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Abstract

In this paper we present a new theory and an algorithm for image segmentation
based on a strength of connectedness between every pair of image elements. The
object definition used in the segmentation algorithm utilizes the notion of iterative
relative fuzzy connectedness, IRFC. In previously published research, the IRFC
theory was developed only for the case when the segmentation was involved with
just two segments, an object and a background, and each of the segments was
indicated by a single seed. (See Udupa, Saha, Lotufo [15] and Saha, Udupa [14].) Our
theory, which solves a problem of Udupa and Saha from [13], allows simultaneous
segmentation involving an arbitrary number of objects. Moreover, each segment can
be indicated by more than one seed, which is often more natural and easier than a
single seed object identification.

The first iteration step of the IRFC algorithm gives a segmentation known as rel-
ative fuzzy connectedness, RFC, segmentation. Thus, the IRFC technique is an ex-
tension of the RFC method. Although the RFC theory, due to Saha and Udupa [19],
is developed in the multi object/multi seed framework, the theoretical results pre-
sented here are considerably more delicate in nature and do not use the results
from [19]. On the other hand, the theoretical results from [19] are immediate con-
sequences of the results presented here. Moreover, the new framework not only
subsumes previous fuzzy connectedness descriptions but also sheds new light on
them. Thus, there are fundamental theoretical advances made in this paper.

We present examples of segmentations obtained via our IRFC based algorithm in
the multi object/multi seed environment, and compare it with the results obtained
with the RFC based algorithm. Our results indicate that, in many situations, IRFC
outperforms RFC, but there also exist instances where the gain in performance is
negligible.
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1 Introduction

Image segmentation — the process of partitioning (in a hard or fuzzy man-
ner) the image domain into meaningful object regions — is perhaps the most
challenging and critical problem in image processing and analysis. Research
in this area will probably continue indefinitely long because the solution space
is infinite dimensional, and since any single solution framework is unlikely
to produce an optimal solution (in the sense of the best possible precision,
accuracy, and efficiency) for a given application domain. It is important to
distinguish between two types of activities in segmentation research — the
first relating to the development of application domain-independent general
solution frameworks, and the second pertaining to the construction of domain-
specific solution starting from a known general solution framework. The latter
is not a trivial task most of the time. Both these activities are crucial, the
former for advancing the theoretical aspects of, and shedding new light on,
segmentation research, and the latter for bringing the theoretical advances to
actual practice. The topic of this paper pertains to the former.

General segmentation frameworks [1]–[12] may be broadly classified into three
groups: boundary-based [1]–[5], region-based [6]–[10], and hybrid [11,12]. As
the nomenclature indicates, in the first two groups the focus is on recognizing
and delineating the boundary or the region occupied by the object in the im-
age. In the third group, the focus is on exploiting the complementary strengths
of each of boundary-based and region-based strategies to overcome their in-
dividual shortcomings. The segmentation framework discussed in the present
paper belongs to the region-based group and constitutes an extension of the
fuzzy connectedness (abbreviated from now on as FC) methodology [9].
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In the FC framework [9], a fuzzy topological construct, called fuzzy connect-
edness, characterizes how the spatial elements (abbreviated as spels) of an
image hang together to form an object. This construct is arrived at roughly
as follows. A fuzzy relation called affinity is defined on the image domain;
the strength of affinity between any two spels depends on how close the spels
are spatially and how similar their intensity-based properties are in the im-
age. Affinity is intended to be a local relation. A global fuzzy relation called
fuzzy connectedness is induced on the image domain by affinity as follows. For
any two spels c and d in the image domain, all possible paths connecting c
and d are considered. Each path is assigned a strength of fuzzy connectedness
which is simply the minimum of the affinities of consecutive spels along the
path. The level of fuzzy connectedness between c and d is considered to be the
maximum of the strengths of all paths between c and d. For segmentation pur-
poses, FC is utilized in several ways as described below. See [13] for a review
of the different FC definitions and how they are employed in segmentation
and applications.

In absolute FC (abbreviated AFC) [9], the support of a segmented object is
considered to be the maximal set of spels, containing one or more seed spels,
within which the level of FC is at or above a specific threshold. To obviate the
need for a threshold, relative FC (or RFC) [19] was developed by letting all
objects in the image to compete simultaneously via FC to claim membership
of spels in their sets. Each co-object is identified by one or more seed spels.
Any spel c in the image domain is claimed by that co-object with respect to
whose seed spels c has the largest level of FC compared to the level of FC
with the seed sets of all other objects. To avoid treating the core aspects of
an object (that are very strongly connected to its seeds) and the peripheral
subtle aspects (that may be less strongly connected to the seeds) in the same
footing, an iterative refinement strategy is devised in iterative RFC (or IRFC)
[14]–[16]. The superior performance of IRFC over RFC and the underlying
reasons are illustrated in Figures 11 and 9(e-f). Another advantage of IRFC is
that the objects it generates are topologically nicer than those generated by
RFC or AFC — any IRFC object generated by a single seed has no “holes”
(i.e., is simply connected), unless a “hole” contains a seed of another object.
This feature is illustrated in Figure 1.

(a) (b) (c)

Figure 1. (a) Original image, with seeds s and t indicating the object and
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the background, respectively. (b) The foreground object (in white) generated
by RFC. (c) The foreground object (in white) generated by IRFC. (We used
the same homogeneity based affinity in both cases.)

In general, IRFC leads to better object definition than RFC with a theoretical
construct similar to that of RFC. The proper design of affinity is crucial to
the effectiveness of the segmentations that ensue, no matter what type of FC
is used. In scale-based FC [13], which is applicable to all of AFC, RFC, and
IRFC, affinity is defined not based just on the properties of the two spels
under question but also on the properties of all spels in the local scale region
around the two spels. In vectorial FC [27], affinity is constructed in a vectorial
manner, allowing spels to assume not just scalar values but any vectorial
values, which may come from the original acquisition of the image owing to
multiple image properties at every spel or that may arise from vector-valued
features estimated from the given scalar or vectorial image. By using S and
V to abbreviate “scale-based” and “vectorial,” and by allowing a combination
of these indexes with different types of FC referred to above, we may describe
the FC family that is developed to date by methods denoted by AFC, SAFC,
VAFC, VSAFC, RFC, SRFC, VRFC, VSRFC, IRFC, SIRFC, VIRFC, and
VSIRFC. See [13] and the original articles cited therein for further details on
each member of this family.

In the present paper, we make two sets of fundamental contributions. (1)
The original IRFC was devised, due to theoretical challenges, in a 2-object
(foreground-background) scenario. We now overcome this theoretical challenge
and generalize its theory to multiple objects. (2) In this process of generaliza-
tion, several most fundamental properties of AFC, RFC, and IRFC have been
uncovered. They allow us to better understand the behavior of the FC process
in general, and IRFC in particular, and give us a single unified theoretical
framework within which all members of FC family methods can be described
elegantly. This may lead us to more effective segmentation strategies in the
future. These fundamental theoretical advances are described in Section 2.
For ease of reading, most long proofs are pooled together in Section 3, so that
skipping this section will not affect the understandability of the new results
presented in the paper. The new algorithm is described in Section 4. Some ex-
amples and comparison with RFC are presented in Section 5 to demonstrate
the behavior of the multi-object strategy of generalized IRFC. Our concluding
remarks are stated in Section 6.

2 Theory

In this section we present the theoretical framework of generalized IRFC.
The terminology and notation employed in this paper follow in spirit that
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of previously published FC papers. However, we slightly deviate from the
previous notation in several aspects, and we believe that the new approach is
more precise and elegant.

2.1 Basic definitions and notation

The most fundamental notion in our theory is that of the strength of con-
nectedness between a pair of image elements. In its definition, we will use a
notation that is only a slight modification of that used by Udupa and Sama-
rasekera [9].

In this paper we will use the following interpretation of the notions of (hard)
functions and relations, which is standard in set theory and is used in many
calculus books. A binary relation R from a set X into a set Y is identified
with its graph; that is, R is equal to {〈x, y〉 ∈ X × Y : xRy holds}. Since a
function f : X → Y is a (special) binary relation from X to Y , in particular
we have f = {〈x, f(x)〉 : x ∈ X}. With this interpretation, handling fuzzy sets
and fuzzy relations becomes quite natural and less cumbersome than usual. In
particular, let Z be a fuzzy subset of a hard set X with a membership function
µZ : X → [0, 1]. For x ∈ X, we interpret µZ(x) as the degree to which x belongs
to Z. Usually such a fuzzy set Z is defined [17] as {〈x, µZ(x)〉 : x ∈ X}, which
is the graph of µZ . Thus, according to our interpretation, Z is actually equal
to µZ . Note that this interpretation fits also quite well the situation when Z is
the hard subset Z of X, as then Z = µZ is equal to the characteristic function
χ

Z (defined as χ
Z(x) = 1 for x ∈ Z and χ

Z(x) = 0 for x ∈ X \ Z), and
the identification of Z with χ

Z is quite common in analysis and set theory.
Notice also, that a fuzzy binary relation ρ from X to Y is just a fuzzy subset
of X × Y , so it is equal to its membership function µρ : X × Y → [0, 1].

