18], in this section we
have now given a mathematical justification of that behavior.

III. TWO COMMONLY USED AFFINITIES AND THEIR
NATURAL DEFINITIONS

In this section, we will discuss the definitions of two
main classes of affinities that have been employed in the
FC literature, namely, homogeneity based and object feature
based, and examine the connectivity measures they induce.

From now on, we will work with a fixed digital space
〈Zn, α〉 and a scene C = 〈C, f〉. Unless otherwise specified,
we will assume that the adjacency relation α is a hard relation
defined as α(c, d) = χ

[0,1](||c − d||); that is, α(c, d) = 1
when ||c − d|| ≤ 1 and α(c, d) = 0 for ||c − d|| > 1,
where ||c − d|| represents a distance between c and d. If we
use the Euclidean distance, then α represents 4-adjacency in
two-dimensional space and 6-adjacency in three-dimensional
space. Note that fixing adjacency has influence only on our
discussion of the definition of affinity function and has no
direct influence on any FC segmentation outcome, as the
definition of the global connectivity measure, µC , depends
only on the affinity function. From this point on, we will drop
the superscript from µC , so that symbol µκ(c, d) will stand
for µCκ (c, d).

In what follows, we will assume that the intensity function
has scalar values only, f : C → R. Also, to make our pre-
sentation more transparent, we will assume that f represents
not necessarily the original scene intensity function, but rather
a result of any filtering that could have been done on such
acquired scene. In particular, we will not use any scale based

approach to the affinity definitions (see [30]), since any scale-
based affinity is essentially equal to a non-scale-based affinity
applied to an appropriately filtered version of the intensity
function. (This is precisely true for the object feature based
affinities used in the literature. In the case of homogeneity
based affinities, the affinity obtained by what we suggest above
is slightly different from that defined in [30]; however, these
two versions are very close to each other.)

The range of the two kinds of the affinity functions de-
fined in the following sections will be the space 〈L,�〉 =
〈[0,∞],≥〉. In other words, the order relation � will be the
reversed standard order relation ≥. In such a setting, “�-
stronger” means “less than” in terms of the standard order ≤.
Also, the meanings of the terms min and max are switched:
“min in terms of �” means “max in terms of ≤,” and “max
in terms of �” becomes “min in terms of ≤.”

A. Homogeneity based affinity

Intuitively, this function, denoted ψ(c, d), is defined as the
maximum of |f ′(x)|, with x between c and d (where f ′ is the
derivative of f ): the higher the magnitude of the slope of f
between c and d is, the weaker is the affinity (connectivity)
between c and d. Of course, there is more than one way to
interpret the symbol |f ′(x)|. In this section we will interpret
this as a magnitude of the directional derivative D−→

cd
f(x) in

the direction of the vector
−→
cd. This agrees with the standard

FC approach used in the research conducted so far. (See
e.g. [8], [12], [17], [20], [21].) Alternatively, it is possible to
treat |f ′(x)| as a gradient magnitude. True gradient induced
homogeneity based affinity will be incorporated in our future
work. (See e.g. [25].)

The value |f ′(x)| = |D−→
cd
f(x)| is best approximated by

a difference quotient ψ0(c, d) =
∣∣∣ f(c)−f(d)

||c−d||

∣∣∣. Although this
expression has no sense for c = d, it should be clear that we
should define ψ0(c, c) as equal to 0, the “highest” possible
connectivity in this setting. (Recall that “highest” in terms of
� defined as ≥ translates into “least” in terms of the standard
order ≤. That is, the greater ψ0 is, the weaker is the affinity
between c and d.) Is the definition ψ0(c, d) =

∣∣∣ f(c)−f(d)
||c−d||

∣∣∣ what
we are looking for?

Certainly this is not a local measurement of connectedness
when ||c− d|| is large. In this case, the difference quotient is
a poor approximation of the definition of the derivative. We
also have a better way of estimating the highest slope on the
road from c to d: crawl from c to d along a path with steps of
length 1, estimating the slope of each step separately. Because
of this, it makes sense to consider the number ψ0(c, d) as a
good value for ψ(c, d) only when ||c − d|| ≤ 1, in all other
cases we should assign to it it the worst possible value; that
is, ∞. This leads to the definition ψ(c, d) = ψ0(c, d)/α(c, d);
that is,

ψ(c, d) =
{
|f(c)− f(d)| for ||c− d|| ≤ 1

∞ otherwise. (3)

It is easy to see that ψ satisfies our definition of affinity
function. It should be stressed here that such a function
approximates only the magnitude of the directional derivative



K.C. CIESIELSKI, J.K. UDUPA, AND Y. ZHUGE, AFFINITY FUNCTIONS IN FUZZY CONNECTEDNESS BASED IMAGE SEGMENTATION NOV. 2006 7

of f in the direction
−→
cd, and gives no information on the slope

of f in a direction perpendicular to
−→
cd.

If one likes to express this affinity by an equivalent standard
affinity, our definition of ψ can be replaced by g1(ψ(c, d)),
where gσ is a Gaussian function gσ(x) = e−x

2/σ2
. Notice

that if α(c, d) = χ
[0,1](||c − d||), as we defined earlier,

then g1(ψ(c, d)) = α(c, d) · g1(|f(c) − f(d)|), the formula
defining purely homogeneity based affinity in [30, pp. 149–
150]. (We use the weights w1 = 0 and w2 = 1.) How-
ever, if α is an arbitrary fuzzy adjacency relation, then
the formula α(c, d) · g1(|f(c) − f(d)|) disagrees with the
derivative intuition. For example, if α(c, d) = g1(||c − d||),
then α(c, d) · g1(|f(c)− f(d)|) = e−(|f(c)−f(d)|2+||c−d||2) =
g1(

√
|f(c)− f(d)|2 + ||c− d||2), rather than the more ap-

propriate g1

(
|f(c)−f(d)|
||c−d||

)
(possibly multiplied by number

α(c, d)). In what follows, we will use the homogeneity based
affinity ψ(c, d) as defined in (3), rather than g1(ψ(c, d)), as it
is more intuitive, and, by Corollary 2, these two affinities are
equivalent. We refer the reader to Fig. 1 for an illustration
demonstrating the equivalence of ψ(c, d) and gσ(ψ(c, d)).
Thus, the parameter σ in the homogeneity based affinity
ψσ = gσ ◦ ψ is of no consequence for the FC algorithms,
although in all FC literature, this σ has been considered as a
parameter of the method in the description of the methods and
their evaluation.

The homogeneity based connectivity measure, µψ = µCψ ,
can be elegantly interpreted if our scene C = 〈C, f〉 is
considered as a topographical map in which f(c) represents
an elevation at the location c ∈ C. Then, µψ(c, d) is the
highest possible step (a slope of f ) that one must make
in order to get from c to d with each step on a location
(spel) from C and of unit length. In particular, the object
Pψsθ = {c ∈ C : θ ≥ µψ(s, c)} represents those spels c ∈ C
which can be reached from s without ever making a step higher
than θ. Note that all we measure in this setting is the actual
change of the altitude while making the step. Thus, this value
can be small, even if the step is made on a very steep slope,
as long as the motion is approximately perpendicular to the
hill-side gradient. On the other hand, the measure of the same
step would be large, if measured with some form of gradient
induced homogeneity based affinity!

B. Object feature based affinity

There are two principal differences between the object
feature based and the homogeneity based affinities. (1) The
definition of the object feature based affinity requires some
prior knowledge on the objects we like to uncover, while
the definition of the homogeneity based affinity is completely
independent of such knowledge. (2) The homogeneity based
affinity is represented in terms of (the approximation of) the
derivative f ′ of the intensity function f , while the object
feature based affinity is defined directly from the intensity
function f . In the rest of this subsection, we will consider
object feature based affinity for the cases of single and multiple
objects separately.

1) Object feature based affinity for one object: We will start
with the definition of the object feature based affinity, denoted

φ(c, d), in terms of only a single object O. To define φ, we
need to start with an approximate expected (average) intensity
value m for the spels in the object. We will also assume that
we have a standard deviation σ > 0 of the distribution of
intensity for this object. Then, the intuitive definition of affinity
φ is just ϕ̄0(c) = |f(c) − m|. In other words, the smaller
the value of ϕ̄0(c) is, the closer is c’s intensity to the object
intensity, and the better c is connected to object O. (Since
the range of φ is 〈L,�〉 = 〈[0,∞],≥〉, the notion of “�-
stronger” translates into “smaller in the ≤ sense.”) It is also
convenient, for facilitating a definition of the object feature
based affinity for multiple objects, to rescale this formula to
ϕ̄(c) = |f(c) − m|/σ. (This is related to the Mahalanobis
distance [35].) Now, one may attempt to define the strength
of a path p = 〈c1, . . . , cl〉 as

µϕ̄(p) = maxi=1,...,l ϕ̄(ci) (4)

and the connectivity measure as µϕ̄(c, d) = minp∈PC
cd
µϕ̄(p).

