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ABSTRACT
Fuzzy connectedness (FC) constitutes an important class of image segmentation schemas. Although affinity
functions represent the core aspect (main variability parameter) of FC algorithms, they have not been studied
systematically in the literature. In this paper, we present a thorough study to fill this gap. Our analysis is
based on the notion of equivalent affinities: if any two equivalent affinities are used in the same FC schema
to produce two versions of the algorithm, then these algorithms are equivalent in the sense that they lead to
identical segmentations. We give a complete characterization of the affinity equivalence and show that many
natural definitions of affinity functions and their parameters used in the literature are redundant in the sense
that different definitions and values of such parameters lead to equivalent affinities. We also show that two main
affinity types — homogeneity based and object feature based — are equivalent, respectively, to the difference
quotient of the intensity function and Rosenfeld’s degree of connectivity. In addition, we demonstrate that any
segmentation obtained via relative fuzzy connectedness (RFC) algorithm can be viewed as segmentation obtained
via absolute fuzzy connectedness (AFC) algorithm with an automatic and adaptive threshold detection. We
finish with an analysis of possible ways of combining different component affinities that result in non equivalent
affinities.

1. AFFINITIES EQUIVALENT IN THE FC SENSE
Image segmentation — the process of partitioning the image domain into meaningful object regions — is per-
haps the most challenging and critical problem in image processing and analysis. The segmentation framework
discussed in the present paper belongs to the region-based group of methods and constitutes an extension of the
fuzzy connectedness (abbreviated from now on as FC) methodology [9].

In the FC framework, a fuzzy topological construct, called fuzzy connectedness, characterizes how the spels
(short for spatial elements) of an image hang together to form an object. This construct is arrived at roughly
as follows. A function called affinity is defined on the set C × C of all pairs of spels from the image domain C;
the strength of affinity between any two spels depends on how close the spels are spatially and how similar their
intensity-based properties are in the image. Affinity is intended to be a local relation. A global fuzzy relation
called fuzzy connectedness is induced on the image domain by affinity as follows. For any two spels c and d
in the image domain, all possible paths connecting c and d are considered. Each path is assigned a strength
of fuzzy connectedness: the minimum of the affinities of consecutive spels along the path. The level of fuzzy
connectedness between c and d is considered to be the maximum of the strengths of all paths between c and d.

For segmentation purposes, FC is utilized in three main ways. (See also Section 1.3.) In absolute FC
(AFC) [9], the support of a segmented object is considered to be the maximal set of spels, containing one or
more seed spels, within which the level of FC is at or above a specific threshold. To obviate the need for a
threshold, relative FC (or RFC) [4] was developed by letting all objects in the image to compete simultaneously
via FC to claim membership of spels in their sets. Each co-object is identified by one or more seed spels. Any
spel c in the image domain is claimed by that co-object with respect to whose seed spels c has the largest level
of FC compared to the level of FC with the seed sets of all other objects. To avoid treating the core aspects of
an object and the peripheral subtle aspects in the same footing, an iterative refinement strategy is devised in
iterative RFC (or IRFC) [2,4,5]. See [7] for a review of the different FC definitions and how they are employed
in segmentation and applications.
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The main purpose of this section is to uncover the essence of the relationship between the local measure of
connectedness of pairs of spels, the affinity function, and the resulting segmentations obtained via FC algorithms.
In particular, we will introduce the notion of the equivalence (in the sense of FC) of the affinities and show that
equivalent affinities are indistinguishable from the point of view of FC segmentations, no matter what the
empirical results indicate. Due to the space limitation, the proofs of presented theoretical results will be deferred
to a full, journal version of this paper.

To make this work complete and useful, our definition of the affinity function will be more general than the
one commonly used in the literature. However, we will show that each class of equivalent affinities contains at
least one standard (meaning commonly used) affinity.

1.1. Preliminary definitions
We will use the following interpretation of the notions of (hard) functions and relations, which is standard in set
theory (see e.g. [1]) and is used in many calculus books. A binary relation R from a set X to a set Y is identified
with its graph; that is, R equals {〈x, y〉 ∈ X × Y : xRy holds}. Since a function f : X → Y is a (special) binary
relation from X to Y , in particular we have f = {〈x, f(x)〉 : x ∈ X}. With this interpretation, fuzzy sets and
fuzzy relations have the following representations. Let Z be a fuzzy subset of a hard set X with a membership
function μZ : X → [0, 1]. For each x ∈ X we interpret μZ(x) as the degree to which x belongs to Z. Usually such
a fuzzy set Z is defined as {〈x, μZ(x)〉 : x ∈ X}, which is the graph of μZ . Thus, according to our interpretation,
Z actually equals μZ . Note that this interpretation agrees quite well with the situation when Z is a hard subset
Z of X, as then Z = μZ is equal to the characteristic function χ

Z of Z (defined as χ
Z(x) = 1 for x ∈ Z and

χ
Z(x) = 0 for x ∈ X \Z), and the identification of Z with χ

Z is quite common in analysis and set theory. Notice
also that a fuzzy binary relation ρ from X to Y is just a fuzzy subset of X × Y , so it is equal to its membership
function μρ : X × Y → [0, 1].

Let n ≥ 2 and let Z
n stand for the set of all n-tuples of integer numbers. A binary fuzzy relation α on Z

n is
said to be a fuzzy adjacency if α is symmetric (i.e., α(c, d) = α(d, c)) and reflexive (i.e., α(c, c) = 1). The value
of α(c, d) depends only on the relative spatial position of c and d. In most applications, α is just a hard case
relation like 4-adjacency relation for n = 2 or 6-adjacency in the three-dimensional case, defined as α(c, d) = 1
for ||c, d|| ≤ 1 and α(c, d) = 0 for ||c, d|| > 1. For k ≥ 1, a scene over a fuzzy digital space 〈Zn, α〉 is a pair
C = 〈C, f〉, where C =

∏n
j=1[−bj , bj ] ⊂ Z

n, each bj > 0 being an integer, and f : C → R
k is a scene intensity

function. The notion most important for this paper is that of an affinity function. The affinity function, defined
in its general form in the next subsection, is usually denoted by κ and it associates with any pair 〈c, d〉 ∈ C ×C
of spels the strength κ(c, d) of their local hanging togetherness in C. Within this class, a special role is played by
standard affinities, that is, mappings κ : C × C → [0, 1] which, treated as fuzzy binary relations, are symmetric
and reflexive. In all practical applications, the value of κ(c, d) depends on the adjacency strength α(c, d) of c and
d (i.e., on the spatial relative position of c and d) as well as on the intensity function f . So far, only standard
affinities have been used in applications in the literature. Of those, the most prominent are (see [6] and Sec. 2):
homogeneity based affinity: ψσ(c, d) = α(c, d) e−||f(c)−f(d)||2/σ2

, where σ > 0 and c, d ∈ C, with its value
being close to 1 when the spels are spatially close and have very similar intensity values (i.e. are well connected);
object feature based affinity (single object case, with an expected intensity m for the object): φσ(c, d) =
α(c, d) e−max{||f(c)−m||,||f(d)−m||}2/σ2

, where σ > 0 and c, d ∈ C, with its value being close to 1 when the spels
are spatially close and both have intensity values close to m.