Let n ≥ 2. A binary fuzzy relation α on Zn is said to be a fuzzy adjacency
binary relation if α = µα is symmetric (i.e., µα(c, d) = µα(d, c)) and reflexive
(i.e., µα(c, c) = 1). The value of µα(c, d) depends only on the relative spatial
position of c and d. Usually µα(c, d) is decreasing with respect to the distance
function ||c − d||. In most applications, α is just a hard case relation like 4-
adjacency relation for n = 2 or 6-adjacency in the three-dimensional case. By
an n-dimensional fuzzy digital space we will understand a pair 〈Zn, α〉. The
elements of the digital space are called spels. (For n = 2 also called pixels,
while for n = 3 – voxels.) A scene over a fuzzy digital space Zn is a pair
C = 〈C, f〉, where C =

∏n
j=1[−bj, bj] ⊂ Zn, each bj > 0 being an integer, and

f : C → R is a scene intensity function. In this paper, symbols C and C will
always stand for a scene and its domain, respectively, as defined above.

The most fundamental measure of local “hanging togetherness” of any pair
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of spels is an affinity relation κ. It is a fuzzy binary relation defined on C;
that is, µκ : C ×C → [0, 1]. Affinity relation κ is defined to be symmetric and
reflexive. The value of µκ(c, d) depends not only on the adjacency strength
µα(c, d), but also on the intensity function f . There are many methods of
finding the affinity relation for a given scene. (See the survey paper [13].) In
this paper, we will always assume that an appropriate affinity has already
been specified for the segmentation task on hand.

A translation of the local strength of connectedness given by κ into the global
strength of connectedness is done with the help of the notion of a path and
its strength. A path in A ⊆ C is any sequence p = 〈c1, . . . , cl〉, where l > 0
and ci ∈ A for every i = 1, . . . , l. The family of all paths in A is denoted by
PA. If c, d ∈ A, then the family of all paths 〈c1, . . . , cl〉 in A from c to d (i.e.,
such that c1 = c and cl = d) is denoted by PA

cd. The strength µ(p) of a path
p = 〈c1, . . . , cl〉 ∈ PC is defined as the strength of its κ-weakest link; that is,

µ(p) = min {µκ(ci−1, ci) : 1 < i ≤ l} , (1)

when l > 1, and µ(p) = 1 for l = 1. For c, d ∈ A ⊆ C the fuzzy κ-connectedness
strength in A between c and d is defined as the strength of a strongest path in
A between c and d; that is,

µA(c, d) = max
{
µ(p) : p ∈ PA

c,d

}
. (2)

If κ is a hard binary relation, κ : C × C → {0, 1}, then the relation µA is
known as a transitive closure of κ ∩ (A× A). Note that

µA(c, d) ≤ µB(c, d) for every c, d ∈ A ⊆ B ⊆ C. (3)

Notice also that µA(c, d) ≥ µκ(c, d). A path p ∈ PA
c,d with µ(p) = µA(c, d) is

referred to as a strongest path (in A) from c to d.

It is easy to see that, for every c, d ∈ A ⊆ C and paths p, q ∈ PA, we have

(i) µ(〈c, d〉) = µκ(c, d) and µ(p) ≤ µ(q) if p is either an initial or a terminal
extension of q; and

(ii) µA is reflexive and symmetric on A.

It is also not difficult to see (and it follows easily from Proposition 2.1 below)
that

(iii) µA is transitive on A; that is, µA(c, d) ≥ min{µA(c, x), µA(x, d)} for every
c, d, x ∈ A.

A very interesting fact is that if µA is defined from µ via formula (2) and
the properties (i)–(iii) hold, then one might assume as well µ is defined by a
formula (1), since under this conditions, independent of the actual definition
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of µ(p), we still have µA(c, d) = max〈c1,...,cl〉∈PA
c,d

min1<i≤l µκ(ci−1, ci). This was

proved by Saha and Udupa in [18].

For paths p = 〈c1, . . . , cl〉 ∈ PA and q = 〈d1, . . . , dn〉 ∈ PA, we will use symbol
p + q to denote the path 〈c1, . . . , cl, d1, . . . , dn〉 ∈ PA. We will use this symbol
only when cl = d1. Notice that in such a situation, by the definition in (1), we
have µ(p + q) = min{µ(p), µ(q)}, as µκ(cl, d1) = 1.

The following result is a slight refinement of [15, Prop. 2.3].

Proposition 2.1 For any spels a, b, c ∈ A ⊆ C,

µA(a, b) > µA(b, c) =⇒ µA(a, c) = µA(b, c). (4)

Proof. If pab and pbc are the strongest paths between a and b and between
b and c, respectively, then the path pab + pbc justifies µA(a, c) ≥ µA(b, c), as
µA(a, c) ≥ µ(pab+pbc) = min{pab, pbc} ≥ µA(b, c). If we had µA(a, c) > µA(b, c),
with path pca being the strongest path between c and a, then we would have
µ(pca + pab) = min{µ(pca), µ(pab)} > µA(b, c), which is impossible.

2.2 Fuzzy connected objects: absolute and relative

By a segmentation of a scene C = 〈C, f〉 we will understand any family
{P1, . . . , Pm} of pairwise disjoint hard subsets of C. Although this is a depar-
ture from the terminology used in the previous papers on fuzzy connectedness,
the change is only superficial. This is the case since the algorithms from all
previous papers were also designed to create the hard segmentations of C,
while, in the last step, each set P from the segmentation was assigned a mem-
bership function µP : C → [0, 1] of the form µP (c) = η(f(c)) · χP (c), where
η is a function (like Gaussian) that maps the image intensity function into
objectness values. Although this last step could be done also in the case of our
segmentation, we will confine ourselves up to the step of hard segmentation
only since, from the viewpoint of the new theory and algorithms, this is what
matters.

To translate the notion of a path strength into an actual segmentation of a
given scene C = 〈C, f〉, one must indicate each object with one or more seeds.
So, assume that we have a nonempty set S ⊂ C of seeds such that each seed
represents a different object. (The case of multiple seeds per object will be
discussed later.)

The simplest way to define a segmentation of a scene C is to choose a threshold

7



θ ∈ (0, 1] and for each seed s ∈ S define an object in C associated with s as

Psθ = {c ∈ C : µC(c, s) ≥ θ}.

These objects were first studied by Udupa and Samarasekera in [9]. It is easy
to see that s ∈ Psθ for every s ∈ S. Also, for s, t ∈ S, if θ > µC(s, t), then Psθ

and Ptθ are disjoint; on the other hand, if θ ≤ µC(s, t), then Psθ = Ptθ. Thus,
to make the objects disjoint, one must choose θ greater than every number
µC(s, t), for all distinct s, t ∈ S. This is the underlining mechanism of AFC.
This phenomenon is illustrated in Figure 2 on a CT slice of a human knee,
wherein three seed spels s, t, and u are chosen, one in each of three muscle
regions. Since the strength of connectedness between any two seeds is much
lower than the strength of connectedness within each object (Figure 2(b)), for
the individual muscle regions a threshold can be selected to specify Psθ.

(a) (b)

Figure 2. Illustration of AFC segmentation of the muscles of a knee. (a) A
CT slice of a human knee. (b) Each pixel has a strength of connectedness with
respect to each seed, u, s, and t, chosen within muscle regions. The largest of
these strengths is shown as a scene.

A considerably more powerful segmentation tool is that of RFC. For any s ∈ C
and T ⊂ C, define

PsT =
{
c ∈ C : µC(c, s) > µC(c, t) for every t ∈ T \ {s}

}
.

Then, the segmentation generated by seeds S ⊂ C is defined as {PsS : s ∈ S}.

It is easy to see that the objects {PsS : s ∈ S} are pairwise disjoint. In addition,
s ∈ PsS as long as there is no t ∈ S, t 6= s, with µC(s, t) = 1; if there is such
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a t, then PsS is empty. Note also, that if θ > max{µC(s, t) : s, t ∈ S, s 6= t}
(so that the sets {Psθ : s ∈ S} are pairwise disjoint), then Psθ ⊂ PsS for every
s ∈ S. Thus, the RFC method of segmentation is indeed more refined than
the AFC method. Again, by using the example in Figure 2, we demonstrate
in Figure 3 the results PsS of RFC. Note that these segmented regions are
generally larger than those in Figure 2. Note also that the spels that are not
in the muscle regions all have the same strength of connectedness with respect
to at least two objects.

Figure 3. RFC segmentation of the knee muscles from Figure 2, where the
same seed points were used as in the AFC segmentation shown in Figure 2(b).

One of the important properties of the above described methods of segmen-
tation (AFC and RFC) is known as robustness. This property states that the
segmentation does not change if different seeds are chosen within the same
objects, which, for the practice of these segmentation methods, is a very de-
sirable property to have. The following result, due to Saha and Udupa [19],
is the precise statement of this property in case of RFC segmentation. (This
result follows also from our Corollary 2.7.)