(Once again, the use of inverse inequality ≥ as � makes the
≤-largest value to be the �-smallest value.) However, since
in this definition we do not assume that the consecutive spels
in a path are adjacent, there is nothing local in this definition.
In particular, if f(c) = f(d) = m, then µϕ̄(〈c, d〉) = 0 is not
a good connectivity measure: the best possible connectivity in
µϕ̄-sense, µϕ̄(〈c, d〉) = 0, means only that the intensities at
both spels equal m, and it may still happen that such spels are
spatially separated by spels with very different intensities; on
the other hand, if distinct c and d are adjacent (next to each
other), then the fact that f(c) = f(d) = m is very informative
— such spels are indeed perfectly connected. The situation
can be rescued if one considers only the paths from the family
P̄cd of all paths from c to d in which the consecutive spels
are distinct and adjacent. Then, for c 6= d, the formula

µϕ̄(c, d) = minp∈P̄cd
µϕ̄(p) (5)

agrees with our intuition and with the formula for µφ defined
below. (See (7).) So, why can we not we use formula (5)
as a definition of µφ? Although we could, there are two
inconveniences connected with this approach: first we would
need to replace PCcd with P̄cd; second, the value of µϕ̄(p) is
not defined by using any affinity function (ϕ̄(ci) cannot be
treated as affinity, since it is a function of one variable), so
the general results on the FC theory could not be applied to
a connectivity measure so defined. Moreover, affinity formula
(5) carries some other dangers, which we will mention below.

Thus, we will define φ properly, as a function on the pairs
〈c, d〉 of spels. We like to define φ in such a way that, for every
p ∈ P̄cd, the strength µφ(p) of p is equal µϕ̄(p). To ensure
this, for distinct adjacent c and d, φ(c, d) must be defined as
max{ϕ̄(c), ϕ̄(d)} = max{|f(c) − m|, |f(d) − m|}/σ. Thus,
in general, we define φ(c, d) = max{ϕ̄(c), ϕ̄(d)}/α(c, d); that
is, φ(c, d) = 0 for c = d, φ(c, d) = |f(c)−m|, |f(d)−m|}/σ,
when ||c − d|| = 1, and φ(c, d) = ∞ otherwise. Clearly
function φ is an affinity function in our sense. Moreover,

µφ(p) = max
i=1,...,l

ϕ̄(ci) for every p = 〈c1, . . . , cl〉 ∈ P̄cd, (6)

since µφ(p) = maxi max{ϕ̄(ci), ϕ̄(ci+1)} = maxi ϕ̄(ci). In
particular, by (4), µφ(p) = µϕ̄(p) for every p ∈ P̄cd. Notice
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also that for every c 6= d function µφ agrees with µϕ̄:

µφ(c, d) = µϕ̄(c, d), (7)

since µφ(c, d) = minp∈PC
cd
µφ(p) = minp∈P̄cd

µφ(p) =
minp∈P̄cd

µϕ̄(p) = µϕ̄(c, d). Here the first and the last equa-
tions come from (1) and (5), respectively. The third equation
follows from the above argument, while the second one is
justified by the fact that for every q ∈ Pcd either µφ(q) = ∞
(when q contains non-adjacent consecutive spels) or µφ(q) =
µφ(p) for p ∈ P̄cd obtained from q by collapsing all constant
consecutive subsequences of q to a single occurrence of the
repeated value.

Note that, in reference [30], for distinct adjacent spels
c and d the authors define φ(c, d) as ϕ̄

(
f(c)+f(d)

2

)
=∣∣∣ f(c)+f(d)

2 −m
∣∣∣ in place of max{ϕ̄(c), ϕ̄(d)}. Although this

caries similar intuitions, the averaging of the values of f(c)
and f(d) looses information on how far the intensity of each
spel is from m. For example, if f(c) = m+r and f(d) = m−r
for some r > 0, then ϕ̄

(
f(c)+f(d)

2

)
= 0 and µφ(〈c, d〉)

associated with such affinity equals 0, which does not satisfy
(6) and is counterintuitive for large values of r.

Once again, we can replace φ(c, d) with g1(φ(c, d)) for
some Gaussian-like function to get an equivalent affinity in
the standard form. In particular, for g1(x) = e−x

2
this leads

to ϕ̄(c) = e−
(f(c)−m)2

σ2 , one of the formulas used in [30]. (See
also [8], [14], [16], [19].)

The object feature based connectivity measure of one object
has also a nice topographical map interpretation. For under-
standing this, consider a modified scene C̄ = 〈C, |f(·) −m|〉
as a topographical map. Then the number µφ(c, d) represents
the lowest possible elevation (in C̄) which one must reach
(a mountain pass) in order to get from c to d, where each
step is on a location from C and is of unit length. Notice
that µφ(c, d) is precisely the degree of connectivity as defined
by Rosenfeld [31]–[33]. (Compare also [34], where it is used
under the name pass value.)

2) Object feature based affinity for multiple objects:
The single object connectivity measure µφ can be useful
in object definition only if we define it by using absolute
connectedness definition, AFC. To find an object via RFC or
IRFC methods, we need to have µφ defined for at least two
objects. So, suppose that the scene consists of n > 1 objects
with expected average intensities m1, . . . ,mn and standard
deviations σ1, . . . , σn, respectively. Then we have n different
object feature based affinities φ̂i(c, d), defined for c 6= d

as max{ϕ̄i(c), ϕ̄i(d)}/α(c, d), where ϕ̄i(c) = |f(c)−mi|
σi

, and
their respective connectivity measures µφ̂i

. We like to combine
affinities φ̂i to get the cumulative object feature based affinity
φ. (Obtaining a single affinity at the end becomes essential
in order to fulfill the theoretical requirements that lead to
dynamic programing as the efficient computational tool in all
of AFC, RFC, and IRFC.) But how to define such a φ? We
will build our intuition for such a φ by assuming that each
object Oi is generated by a single seed si with f(si) = mi.
Although this situation is not general, any discussion of this
subject must include this important case. Therefore, we will

decide on the form of a definition of φ in this situation first,
and then argue that the notion we come up with has the desired
properties without requiring any extra assumptions.

First note that σi’s help us to compare different φ̂i’s. Specif-
ically, each number ϕ̄i(c) measures the distance |f(c) −mi|
of the image intensity f(c) from the average intensity mi of
the i-th object. However, if we like to compare the numbers
ϕ̄i(c) for different i’s, we need to fix a reasonable measuring
unit. The most natural measuring unit for ϕ̄i is the associated
standard deviation σi: with our definition ϕ̄i(c) = |f(c)−mi|

σi
,

the equation ϕ̄i(c) = K means that the intensity f(c) at c
is K standard deviations apart from mi (like the Mahalanobis
distance [35]). Then, equation ϕ̄1(c) = ϕ̄2(c) caries the correct
intuition: f(c) is the same number of σi’s apart from mi for
i = 1 and i = 2.

Now, by equation (6), if p = 〈c1, . . . , cl〉 ∈ P̄sic and si 6= c,
then the strength of the i-th object connectivity between si
and c on this path is given by µφ̂i

(p) = maxt=1,...,l ϕ̄i(ct).
Similarly, the strength of the j-th object connectivity between
sj and c 6= sj on a path q = 〈d1, . . . , d`〉 ∈ P̄sjc is
equal to µφ̂j

(q) = maxt=1,...,` ϕ̄j(dt). Therefore, by the
analysis given in the above paragraph, the i-th object con-
nectivity strength µφ̂i

(p) of p exceeds (in the � sense)
the j-th object connectivity strength µφ̂j

(q) of q provided
µφ̂i

(p) = maxt=1,...,l ϕ̄i(ct) < maxt=1,...,` ϕ̄j(dt) = µφ̂j
(q).

So, by (5), c is better φ̂i-connected to si than it is φ̂j-connected
to sj precisely when µφ̂i

(si, c) < µφ̂j
(sj , c).