It has been demonstrated [4] that, in the standard FC algorithms of AFC and RFC, to fulfill certain desirable
properties of segmentations (such as robustness with respect to seed points), affinities must be symmetric. In this
paper, therefore, we will restrict ourselves to symmetric affinities. However, we will go quite afar from previous
publications otherwise in considering affinity in its very general form.

1.2. Equivalent affinities
In this subsection, we define the notion of the affinity function in its general form, without just confining to
the basis of standard affinities (as defined above ψσ and φσ) and introduce the concept of equivalent affinities.
The motivation for developing equivalent affinities comes from our desire to recognize those differences among
affinities that are inessential, and therefore lead to the same FC segmentations, from those that are essential and
may give rise to different segmentations.
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Let 	 be a linear order relation [1] on a set L and let C be an arbitrary finite non-empty set. We say that a
function κ : C×C → L is an affinity function (from C into 〈L,	〉) provided κ is symmetric (i.e., κ(a, b) = κ(b, a)
for every a, b ∈ C) and κ(a, b) 	 κ(c, c) for every a, b, c ∈ C. Clearly, any standard affinity, as defined above, is
an affinity function with 〈L,	〉 = 〈[0, 1],≤〉. Note that κ(d, d) 	 κ(c, c) for every c, d ∈ C. So, there exists an
element in L, which we will denote by a symbol 1κ, such that κ(c, c) = 1κ for every c ∈ C. Notice that 1κ is the
largest element of Lκ = {κ(a, b) : a, b ∈ C}, although it does not need to be the largest element of L. In what
follows, the strict inequality related to 	 will be denoted by ≺, that is, a ≺ b if and only if a 	 b and a �= b.

Certainly, in image processing, C will be always the domain of the scene intensity function. In all specific
cases used in this paper, we will take 〈L,	〉 as either the standard range 〈[0, 1],≤〉 or, more often, 〈[0,∞],≥〉.
In the second case, the order relation 	 is the reversed standard order relation ≥. We say that the affinities
κ1 : C×C → 〈L1,	1〉 and κ2 : C×C → 〈L2,	2〉 are equivalent (in the FC sense) provided, for every a, b, c, d ∈ C

κ1(a, b) 	1 κ1(c, d) if and only if κ2(a, b) 	2 κ2(c, d)
or, equivalently: κ1(a, b) ≺1 κ1(c, d) if and only if κ2(a, b) ≺2 κ2(c, d). For example, it can be easily seen that
for any constants σ, τ > 0 the homogeneity based affinities ψσ and ψτ , as defined above, are equivalent, since for
any pairs 〈a, b〉 and 〈c, d〉 of adjacent spels we have (symbol ⇔ means “if and only if”):

ψσ(a, b) < ψσ(c, d) ⇔ ||f(a) − f(b)|| > ||f(c) − f(d)|| ⇔ ψτ (a, b) < ψτ (c, d). (1)
In the following characterization, ◦ stands for the composition of functions, that is, (g◦κ1)(a, b) = g(κ1(a, b)).

Proposition 1.1. Affinities κ1 : C ×C → 〈L1,	1〉 and κ2 : C ×C → 〈L2,	2〉 are equivalent if and only if there
exists a strictly increasing function g from 〈Lκ1 ,	1〉 onto 〈Lκ2 ,	2〉 such that κ2 = g ◦ κ1.

One of the specific conclusions from Proposition 1.1 is the following fact.
Corollary 1.2. If κ : C × C → 〈[0,∞],≥〉 is an affinity, then, for every strictly decreasing function g from
[0,∞] onto [0, 1], a map g ◦ κ : C × C → 〈[0, 1],≤〉 is an affinity equivalent to κ.

Our interest in equivalent affinities comes from the fact (see Theorem 1.5) that any FC segmentation of a
scene C remains unchanged if an affinity on C used to get the segmentation is replaced by an equivalent affinity.
Keeping this in mind, it makes sense to find for each affinity function an equivalent affinity in a nice form:
Theorem 1.3. Every affinity function is equivalent (in the FC sense) to a standard affinity.

Once we agree that equivalent affinities lead to the same segmentations, Theorem 1.3 says that we can restrict
our attention to standard affinities without losing any generality of our method. Thus, one may wonder why
study other affinities at all. The answer to this question is simple — in most cases, it is more natural to define
an affinity function with more abstract range, and any translation of such affinity to the standard one is a
redundant step adding only unnecessary computational burden, although some researchers may believe, that it
helps intuitive understanding. Moreover, in some of these cases there is no simple (i.e., continuous) translation
of the natural affinity to the standard one. (See Example 3.2.) On the other hand, Theorems 1.3 and 1.5 tell us
that all the theoretical results that are true for the standard affinities hold also for the affinities as we defined
them. Thus, there is no particular reason to restrict our attention to the affinities in the standard form.

The next example shows an application of the above described theory. (For more examples, see Sec. 3.)
Example 1.4. For a scene C = 〈C, f〉, a natural form of the homogeneity based affinity is a function
ψ : C × C → 〈[0,∞],≥〉 given by ψ(c, d) = ||f(c) − f(d)|| for adjacent spels c, d ∈ C and ψ(c, d) = ∞ other-
wise. (See also (2).) The more commonly used version of the homogeneity based affinity is the standard affinity
ψσ(c, d) = e−ψ(c,d)2/σ2

(see above), which is the composition of ψ with the Gaussian function gσ(x) = e−x2/σ2
.

Note that, by Corollary 1.2, ψ and ψσ are equivalent, independently of the value of the parameter σ, since gσ

is strictly decreasing from [0,∞] onto [0, 1]. In particular, the parameter σ in the definition of ψσ is totally
inessential from the FC segmentation point of view, as described below. For now, it is enough to understand
that, intuitively, varying σ essentially results in a different scaling of the strength of connectedness. Therefore,
for example, the same segmentation of a given image is obtained by using AFC algorithm with (a) affinity ψ and
threshold θ; (b) affinity ψσ and threshold gσ(θ), independently of the value of σ. This phenomenon is illustrated
in Figure 1 on a 2D scene — a CT slice of a human knee, Fig. 1(a). In Figs. 1 (d) and (e) segmented binary
scenes are shown, resulting from the use of ψσ with σ = 1 and σ = 10.8, respectively, and the corresponding
thresholds gσ(θ). The results are identical. Figs. 1(b) and (c) show the corresponding connectivity scenes,
in which the intensity of each spel c represents the ψσ-connectivity strength between the seed and c (i.e., the
strength of the strongest path joining the seed and c).
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(a) (b) (c) (d) (e)
Fig. 1. Illustration of equivalent affinities. (a) A 2D scene — a CT slice of a human knee. (b), (c) Connectivity scenes

corresponding to affinities ψσ with σ = 1 and σ = 10.8, respectively, and the same seed spel (indicated by + in (a))

specified in a soft tissue region of the scene in (a). (d), (e) Identical AFC objects obtained from the scenes in (b) and (c).