Proposition 2.2 (Robustness) Let S = {s1, . . . , sm} ⊂ C and for every
i ∈ {1, . . . ,m} let ti ∈ PsiS. If T = {t1, . . . , tm}, then PtiT = PsiS for every
i ∈ {1, . . . ,m}.

The objects PsS are often referred to as connected components. The following
fact justifies the word connected in this term. Moreover, this fact will be used
in what follows as a motivational tool and in the actual proofs.

Fact 2.3 If p = 〈c1, . . . , cl〉 is a strongest path from c ∈ PsS to an s ∈ S, then
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ci ∈ PsS for every i ∈ {1, . . . , l}; that is, p ∈ PPsS .

Proof. Fix an i ∈ {1, . . . , l} and a t ∈ S \ {s}. Since c ∈ PsS, we know that
µC(c, s) > µC(c, t). We need to show that µC(ci, s) > µC(ci, t). But, by (4),
we have µC(s, t) = µC(c, t). Since also

µC(ci, s) ≥ µ(〈ci, . . . , cl〉) ≥ µ(p) = µC(c, s) > µC(c, t) = µC(s, t),

by (4) we have µC(ci, s) > µC(s, t) = µC(ci, t).

It is sometimes difficult to pinpoint a single seed in a desired object, and often,
it is convenient, or becomes necessary, to choose multiple seeds for each object
under consideration. So, let S be a family of nonempty pairwise disjoint sets
of seeds. For each S ∈ S, we like to find an object PSS containing S in a way
similar to that described above. To define PSS , it is convenient to have the
following notation for every c ∈ A ⊂ C and D ⊂ A:

µA(c, D) = max
d∈D

µA(c, d).

(Note that µA(c, ∅) = −∞, as max ∅ = −∞ according to a convention that,
for a finite Z ⊂ R, max Z is the smallest b ∈ [−∞,∞] for which z ≤ b for
every z ∈ Z.) We define

PSS =
{
c ∈ C : µC(c, S) > µC(c, T ) for every T ∈ S \ {S}

}
=

{
c ∈ C : max

s∈S
µC(c, s) > µC(c, t) for every t ∈ W

}
,

where W =
⋃

(S\{S}). Although this multi seed approach is useful in practice,
it is worth to note that this theory is quite close to, and readily ensues from,
the single seed theory, as each PSS can be easily expressed in terms of objects
generated by singleton seeds:

PSS =
⋃
s∈S

PsW , (5)

since PSS =
⋃

s∈S

{
c ∈ C : µC(c, s) > µC(c, t) for every t ∈ W

}
=

⋃
s∈S PsW .

2.3 Iterative Relative Fuzzy Connectedness: motivation, definition, and prop-
erties

The RFC segmentation {PsS : s ∈ S} of a scene can still leave quite a sizable
“boundary” set B = C \⋃

s∈S PsS; that is, the set of all spels c outside any of
the objects PsS wherein the strengths of connectedness are equal with respect
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to the seeds. An example is provided in Figure 4 to illustrate this concept of
“boundary” spels left unclaimed. The goal of what follows is to find a way to
naturally redistribute some of the spels from B among the object regions in a
new generation (iteration) of segmentation. Another motivation for IRFC, also
explained in Figure 4, is to overcome the problem of “path strength dilution
within the same object,” of paths that reach the peripheral subtle and thin
aspects of the object.

Figure 4. Illustration of the phenomenon of “path strength dilution within
the same object.” The strongest paths from s1 to t1, s1 to t2, s2 to t1, and s2

to t2 are likely to have the same strength because of partial volume effects.

In Figure 4, two object regions A and B, each with its core and peripheral
subtle parts, are shown. Owing to blur and other artifacts introduced into the
scene by the imaging device due to partial volume effect and other shortcom-
ings, the strongest paths from s1 to t1, s1 to t2, s2 to t1, and s2 to t2 are all
likely to assume similar strengths. As a consequence, the spels in the dark
areas may fall in B, the unclaimed “boundary” set.

A basic idea behind the definition of relative fuzzy connected objects PsS,
s ∈ S, is that each seed s ∈ S competes for each spel: a spel c goes to the
object PsS provided c is connected to s in a stronger way than to any other
seed t ∈ S. Here the strength of connectedness between c and d is expressed
by a number µC(c, d), the strength of a strongest path (in C) between c and
d. Thus, the fact that a spel c belongs to PsS means that

c is connected to s within the object PsS with a strength µC(c, s) and any
appropriate path between c and t ∈ S \ {s} is weaker than µC(c, s).

Although the clause “within the object PsS” may not seem obvious from the
definition of PsS, it is justified both by intuition and by Fact 2.3. It is also
not clear what we have in mind by an “appropriate path,” but at this stage
it does not matter, since the strength inequality holds for any path between
c and t ∈ S \ {s}.

The importance of the clause “appropriate path” comes to light when we
examine the spels c from the “boundary” set B = C \ ⋃

s∈S PsS. If we like to
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refine our definition and to extend each object PsS, s ∈ S, to a possible larger
object P ′

sS, what would be the “appropriate” paths between c ∈ B and s ∈ S
that we should consider? Since the “strongest path” justifying c ∈ P ′

tS, for
t ∈ S, should be contained in P ′

tS ⊂ B ∪ PtS, it seems that we should restrict
our attention to the paths between c and t only from B∪PtS. Thus, to obtain
a definition of P ′

sS, we should modify the definition of PsS by replacing each
number µC(c, t), t ∈ S \ {s}, with µB∪PtS(c, t). This leads to

P ′
sS = PsS ∪

{
c ∈ B : µB∪PsS(c, s) > µB∪PtS(c, s) for every t ∈ S \ {s}

}
.

Although this definition could be used as the engine for the iteration described
below, it turns out that it will be more convenient to use its equivalent form:

P+
sS = PsS ∪

{
c ∈ C \ PsS : µC(c, s) > µC\PsS(c, t) for every t ∈ S \ {s}

}
.

The equality P ′
sS = P+

sS follows from Theorem 3.7.

Figure 5. Pictorial illustration of IRFC advantages over RFC.

Figure 5 illustrates these ideas pictorially. The initial segmentation is defined
by RFC conservatively, so that PsS corresponds to the core aspects of the
object identified by seed s (illustrated by the hatched area containing s in
Figure 5). This leaves a large boundary set B where the strengths of connect-
edness with respect to the different seeds are equal (illustrated by the shaded
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area containing s in Figure 5). In the next iteration, the segmentation is im-
proved incrementally by grabbing those spels of B that are connected more
strongly to PsS than to PtS. When considering the object associated with s,
the “appropriate” path from s to any c ∈ B is any path in C. However, all
objects have to compete with the object associated with s by allowing paths
from their respective seeds t to c not to go through PsS since this set has
already been declared to be part of the object of s.

The advantage of the formula for P+
sS over that for P ′

sS comes from the fact
that, unlike the case of P ′

sS, we can compute P+
sS without knowing sets PtS

for t 6= s. This makes the implementation of the algorithm easier and more
efficient. In addition, the two object IRFC theory in earlier papers discussing
this subject [15] was done in the format of P+

sS, which makes our (P+
sS based)

theory its natural generalization. However, the formalism underlining P ′
sS also

has its advantages. First of all, it is more intuitive from the connectedness
point of view. Also, the disjointness of the new generation of segments (see
Theorem 2.4) is obvious in the P ′

sS setting, while it requires a complicated
argument in the P+

sS formalism.

Now, the iterative version of sets PsS can be defined as follows. For each
s ∈ C let P 0

sS be the empty set and define iteratively sets P j
sS by a formula

P j+1
sS = P j

sS ∪Qj
sS, where

Qj
sS =

{
c ∈ C \ P j

sS : µC(c, s) > µC\P j
sS(c, t) for every t ∈ S \ {s}

}
.

This definition works fine if we assume that each object is connected and is
generated by a single seed. However, we like to develop this theory also in the
case when each object in the segmentation is generated by a set S of seeds
where the different resulting segments may be disconnected. So, let S be a
nonempty family of nonempty pairwise disjoint sets of seeds. For every A ⊂ C
let P 0

AS = ∅ and for j = 0, 1, 2, . . . define P j+1
AS = P j

AS ∪Qj
AS , where

Qj
AS =

{
c ∈ C \ P j

AS : µC(c, A) > µC\P j
AS (c, T ) for every T ∈ S \ {A}

}
=

{
c ∈ C \ P j

AS : µC(c, A) > µC\P j
AS (c, t) for every t ∈ ⋃

(S \ {A})
}

=
{
c ∈ C \ P j

AS : µC(c, A) > µC\P j
AS (c,

⋃
(S \ {A})

}
.

The equality between the sets defining Qj
AS follows immediately from the

definition µA(c, D) = maxd∈D µA(c, d). (For alternative definitions of P j+1
AS see

also Subsection 3.2.)