For some of the key results of FC theory, which eventually
determine the good properties of the FC objects, we need to
arrive at one affinity defined over the whole scene. We shall
examine this issue at the higher level in Section IV. In this
section, our goal is to focus on a lower level, that is, to study
how to combine the affinities φ̂i into a single object feature
based affinity φ so that it preserves the information given by
all affinities φ̂i to the fullest possible extent. (The reason why
we cannot use two different affinities and define an object
via inequality µφ̂i

(si, c) < µφ̂j
(sj , c) is explained below.)

In particular, since for every i, the value of µφ(si, c) should
approximate, as much as possible, the i-th object connectivity
strength between si and c, it would be most desirable if we
could have insured that µφ(si, c) = µφ̂i

(si, c). In particular,
we would like to insure that µφ(si, c) < µφ(sj , c) if and
only if µφ̂i

(si, c) < µφ̂j
(sj , c). Unfortunately, we will see

below that there is no way to have such a strong property,
since in the process of combining φ̂i’s we always lose some
information. Nevertheless, at the very least, we should insure
that inequality µφ(si, c) < µφ(sj , c) never happens when
µφ̂i

(si, c) ≥ µφ̂j
(sj , c). This can be expressed as

µφ(si, c) < µφ(sj , c) implies µφ̂i
(si, c) < µφ̂j

(sj , c). (8)

This implication represents the most fundamental property
that we will impose on the definition of φ. In particular, in
what follows we will define the object based affinity φ which
satisfies (8) under some simple assumptions connecting each
sk with mk. We will also argue (see Example 12 in Appendix)
that other seemingly natural definitions of φ, like the one used
in [14] (compare also [30]), do not satisfy this property.
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Another way to look at property (8) is that, when n = 2,
it insures that the RFC object Pφsi{sj} is contained in a set
Oij = {c ∈ C : µφ̂i

(si, c) < µφ̂j
(sj , c)}. One may wonder

whether we should consider sets Oij (or their intersections
Oi =

⋂
j 6=iOij , if n > 2) as our objects. The argument

against this consideration can be given at two levels. The
simple one is that there is a very nice theory for the objects
defined with a single connectivity measure and this theory does
not extend, in general, to sets defined as in Oij . (Of course,
IRFC sets are also defined in this form, but the different
connectivity measures used there have a very specific form.)
A slightly deeper argument is that the sets Oij do not have
nice properties. For example, it was proved in [14] that, unlike
Pφsi{sj}, the object Oij does not have the robustness property
(which says that, if in the definition of an object, the generating
seed si is replaced by any other spel from the object, then the
new object obtained that way is equal to the original one)
and path connectedness property (which says that for any
two spels in the object, the strongest path connecting these
spels is contained in the object). In fact, the failure of path
connectedness for Oij can also be seen in the situation from
Example 12 (c, s2 ∈ O21, but if f(b) = 33, then neither b nor
any other spel belongs to O21; so, O21 is not connected).

The idea behind the formula for φ is to define φ(c, d) as
the best among all numbers φ̂i(c, d). One possible choice
for φ(c, d) is mini=1,...,n φ̂i(c, d). The problem with this
choice is that we never know which value of φ̂i(c, d) was
used to determine φ(c, d). Since the values of φ̂i(c, d) =
max{ϕ̄i(c), ϕ̄i(d)}/σi are the most valuable when this num-
ber is small and because difficulties occur when φ̂i(c, d) =
φ̂j(c, d) for i 6= j, we will eliminate the information in ϕ̄i(c)
when this value exceeds ϕ̄j(c) for some j. This is made formal
below.

Fig. 3. The graphs of three functions ϕ̄i with m1 = 0, m2 = 7, m3 = 10,
σ1 = 0.5, σ2 = 1, and σ3 = 2. We have δ31 = 2 < δ21 , leading to
I1 = (−2, 2). Also, ε2 = δ32 = 1, so I2 = (6, 8) and ε3 = δ23 = 2 leading
to I3 = (8, 12).

For distinct i, j ∈ {1, . . . , n}, let δji ≥ 0 be the largest
number with the property that |x−mi|

σi
<

|x−mj |
σj

for every
x ∈ (mi− δji ,mi+ δji ). (If σi = σj , then δji is just half of the
distance between mi and mj .) Thus, if xji ∈ {mi−δji ,mi+δ

j
i }

is between mi and mj , then for each c ∈ C

ϕ̄i(c) <
|xj

i−mi|
σi

= δj
i

σi
= |xj

i−mj |
σj

< ϕ̄j(c) (9)

provided |f(c) − mi| < δji . Let εi = minj 6=i δ
j
i and Ii =

(mi − εi,mi + εi). Then intervals Ii, i ∈ {1, . . . , n}, are

pairwise disjoint. Function ϕi is defined as a truncation of ϕ̄i
to the interval Ii, that is, by a formula

ϕi(c) = ϕIi
i (c) =

{
ϕ̄i(c) for f(c) ∈ Ii
∞ otherwise.

Then ϕi(c) < ∞ implies f(c) ∈ Ii = (mi − εi,mi + εi).
Fig. 3 gives an example of the graphical representation for
numbers δji and intervals Ii. For c 6= d put φi(c, d) =
max{ϕi(c), ϕi(d)}/α(c, d); that is, φi(c, d) = 0 when c = d,
φi(c, d) = max{ϕi(c), ϕi(d)} for ||c−d|| = 1, and φi(c, d) =
∞ otherwise, and let

φ(c, d) = mini=1,...,n φi(c, d). (10)

We define µφ(p) for a path p and a connectivity measure
µAφ according to our general method. The following theorem
shows that φ so defined satisfies (8) we promised. The proof
of this theorem and the associated machinery are provided in
Appendix Section VII.

Theorem 8: Fix i ∈ {1, . . . , n} and c, si, sj ∈ C such that
f(si) /∈

⋃
k 6=i Ik. If µφ(si, c) < µφ(sj , c), then µφ̂i

(si, c) <
µφ̂k

(sj , c) for every k ∈ {1, . . . , n}.
The role of a seed si is not only to indicate an approximate

position of an object but also to indicate its approximate
average intensity mi. This is the only way to insure that si
indicates the correct object. Thus, if one allows the situation
in which si ∈ Ij for some j 6= i, then si would really
represent j’s object and µφ(si, c) would be represented by
µφ̂j

(si, c) rather than by µφ̂i
(si, c). Not surprisingly, in such

a situation, the conclusion of the theorem cannot be expected.
This explains our assumption f(si) /∈

⋃
k 6=i Ik. In fact, we

could as well assume f(si) ∈ Ii, as otherwise (i.e., when f(si)
belongs to no Ik) µφ(si, c) = ∞ for every c, so µφ(si, c)
caries no valuable information, and the conclusion of the
theorem is satisfied in void.

Clearly, truncating each ϕ̄i to ϕi = ϕIi
i is causing the

loss of some information. In fact, the most common def-
inition of φ used in the literature till now, see e.g. [14],
coincides with ours if one drops the matter of truncation:
define φ̄(c, d) = mini=1,...,n φ̄i(c, d), where φ̄i(c, d) =
max{ϕ̄i(c), ϕ̄i(d)}/α(c, d) for c 6= d. Then µφ̄ is defined as
usual. Clearly, at the first glance it seems that affinity φ̄ is
superior to its truncated version φ defined above and that the
information truncation makes the ability to distinguish among
objects weaker. Although, to some extent, this is a legitimate
concern, it should be noted that the objects obtained with the
use of φ̄ may be bigger than those obtained with the use
of φ. However, since φ̄ is not required to satisfy (8), it is
possible that a spel c is assigned to object P φ̄siθ

while it truly
belongs to another object. (See Example 12.) Thus, under the
circumstances, we believe that it is better to leave c unassigned
to any object, rather than to run into the risk of assigning it
to an incorrect object.

Another possible way for defining object feature based
connectivity, µϕ̄, is to put ϕ̄(c) = mini=1,...,n ϕ̄i(c) and define
it as in (4) and (5). Although µϕ̄ is equal to µφ̄ when n = 1,
in general this is not the case. This is best seen in Example 11
in Appendix, which fully discredits µϕ̄ as a valid definition
of an object feature based connectivity measure. Example 12
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shows that the motivational implication (8) fails for µφ̄. The
algorithm for computing object feature based affinity φ as
defined in (10) is summarized below.