1.3. FC segmentations for equivalent affinities
Fix an affinity κ : C × C → 〈L,	〉. To define fuzzy connectedness segmentation of C, we need first to translate
the local measure of connectedness given by κ into the global strength of connectedness. For this, we will need
the notions of a path and its strength. A path in A ⊆ C is any sequence p = 〈c1, . . . , cl〉, where l > 1 and ci ∈ A
for every i = 1, . . . , l. The family of all paths in A is denoted by PA. If c, d ∈ A, then the family of all paths
〈c1, . . . , cl〉 in A from c to d (i.e., such that c1 = c and cl = d) is denoted by PA

cd. The strength μκ(p) of a path p =
〈c1, . . . , cl〉 ∈ PC is defined as the strength of its κ-weakest link; that is, μκ(p)=min{κ(ci−1, ci) : 1 < i ≤ l}. For
c, d ∈ A ⊆ C, the (global) κ-connectedness strength in A between c and d is defined as the strength of a strongest
path in A between c and d; that is, μA

κ (c, d)=max
{
μκ(p) : p ∈ PA

cd

}
. Notice that μA

κ (c, c) = μκ(〈c, c〉) = 1κ. We
will often refer to the function μA

κ : C × C → L as a connectivity measure (on A) induced by κ. For c ∈ A ⊂ C
and a non-empty D ⊂ A, we also define μA

κ (c,D)=maxd∈D μA
κ (c, d). We will write μ for μκ and μA for μA

κ when
κ is clear from the context. Note that if κ is a hard binary relation, then μC

κ is a relation (or, more precisely, its
characteristic function) known as a transitive closure of κ, which is defined as the set of all pairs 〈c, d〉 ∈ C × C
for which there exists a sequence c = c0, c1, . . . , cm = d such that κ(ci, ci+1) = 1 for every i < m.

To define fuzzy objects delineated by FC segmentations, we start with a family S of non-empty pairwise dis-
joint subsets of C, where each S ∈ S represents a set of spels, known as seeds, which will belong to the object gen-
erated by it. Also, fix a threshold θ ∈ L, θ ≤ 1κ. For every S ∈ S, put W =

⋃
(S\{S}) and, similarly as in [2], de-

fine Pκ
Sθ =

{
c ∈ C : θ 	 μC

κ (c, S)
}
; Pκ

SS =
{
c ∈ C : μC

κ (c,W ) ≺ μC
κ (c, S)

}
; and P Iκ

SS =
⋃∞

i=0 P i,κ
SS , where sets P i,κ

SS
are defined inductively by the formulas P 0,κ

SS = ∅ and P i+1,κ
SS = P i,κ

SS ∪ {c ∈ C \ P i,κ
SS : μ

C\P i,κ
SS

κ (c,W ) ≺ μC
κ (c, S)}.

Then AFC, RFC, and IRFC segmentations of C are defined, respectively, as P
θ
κ(S) = {Pκ

Sθ : S ∈ S}, Pκ(S) =
{Pκ

SS : S ∈ S}, and P
I
κ(S) =

{
P Iκ

SS : S ∈ S}
. Notice that an AFC object Pκ

Sθ consists of all spels connected with
at least one seed s in S with the κ-connectivity strength at least θ. An RFC object is created via competition of
seeds for each spel: a spel c belongs to Pκ

SS provided there is a seed s in S for which the κ-connectivity between c
and s exceeds the κ-connectivity between c and any other seed indicating another object. Finally, IRFC objects
are obtained by refining the RFC competition: a spel c is unassigned to any RFC object provided there is a tie
between two seeds s and t from different objects, e.g., μC

κ (c, w) 	 μC
κ (c, s) = μC

κ (c, t) for any seed w. However,
such a tie can be resolved if the strongest paths justifying μC

κ (c, s) and μC
κ (c, t) cannot pass through the spels

already assigned to another object. Upon such resolution, the spel under question is assigned to the winning
object in the next iteration of IRFC.

Now we can formalize our previous claim that the fuzzy connectedness segmentations (i.e., those obtained
via AFC, RFC, and IRFC algorithms) are unchanged if an affinity function is replaced by an equivalent one.
Theorem 1.5. Let κ1 : C × C → 〈L1,	1〉 and κ2 : C × C → 〈L2,	2〉 be equivalent affinity functions and let S
be a family of non-empty pairwise disjoint subsets of C. Then for every θ1 	1 1κ1 in L1, there exists a θ2 	2 1κ2

in L2 such that, for every S ∈ S and i ∈ {0, 1, 2, . . .}, we have Pκ1
Sθ1

= Pκ2
Sθ2

, Pκ1
SS = Pκ2

SS , and P i,κ1
SS = P i,κ2

SS . In

particular, P
θ1
κ1

(S) = P
θ2
κ2

(S), Pκ1(S) = Pκ2(S), and P
I
κ1

(S) = P
I
κ2

(S).
In summary, Theorem 1.3 says that for every affinity function there is a standard affinity equivalent to it,

while Theorem 1.5 says that for any two equivalent affinities we get the same FC segmentations in each of AFC,
RFC, and IRFC. To further illustrate this, we examine the example in Fig. 1 for AFC by using two affinities ψσ,
with σ = 1 and σ = 10.8. Figures 1(b) and (c) display the connectivity scenes Cκ = 〈C, fk〉 for the 2D scene of
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Fig. 1(a), where for any c ∈ C and the same fixed spel s ∈ C, fκ(c) = μC
κ (c, s), where κ is either ψ1 or ψ10.8.

The resulting identical AFC objects are displayed in (d) and (e) as binary scenes. Of course, different thresholds
were used in producing scenes (d) and (e) from those in (b) and (c), respectively, which precisely makes our
point that segmented object information in Figures 1(b) and (c) is identical.
Practical Considerations The equivalence theorems say that, if a function g is strictly monotone, then the
affinities κ and g ◦ κ are equivalent and they lead to identical segmentations. However, the segmentations are
insured to be identical only when there are no rounding errors. In actual implementations, it is possible that for
distinct numbers x and y in the range of κ, the actual values g(x) and g(y) are so close that the implemented
algorithm identifies g(x) with g(y). In such implementations some information is lost when passing from κ
to g ◦ κ, which may lead to different segmentations. This problem must be considered, when performing any
experimental comparisons. Note also that, even when there is no rounding error in the algorithm that influences
our theoretical results, a human operator may have an impression that some information is lost when passing
from κ to g ◦ κ, due to the limited resolution perception of the human eye. This phenomenon can be noticed in
Figures 1(b) and (c): it is easier for human eye to identify the object in Fig. 1(c) than it is in Fig. 1(b).

Theorems 1.3 and 1.5 also imply that any result proved for the FC segmentations in the context of standard
affinities remains valid for the affinities in our general setting, that is, the FC algorithms used with our general
affinities have all nice properties that the FC algorithms have when used with the standard affinities.