Clearly P j
AS ⊆ P j+1

AS for every j and for any A ⊂ C. Since the scene domain
C is finite, the growth must stop at some stage j. In particular, there is a k
for which P k+1

SS = P k
SS for all S ∈ S. We will denote such terminal iterative
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P k
SS as P I

SS . The IRFC segmentation (of C with respect to S) is defined as
{P I

SS : S ∈ S}.

Note that the result of the first iteration P 1
SS is equal to PSS as defined by

the RFC formula. Thus, PSS ⊆ P I
SS . In particular, the iterative technique is

indeed a refinement of the RFC method. Also, for every s ∈ S ⊂ C and j, we
have

P j
sS = P j

{s}S ,

where S = {{s} : s ∈ S}. Thus, every family {P j
sS : s ∈ S} of single seed

generated IRFC segmentation can be easily represented in the formalism of
multi seed generated IRFC segmentations. In other words, the theory of IRFC
segmentations {P j

SS : S ∈ S} contains, as special cases, the theories of RFC
and IRFC segmentations generated by singleton seeds, as well as the theory
of RFC in the case of multi seed generated objects.

Equation (5) shows a beautiful relation between the RFC objects, PsS, gen-
erated by singleton seeds and their multi seed generated counterparts PSS .
Could we also prove its iterative analog? This certainly would give a hope
that a large part of multi seed IRFC theory could be easily deduced from its
single seed counterpart. However, the iterative analog of (5) is false as can be
seen in Example 3.14. Thus, we need to prove our results in a full multi seed
setting.

The most fundamental property of any segmentation is that the objects it
creates are pairwise disjoint. For IRFC segmentation, this is given by the
following theorem.

Theorem 2.4 For any family S of subsets of a scene C, we have P I
SS∩P I

US = ∅
for every distinct S, U ∈ S.

Since the iteration leading to the sets P j
SS uses the formula as in P+

sS rather
than as in P ′

sS, the proof of Theorem 2.4 is rather complicated and it will be
postponed till the next section. It is also worth to notice that, in our proof of
the equation P+

sS = P ′
sS (see Theorem 3.7), we need to use Theorem 2.4 in the

P+
sS formalism.

Notice that, in the formulation of Theorem 2.4, we assumed almost nothing
about the family S of sets of seeds. We will continue with these minimal
assumptions about S throughout most of the theoretical development that
follows, since this does not make the proofs any more difficult. Moreover, in
some cases (e.g., when we modify S to form another family of seeds T to
compare the S-segmentation with T -segmentation), it saves us the trouble
of checking any extra properties we could impose on the generating families
of seeds. However, in practical applications, we will apply our algorithm only
when the sets in S are nonempty and pairwise disjoint.

14



Notice that allowing the empty set to be in S does not change much, since
P j
∅S is empty for any S and j. The fact that allowing overlapping sets in S

also changes little is more subtle. It is true that if a seed s belongs to distinct
S, T ∈ S, then s does not belong to P I

SS , or any other P I
US . This is certainly an

undesirable situation, since we would like the generating seeds S to be in the
object P I

SS they generate. Unfortunately, a simple assumption that the sets in
S be pairwise disjoint does not solve the problem: if S, T ∈ S are distinct and
there are s ∈ S and t ∈ T with µC(s, t) = 1, then neither s nor t belongs to⋃

V ∈S P I
V S . Then the question arises as to what part of S belongs to P I

SS . In
Lemma 3.2, we will show that the missing seeds are precisely those from the
above example: if ES =

⋃
S∈S

{
s ∈ S : µC(s, t) = 1 for some t ∈ T ∈ S \ {S}

}
,

then S \ ES ⊆ P 1
SS , while ES is disjoint with

⋃
V ∈S P I

V S . We will also show in
Proposition 3.12 that, even if ES is nonempty, it is possible to redistribute its
elements (i.e., to find a family T = {TS ⊇ S \ ES : S ∈ S} with

⋃ T =
⋃S)

in such a way that T ⊆ P 1
TT for every T ∈ T . Moreover, we can ensure that

P I
SS ⊆ P I

TST for every S ∈ S.

The second fundamental property of our segmentation method is its stability
with respect to different choices of seeds initializing the segmentation process.
This will be discussed in the next subsection.

2.4 Robustness of IRFC segmentation

The most natural impulse for a formulation of a robustness theorem in our
setting is to state it in the compact format of Proposition 2.2: “For a family
S = {S1, . . . , Sm} of seeds and nonempty sets Ti ⊆ P I

SiS , PTiT = PSiS , where
T = {T1, . . . , Tm}.” However, in a multiple seed setting, there is no hope
for such a result even in the case of RFC or AFC. To verify this, consider a
scene C = 〈C, f〉 that contains three uniform circles C1, C2, and C3 which are
pairwise completely separated. (This means that for any c ∈ Ci and d ∈ Cj

we have µC(c, d) = 1 for i = j and µC(c, d) = 0 for i 6= j.) If we choose
S1 = T1 = C1, S2 = C2 ∪ C3 and T2 = C2, then P I

S2S = PS2S = C2 ∪ C3,
while P I

T2T = PT2T = C2 is smaller. The difficulty outlined in this example
comes from the fact that an object P I

SiS may have more than one connected
component, while Ti may intersect only one of them. Thus, to insure that this
will not happen, we will assume that Si ⊆ Ti, leading to the following result.

Theorem 2.5 Let S = {S1, . . . , Sm} be a family of subsets of C, fix
k ∈ {1, 2, 3, . . .}, and let Si ⊆ Ti ⊆ Si ∪ P k

SiS for every i ∈ {1, . . . ,m}. If
T = {T1, . . . , Tm}, then P I

SiS = P I
TiT for every i ∈ {1, . . . ,m}. Moreover, if

k = 1, then P j
SiS = P j

TiT for every i ∈ {1, . . . ,m} and j ∈ {0, 1, 2, . . .}.
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This theorem shows that there is considerable flexibility in the choice of seeds
used to iteratively generate an object P = P I

SS : as long as we choose the
seeds inside P and ensure that they contain some minimal set of generators,
the final result will always be the same. The version of the theorem when
k = 1 has even nicer conclusion. However, the assumption that Ti ⊂ Si ∪P 1

SiS
may be somewhat restrictive — it may be difficult to guess which spels will
be in the “core part” P 1

SiS of the object, even in the case when the entire
object, P I

SiS , can be guessed with a good approximation. Note also that, in
fact Theorem 2.5 remains true, if we assume that each Ti contains only a
subset TSi

of Si described in Proposition 3.10.

The only version of Theorem 2.5 that was previously proved in the literature
(see [15]) was done only for two components, in a single seed format, and in
the version with k = 1 (i.e., Corollary 2.7 below for m = 2).

Theorem 2.5 directly leads to the following corollary.

Corollary 2.6 Let S = {S1, . . . , Sm} and T = {T1, . . . , Tm} be the families
of subsets of C, fix k ∈ {1, 2, 3, . . .}, and assume that for every i ∈ {1, . . . ,m}
we have Ti ⊆ Si ∪ P k

SiS and Si ⊆ Ti ∪ P k
TiT . Then P I

SiS = P I
TiT for every

i ∈ {1, . . . ,m}. Moreover, if k = 1, then P j
SiS = P j

TiT for every i ∈ {1, . . . ,m}
and j ∈ {0, 1, 2, . . .}.

Proof. For i ∈ {1, . . . ,m}, put Ui = Si ∪ Ti and let U = {U1, . . . , Um}.
Then, the pairs 〈S,U〉 and 〈T ,U〉 satisfy the assumptions of Theorem 2.5,
so P I

SiS = P I
UiU = P j

TIT for every i ∈ {1, . . . ,m}. If k = 1, we also have

P j
SiS = P j

UiU = P j
TiT for every j ∈ {0, 1, 2, . . .}.

When we restrict our attention to the segmentation generated with only sin-
gleton seeds, one of the inclusions in the assumptions of Corollary 2.6 can be
dropped and we obtain an analog of Proposition 2.2.

Corollary 2.7 Let S = {s1, . . . , sm} and T = {t1, . . . , tm} be some m-element
subsets of C and assume that for every i ∈ {1, . . . ,m} we have ti ∈ P 1

siS
. Then

P j
tiT

= P j
siS

for every i ∈ {1, . . . ,m} and j ∈ {0, 1, . . .}.

It is not accidental that in Corollary 2.7 we assume that each ti belongs to a
smaller set P 1

siS
rather than to a bigger set P I

siS
, as in our other robustness

results — the version of Corollary 2.7 with assumption ti ∈ P I
siS

is false, even if
we weaken the conclusion to P I

tiT
= P I

siS
. A simple example of such a situation

is given in Example 3.15, where ti ∈ P I
siS

for all i while P I
t1T ( P I

s1S. This is
yet another reason why in Theorem 2.5 we need the assumption Si ⊆ Ti.
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3 The proofs and the examples

This section is designed mainly to prove the results announced in the previous
section. This will require an introduction of some new concepts and proving
several auxiliary results, some of which are of independent interest and are
fundamental to the FC phenomenon. Unless otherwise explained, in what fol-
lows, C = 〈C, f〉 will always stand for a digital scene with fixed adjacency and
affinity relations, and S for a nonempty family of subsets of C.