Algorithm φAFFINITY

Input: Scene C = 〈C, f〉, number n ≥ 1 of objects’ to be
delineated, and objects expected average intensities
m1, . . . ,mn together with their respective standard
deviations σ1, . . . , σn.

Output: The scene 〈C × C, φ〉 representing object feature
based affinity φ as defined in (10).

Auxiliary
Data
Structures:

The sequence δ1, . . . , δn of radii of the trunca-
tion intervals. Auxiliary variables x, y, and a
sequence φ1, . . . , φn.

begin
1. initialize all δi’s to ∞;
2. for i = 1 to n do
3. for j = 1 to n do
4. if j 6= i then
5. set x = mjσi+miσj

σi+σj
;

6. set δi = min{δi, |x−mi|};
7. endif ;
8. endfor;
9. endfor;

10. initialize all φ(c, d) with c 6= d ∈ C as ∞,
and as 0 for c = d ∈ C;

11. for all distinct adjacent c, d ∈ C do
12. for i = 1 to n do
13. if |f(c)−mi| < δi then

set x = |f(c)−mi|
σi

else set x = ∞;
14. if |f(d)−mi| < δi then

set y = |f(d)−mi|
σi

else set y = ∞;
15. set φi = max{x, y};
16. endfor;
17. set φ(c, d) = mini=1,...,n φi;
18. endfor;
19. output 〈C × C, φ〉;

end
In steps 1–9 the algorithm calculates the radii δi’s. Number

x = mjσi+miσj

σi+σj
constitutes the solution of the equation

|x−mi|
σi

= |x−mj |
σj

when x is between mi and mj . If σi 6= σj ,
this equation has also another solution x′ on the other side of
mi. However, we always have |x − mi| < |x′ − mi|, so δji
from (9) is always equal |x −mi|. Note also that for n = 1,
the resulted radius δ1 is correctly calculated as ∞.

In steps 12–17, the algorithm calculates the value of φ(c, d)
for distinct adjacent c and d. Number x calculated in step 13
represents ϕi(c), while y from step 14 is equal ϕi(d). Number
φi from step 15 is equal φi(c, d). Note that, for non-adjacent
c and d, the algorithm returns φ(c, d) = ∞.

C. Homogeneity versus object feature based affinity

First note that the homogeneity based connectivity measure
µψ and the object feature based connectivity measure µφ,
although related (as function f is related to its derivative f ′),
behave quite differently. For example, µψ , unlike µφ, is not
very sensitive to the slow background intensity variation often

found in medical images as an artifact. To see this, imagine
that the image consists of a long straight tube (say an artery)
with the intensity of each spel in a tube around 10, and the
intensity of each spel outside the tube around 20. Now, assume
that a slow (spatially) changing artifact is applied to the image.
This artifact is often multiplicative in nature. For simplicity,
assume that it is additive and that it changes along the length
of the tube from 0 to 20. Then, the beginning of the tube
will have intensity around 10, while its end will have a value
around 30. Now, the artifact we added changes little the value
of µψ , so the entire tube can still be easily obtained as Osθ
or Ost if one uses µψ as a connectivity measure. On the other
hand, if s is a seed located at the beginning of the tube and
Osθ = {c ∈ C : µφf(s)(s, c) ≤ θ} contains a spel t from
the end of the tube, then θ ≥ µφf(s)(s, t) ≈ 20. Therefore,
Osθ must contain also many spels outside the tube, since for
any spel c outside the tube close to the beginning, we have
f(c) ≈ 20, so µφf(s)(s, c) ≈ 10 < θ.

On the other hand, if a scene C contains seeds s and t with
|f(s) − f(t)| being large, it still may happen that there is a
long path p from s to t along which the intensity changes
very slowly. Then µψ(s, t) ≤ µψ(p) is very small, which
makes it nearly impossible to distinguish s and t by means
of homogeneity based connectivity measure alone. However,
since µφ(s, t) is large, we can easily distinguish s and t with
the help of object feature based connectivity measure.

As pointed out in [30], these two concepts — one related to
homogeneity (a derivative f ′(c) concept) and another related
to the intensity f(c) — are fundamental to any segmentation
methods that are based purely on information derived from the
given image.

IV. HOW TO COMBINE DIFFERENT AFFINITIES?

In this section, we will discuss the issue of how to combine
two or more different affinities of the sort described in the
previous section into one affinity. We will also examine which
parameters in the definitions of the combined affinity are
redundant, in the sense that their change leads to an equivalent
affinity.

A. Affinity combining methods

Assume that for some k ≥ 2 we have affinity functions
κi : C ×C → 〈Li,�i〉 for i = 1, . . . , k. For example, we can
have k = 2, κ1 = ψ, and κ2 = φ. The most flexible way of
combining all these affinities into a single affinity κ is to put
κ(c, d) = 〈κ1(c, d), . . . , κk(c, d)〉 and define an appropriate
linear order � on L = L1 × · · · × Lk. To understand this
formalism better, we will start with the following examples,
which also constitute our practical approach to the affinity
combining problem.

Example 9: (Weighted Averages) Assume that all linear
orderings Li are equal to the same ordering 〈L0,�0〉 which
is either 〈[0,∞],≥〉 or 〈[0, 1],≤〉 and fix a vector w =
〈w1, . . . , wk〉 of numbers from [0, 1] (weights) such that
w1 + · · · + wk = 1; we allow a weight wi to be equal to
0 (meaning “ignore influence of κi”) assuming that 0 ·∞ = 0
and 00 = ∞0 = 1.
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Additive Average: Let haddw (a) = w1a1 + · · ·+wkak for a =
〈a1, . . . , ak〉 ∈ (L0)k. If a ≤addw b ⇔ haddw (a) �0 h

add
w (b),

then κ : C × C → 〈L,≤addw 〉 is equivalent to κaw : C × C →
〈L0,�0〉 defined as κaw(c, d) = haddw (κ1(c, d), . . . , κk(c, d)).
Multiplicative Average: Let hmulw (a) = aw1

1 · · · awk

k for a =
〈a1, . . . , ak〉 ∈ (L0)k. If a ≤mulw b ⇔ hmulw (a) �0 h

mul
w (b),

then κ : C × C → 〈L,≤mulw 〉 is equivalent to κmw : C × C →
〈L0,�0〉 defined as κmw(c, d) = hmulw (κ1(c, d), . . . , κk(c, d)).

Notice that, for k = 2, the affinities κaw = w1κ1+w2κ2 and
κmw = κw1

1 κw2
2 have been already considered in [30]. Recall

that the lexicographical order ≤lex on L = L1 × · · · × Lk is
defined for distinct a = 〈a1, . . . , ak〉,b = 〈b1, . . . , bk〉 ∈ L as

a <lex b ⇔ ai ≺i bi, where i = min{j : aj 6= bj}.

Example 10: (Lexicographical Order) Affinity function
κlex : C × C → 〈L,≤lex〉 establishes the strongest possible
hierarchy between the coordinate affinities κi: in establishing
whether κlex(a, b) ≤lex κlex(c, d), the values κi(a, b) and
κi(c, d) are completely irrelevant, unless κj(a, b) = κj(c, d)
for all j < i, in which case κi(a, b) ≺i κi(c, d) implies
κlex(a, b) <lex κlex(c, d).

Notice that κlex cannot be expressed in the form of
h(κ1, . . . , κk) for any continuous function on [0, 1]k or on
[0,∞]k. In what follows, we will restrict our attention to the
situation when k = 2. In this case the lexicographical order is
defined as 〈a1, a2〉 <lex 〈b1, b2〉 provided either a1 ≺1 b1 or
a1 = b1 and a2 ≺2 b2. Notice, that the lexicographical order
approach is quite appealing in case when κ1 = ψ and κ2 = φ
as the decision whether µκ(c, s) ≤lex µκ(c, t) is hierarchical
in nature: if µψ(c, s) < µψ(c, t), then µκ(c, s) ≤lex µκ(c, t)
independent of the values of µφ(c, s) and µφ(c, t); only when
the homogeneity based connectivity measure cannot decide
the matter, that is, when µψ(c, s) = µψ(c, t), we decide on
the direction of ≤lex between µκ(c, s) and µκ(c, t) based on
the direction of �2 between µφ(c, s) and µφ(c, t). Thus, we
treat the homogeneity based connectivity measure as dominant
over object feature based connectivity measure. However, there
is more in it. If µψ(c, s) = µψ(c, t), then we decide about
µκ(c, s) ≤lex µκ(c, t) only along the paths p ∈ Pcs and
q ∈ Pct with µψ(p) = µψ(q) = µψ(c, s). Only to these
paths we apply µφ measure. Thus, we use the object based
feature measure in this schema in considerably a more subtle
way than what is suggested by the threshold-like interpretation
described in Section III. It should be also clear that, if we agree
that we should give priority to homogeneity based connectivity
measure in the RFC approach, this is precisely the way we
should proceed.