1.4. Relative fuzzy connectedness, RFC, segmentation as absolute FC, segmentation
In AFC, to obtain the FC object Pκ

Sθ, a threshold θ for the strength of connectedness must be specified. This
threshold is obviated in defining RFC objects Pκ

SS (see definition above) simply by determining the membership
of a spel c in an object by its largest strength of connectedness with respect to the seed sets assigned to the
different objects. In this subsection, we will show that the RFC segmentation can be viewed to some extent as
an AFC segmentation wherein the required threshold is determined automatically.
Theorem 1.6. Let κ : C×C → 〈L,	〉 be an arbitrary affinity function and S be a non-empty family of pairwise
disjoint, non-empty sets of seeds in C. Fix an S ∈ S and let W =

⋃
(S \{S}). For every s ∈ S let θs = μC

κ (s,W ).
Then PSS =

⋃
s∈S

⋃
θs≺θ P{s}θ.

For an affinity κ : C × C → 〈L,	〉 and θ < 1κ, let θ+ be the smallest element of Lκ = {κ(a, b) : a, b ∈ C}
greater than θ; that is, θ+ def= min{ρ ∈ Lκ : θ ≺ ρ}.

Theorem 1.6 has the nicest form when each object is initiated by just one single seed spel.
Corollary 1.7. Let 〈C, κ,	〉 be an arbitrary affinity structure and S be a non-empty family of singletons
in C such that μC

κ (s, t) �= 1κ for every distinct S = {s} and T = {t} from S. For S = {s} ∈ S, let θS =
μC

κ (s,
⋃

(S \ {S})). Then PSS = PSθ+
S

for every S ∈ S. In particular, Pκ(S) = {PSθ+
S

: S ∈ S}.
Notice that if for a family S containing only singletons there exist distinct S, T ∈ S such that μC

κ (S, T ) def=
maxs∈S μC

κ (s, T ) = 1κ, then PSS = PTS = ∅. That is, in this case, S and T are in the same object, and
therefore, the sets that contain S and T and that separate them in the FC sense are obviously empty. Thus,
in all practical cases we are interested only in the families S of seeds for which μC

κ (S, T ) �= 1κ for any distinct
S, T ∈ S. Thus, this assumption in Corollary 1.7 does not really restrict its usefulness, but warrants it from
practical requirements that the different seeds do not all belong to the same “object.”

If S from Corollary 1.7 has just two elements, say S = {{s}, {t}}, then θ{s} = θ{t} and for θ = θ+
{s} we have

Pκ(S) = {PSθ : S ∈ S} = P
θ
κ(S). Thus, in this case, the RFC segmentation Pκ(S) is just an AFC segmentation

P
θ
κ(S), where θ was automatically set by the RFC procedure. However, when there are more than two objects

involved in RFC and S contains three or more singletons, the thresholds θ+
S , S ∈ S, need not be equal. In this

case each PSS from Pκ(S) is an AFC object PSθ+
S
, where the different thresholds are automatically tailored to

the different objects under consideration. That is the beauty of RFC compared to AFC.
We illustrate this property of RFC vis-a-vis AFC in a schematic (Figure 2), as well as in an actual medical

image (Figure 3). In both figures, we consider three objects, indicated by seeds s, t, and u. In Figure 2, region
W is more strongly connected to seed u than to either s or t. As such, RFC correctly assigns it to the region
Pu,{s,t,u} indicated by u, as shown in Fig. 2(b). However, there is no single threshold that could lead to an AFC
segmentation coinciding with the RFC segmentation: a threshold θ below (.6)+ causes objects Ps,θ and Pt,θ to
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Ia
pj-

be equal and too big, as shown in Fig. 2(d), while θ ≥ (.6)+ cuts region W from Pu,θ, see Fig. 2(c). Nevertheless,
every RFC delineated object is also equal to appropriate AFC object: Ps,{s,t,u} = Ps,(.6)+ , Pt,{s,t,u} = Pt,(.6)+ ,
and Pu,{s,t,u} = Pu,(.5)+ .

In Fig. 3, we concentrate on the objects indicated by seeds s and t, corresponding to soft tissue regions. The
third object is the rest of the background and is denoted by seed u. The 2D scene is the one employed in Fig. 1.
Identical seed spels denoted by +’s in Fig. 3(a) were specified for AFC and RFC. The two connectivity scenes
corresponding to the two AFC objects are displayed in Fig. 3(b) and (c), and the resulting AFC objects obtained
with two different thresholds θ+

S from the scenes in (b) and (c) are shown in Fig. 3(e) and (f). The RFC objects
obtained appear in Fig. 3(d), wherein the two objects of interest are identical to the AFC objects in (e) and (f).

Note also that the main reason we could represent RFC objects in terms of AFC objects was that two
appearances of c in the inequality μC

κ (c, w) ≺ μC
κ (c, s) could be reduced to one: μC

κ (s, w) ≺ μC
κ (c, s), as both

these inequalities are equivalent. In the case of IRFC, the defining inequality is μA
κ (c, w) ≺ μC

κ (c, s) for an
appropriate A ⊂ C, and there is no equivalent form of this inequality with just one appearance of c. Thus, no
natural AFC representation of IRFC object seems possible. Although increasing sophistication from AFC to
RFC to IRFC has been previously demonstrated via segmentation experiments [2, 4, 8], in this section we have
now given a mathematical justification of that behavior.

(a) (b) (c) (d)
Fig. 2. (a) A schematic scene with a uniform background and four distinct areas denoted by S, T , U , W , and indicated

by seeds marked by ×. It is assumed that the connectivity strength within each of these areas has the maximal value

of 1, the connectivity between the background and any other spel is ≤ .2, while the connectivity between the adjacent

regions is as indicated in the figure: μ(s, t) = .6, μ(s, u) = .5, and μ(u, w) = .6. (b) The RFC segmentation of three

objects indicated by seeds s, t, and u, respectively. (c) Three AFC objects indicated by the seeds s, t, u and delineated

with threshold θ = (.6)+. Notice that while Ps,{s,t,u} = Ps,(.6)+ and Pt,{s,t,u} = Pt,(.6)+ , object Pu,(.6)+ is smaller than

RFC indicated Pu,{s,t,u}. (d) Same as in (c) but with θ = (.5)+. Note that while Pu,{s,t,u} = Pu,(.5)+ , objects Ps,(.5)+

and Pt,(.5)+ coincide and lead to an object bigger than Ps,{s,t,u} and Pt,{s,t,u}.

(a) (b) (c) (d) (e) (f)
Fig. 3. (a) A 2D scene, same as in Fig. 1(a), with three indicated seeds. (b), (c) Connectivity scenes corresponding to

the two AFC objects indicated by s and t. (d) The RFC segmentation for the three indicated objects. (e) The AFC

objects initiated with seeds s and t obtained with the threshold θ{s} < θ{t} determined automatically by RFC. Although

the result is a binary image, the two objects are shown at two gray levels. The object indicated by seed s agrees with its

counterpart in (d). The smaller threshold caused the t-indicated object to be slightly smaller than in (d). (f) Same as (e)

but with threshold θ{t}. The object indicated by seed t agrees with its counterpart in (d). However, the larger threshold

caused the s-indicated object (grey) to leak to a big part of the scene.
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2. TWO COMMONLY USED AFFINITIES AND THEIR NATURAL DEFINITIONS
In this section, we briefly describe two main classes of affinities and present a short discussion of their definition.
This represents a summary of a detailed discussion to be published in a full, journal version of this paper.