3.1 Disjointness of the segments

The following simple fact will be used (often implicitly) many times in this
section.

Fact 3.1 If c, d ∈ A ⊆ B ⊆ C and p is a path in A from c to d such that
µ(p) = µB(c, d), then µA(c, d) = µB(c, d).

Proof. This follows immediately from µA(c, d) ≤ µB(c, d) = µ(p) ≤ µA(c, d),
where the first inequality is justified by (3) and the last is a consequence of
the definition of µA.

The next lemma describes precisely what portion of S must belong to P 1
SS .

Lemma 3.2 For S ∈ S let E =
{
s ∈ S : µC(s, T ) = 1 for some T ∈ S \ {S}

}
.

Then S \ E ⊆ P 1
SS and E is disjoint with

⋃
V ∈S P I

V S .

Proof. Clearly S \ E ⊆ P 1
SS as µC(s, S) = 1 > µC(s, T ) for any s ∈ S \ E

and T ∈ S \ {S}.

We will prove P j
SS ⊆ C \ E by induction on j ∈ {0, 1, 2, . . .}. For j = 0 it is

obvious, as P 0
SS = ∅. So, assume that for some j we have P j

SS ⊆ C \ E. We
need to show that P j+1

SS ⊆ C \ E. For this, choose a c ∈ P j+1
SS and, by way

of contradiction, assume that c ∈ E. Then there is a T ∈ S \ {S} for which
µC(c, T ) = 1. Moreover, any strongest path from c to T is in E, so, by Fact 3.1,
we have µE(c, T ) = 1. Also, E ⊆ C \ P j

SS , which follows from the inductive

assumption, and (3) imply that µC\P j
SS (c, T ) ≥ µE(c, T ). So, µC\P j

SS (c, T ) = 1.

However, this contradicts µC(c, S) > µC\P j
SS (c, T ), which is a consequence of

c ∈ P j+1
SS . So, indeed c ∈ C \ E.

Now, if V ∈ S \ {S}, then the inclusion P j
V S ⊆ C \ S ⊆ C \ E is proved

by even easier induction. Indeed, if P j
V S ⊆ C \ S is true for some j, then

µC(s, V ) ≤ 1 = µC(s, s) = µC\P j
V S (s, s) = µC\P j

V S (s, S) for every s ∈ S; that
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is, no s ∈ S is in P j+1
V S .

Let c ∈ A ⊂ C and S ⊂ A. We say that a path p = 〈c1, . . . , cl〉 ∈ PA is a nice
path (in A) from c to S provided c1 = c, cl ∈ S, and for every k ∈ {1, . . . , l},
we have µ(〈ck, . . . , cl〉) = µA(ck, S), that is, 〈ck, . . . , cl〉 is a strongest possible
path in A from ck to S. If S = {s}, then we will say that p is a nice path
(in A) from c to s, rather than to S.

Lemma 3.3 For every c ∈ A ⊂ C and S ⊂ A, there exists a nice path in A
from c to S.

Proof. We will start with the following simple remark. In its statement, by a
one-to-one path we understand any path in which no spel appears more than
once.

(I) For every d ∈ A ⊂ C and S ⊂ A there exists a one-to-one path p ∈ PA

from d to an s ∈ S with µ(p) = µA(d, S).

Indeed, let p = 〈c1, . . . , cl〉 ∈ PA be a shortest path in A from d to an s ∈ S
with µ(p) = µA(d, S). Then p must be one-to-one. Otherwise, there would exist
1 ≤ i < j ≤ l for which ci = cj. But then the path 〈c1, . . . , ci, cj+1, . . . , cl〉
would be a strongest path in A from d to an s ∈ S of shorter length than p,
which contradicts the choice of p.

Next we will prove, by induction on n = 1, 2, 3, . . ., the following statement.

In: For every c ∈ A ⊂ C and S ⊂ A, there exists a one-to-one path
p = 〈c1, . . . , cl〉 ∈ PA from c to S such that for every i ∈ {1, . . . , n}

if i ≤ l, then µ(〈ci, . . . , cl〉) = µA(ci, S). (∗)

For n = 1 the statement is true: it is just the condition (I) we proved above.
So, assume that In holds. We need to prove In+1.

So, pick c ∈ A ⊂ C and S ⊂ A. Let p = 〈c1, . . . , cl〉 be a path satisfying In. If
l ≤ n, then p satisfies also In+1 and we are done. So, assume that l ≥ n+1. Let
x = µ(〈cn, . . . , cl〉) = µA(cn, S), y = µ(〈cn+1, . . . , cl〉)), and z = µA(cn+1, S).
Then x ≤ y ≤ z. If y = z, then p satisfies also In+1 and, again, we are done.
So, assume that x ≤ y < z. Let q = 〈d1, . . . , dm〉 ∈ PA be a path from cn+1

to S with µ(q) = µA(d1, S). By (I) we can assume that q is one-to-one. Let
p′ = 〈c1, . . . , cn, d1, . . . , dm〉 ∈ PA. We will show that p′ satisfies In+1.

Indeed, clearly p′ is a path in A from c to S. To see that p′ is one-to-one
assume, by way of contradiction, that this is not the case. Then there exist
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1 ≤ i ≤ n and 1 ≤ j ≤ m such that ci = dj. But then

µA(ci, S) = µA(dj, S) ≥ µ(〈dj, . . . , dm〉) ≥ µ(〈d1, . . . , dm〉) = z.

Thus, z ≤ µA(ci, S) = µ(〈ci, . . . , cl〉) ≤ µ(〈cn, . . . , cl〉) = x, contradicting
x ≤ y < z. So, q is one-to-one.

To see (∗) take an i ≤ n + 1. If i = n + 1, then condition (∗) becomes
µ(〈d1, . . . , dm〉) = µA(d1, S) and it is ensured by µ(q) = µA(d1, S). So, as-
sume i ≤ n. Then µ(〈ci, . . . , cn, d1, . . . , dm〉) ≥ µ(〈ci, . . . , cl〉) = µA(ci, S),
since µ(〈d1, . . . , dm〉) = µA(cn+1, S) ≥ µ(〈cn+1, . . . , cl〉). Thus, (∗) holds. This
finishes the inductive proof of In.

Finally, note that if N is the size of A, then IN implies the lemma, since for
any one-to-one path p = 〈c1, . . . , cl〉 ∈ PA we have l ≤ N , and so a path
satisfying IN must be nice.

The following fact is the iterative version of Fact 2.3.

Fact 3.4 If S ∈ S and p = 〈c1, . . . , cl〉 is a nice path from c ∈ P j
SS to S, then

ci ∈ P j
SS for every i ∈ {1, . . . , l}, that is, p ∈ PP j

SS .

Proof. The proof goes by induction on j. For j = 1 it follows from Fact 2.3
and (5). So, assume that it is true for some j ≥ 1. We need to prove it for
j + 1.

So, fix an S ∈ S and a nice path p = 〈c1, . . . , cl〉 from c ∈ P j+1
SS to S. First

notice that

there is an i ∈ {1, . . . , l} for which ci ∈ P j
SS .

Indeed otherwise p is in C \P j
SS and cl ∈ E, where E is as in Lemma 3.2. Pick

a T ∈ S \ {S} for which µC(cl, T ) = 1 and let q be a path from cl to T with
µ(q) = 1. Then q is in E ⊆ C \ P j

SS . Thus, p + q is a path in C \ P j
SS from c

to T and µC\P j
SS (c, T ) ≥ µ(p + q) = µ(p) = µC(c, S), contradicting c ∈ P j+1

SS .

Let k ∈ {1, . . . , l} be the smallest number such that ck ∈ P j
SS . Since 〈ck, . . . , cl〉

is a nice path from ck ∈ P j
SS to S, by the inductive assumption we have that

ci ∈ P j
SS ⊂ P j+1

SS for every i ∈ {k, . . . , l}. Thus, we just need to prove that, for
each i ∈ {1, . . . , k − 1}, the spel ci belongs to Qj

SS .

If k = 1 there is nothing to prove. So, assume that k > 1. Then the proof is
almost identical to that for Fact 2.3.

Fix an i ∈ {1, . . . , k − 1}, a T ∈ S \ {S}, and a t ∈ T . Since c1 ∈ Qj
SS , we

know that µC(c1, S) > µC\P j
SS (c1, T ) ≥ µC\P j

SS (c1, t). We need to show that
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µC(ci, cl) > µC\P j
SS (ci, t), as µC(ci, cl) = µC(ci, S). Since

µC\P j
SS (c1, ci) ≥ µ(〈c1, . . . , ci〉) ≥ µ(〈c1, . . . , cl〉) = µC(c1, S) > µC\P j

SS (c1, t),

by (4) we have µC\P j
SS (c1, t) = µC\P j

SS (ci, t). Thus

µC(ci, cl) ≥ µ(〈ci, . . . , cl〉) ≥ µ(p) = µC(c1, S) > µC\P j
SS (c1, t) = µC\P j

SS (ci, t),

completing the proof.