Next, consider the coordinate order preserving property of
the combined affinity κ(c, d) = 〈κ0(c, d), κ1(c, d)〉:
(C) for every i = 0, 1 and c, d, c′, d′, if κi(c, d) = κi(c′, d′),

then κ(c, d) ≺ κ(c′, d′) ⇔ κ1−i(c, d) ≺1−i κ1−i(c′, d′).
Property (C) says that if one of the coordinate affinities does
not distinguish between two pairs of spels, then the combined
affinity decides on this pair according to the other coordinate
affinity. This seems to be a very natural and desirable property.
It is easy to see that the κlex affinity has this property.
However, in general, (C) is not satisfied for the multiplicative
average κmw : if κi(c, d) = κi(c′, d′) = 0, then κmw(c, d) =

κmw(c′, d′) = 0 independently of the value of κ1−i on these
pairs. A similar problem appears for κi(c, d) = κi(c′, d′) =
∞, though for κi(c, d) = κi(c′, d′) ∈ (0,∞) the equivalence
from (C) is satisfied. This creates problem especially with the
truncated version of the object-feature based affinity, since in
this case affinity is equal to ∞ for many adjacent pairs of
spels. Condition (C) also fails for κaddw when κaddw (c, d) =
κaddw (c′, d′) = ∞, though for κaddw (c, d) = κaddw (c′, d′) < ∞
the equivalence is satisfied. In particular, (C) holds for κaddw

formed with the coordinate affinities with range 〈[0, 1],≤〉.

B. Counting essential parameters

Next, let us turn our attention to the determination of
the number of parameters essential in defining the affinities
presented in the previous section. We will consider here only
the parameters explicitly mentioned there, since any implicit
parameters (like the parameters for getting intensity function
from the actual acquisition data) could not be handled by the
methods we will employ. This exercise is useful in tuning
the FC segmentation methods to different applications. It is
also useful in comparing these methods with others. Recall
that for a σ ∈ (0,∞) we defined gσ : [0,∞] → [0, 1] by
gσ(x) = e−x

2/σ2
.

Homogeneity based affinity, ψ, is defined as ψ(c, d) =
|f(c) − f(d)| for ||c − d|| ≤ 1 and ψ(c, d) = ∞ otherwise.
As such, there are no parameters in this definition. In its
standard form, gσ ◦ ψ, the parameter σ is redundant, since,
by Corollary 2, gσ ◦ ψ is equivalent to ψ.

Object feature based affinity for one object, φ, is defined
by a formula φ(c, d) = max{|f(c) − m1|, |f(d) − m1|}/σ1

for ||c − d|| = 1, φ(c, d) = 0 for c = d, and φ(c, d) = ∞
otherwise. From the two parameters, m1 and σ1, present in
this definition, only m1 is essential. Parameter σ1 is redundant,
since function σ1 · φ is independent of its value and σ1 · φ is
equivalent to φ, as σ1 · φ = h ◦ φ for an increasing function
h(x) = σ1x. As before, the standard form gσ ◦ φ of φ is
equivalent to it, so the only essential parameter in the definition
of gσ ◦ φ is the number m1.

Object feature based affinity for multiple objects. Suppose
that the affinity is defined for n > 1 different objects for which
m̄ = 〈m1, . . . ,mn〉 and σ̄ = 〈σ1, . . . , σn〉 represent their
average intensities and standard deviations, respectively. Let
φm̄,σ̄ represent the object feature affinity in its main truncated
form and let φ̄m̄,σ̄ stand for its untruncated version. (See
Section III-B.2.) Then σ1 ·φm̄,σ̄ = φm̄,δ̄ and σ1 ·φ̄m̄,σ̄ = φ̄m̄,δ̄ ,
where δ̄ = 〈1, δ2, . . . , δn〉 and δi = σi/σ1. Since σ1 · φm̄,σ̄ is
equivalent to φm̄,σ̄ , affinity φm̄,σ̄ depends essentially only on
2n − 1 parameters m1, . . . ,mn, δ2, . . . , δn. The same is true
for its standard form gσ ◦φm̄,σ̄ as well as for their untruncated
counterparts φ̄m̄,σ̄ and gσ ◦ φ̄m̄,σ̄ .

In what follows we will assume that w, σ, τ ∈ (0, 1) and
that φ is equal to either φm̄,δ̄ or to φ̄m̄,δ̄ , so it has 2n −
1 essential parameters. Then we have the following methods
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of combining, denoted m1–m5, for homogeneity and object
feature based affinities.
m1 The additive average κ = (1 − w)ψ + wφ of ψ and φ

has 2n parameters. It is equivalent to ψ + xφ, where
x = w

1−w ∈ (0,∞). Notice that if φ is replaced by an
equivalent affinity σ1φ, then the resulting average affinity
(1 − w)ψ + wσ1φ is also equivalent to ψ + xφ with
x ∈ (0,∞). Note that κ does not satisfy property (C).

m2 The additive average κ = (1 − w)gσ ◦ ψ + wgτ ◦ φ
of gσ ◦ ψ and gτ ◦ φ has 2n + 2 essential parameters.
Since κ = eln(1−w)−ψ2/σ2

+ elnw−φ
2/τ2

, this operation
strangely mixes additive and multiplicative modifications
of ψ and φ. The additional two parameters, σ and τ ,
are of importance in this mix. This affinity does satisfy
property (C).

m3 The multiplicative average κ = ψ(1−w)φw of ψ and φ
has 2n parameters and it is equivalent to ψφx, where
x = w

1−w ∈ (0,∞), as κ = (ψφx)1−w. If φ is replaced
by an equivalent affinity σ1φ, then the resulting average
(ψσx1φ

x)1−w is also equivalent to ψφx with x ∈ (0,∞),
since function h(t) = (σx1 t)

1−w is increasing as a
composition of two increasing functions. This κ does not
satisfy property (C).

m4 The multiplicative average κ = (gσ ◦ ψ)(1−w)(gτ ◦ φ)w

of gσ ◦ ψ and gτ ◦ φ has 2n + 2 parameters, but
only 2n of them are essential. This is so since κ =(
e−ψ

2/τ2
)1−w (

e−φ
2/σ2

)w
=

(
e−ψ

2−xφ2
)(1−w)/τ2

,

where x = τ2

σ2
w

1−w ∈ (0,∞), is equivalent to ψ2 + xφ2.
The same is true if φ is replaced by σ1φ. This κ does
not satisfy property (C).

m5 There are only two essential possibilities for lexicographi-
cal order of ψ and φ: 〈ψ, φ〉 and 〈φ, ψ〉, even if we allow
replacement of each of the coordinate affinities by any
of their equivalent forms, including but not restricted to
gσ ◦ψ and σ1φ, gτ ◦ φ, or gτ ◦ (σ1φ). This follows from
Proposition 1, since for any pair 〈ψ∗, φ∗〉 such that ψ∗

is equivalent to ψ and φ∗ is equivalent to φ, there are
strictly monotone functions g and h such that ψ∗ = g ◦ψ
and φ∗ = h ◦ φ, and then 〈ψ∗, φ∗〉 = 〈g, h〉 ◦ 〈ψ, φ〉, so
〈g, h〉 establishes the equivalence of 〈ψ, φ〉 and 〈ψ∗, φ∗〉.

V. EXPERIMENTAL RESULTS

In our discussion up to the previous section, we presented a
rigorous theory behind the design of affinity functions for FC.
This theory led us to a host of forms for affinity which where
listed under m1–m5 in the previous section. We note that, by
considering both truncated φ and untruncated φ̄ versions of
object feature based affinities, there are 10 different forms of
affinity functions we arrived at. All truncated versions under
m1–m5, as well as the untruncated versions under m1, m3,
and m5, are novel and not considered in the literature so far.
m2 and m4 with untruncated φ have been previously proposed
[30]. The most interesting among these are the truncated and
untruncated versions of m5.