From now on, we will work with a fixed digital space 〈Zn, α〉 and a scene C = 〈C, f〉 with a scalar valued
intensity function f : C → R. We assume that the adjacency relation α is a hard relation α(c, d) = χ

[0,1](||c−d||);
that is, α(c, d) = 1 when ||c − d|| ≤ 1 and α(c, d) = 0 for ||c − d|| > 1, where ||c − d|| is a distance between c
and d. From this point on, we will drop the superscript from μC , so that symbol μκ(c, d) will stand for μC

κ (c, d).

2.1. Homogeneity based affinity
Intuitively, this function, denoted ψ(c, d), is defined as the maximum of |f ′(x)|, with x on the segment joining c
and d (where f ′ is the derivative of f): the higher the magnitude of the slope of f between c and d is, the weaker
is the affinity (connectivity) between c and d. Of course, there is more than one way to interpret the symbol
|f ′(x)|. In this section we will interpret this as a magnitude of the directional derivative D−→

cd
f(x) in the direction

of the vector
−→
cd. This agrees with the standard FC approach used in the research conducted so far. (See e.g. [9].)

Alternatively, it is possible to treat |f ′(x)| as a gradient magnitude. True gradient induced homogeneity based
affinity will be incorporated in our future work.

The value |f ′(x)| = |D−→
cd

f(x)| is best approximated by a difference quotient ψ0(c, d) =
∣∣∣ f(c)−f(d)

||c−d||
∣∣∣. Although

this expression has no sense for c = d, it should be clear that we should define ψ0(c, c) as equal to 0, the “highest”
possible connectivity in this setting. (Recall that “highest” in terms of 	 defined as ≥ translates into “least” in
terms of the standard order ≤. That is, the greater ψ0 is, the weaker is the affinity between c and d.)

Is the definition of this affinity as ψ0(c, d) what we are looking for? Certainly this is not a local measurement
of connectedness when ||c − d|| is large. In this case, the difference quotient is a poor approximation of the
definition of the derivative. We also have a better way of estimating the highest slope on the road from c to
d: crawl from c to d along a path with steps of length 1, estimating the slope of each step separately. Because
of this, it makes sense to consider the number ψ0(c, d) as a good value for ψ(c, d) only when ||c − d|| ≤ 1,
in all other cases we should assign to it it the worst possible value; that is, ∞. This leads to the definition
ψ(c, d) = ψ0(c, d)/α(c, d); that is,

ψ(c, d) =
{ |f(c) − f(d)| for ||c − d|| ≤ 1

∞ otherwise. (2)

It is easy to see that ψ satisfies our definition of affinity function. It should be stressed here that such a function
approximates only the magnitude of the directional derivative of f in the direction

−→
cd, and gives no information

on the slope of f in a direction perpendicular to
−→
cd. If one likes to express this affinity by an equivalent standard

affinity, our definition of ψ can be replaced by gσ(ψ(c, d)), where gσ is a Gaussian function gσ(x) = e−x2/σ2
.

The homogeneity based connectivity measure, μψ = μC
ψ , can be elegantly interpreted if our scene C = 〈C, f〉

is considered as a topographical map in which f(c) represents an elevation at the location c ∈ C. Then, μψ(c, d)
is the highest possible step (a slope of f) that one must make in order to get from c to d with each step on a
location (spel) from C and of unit length. In particular, the object Pψ

sθ = {c ∈ C : θ ≥ μψ(s, c)} represents those
spels c ∈ C which can be reached from s without ever making a step higher than θ. Note that all we measure in
this setting is the actual change of the altitude while making the step. Thus, this value can be small, even if the
step is made on a very steep slope, as long as the path approximately follows the altitude contour lines — this is
why on steep hills the roads zigzag, allowing for a small incline of the motion. On the other hand, the measure
of the same step would be large, if measured with some form of gradient induced homogeneity based affinity!

2.2. Object feature based affinity
There are two principal differences between the object feature based and the homogeneity based affinities. (1)
The definition of the object feature based affinity requires some prior knowledge on the intensities of the objects
we like to uncover, while the definition of the homogeneity based affinity is completely independent of such
knowledge. (2) The homogeneity based affinity is represented in terms of (the approximation of) the derivative
f ′ of the intensity function f , while the object feature based affinity is defined directly from f , or it could be
some extremely complicated function of f (as in representing texture).
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2.2.1. Object feature based affinity: single object case
We will start with the definition of the object feature based affinity, denoted φ(c, d), in terms of only a single
object O. To define φ, we need to start with an approximate expected (average) intensity value m for the spels
in the object. We will also assume that we have a standard deviation σ > 0 of the distribution of intensity for
this object. Then, the intuition behind φ can be expressed with a pseudo-affinity formula ϕ̄0(c) = |f(c)−m| —
the smaller the value of ϕ̄0(c) is, the closer is c’s intensity to the object intensity, and the better c is connected
to object O. (Since the range of φ is 〈L,	〉 = 〈[0,∞],≥〉, the notion of “	-stronger” translates into “smaller in
the ≤ sense.”) It is also convenient, for facilitating a definition of the object feature based affinity for multiple
objects, to rescale this formula to ϕ̄(c) = |f(c)−m|/σ. This translates to a proper definition of φ, as a function
on the pairs 〈c, d〉 of spels, as max{ϕ̄(c), ϕ̄(d)} = max{|f(c) − m|, |f(d) − m|}/σ for distinct adjacent c and d,
and, in general,

φ(c, d) =

⎧⎨
⎩

0 for c = d
max{|f(c) − m|, |f(d) − m|}/σ for ||c − d|| = 1

∞ otherwise.
(3)

Note that, in reference [6], for distinct adjacent spels c and d, φ(c, d) is defined as |(f(c) + f(d))/2 − m| in
place of max{ϕ̄(c), ϕ̄(d)}. Although this carries similar intuitions, the averaging of the values of f(c) and f(d)
loses information on how far the intensity of each spel is from m. For example, a difficulty with this definition is
shown in Figure 4. Object Pκ

s,6 delineated with κ includes spels c2, c3, c4, c5, but no other spels adjacent to c5.
(The intensity averages of the consecutive spels in the path 〈c1, c2, c3, c4, c5〉 are respectively 37.5, 42.5, 40, 45,
that is, closer to m = 40 than θ = 6. It does not include any other spel c adjacent to c5, since for such c the average
f(c)+f(c5)

2 = 60 is 20 > θ units from m.) Both including the spels c3, c4, c5 in the object as well as after including
c5, excluding other spels adjacent to c5 defies intuitions behind the object feature based affinity. Notice also that,
the object Pφ

s,6 delineated with φ does not include c3, since φ(c2, c3) = max{|35 − 40|, |50 − 40|} = 10 > 6 = θ.
Once again, we can replace φ(c, d) with gσ(φ(c, d)) for some Gaussian-like function to get an equivalent

affinity in the standard form. In particular, for gσ(x) = e−x2/σ2
this leads to ϕ̄(c) = exp(− (f(c)−m)2

σ2 ), one of the
formulas used in [6]. (See also [4, 8, 9].)