It would be nice if the conclusion of Fact 3.4 was true for any strongest path
from c to S, rather than just for nice paths. This, however, is not the case.
In the above proof, the place we used the stronger assumption is where we
claimed that ci ∈ P j

SS for every i ∈ {k, . . . , l}. If p is just any strongest
path from c to S, then 〈ck, . . . , cl〉 does not need to be a strongest path from
ck ∈ P j

SS to S and it might happen that ck+1 /∈ P j+1
SS . A specific example of

such a situation is given in Example 3.13.

Fact 3.4 says, in particular, that if S ∈ S is a singleton, say S = {s}, then
for every c ∈ P j

SS there is a strongest path in P j
SS from c to s. The following

remark gives a stronger version of this fact.

Remark 3.5 If S ∈ S is a singleton, then for every c, d ∈ P j
SS , there is a

strongest path r in P j
SS from c to d, that is, µC(c, d) = µP j

SS (c, d).

Proof. Let S = {s} and let p = 〈c1, . . . , cl〉 be a nice path from c to
s and q = 〈d1, . . . , dm〉 be a nice path from d to s. Then, by Fact 3.4,

p, q ∈ PP j
SS . If µC(c, d) = min{µC(c, s), µC(d, s)} = min{µ(p), µ(q)}, then

r = 〈c1, . . . , cl, dm, . . . , d1〉 is as desired. So, assume that µC(c, d) is greater
than min{µC(c, s), µC(d, s)}. Then, in particular, µC(c, d) > µC(d, s) = µ(q).
Let 〈b1, . . . , bn〉 be a nice path from c to d and put r = 〈b1, . . . , bn, d1, . . . , dm〉.
We claim that r is a nice path from c to s. Indeed, clearly for any index
i ∈ {1, . . . ,m}, the path 〈di, . . . , dm〉 is a strongest from di to dm = s, since q
was nice. Next, fix an i ∈ {1, . . . , n}. Since

µC(bi, d) ≥ µ(〈bi, . . . , bn〉) ≥ µ(〈b1, . . . , bn〉) = µC(c, d) > µC(d, s) = µ(q)

we have, by (4), that µC(bi, s) = µC(d, s) and

µ(〈bi, . . . , bn, d1, . . . , dm〉) = min{µ(〈bi, . . . , bn〉), µ(〈d1, . . . , dm〉)}
= min{µ(〈bi, . . . , bn〉), µ(q)}
= µ(q) = µC(d, s) = µC(bi, s).

Thus, r is a nice path from c to s and as such, by Fact 3.4, it is in P j
SS . In

particular, 〈b1, . . . , bn〉 is in P j
SS .
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Assume that U, S, T ∈ S are distinct and that there exists a spel c ∈ C for
which µC(c, U) < µC(c, S) = µC(c, T ). Then c /∈ ⋃

V ∈S P 1
V S . Is it possible that

c ∈ P j
US for some j > 1? This certainly would be counter intuitive. The next

fact ensures us that this is impossible.

Fact 3.6 If S, U ∈ S and c ∈ P I
SS , then µC(c, S) ≥ µC(c, U).

Proof. By way of contradiction assume that µC(c, S) < µC(c, U). Choose a
nice path p = 〈c1, . . . , cl〉 from c to U and let k ∈ {1, . . . , l} be the largest
index with ck ∈ P I

SS . Let s ∈ S. Since

µC(c, ck) ≥ µ(〈c1, . . . , ck〉) ≥ µ(p) = µC(c, U) > µC(c, S) ≥ µC(c, s),

(4) implies that µC(ck, s) = µC(c, s). Therefore, for every s ∈ S,

µC(ck, s) = µC(c, s) < µC(c, U) = µ(p) ≤ µ(〈ck, . . . , cl〉) ≤ µC(ck, U).

Thus, µC(ck, S) < µC(ck, U). Let i ∈ {0, 1, 2, . . .} be the smallest index with
the property that ck ∈ P i

SS . Note that i > 1 since µC(ck, S) < µC(ck, U).

But, by the maximality of k, we have that 〈ck, . . . , cl〉 ∈ PC\P i−1
SS . Therefore,

µC(ck, S) < µC(ck, U) = µ(〈ck, . . . , cl〉) ≤ µC\P i−1
uS (ck, U) implying ck /∈ Qi−1

SS .
Since the minimality of i implies also that ck /∈ P i−1

SS , we conclude ck /∈ P i
SS ,

contradicting the choice of i.

Proof of Theorem 2.4. We prove that P j
SS ∩ P j

US = ∅ by induction on
j = 0, 1, 2, . . ..

Clearly the result is true for j = 0 since sets P 0
SS are empty. Also, the definition

of P 1
SS = PSS clearly insures that the result is true for j = 1. So, assume that

the result is true for some j. We need to show that the sets P j+1
SS = P j

SS ∪Qj
SS ,

with S ∈ S, are pairwise disjoint.

For this first notice that P =
⋃

S∈S P j
SS is disjoint with Q =

⋃
S∈S Qj

SS . Indeed,
take a c ∈ P and let S ∈ S be such that c ∈ P j

SS . By Lemma 3.3 there exists

a nice path p (in C) from c to S. Fact 3.4 then shows that p ∈ PP j
SS . Now,

take a U ∈ S. We need to show that c /∈ Qj
US .

This is obvious if U = S, since Qj
SS ⊂ C \P j

SS . So, assume that U 6= S. Then,

by the inductive assumption, P j
SS ⊂ C \ P j

US , so p ∈ PC\P j
US . In particular,

µC\P j
US (c, S) = µ(p) = µC(c, S). Now, by way of contradiction, assume that

c ∈ Qj
US ⊂ P j+1

US . Then, in particular, µC(c, U) > µC\P j
US (c, S). Therefore,

µC(c, U) > µC(c, S). But this, together with c ∈ P j
SS , contradicts Fact 3.6. So,

indeed P ∩Q = ∅.

Let Bj = C \ P . To finish the proof of the theorem it is enough to show that
every c ∈ Bj belongs to at most one of Qj

SS with S ∈ S. So, fix a c ∈ Bj
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and let U ∈ S be such that µC(c, U) = maxT∈S µC(c, T ). Let p = 〈c1, . . . , cl〉
be a nice path from c to U . If p ∈ PBj

, then for every S ∈ S we have

µC(c, S) ≤ µC(c, U) = µ(p) ≤ µBj
(c, U) ≤ µC\P j

SS (c, U) insuring that c /∈ Qj
SS

for every S ∈ S \ {U}. So, we can assume that p /∈ PBj
, that is, that there

is an i ≤ l with ci ∈ P . Let k ∈ {1, . . . , l} be the smallest index such that
ck ∈ P . Let S ∈ S be such that ck ∈ P j

SS . We claim that

there is a path r ∈ PBj∪P j
SS from c to S such that µ(r) = µC(c, U). (6)

To see this notice first that µ(〈ck, . . . , cl〉) = µC(ck, U), since 〈ck, . . . , cl〉 is
a nice path from ck to U . Note also that µC(ck, S) ≥ µC(ck, U). This is
obvious if S = U . Otherwise, this follows from Fact 3.6, as ck ∈ P j

SS . Let
q = 〈d1, . . . , dm〉 be a nice path from ck to S. We claim that the path r =
〈c1, . . . , ck−1, d1, . . . , dm〉 satisfies (6).

Clearly r is a path from c to S and r ∈ PBj∪P j
SS , since {c1, . . . , ck−1} ⊂ Bj,

while q ∈ PP j
SS follows from Fact 3.4. Also, µ(q) = µC(ck, S) ≥ µC(ck, U) =

µ(〈ck, . . . , cl〉) implies that

µ(r) = min{µ(〈c1, . . . , ck〉), µ(q)}
≥min{µ(〈c1, . . . , ck〉), µ(〈ck, . . . , cl〉)} = µ(p).

Combining this with µC(c, U) ≥ µC(c, S), which follows from the maximality
of µC(c, U), we get

µC(c, S) ≥ µ(r) ≥ µ(p) = µC(c, U) ≥ µC(c, S).

Thus, µ(r) = µC(c, U), completing the proof of (6).

To finish the proof of the theorem, notice that, by (6), for every T ∈ S \ {S}
we have µC(c, T ) ≤ µC(c, U) = µ(r) ≤ µBj∪P j

SS (c, S) ≤ µC\P j
TS (c, S) insuring

that c /∈ Qj
TS .

3.2 Alternative definitions of P j
SS

Theorem 3.7 Let j ∈ {0, 1, 2, . . .}, Bj = C \ ⋃
S∈S P j

SS , and S ∈ S. If

R =
{
c ∈ Bj : µC(c, S) > µC\P j

SS (c, T ) for every T ∈ S \ {S}
}

,

W =
{
c ∈ Bj : µBj∪P j

SS (c, S) > µC\P j
SS (c, T ) for every T ∈ S \ {S}

}
,

Z =
{
c ∈ Bj : µBj∪P j

SS (c, S) > µBj∪P j
TS (c, T ) for every T ∈ S \ {S}

}
,

then Qj
SS = R = W = Z.
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Proof. Since

Qj
SS =

{
c ∈ C \ P j

SS : µC(c, S) > µC\P j
SS (c, T ) for every T ∈ S \ {S}

}
,

by Theorem 2.4 we have Qj
SS ⊂ Bj ⊂ C \ P j

SS . So, Qj
SS = Qj

SS ∩Bj = R.