It is desirable to restrict the combination methods of to those
that satisfy property (C). From the above list, only methods

m2 and m5 fall under this category, and so, we will restrict
our experiments only to these two cases. It should be stressed
that the lack of property (C) in the combining methods m1,
m2, and m4 is most visible when the truncated version φ of
object-feature affinity is used, since then φ(c, d) = ∞ for
many adjacent c and d.

VI. CONCLUDING REMARKS

The analysis presented in Section II shows that, from the
perspective of FC methodology, the only essential attribute
of an affinity function is its order. In particular, many trans-
formations (like gaussian) of the natural affinity definitions
(like derivative-driven homogeneity based affinity) are of es-
thetic value only and do not influence the FC segmentation
outcomes. Nevertheless, such transformations may play a role
in combining different affinities, as can be seen in methods
m1 and m2, since only one of them has the property (C).

The analysis from Section II forms also the foundation of
the investigation, presented in Section IV, of which parameters
in the definitions of homogeneity and object-feature based
affinities, as well as their combinations, are of importance.
In particular, we uncovered that many of the parameters in
these definitions are of no consequence. Thus, for the tasks of
application-driven optimization of the parameters, the number
of parameters to be optimized is reduced. This aspect of setting
values of parameters for segmentation methods is ridden with
confusion. There are no scientific and systematic solutions for
this problem. We indicated a solution in [37] which consisted
of simultaneously minimizing false positive and false negative
regions as a function of the parameter values. It make sense to
first identify what the essential parameters of a segmentation
method are, since such an attempt does not seem to have been
made in the literature. This especially is relevant if we choose
optimal parameter settings as mentioned by an optimization
process.

In Section III, we discussed two commonly used affinities,
homogeneity and object-feature based, and interpreted them,
respectively, as approximations of the directional derivatives
and the distance from the object’s average intensities. We also
pointed out some theoretical deficiencies with the standard
format of the object-feature based affinity in the case of
multiple objects and proposed a truncated version of such
affinity, which avoids theoretical difficulties, but loses some
information along the way.
Other possible ways of defining affinities. Note that in the
definition of the “object feature based affinity,” described in
Section III, the only prior knowledge of the object we used was
the image intensity distribution of the object. More elaborate
object feature affinity can use some other prior knowledge on
the object(s) to be delineated. For example, the general shape
of the object(s) can constitute such prior knowledge. If shape
for the family of the object under consideration is modeled in
a statistical manner [2], then we can consider a model based
component of affinity β(c, d) between c and d to be higher
only if c and d are inside or close to the boundary of the
mean shape, and smaller otherwise. A simple strategy based
on the distance from mean shape boundary has been employed
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in [36] in an attempt to bring in prior shape information into
FC. This discussion of how to properly define β and how to
combine this with ψ and φ, however, requires fundamental
investigation along the lines of this paper.

Also, as mentioned in Section III-A, in the definition of
the homogeneity based affinity it makes sense to use the
notion of the gradient as a base for its definition, instead of
the notion of the directional derivative. The discussion of the
gradient induced homogeneity based affinity is a part of our
forthcoming paper.

VII. APPENDIX

The following example fully discredits µϕ̄ as a valid defi-
nition of an object feature based connectivity measure, while
Example 12 shows that the motivational implication (8) fails
for µφ̄.

Example 11: Let C be a binary scene with two intensities
m2 > m1 = 0 and σ1 = σ2 = 1. We will consider C as a two
object scene: for i = 1, 2 object Oi consists of all spels with
the intensity mi. Then for every c, d ∈ C we have µϕ̄(c, d) =
0, while µφ̄(c, d) = m2 > 0 provided f(c) 6= f(d).

Example 12: Let p = 〈s1, a, c, b, s2〉 be a sequence of spels
in scene C in which only consecutive spels are adjacent and
assume that 〈0, 8, 14, 20± 13, 20〉 represents their intensities,
respectively. We also assume that any other spel in C adjacent
to one listed in p has the intensity at least 80. Consider s1 and
s2 as the seeds of objects O1 and O2 with averages m1 =
f(s1) = 0 and m2 = f(s2) = 20 and standard deviations
σ1 = σ2 = 1, respectively. Then µφ̄(s1, c) = 12 < 13 =
µφ̄(s2, c). However, µφ̂1

(s1, c) = 14 > 13 = µφ̂2
(s2, c).

PROOF. For any adjacent spels s and t we have φ̄(s, t) =
min{max{|f(s)|, |f(t)|},max{|20− f(s)|, |20− f(t)|}}. So,
φ̄(s1, a) = min{8, 20} = 8, φ̄(a, c) = min{14, 12} = 12,
and µφ̄(s1, c) = µφ̄(〈s1, a, c〉) = max{8, 12} = 12. Similarly
φ̄(s2, b) = min{max{20, 20 ± 13},max{0, | ± 13|}} = 13
and φ̄(b, c) = min{max{20±13, 14},max{|±13|, 6}} = 13,
which leads to µφ̄(s2, c) = µφ̄(〈s2, b, c〉) = max{13, 13} =
13. On the other hand, by property (6), we have µφ̂1

(s1, c) =
µφ̂1

(〈s1, a, c〉) = max{0, 8, 14} = 14, while µφ̂2
(s2, c) =

µφ̂2
(〈s2, b, c〉) = max{0, 13, 6} = 13.

To understand this example better, let x2
1 be as in (9); that is,

such that |x
2
1−m1|
σ1

= |x2
1−m2|
σ2

. So, in the setting of Example 12,
we have δ1 = δ2 = x2

1 = 10. The key characteristics
of this example, that allows us to negate property (8), is
that the intensities present in the path q = 〈s2, b, c〉 (i.e.,
{f(s2), f(b), f(c)}) are not in I2 = (m2 − ε2,m2 + ε2),
despite the fact that f(s2), f(c) ∈ I2. Indeed, if the equation
µφ̂2

(s2, c) = µφ̂2
(q) was satisfied with the intensities of all

spels in q belonging to J2, then (by Lemmas 13 and 14)
we would have had µφ(s2, c) = µφ̂2

(s2, c) < µφ(s1, c) and
µφ(s2, c) = µφ̂2

(s2, c) < µφ̂1
(s1, c), which is in agreement

with (8).
In case when f(b) = 20− 13 = 7, all the intensities under

question are between m1 and m2. Moreover, f(b) is just barely
below the threshold m2 − δ2. (A slight modification of the
example can make it arbitrarily close to m2 − δ2.) The case
when f(b) = 20 + 13 = 33 shows that it is not enough to

stay within the interval I = (m2− δ2,∞), for which we have
|x−m1|
σ1

> |x−m2|
σ2

for every x ∈ I . Thus, the symmetry of Ii’s
around mi’s is essential in proving (8). In other words, the
above discussion shows that, if φ is defined via the truncation
technique, then the intervals Ii are the smallest with which we
can still prove property (8).

For the rest of the discussion, we will assume that f(si) ∈ Ii
for every i. What is the format of the objects generated with
µφ under such assumption? First notice that in the case of the
absolute connectedness definition we get

Pφsiθ
=

{
{c ∈ C : θ ≥ µφi

(si, c)} for θ < εi

σi
,{

c ∈ C : εi

σi
> µφi

(si, c)
}

for εi

σi
≤ θ.

In other words, Pφsiθ
can be expressed in terms of the objects

defined via AFC with respect to the affinity φi: P
φi

siθ
= {c ∈

C : θ ≥ µφi(si, c)}. It is also easy to see that the i-th object
defined via RFC is the largest among the above objects:⋂
j 6=i P

φi

si{sj} =
{
c ∈ C : εi

σi
> µφi(si, c)

}
=

⋃
θ<

εi
σi

Pφi

siθ
.

The same remains true for the IRFC case.
Since the above reduces RFC and IRFC objects defined

with respect to φ to the unions of absolute connectedness
objects Pφi

siθ
with respect to φi, one might wonder whether

there is any sense at all in defining object feature based
affinity φ. However, the full definition of φ is necessary in
order to amalgamate φ with any other affinity, as discussed in
Section IV.

The remainder of this paper is devoted to the proof of
Theorem 8.

Lemma 13: Let p = 〈c1, . . . , cl〉 ∈ P̄cs and i ∈ {1, . . . , n}.
If f(ck) ∈ Ii for every k ∈ {1, . . . , l}, then µφ(p) = µφ̂i

(p) <
εi

σi
.