(a) (b) (c)
Fig. 4. (a) A schematic scene with each rectangular cell representing a single spel. A number in each spel indicates its

intensity. We delineate an object indicated by a seed s = c1, assuming that its average intensity is m = 40. We also

assume σ = 1. In (b) the shaded area depicts object P φ
s,6 (i.e., with θ = 6) delineated with the affinity φ defined in (3).

The region correctly excludes spel c3, since the difference between its intensity and m exceeds threshold value θ = 6. The

shaded region in (c) represents object P κ
s,6, where κ(c, d) = |(f(c) + f(d))/2 − m|. Not only it incorrectly leaks all the

way to spel c5, but it also abruptly stops there, after reaching an area of uniform intensity.

(a) (b) (c) (d) (e) (f)
Fig. 5. (a) A 2D scene, same as in Fig. 1(a), with an indicated seed. (b), (c) Connectivity scene and an AFC object

corresponding to the indicated seed and affinity gσ ◦ φ. (d) and (e): same as in (b) and (c) but for the affinity defined as

gσ ((f(c) + f(d))/2 − m). (f) shows the symmetric difference between images (c) and (e).
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The difference between φ and κ that was illustrated in Figure 4 above is also demonstrated on the CT
scene image from Fig. 1 in the following Figure 5. Figs 5 (b) and (c) show, respectively, the connectivity
image and AFC object corresponding to the affinity gσ ◦ φ which, for distinct adjacent c and d, is equal to
gσ(φ(c, d)) = min{exp(− (f(c)−m)2

σ2 ), exp(− (f(c)−m)2

σ2 )}. Figs 5 (d) and (e) are similar images obtained for the
affinity κ̂ defined, for distinct adjacent c and d, as gσ ((f(c) + f(d))/2 − m). The object shown in (f), generated
with affinity κ̂, is slightly bigger than that for gσ ◦ φ, shown in (c). Fig. 5(f) shows the symmetric difference
between these two segmentation results.

The object feature based connectivity measure of one object has also a nice topographical map interpretation.
For understanding this, consider a modified scene C̄ = 〈C, |f(·) − m|〉 (called membership scene in [9]) as a
topographical map. Then the number μφ(c, d) represents the lowest possible elevation (in C̄) which one must
reach (a mountain pass) in order to get from c to d, where each step is on a location from C and is of unit length.
Notice that μφ(c, d) is precisely the degree of connectivity as defined by Rosenfeld [3]. By the above analysis,
we brought Rosenfeld’s connectivity also into the affinity framework introduced by [9], particularly as another
object feature component of affinity.

2.2.2. Object feature based affinity: case of multiple objects
The single object connectivity measure μφ can be useful in object definition only if we define it by using absolute
connectedness definition, AFC. To find an object via RFC or IRFC methods, we need to have μφ defined for
at least two objects. So, suppose that the scene consists of n > 1 objects with expected average intensities
m1, . . . ,mn and standard deviations σ1, . . . , σn, respectively. Then we have n different object feature based
affinities φ̂i(c, d), defined for c �= d as max{ϕ̄i(c), ϕ̄i(d)}/α(c, d), where ϕ̄i(c) = |f(c)−mi|/σi, and their respective
connectivity measures μφ̂i

. We like to combine affinities φ̂i to get the cumulative object feature based affinity φ.
(Obtaining a single affinity at the end becomes essential in order to fulfill the theoretical requirements of fuzzy
connectedness. See [4, 8].) But how to define such a φ?

The idea behind the formula for φ is to define φ(c, d) as the best among all numbers φ̂i(c, d). One possible
choice for φ(c, d), one used in the literature so far, is mini=1,...,n φ̂i(c, d). The problem with this choice is that
we never know which value of φ̂i(c, d) was used to determine φ(c, d). An alternative approach is as follows.
Since the values of φ̂i(c, d) = max{ϕ̄i(c), ϕ̄i(d)}/σi are the most valuable when this number is small and because
difficulties occur when φ̂i(c, d) = φ̂j(c, d) for i �= j, we will eliminate the information in ϕ̄i(c) when this value
exceeds ϕ̄j(c) for some j. This is made formal below.

For distinct i, j ∈ {1, . . . , n}, let δj
i ≥ 0 be the largest number with the property that |x−mi|

σi
<

|x−mj |
σj

for

every x ∈ (mi − δj
i ,mi + δj

i ). (If σi = σj , then δj
i is just half of the distance between mi and mj .) Thus, if

xj
i ∈ {mi − δj

i ,mi + δj
i } is between mi and mj , then ϕ̄i(c) <

|xj
i−mi|
σi

= δj
i

σi
= |xj

i−mj |
σj

< ϕ̄j(c) for each c ∈ C

provided |f(c) − mi| < δj
i . Let εi = minj �=i δj

i and Ii = (mi − εi,mi + εi). Then intervals Ii, i ∈ {1, . . . , n}, are
pairwise disjoint. Function ϕi is defined as a truncation of ϕ̄i to the interval Ii, that is, by a formula

ϕi(c) = ϕIi
i (c) =

{
ϕ̄i(c) for f(c) ∈ Ii

∞ otherwise.

Then ϕi(c) < ∞ implies f(c) ∈ Ii = (mi − εi,mi + εi). For c �= d put φi(c, d) = max{ϕi(c), ϕi(d)}/α(c, d); that
is, φi(c, d) = 0 when c = d, φi(c, d) = max{ϕi(c), ϕi(d)} for ||c − d|| = 1, and φi(c, d) = ∞ otherwise, and let

φ(c, d) = mini=1,...,n φi(c, d). (4)

Clearly, truncating each ϕ̄i to ϕi = ϕIi
i is causing the loss of some information. In fact, the most common

definition of φ used in the literature till now, see e.g. [4], coincides with ours if one drops the matter of truncation:
define φ̄(c, d) = mini=1,...,n φ̄i(c, d), where φ̄i(c, d) = max{ϕ̄i(c), ϕ̄i(d)}/α(c, d) for c �= d. Then μφ̄ is defined as
usual. Clearly, at the first glance it seems that affinity φ̄ is superior to its truncated version φ defined above
and that the information truncation makes the ability to distinguish among objects weaker. Although, to some
extent, this is a legitimate concern, it should be noted that the objects obtained with the use of φ̄ may be bigger
than those obtained with the use of φ.
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3. HOW TO COMBINE DIFFERENT AFFINITIES?
In this section, we will discuss the issue of how to combine two or more different affinities of the sort described in
the previous section into one affinity. We will also examine which parameters in the definitions of the combined
affinity are redundant, in the sense that their change leads to an equivalent affinity.