Clearly W ⊂ R, since µC(c, S) ≥ µBj∪P j
SS (c, S). To see that R ⊂ W take a

c ∈ R = Qj
SS . Let p be a nice path from c to S and notice that, by Fact 3.4,

µC(c, S) = µ(p) ≤ µBj∪P j
SS (c, S) ≤ µC(c, S).

This implies that c ∈ W . So W = R = Qj
oS. Now, in order to prove the

theorem it is enough to show that W = Z.

By Theorem 2.4, we have Bj ∪ P j
TT ⊂ C \ P j

SS for every T ∈ S \ {S}. Thus,

µBj∪P j
TS (c, T ) ≤ µC\P j

SS (c, T ) for every T ∈ S \ {S} and c ∈ C. So, W ⊂ Z.

To see that Z ⊂ W take a c ∈ Z and by way of contradiction assume c /∈ W .

Then, there is a T ∈ S \ {S} such that µBj∪P j
SS (c, S) ≤ µC\P j

SS (c, T ). Also,

µBj∪P j
SS (c, S) > µBj∪P j

TS (c, T ) since c ∈ Z. So, µC\P j
SS (c, T ) > µBj∪P j

TS (c, T ).

Let p = 〈c1, . . . , cl〉 be a nice path in C \ P j
SS from c to T . Notice that p

cannot be a path contained in Bj = C \ ⋃
S∈S P j

SS , since this would im-

ply µBj∪P j
TS (c, T ) ≥ µBj

(c, T ) ≥ µ(p) = µC\P j
SS (c, T ) which contradicts the

inequality µC\P j
SS (c, T ) > µBj∪P j

TS (c, T ). Thus, p intersects
⋃

S∈S P j
SS . Let

k ∈ {1, . . . , l} be the smallest index such that ck ∈ ⋃
S∈S P j

SS . Let U ∈ S
be such that ck ∈ P j

US . Then U 6= S, since p ∈ PC\P j
SS . If U = T , then

p ∈ Bj ∪ P j
TS since 〈ck, . . . , cl〉 be a nice path from ck ∈ P j

US = P j
TS to T .

Thus, µBj∪P j
TS (c, T ) ≥ µ(p) = µC\P j

oS(c, T ) which contradicts the inequality

µC\P j
SS (c, T ) > µBj∪P j

TS (c, T ). Thus, we can assume that U 6= T .

Let q be a nice path from ck ∈ P j
US to U . Then, by Fact 3.4, q ∈ PP j

US . Also,
by Fact 3.6, µC(ck, U) ≥ µC(ck, T ). Then

µ(q) = µC(ck, U) ≥ µC(ck, T ) ≥ µ(〈ck, . . . , cl〉) ≥ µ(p).

Thus, if r = 〈c1, . . . , ck−1〉+ q, then µ(r) ≥ µ(p) and r ∈ PBj∪P j
US . So

µBj∪P j
US (c, U) ≥ µ(r) ≥ µ(p) = µC\P j

SS (c, T ) ≥ µBj∪P j
SS (c, S),

contradicting c ∈ Z.

Theorem 3.7 justifies our earlier claim that the iterative definition of P j+1
AS can

be obtained by using an approach as in the formula for P ′
sS instead of the one
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in the formula for P+
sS. More precisely, we have P j+1

AS = P j
AS ∪ Zj

AS , where

Zj
AS =

{
c ∈ Bj : µBj∪P j

SS (c, A) > µBj∪P j
TS (c, T ) for every T ∈ S \ {A}

}
.

Recall also that in (2) we defined µA(c, d) = max
{
µ(p) : p ∈ PA

c,d

}
only for

spels c, d ∈ A, since in any other case the sets PA
c,d and {µ(p) : p ∈ PA

c,d}
are empty. However, it is standard to define max ∅ to equal −∞. With this
agreement in hand, we can consider µA given by (2) as a function from C ×C
into [−∞,∞]. Then the definition of P j+1

AS can be written in a slightly more
compact form:

P j+1
AS =

{
c ∈ C : µC(c, A) > µC\P j

AS (c, T ) for every T ∈ S \ {A}
}

. (7)

The formula is valid since c ∈ P j
AS if and only if µC\P j

AS (c, T ) = −∞ for every
T ∈ S \ {A}.

For A, B, D ⊂ C let

PD
AB =

{
c ∈ C : µC(c, A) > µC\D(c, b) for every b ∈ B

}
=

{
c ∈ C : µC(c, A) > µC\D(c, B)

}
.

We are introducing this notation since it is easier to work with it (see Fact 3.8)
than with the other definitions of P j+1

AS , including (7). At the same time P j+1
AS

can be easily expressed in this language:

P j+1
AS = PD

AB,

where D = P j
AS and B =

⋃
(S \ {A}).

3.3 The robustness results

We start here with a list of the properties of PD
AB.

Fact 3.8 Let A, B, D, V ⊂ C. Then,

(a) PD
AB =

⋂
b∈B PD

A{b},

(b) PD
AB′ ⊇ PD

AB for every B′ ⊂ B,
(c) PD

A′B ⊆ PD
AB for every A′ ⊂ A,

(d) PD′
AB ⊆ PD

AB for every D′ ⊂ D,
(e) If D = P k

A{B} for some k ∈{0, 1, 2, . . .} and R ⊆ A∪PD
AB, then PD

RB ⊆ PD
AB.

Proof. (a) is obvious from the definition of PD
AB. (b) follows immediately

from (a). (c) holds, since µC(c, A) ≥ µC(c, A′). To see that (d) holds notice
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that D′ ⊂ D implies C \D′ ⊃ C \D. Thus, by (3), µC\D′
(c, b) ≥ µC\D(c, b),

implying (d).

(e) Fix a c ∈ PD
RB and a b ∈ B. We need to show that

µC(c, A) > µC\D(c, b). (8)

Notice that µC(c, R) > µC\D(c, b), since c ∈ PD
RB. Let p = 〈c1, . . . , cl〉 be

a strongest path from c to R and let m ∈ {1, . . . , l} be minimal such that
r = cm ∈ R. Then µC(c, r) ≥ µ(〈c1, . . . , cm〉) ≥ µ(p) = µC(c, R) ≥ µC(c, r).
Thus, we have µ(〈c1, . . . , cm〉) = µC(c, r) = µC(c, R) > µC\D(c, b). If r ∈ A,
then µC(c, A) ≥ µC(c, r) > µC\D(c, b), proving (8). So, we can assume that
r ∈ PD

AB = P k+1
A{B} =

⋃
n≤k Qn

A{B}. Thus, there exists an n ≤ k with the property

that r ∈ Qn
A{B} =

{
c ∈ C \ P n

A{B} : µC(c, A) > µ
C\P n

A{B}(c, b) for every b ∈ B
}
.

In particular,
µC(r, A) > µ

C\P n
A{B}(r, b). (9)

Also, since r ∈ C \ P n
A{B}, path 〈c1, . . . , cm〉 is in C \ P n

A{B}. So, by Fact 3.1,

µ
C\P n

A{B}(c, r) = µC(c, r) > µC\D(c, b). (10)

Next we will prove that

µC(r, A) > µC\D(c, b). (11)

If µ
C\P n

A{B}(c, r) > µ
C\P n

A{B}(r, b), then, by (4), µ
C\P n

A{B}(r, b) = µ
C\P n

A{B}(c, b).

So, by (9), µC(r, A) > µ
C\P n

A{B}(c, b) ≥ µC\D(c, b), where the last inequality is
justified by (3) and an inclusion C \ P n

A{B} ⊇ C \ P k
A{B} = C \ D. Thus, in

this case, (11) holds. So, assume that µ
C\P n

A{B}(c, r) ≤ µ
C\P n

A{B}(r, b). Then, by

(9) and (10), we get µC(r, A) > µ
C\P n

A{B}(r, b) ≥ µ
C\P n

A{B}(c, r) > µC\D(c, b),
finishing the proof of (11).

Now, by (10) and (11), µC(c, r) > µC\D(c, b) and µC(r, A) > µC\D(c, b). Let
p1 be a strongest path from c to r and p2 be a strongest path from r to A.
Then µ(p1 + p2) = min{µ(p1), µ(p2)} = min{µC(c, r), µC(r, A)} and so

µC(c, A) ≥ µ(p1 + p2) = min{µC(c, r), µC(r, A)} > µC\D(c, b),

finishing the proof of (8) and (e).

Lemma 3.9 Let S0 = S \ {A}, where A ∈ S is fixed. If j, k ∈ {0, 1, 2, . . .},
A ⊆ R ⊆ A ∪ P k+1

AS , and T = S0 ∪ {R}, then the following holds.