PROOF. Notice that for every distinct i, j ∈ {1, . . . , n} and
for every index k ∈ {1, . . . , l − 1} we have φj(ck, ck+1) =
max{ϕj(ck), ϕj(ck+1)} ≥ ϕj(ck) = ∞, since f(ck) /∈ Ij .
So, φ(ck, ck+1) = minj=1,...,n φj(ck, ck+1) = φi(ck, ck+1) =
max{ϕi(ck), ϕi(ck+1)} = max{ϕ̄i(ck), ϕ̄i(ck+1)} =
φ̂i(ck, ck+1) and thus µφ(p) = maxk=1,...,l−1 φ(ck, ck+1) =
maxk=1,...,l−1 φ̂i(ck, ck+1) = µφ̂i

(p). In addition, by (6),
we have µφ̂i

(p) = maxk=1,...,l ϕ̄i(ck). So, there is a k ∈
{1, . . . , l} for which µφ̂i

(p) = ϕ̄i(ck) = |f(ck)−mi|
σi

< εi

σi
,

since f(ck) ∈ Ii = (mi − εi,mi + εi).
Lemma 14: Let p = 〈c1, . . . , cl〉 ∈ P̄cs be such that

µφ(p) < ∞. Then, for every i ∈ {1, . . . , n}, the following
conditions are equivalent.
(a) f(c) ∈ Ii.
(b) f(ck) ∈ Ii for every k ∈ {1, . . . , l}.
(c) µφ(p) = µφ̂i

(p) < εi

σi
< ϕ̄j(c) for every j 6= i.

(d) µφ(p) = µφ̂i
(p).

Moreover, there is an i ∈ {1, . . . , n} for which each of these
conditions holds.
PROOF. Note that α(ck, ck+1) = 1 for every k =
1, . . . , l − 1, since p ∈ P̄cs. To see that µφ(p) < ∞
implies that f(c) ∈ Ii for some i, note that ∞ >
µφ(p) = maxk=1,...,l−1 φ(ck, ck+1) ≥ φ(c1, c2) =
mini=1,...,n φi(c1, c2). So, there exists an i ∈ {1, . . . , n} with
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∞ > φi(c1, c2) = max{ϕi(c1),ϕi(c2)}
α(c1,c2)

. Thus, ∞ > ϕi(c1) and
f(c) = f(c1) ∈ Ii.

“(a)=⇒(b)” Let Z = {k ∈ {1, . . . , l} : f(ck) ∈ Ii}. Then
(a) says that 1 ∈ Z. We need to prove that Z = {1, . . . , l}. By
way of contradiction, assume that this is not the case and let
m ∈ {1, . . . , l} be the smallest such that m /∈ Z. Then m > 1,
as 1 ∈ Z, so k = m − 1 ∈ Z. In particular, f(ck) ∈ Ii, so,
for j ∈ {1, . . . , n},

ϕj(ck) <∞ ⇔ j = i.

Since ∞ > µφ(p) ≥ φ(ck, ck+1) = minj=1,...,n φj(ck, ck+1),
there exists a j with ∞ > φ(ck, ck+1) = φj(ck, ck+1) =
max{ϕj(ck), ϕj(ck+1)}/α(ck, ck+1). In particular, ∞ >
ϕj(ck) and ∞ > ϕj(ck+1). Hence, from the first of these
inequalities, we get j = i. Therefore, the second inequality
becomes ∞ > ϕi(ck+1) = ϕi(cm), implying that m ∈ Z,
contrary to our assumption. Thus, Z = {1, . . . , l} and (b)
holds.

“(b)=⇒(c)” By Lemma 13, we have µφ(p) = µφ̂i
(p) < εi

σi
.

Also, since f(c) ∈ Ii = (mi−εi,mi+εi) ⊆ (mi−δji ,mi+δ
j
i ),

condition (9) implies that εi

σi
≤ δj

i

σi
< ϕ̄j(c).

Implication “(c)=⇒(d)” is obvious.
“(d)=⇒(a)” Condition (d) implies that µφ(p) <∞. So, by

the first remark, f(c) ∈ Ij for some j. If j = i, we are
done. So, by way of contradiction, assume that j 6= i. Then,
using the implication “(a)=⇒(c), ” we have µφ(p) = µφ̂j

(p) <
|xk

j−mj |
σj

< ϕ̄k(c) for every k 6= j. In particular, for k = i we
get µφ(p) < ϕ̄i(c) ≤ maxk=1,...,l ϕ̄i(ck) = µφ̂i

(p) = µφ(p),
a contradiction.

Lemma 15: Let p, q ∈ P̄cs and i ∈ {1, . . . , n}. If µφ̂i
(q) ≤

µφ̂i
(p) = µφ(p), then µφ(q) = µφ̂i

(q). In particular, if
µφ̂i

(p) = µφ(p) = µφ(s, c), then also µφ̂i
(s, c) = µφ̂i

(p) =
µφ(s, c).
PROOF. Let us choose two paths, p = 〈c1, . . . , cl〉 and
q = 〈d1, . . . , dm〉. Since we have µφ(p) = µφ̂i

(p) < ∞
(remember that φ̂i is a non-truncated version of the object fea-
ture base affinity for the i-th object) we can apply Lemma 14.
Since Lemma 14(d) holds, so must also Lemma 14(c). Hence,
by (6), for every index k ∈ {1, . . . ,m} we have |f(dk)−mi|

σi
=

ϕ̄i(dk) ≤ maxj=1,...,l ϕ̄i(dj) = µφ̂i
(q) ≤ µφ(p) = µφ̂i

(p) <
εi

σi
. Thus, f(dk) ∈ Ii for every k ∈ {1, . . . ,m}. So, again by

Lemma 14, we have µφ(q) = µφ̂i
(q).

The additional part is obvious when s = c, since then
µφ̂i

(p) = µφ(s, c) = 0 = µφ̂i
(s, c). So, assume that s 6= c

and that µφ̂i
(p) = µφ(p) = µφ(s, c). Then, by (7), there

exists a path q ∈ P̄cs with µφ̂i
(s, c) = µφ̂i

(q). Then
µφ̂i

(q) = µφ̂i
(s, c) ≤ µφ̂i

(p) = µφ(p). So, by the first part,
µφ(q) = µφ̂i

(q) = µφ̂i
(s, c) ≤ µφ̂i

(p) = µφ(s, c) ≤ µφ(q),
proving that µφ̂i

(s, c) = µφ̂i
(p).

To see the additional part, assume that µφ̂i
(p) = µφ(p) =

µφ(s, c). Take q ∈ P̄cs with µφ̂i
(s, c) = µφ̂i

(q). Then
µφ̂i

(q) = µφ̂i
(s, c) ≤ µφ̂i

(p) = µφ(p). So, by the first part,
µφ(q) = µφ̂i

(q) = µφ̂i
(s, c) ≤ µφ̂i

(p) = µφ(s, c) ≤ µφ(q),
proving that µφ̂i

(s, c) = µφ̂i
(p).

PROOF OF THEOREM 8. Assume that c, si, sj ∈ C are as
in the theorem, that is, such that f(si) /∈

⋃
k 6=i Ik and

µφ(si, c) < µφ(sj , c). Fix a k ∈ {1, . . . , n}. We need to show
that µφ̂i

(si, c) < µφ̂k
(sj , c).

Note that sj 6= c, since otherwise µφ(si, c) < µφ(sj , c) =
0, which is impossible. Thus, by (7), there exists a q =
〈d1, . . . , dm〉 ∈ P̄csj

such that µφ̂k
(sj , c) = µφ̂k

(q). Also,
if si = c then, by the definition (10) of µφ, we have
µφ̂i

(si, c) = 0 = µφ(si, c) < µφ(sj , c) ≤ µφ̂k
(sj , c). Thus,

we can assume that si 6= c. In particular, using the argument
utilized in the proof of (7), we can show that there exists a
p = 〈c1, . . . , cl〉 ∈ P̄csi

such that µφ(p) = µφ(c, si).
We have µφ(p) = µφ(si, c) < µφ(sj , c), so µφ(p) < ∞.