3.1. Affinity combining methods
Assume that for some k ≥ 2 we have affinity functions κi : C × C → 〈Li,	i〉 for i = 1, . . . , k. For example, we
can have k = 2, κ1 = ψ, and κ2 = φ. The most flexible way of combining all these affinities into a single affinity
κ is to put κ(c, d) = 〈κ1(c, d), . . . , κk(c, d)〉 and define an appropriate linear order 	 on L = L1 × · · · × Lk. To
understand this formalism better, we will start with the following examples, which also constitute our practical
approach to the affinity combining problem.
Example 3.1. (Weighted Averages) Assume that all linear orderings Li are equal to the same ordering
〈L0,	0〉 which is either 〈[0,∞],≥〉 or 〈[0, 1],≤〉 and fix a vector w = 〈w1, . . . , wk〉 of numbers from [0, 1] (weights)
such that w1 + · · · + wk = 1; we allow a weight wi to be equal to 0 (meaning “ignore influence of κi”) assuming
that 0 · ∞ = 0 and 00 = ∞0 = 1.
Additive Average: Let hadd

w (a) = w1a1 + · · · + wkak for a = 〈a1, . . . , ak〉 ∈ (L0)k. If we define order ≤add
w as

a ≤add
w b ⇔ hadd

w (a) 	0 hadd
w (b), then κ : C × C → 〈L,≤add

w 〉 is equivalent to κa
w : C × C → 〈L0,	0〉 defined as

κa
w(c, d) = hadd

w (κ1(c, d), . . . , κk(c, d)). For k = 2, the affinity κa
w = w1κ1 + w2κ2 has been considered in [6].

Multiplicative Average: Let hmul
w (a) = aw1

1 · · · awk

k for a = 〈a1, . . . , ak〉 ∈ (L0)k. If we define order ≤mul
w as

a ≤mul
w b ⇔ hmul

w (a) 	0 hmul
w (b), then κ : C×C → 〈L,≤mul

w 〉 is equivalent to κm
w : C×C → 〈L0,	0〉 defined as

κm
w(c, d) = hmul

w (κ1(c, d), . . . , κk(c, d)). For k = 2, the affinity κm
w = κw1

1 κw2
2 has been already considered in [6].

Recall that the lexicographical order ≤lex on L = L1 × · · · × Lk is defined for distinct a = 〈a1, . . . , ak〉,b =
〈b1, . . . , bk〉 ∈ L as a <lex b ⇔ ai ≺i bi, where i = min{j : aj �= bj}.
Example 3.2. (Lexicographical Order) Affinity function κlex : C × C → 〈L,≤lex〉 establishes the strongest
possible hierarchy between the coordinate affinities κi: in establishing whether κlex(a, b) ≤lex κlex(c, d), the
values κi(a, b) and κi(c, d) are completely irrelevant, unless κj(a, b) = κj(c, d) for all j < i, in which case
κi(a, b) ≺i κi(c, d) implies κlex(a, b) <lex κlex(c, d).

Notice that κlex cannot be expressed in the form of h(κ1, . . . , κk) for any continuous function on [0, 1]k or on
[0,∞]k. In what follows, we will restrict our attention to the situation when k = 2. In this case the lexicographical
order is defined as 〈a1, a2〉 <lex 〈b1, b2〉 provided either a1 ≺1 b1 or a1 = b1 and a2 ≺2 b2. The lexicographical
order approach is quite appealing in case when κ1 = ψ and κ2 = φ as the decision whether μκ(c, s) ≤lex μκ(c, t)
becomes hierarchical in nature: if μψ(c, s) < μψ(c, t), then μκ(c, s) ≤lex μκ(c, t) independent of the values of
μφ(c, s) and μφ(c, t); only when the homogeneity based connectivity measure cannot decide the matter, that is,
when μψ(c, s) = μψ(c, t), we decide on the direction of ≤lex between μκ(c, s) and μκ(c, t) based on the direction
of 	2 between μφ(c, s) and μφ(c, t). Thus, we treat the homogeneity based connectivity measure as dominant
over object feature based connectivity measure. (Note that this will become reversed if κ1 = φ and κ2 = ψ.)
However, there is more to it. If μψ(c, s) = μψ(c, t), then we decide about μκ(c, s) ≤lex μκ(c, t) only along the
paths p ∈ Pcs and q ∈ Pct with μψ(p) = μψ(q) = μψ(c, s). Only to these paths we apply μφ measure. Thus,
we use the object based feature measure in this schema in a considerably more sophisticated way than what is
suggested by the threshold-like interpretation described in Section 2. It should be also clear that, if we agree
that we should give priority to homogeneity based connectivity measure in the RFC approach, this is precisely
the way we should proceed.

Next, consider the coordinate order preserving property of the combined affinity κ(c, d) = 〈κ0(c, d), κ1(c, d)〉:
(C) for every i = 0, 1 and c, d, c′, d′, if κi(c, d) = κi(c′, d′), then κ(c, d) ≺ κ(c′, d′) ⇔ κ1−i(c, d) ≺1−i κ1−i(c′, d′).

Property (C) says that if one of the coordinate affinities does not distinguish between two pairs of spels, then the
combined affinity decides on this pair according to the other coordinate affinity. This seems to be a very natural
and desirable property. It is easy to see that, by design, the κlex affinity has this property. However, in general,
(C) is not satisfied for the multiplicative average κm

w : if κi(c, d) = κi(c′, d′) = 0, then κm
w(c, d) = κm

w(c′, d′) = 0
independently of the value of κ1−i on these pairs. A similar problem arises for κi(c, d) = κi(c′, d′) = ∞, although
for κi(c, d) = κi(c′, d′) ∈ (0,∞) the equivalence from (C) is satisfied. This creates a problem especially with
the truncated version of the object-feature based affinity, since, in this case, affinity is equal to ∞ for many
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adjacent pairs of spels. Condition (C) also fails for κadd
w when κadd

w (c, d) = κadd
w (c′, d′) = ∞, although for

κadd
w (c, d) = κadd

w (c′, d′) < ∞ the equivalence is satisfied. In particular, (C) holds for κadd
w formed with the

coordinate affinities with range 〈[0, 1],≤〉.
Notice that the property (C) fails only if we allow values 0 or ∞ in the range of κ’s. Therefore, if we like to

insure (C), we can always replace κi’s with their equivalent forms with the range in (0,∞) (e.g. by replacing ∞
with some large but finite number), which will insure (C) in the above described combining methods.

3.2. Counting essential parameters
Next, let us turn our attention to the determination of the number of parameters essential in defining the affinities
presented in the previous section. We will consider here only the parameters explicitly mentioned there, since any
implicit parameters (like the parameters for getting intensity function from the actual acquisition data) could
not be handled by the methods we will employ. This exercise is useful in tuning the FC segmentation methods
to different applications. It is also useful in comparing these methods with others. Recall that for a σ ∈ (0,∞)
we defined gσ : [0,∞] → [0, 1] by gσ(x) = e−x2/σ2

.
Homogeneity based affinity, ψ, is defined as ψ(c, d) = |f(c)−f(d)| for ||c−d|| ≤ 1 and ψ(c, d) = ∞ otherwise.
As such, there are no parameters in this definition. In its standard form, gσ ◦ ψ, the parameter σ is redundant,
since, by Corollary 1.2, gσ ◦ψ is equivalent to ψ. This beautiful characteristic says that FC partitioning of a scene
utilizing homogeneity based affinity is an inherent property of the scene and is independent of any parameters,
beside a threshold in case of AFC.
Object feature based affinity for one object, φ, is defined by φ(c, d) = max{|f(c)−m1|, |f(d)−m1|}/σ1 for
||c − d|| = 1, φ(c, d) = 0 for c = d, and φ(c, d) = ∞ otherwise. From the two parameters, m1 and σ1, present in
this definition, only m1 is essential. Parameter σ1 is redundant, since function σ1 · φ is independent of its value
and σ1 · φ is equivalent to φ, as σ1 · φ = h ◦ φ for an increasing function h(x) = σ1x. As before, the standard
form gσ ◦ φ of φ is equivalent to it, so the only essential parameter in the definition of gσ ◦ φ is the number m1.
Object feature based affinity for multiple objects. Suppose that the affinity is defined for n > 1 different
objects for which m̄ = 〈m1, . . . ,mn〉 and σ̄ = 〈σ1, . . . , σn〉 represent their average intensities and standard
deviations, respectively. Let φm̄,σ̄ represent the object feature affinity in its main truncated form and let φ̄m̄,σ̄

stand for its untruncated version. (See Section 2.2.2.) Then σ1 · φm̄,σ̄ = φm̄,δ̄ and σ1 · φ̄m̄,σ̄ = φ̄m̄,δ̄, where
δ̄ = 〈1, δ2, . . . , δn〉 and δi = σi/σ1. Since σ1 ·φm̄,σ̄ is equivalent to φm̄,σ̄, affinity φm̄,σ̄ depends essentially only on
2n − 1 parameters m1, . . . ,mn, δ2, . . . , δn. The same is true for its standard form gσ ◦ φm̄,σ̄ as well as for their
untruncated counterparts φ̄m̄,σ̄ and gσ ◦ φ̄m̄,σ̄.

In what follows, we will assume that w, σ, τ ∈ (0, 1) and that φ is equal to either φm̄,δ̄ or to φ̄m̄,δ̄, so it has
2n−1 essential parameters. Then we have the following methods of combining, denoted m1–m5, for homogeneity
and object feature based affinities.

m1 The additive average κ = (1 − w)ψ + wφ of ψ and φ has 2n parameters. It is equivalent to ψ + xφ, where
x = w

1−w ∈ (0,∞). Note that if φ is replaced by an equivalent affinity σ1φ, then the resulting average
affinity (1 − w)ψ + wσ1φ is also equivalent to ψ + xφ with x ∈ (0,∞). Note also that κ does not satisfy
property (C), unless we insure that ψ and φ admit no ∞ value.

m2 The additive average κ = (1−w)gσ ◦ψ +wgτ ◦φ of gσ ◦ψ and gτ ◦φ has 2n+2 essential parameters. Since
κ = eln(1−w)−ψ2/σ2

+ eln w−φ2/τ2
, this operation strangely mixes additive and multiplicative modifications

of ψ and φ. The additional two parameters, σ and τ , are of importance in this mix. This affinity does
satisfy property (C).

m3 The multiplicative average κ = ψ(1−w)φw of ψ and φ has 2n parameters and it is equivalent to ψφx, where
x = w

1−w ∈ (0,∞), as κ = (ψφx)1−w. If φ is replaced by an equivalent affinity σ1φ, then the resulting
average (ψσx

1φx)1−w is also equivalent to ψφx with x ∈ (0,∞), since function h(t) = (σx
1 t)1−w is increasing

as a composition of two increasing functions. This κ does not satisfy property (C), unless we insure that
ψ and φ admit no 0 and ∞ values.

m4 The multiplicative average κ = (gσ ◦ ψ)(1−w)(gτ ◦ φ)w of gσ ◦ ψ and gτ ◦ φ has 2n + 2 parameters, but
only 2n of them are essential. This is so since κ = (e−ψ2/τ2

)1−w(e−φ2/σ2
)w = (e−ψ2−xφ2

)(1−w)/τ2
, where

x = τ2

σ2
w

1−w ∈ (0,∞), is equivalent to ψ2 + xφ2. The same is true if φ is replaced by σ1φ. This κ does not
satisfy property (C), unless we insure that ψ and φ admit no ∞ value.
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m5 There are only two essential possibilities for lexicographical order of ψ and φ: 〈ψ, φ〉 and 〈φ, ψ〉, even if we
allow replacement of each of the coordinate affinities by any of their equivalent forms, including but not
restricted to gσ ◦ ψ and σ1φ, gτ ◦ φ, or gτ ◦ (σ1φ). This follows from Proposition 1.1, since for any pair
〈ψ∗, φ∗〉 such that ψ∗ is equivalent to ψ and φ∗ is equivalent to φ, there are strictly monotone functions
g and h such that ψ∗ = g ◦ ψ and φ∗ = h ◦ φ, and then 〈ψ∗, φ∗〉 = 〈g, h〉 ◦ 〈ψ, φ〉, so 〈g, h〉 establishes the
equivalence of 〈ψ, φ〉 and 〈ψ∗, φ∗〉.

4. CONCLUDING REMARKS
The analysis presented in Section 1 shows that, from the perspective of FC methodology, the only essential
attribute of an affinity function is its order. In particular, many transformations (like gaussian) of the natural
affinity definitions (like derivative-driven homogeneity based affinity) are of esthetic value only and do not
influence the FC segmentation outcomes. Nevertheless, such transformations may play a role in combining
different affinities, as can be seen in methods m1 and m2, since only one of them has the property (C).

The analysis from Section 1 forms also the foundation of the investigation presented in Section 3, of which
parameters in the definitions of homogeneity and object-feature based affinities, as well as their combinations,
are of importance. In particular, we uncovered that many of the parameters in these definitions are of no
consequence. Thus, for the tasks of application-driven optimization of the parameters, the number of parameters
to be optimized is reduced.

In Section 2, we discussed two commonly used affinities, homogeneity and object-feature based, and inter-
preted them, respectively, as approximations of the directional derivatives and the distance from the object’s
average intensities. We also pointed out some theoretical deficiencies with the standard format of the object-
feature based affinity in the case of multiple objects and proposed a truncated version of such affinity, which
avoids theoretical difficulties, but loses some information along the way. In Section 3, combining the results from
the previous sections, we discussed five distinct ways of constructing full affinity functions (m1-m5).

We did not undertake any empirical evaluation studies in this paper. A theoretical study preceding such an
evaluation becomes essential to understand what affinity forms are distinct, what are redundant, and what pa-
rameters are essential/redundant. This paper constitutes a first such step. Analysis similar to the one conducted
in this paper for FC can be carried out for other frameworks, such as level sets, watersheds, and graph cuts.

Also, as mentioned in Section 2.1, in the definition of the homogeneity based affinity it makes sense to use
the notion of the gradient as a base for its definition, instead of the notion of the directional derivative. The
discussion of the gradient induced homogeneity based affinity is a part of our forthcoming paper.
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