Thus, by Lemma 14, there exists an i′ for which f(si) =
f(cl) ∈ Ii′ . Therefore i′ = i, since f(si) /∈

⋃
k 6=i Ik. So, by

Lemma 14(c), µφ(si, c) = µφ(p) = µφ̂i
(p) < εi

δi
< ϕ̄j(c)

for every j 6= i. Also, by Lemma 15, we have µφ̂i
(si, c) =

µφ(si, c).
Now, if k 6= i, then, by (9) and the above, µφ̂i

(si, c) ≤
µφ̂i

(p) < ϕ̄k(c) ≤ maxr=1,...,m ϕ̄k(dr) = µφ̂k
(q) =

µφ̂k
(sj , c). So, assume that k = i. If there is an r ∈

{1, . . . ,m} for which f(dr) /∈ Ii, then, by Lemma 14(c),
µφ̂i

(si, c) ≤ µφ̂i
(p) < εi

σi
< |f(dr)−mi|

σi
= ϕ̄i(dr), so

µφ̂i
(si, c) < ϕ̄i(dr) = ϕ̄k(dr) ≤ maxr=1,...,m ϕ̄k(dr) =

µφ̂k
(q) = µφ̂k

(sj , c). So, assume that f(dr) ∈ Ii for every
r ∈ {1, . . . ,m}. Then, by Lemma 13, µφ̂i

(q) = µφ(q). So,
µφ̂i

(si, c) = µφ(si, c) < µφ(sj , c) ≤ µφ(q) = µφ̂i
(q) =

µφ̂k
(q) = µφ̂k

(sj , c) finishing the proof.

REFERENCES

[1] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models.
Int. J. Comput. Vision 1 (1987), 321–331.

[2] T. Cootes, C. Taylor, and D. Cooper, Active shape models-their training
and application. Computer Vision and Image Understanding 61 (1995),
38–59.

[3] T. McInerney and D. Terzopoulos, Deformable models in medical image
analysis: A survey. Medical Image Analysis 1(2) (1996), 91–108.

[4] A.X. Falcão, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsch, and
R. Lotufo, User-steered image segmentation paradigms: live wire and
live lane. Graph. Models Image Process 60(4) (1998), 233–260.

[5] T. Cootes, G. Edwards, and C. Taylor, Active appearance models. IEEE
Trans. Pattern Anal. Machine Intell. 23(6) (2001), 681–685.

[6] M. Trivedi and J. Bezdek, Low-level segmentation of aerial images
with fuzzy clustering. IEEE Trans. Systems, Man, and Cybernetics 16(4)
(1986), 589–598.

[7] S. Beucher, The watershed transformation applied to image segmen-
tation. In: 10th Pfefferkorn Conf. Signal and Image Processing in
Microscopy and Microanalysis (1992), 299–314.

[8] J.K. Udupa and S. Samarasekera, Fuzzy connectedness and object
definition: theory, algorithms, and applications in image segmentation.
Graphical Models and Image Processing 58(3) (1996), 246–261.

[9] J.A. Sethian, Fast Marching Methods and Level Sets Methods. Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision, and Materials Science, Cambridge Univ. Press, 1999.

[10] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimiza-
tion via graph cuts. IEEE Trans. Pattern Anal. Machine Intell. 23(11)
(2001), 1222–1239.

[11] A. Chakraborty, L. Staib, and J. Duncan, Deformable boundary finding
in medical images by integrating gradient and region information. IEEE
Trans. Med. Imag. 15(6) (1996), 859–870.

[12] C. Imielinska, D. Metaxas, J.K. Udupa, Y. Jin, and T. Chen, Hybrid
segmentation of anatomical data. In: Proceedings of MICCAI (2001),
1048–1057.

[13] J.K. Udupa and P.K. Saha, Fuzzy connectedness in image segmentation.
Proceedings of the IEEE, 91(10) (2003), 1649–1669.

[14] P.K. Saha and J.K. Udupa, Relative fuzzy connectedness among multiple
objects: Theory, algorithms, and applications in image segmentation.
Computer Vision and Image Understanding 82(1) (2001), 42–56.



K.C. CIESIELSKI, J.K. UDUPA, AND Y. ZHUGE, AFFINITY FUNCTIONS IN FUZZY CONNECTEDNESS BASED IMAGE SEGMENTATION NOV. 2006 15

[15] P.K. Saha and J.K. Udupa, Iterative relative fuzzy connectedness and
object definition: theory, algorithms, and applications in image segmen-
tation. In Proceedings of IEEE Workshop on Mathematical Methods in
Biomedical Image Analysis, Hilton Head, South Carolina 2002, 28–35.

[16] J.K. Udupa, P.K. Saha, and R.A. Lotufo, Relative fuzzy connectedness
and object definition: Theory, algorithms, and applications in image
segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24 (2002), 1485–1500.

[17] G.T. Herman and B.M. Carvalho, Multiseeded segmentation using fuzzy
connectedness. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23 (2001), 460–474.

[18] K.C. Ciesielski, J.K. Udupa, P.K. Saha, and Y. Zhuge, Iterative Relative
Fuzzy Connectedness for Multiple Objects, Allowing Multiple Seeds.
Computer Vision and Image Understanding, to appear; Technical Report
MIPG-327, Medical Image Processing Group, Department of Radiol-
ogy, University of Pennsylvania, Philadelphia, 2005; for preprint see
http://jacobi.math.wvu.edu/˜kcies/publications.html

[19] Y. Zhuge, J.K. Udupa, and P.K. Saha, Vectorial scale-based fuzzy con-
nected image segmentation. Computer Vision and Image Understanding
101 (2006), 177–193.

[20] A. Pednekar, I.A. Kakadiaris, Image segmentation based on fuzzy
connectedness using dynamic weights. IEEE Trans Image Process. 15(6)
(2006), 1555–1562.

[21] X. Fan, J. Yang, and L. Cheng, A novel segmentation method for MR
brain images based on fuzzy connectedness and FCM. Lecture Notes in
Computer Science 3613 (2005), 505–513.

[22] B.M. Carvalho, C.J. Gau, G.T. Herman, and Y.T. Kong, Algorithms for
fuzzy segmentation. Pattern Analysis and Applications 2 (1999), 73–81.

[23] B.M. Carvalho, G.T. Herman, and Y.T. Kong, Simultaneous fuzzy
segmentation of multiple objects. Discrete Applied Mathematics 151
(2005), 65–77.

[24] J. Betancur, F. Prieto, Fuzzy Connectedness applied to Coffee Fruit
Image Segmentation, preprint.

[25] K.C. Ciesielski and J.K. Udupa, A general theory of image segmentation
and its practical applications. Technical Report MIPG-335, Medical
Image Processing Group, Department of Radiology, University of Penn-
sylvania, Philadelphia, 2006.

[26] K. Ciesielski, Set Theory for the Working Mathematician, London Math.
Soc. Stud. Texts 39, Cambridge Univ. Press, Cambridge, 1997.

[27] K. Kunen, Set Theory, North-Holland, Amsterdam, 1983.
[28] P.K. Saha and J.K. Udupa, Fuzzy connected Object Delineation: Ax-

iomatic Path Strength Definition and the Case of Multiple Seeds.
Computer Vision and Image Understanding 83 (2001), 275–295.

[29] J.K. Udupa and P.K. Saha, Fuzzy Connectedness. In: Insight into
Images: Principles and Practice for Segmentation, Registration, and
Image Analysis, ed. Terry Yoo, A K Peters Ltd (2004).

[30] P.K. Saha, J.K. Udupa, and D. Odhner, Scale-Based Fuzzy Connect-
edness Image Segmentation: Theory, Algorithms, and Validation. Com-
puter Vision and Image Understanding 77 (2000), 145–174.

[31] A. Rosenfeld, Fuzzy digital topology. Information and Control 40
(1979), 76–87.

[32] A. Rosenfeld, On connectivity properties of grayscale pictures. Pattern
Recognition 16 (1983), 47–50.

[33] A. Rosenfeld, The fuzzy geometry of image subsets. Pattern Recognition
Letters 2 (1984), 311–317.

[34] L. Najman, M. Couprie, and G. Bertrand, Watersheds, mosaics and the
emergence paradigm. Discrete Applied Math. 147 (2005), 301–324.

[35] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, (2nd Edition),
John Wiley and Sons, 2001.

[36] Seong-Jee Lim, Hybrid Method of Fuzzy Connectedness and Active
Shape Model Algorithms for Three-dimensional Medical Image Segmen-
tation. PhD Thesis, Kwangju Institute of Science and Technology (South
Korea), Department of Information & Communications, March 30, 2006.

[37] J.K. Udupa and Y. Zhuge, Delineation operating characteristic (DOC)
curve for assessing the accuracy behavior of image segmentation algo-
rithms, SPIE Proceedings 5370(1) (2004), 640-647.