(a) P j
AS ⊂ P j

RT .
(b) P j

RT ⊆ P k+j
AS .
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(c) If V ∈ S0, then P j
V T ⊆ P j

V S .
(d) If V ∈ S0, then P j

V S ⊆ P j
V T .

(e) If either k = 0 or P k
AS = P k+1

AS , then P j
AS = P j

RT and P j
V S = P j

V T for
every j ≥ k and V ∈ S0. In particular, {P I

SS : S ∈ S} = {P I
TT : T ∈ T }.

Moreover, if k = 0, then also all intermediate segmentations are equal:
{P j

SS : S ∈ S} = {P j
TT : T ∈ T } for all j ≥ 0.

Proof. All properties (a)–(d) are proved by induction on j and they are
obvious for j = 0.

(a) To make an inductive step, assume that D′ = P j
AS is a subset of D = P j

RT
and put B =

⋃S0. Since A ⊂ R, conditions (c) and (d) from Fact 3.8 give
P j+1

AS = PD′
AB ⊆ PD′

RB ⊆ PD
RB = P j+1

RT .

(b) To make an inductive step, assume that D′ = P j
RT is a subset of D = P k+j

AS .
First note that T \ {R} = S0. To see this, it is enough to show that R /∈ S0.
But if there is an S ∈ S0 such that S = R, then S \ A ⊆ P k+1

AS ∩ (E ∪ P 1
SS),

where E is as in Lemma 3.2. Since, by Lemma 3.2 and Theorem 2.4, this last
set is empty, we get S ⊆ A. But we have also A ⊆ R = S, so A = S ∈ S0,
contradicting the definition of S0.

Let B =
⋃S0 =

⋃
(S \ {A}) =

⋃
(T \ {R}), put D′′ = P k

AS ⊆ D, and notice
that R ⊆ A ∪ P k+1

AS = A ∪ PD′′
AB ⊆ A ∪ PD

AB follows from Fact 3.8(d). Then
conditions (d) and (e) from Fact 3.8 give P j+1

RT = PD′
RB ⊆ PD

RB ⊆ PD
AB = P k+j+1

AS ,
completing the proof of (b).

(c) To make an inductive step, assume that it is true for some j, that is, that
D = P j

V S contains D′ = P j
V T . Since B′ =

⋃
(S \ {V }) = A ∪ ⋃

(S0 \ {V }) is
a subset of B =

⋃
(T \ {V }) = R ∪ ⋃

(S0 \ {V }), conditions (b) and (d) from
Fact 3.8 give P j+1

V T = PD′
V B ⊆ PD′

V B′ ⊆ PD
V B′ = P j+1

V S .

(d) To make an inductive step, assume that D′ = P j
V S is a subset of D = P j

V T .
Let B0 =

⋃
(S0 \ {V }). Then B′ =

⋃
(S \ {V }) = B0 ∪ A is a subset of

B =
⋃

(T \{V }) = B0∪R. Notice that it is enough to prove that PD′
V B′ ⊆ PD′

V B

since this and Fact 3.8(d) imply P j+1
V S = PD′

V B′ ⊆ PD′
V B ⊆ PD

V B = P j+1
V T .

To show PD′
V B′ ⊆ PD′

V B take a c ∈ P j+1
V S = PD′

V B′ . Then µC(c, V ) > µC\D′
(c, B′).

We need to prove that

µC(c, V ) > µC\D′
(c, B). (12)

If µC\D′
(c, B′) ≥ µC\D′

(c, B), then µC(c, V ) > µC\D′
(c, B′) ≥ µC\D′

(c, B)
proving inequality (12). Thus, by way of contradiction, we can assume that
µC\D′

(c, B′) < µC\D′
(c, B). We will find v ∈ V , r ∈ B, a ∈ A, and D0 ⊆ C

such that

µC\D′
(c, a) = µC\D′

(r, a) = µC(r, a) > µC\D0(r, v) = µC(c, V ). (13)
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First notice that (13) gives us a desired contradiction, since then a ∈ B′

implies µC\D′
(c, B′) ≥ µC\D′

(c, a) > µC(c, V ) contradicting c ∈ PD′
V B′ . Thus,

to finish the proof it is enough to show (13).

First, we will choose an appropriate r. Let p0 = 〈c1, . . . , cl〉 be a strongest
path in C \ D′ from c to B and let m ∈ {1, . . . , l} be minimal such that
r = cm ∈ B. Then µC\D′

(c, r) ≥ µ(p) ≥ µ(p0) = µC\D′
(c, B) ≥ µC\D′

(c, r),
where p = 〈c1, . . . , cm〉. In particular, µ(p) = µC\D′

(c, r) = µC\D′
(c, B).

Let a ∈ A be such that there is a path q from r to a which is a nice path
from r to A. Since µC\D′

(c, r) = µC\D′
(c, B) > µC\D′

(c, B′) ≥ µC\D′
(c, a) the

equation µC\D′
(c, a) = µC\D′

(r, a) follows from (4).

To show µC\D′
(r, a) = µC(r, a) note that r ∈ B \ B′ = R \ A ⊆ P k+1

AS ⊆ P I
AS ,

since µC\D′
(c, r) = µC\D′

(c, B) > µC\D′
(c, B′). In particular, since q is a nice

path from r to A, then, by Fact 3.4, q is in P I
AS ⊆ C \P I

V S ⊆ C \P j
V S = C \D′.

As µC(r, a) = µ(q), Fact 3.1 implies µC\D′
(r, a) = µC(r, a).

Next, we need to choose D0 and v ∈ V . Let q be a path from c to v which is a
nice path from c to V . Then µC(c, v) = µC(c, V ). Since r ∈ P k+1

AS =
⋃

n≤k Qn
AS ,

there is an n ≤ k with r ∈ Qn
AS =

{
c ∈ C \ P n

AS : µC(c, A) > µC\P n
AS (c,

⋃S0)
}
.

We put D0 = P n
AS . Then µC(r, a) = µC(r, A) > µC\D0(r,

⋃S0) ≥ µC\D0(r, v).

To prove µC\D0(r, v) = µC(c, V ) it is enough to show µC\D0(r, v) = µC\D0(c, v)
and µC\D0(c, v) = µC(c, V ). Recall that µ(p) = µC\D′

(c, r) = µC\D′
(c, B),

where p is in C \D0 = C \ P n
AS since {c1, . . . , cm−1} is disjoint with B ⊇ P n

AS ,
while cm = r ∈ Qn

AS ⊂ C \ P n
AS . By this and a part of (13) proved so far

µC\D0(c, r) ≥ µ(p) = µC\D′
(c, B) > µC\D′

(c, B′) ≥ µC\D′
(c, a) > µC\D0(r, v).

So, by (4), we get µC\D0(r, v) = µC\D0(c, v).

The equation µC\D0(c, v) = µC(c, V ) follows from Fact 3.1, since q, as a nice
path from c ∈ P j+1

V S to V , is in P j+1
V S ⊆ C \ P n

AS = C \ D0. This finishes the
proof of (d).

(e) Parts (c) and (d) imply that P j
V S = P j

V T for every V ∈ S0 and j ≥ 0.

If j ≥ k, then P j
AS = P j

RT follows from P j
RT ⊆ P k+j

AS = P j
AS ⊆ P j

RT . Here
P j

RT ⊆ P k+j
AS follows from (b); equation P k+j

AS = P j
AS is obvious when k = 0

and is proved by an easy induction when P k
AS = P k+1

AS ; inclusion P j
AS ⊆ P j

RT
is a restatement of (a).

Proof of Theorem 2.5. First notice that Lemma 3.9(e) implies that

(∗) the theorem is true if Ti = Si for every i ≥ 2.
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Now, the general form of the theorem follows from (∗) by induction on m.
Indeed, for 0 ≤ l ≤ m and i ∈ {1, . . . ,m} put T l

i = Ti for i ≤ l and T l
i = Si

otherwise. Let Tl = {T l
1, . . . , T

l
m}. Then T0 = S, Tm = T . and to every pair

〈Tk, Tk+1〉 we can apply (∗). Thus, applying it m-times, we get that P j
SiS =

P j
T 0

i T0
= P j

T 1
i T1

= · · · = P j
T m

i Tm
= P j

TiT for every i ∈ {1, . . . ,m} and an

appropriate j.

Proof of Corollary 2.7. Let Ui = {si, ti} and put U = {U1, . . . , Um},
S = {{s1}, . . . , {sm}}, and T = {{t1}, . . . , {tm}}. Then, by Theorem 2.5
(version with k = 1), for every i ∈ {1, . . . ,m} we have P j

siS
= P j

{si}S = P j
UiU .

To finish the proof is enough to show that

(†) si ∈ P 1
tiT

for every i ∈ {1, . . . ,m},

since then, again by Theorem 2.5, P j
tiT

= P j
{ti}T = P j

UiU = P j
siS

for every
i ∈ {1, . . . ,m}.

First notice that for every distinct i, k ∈ {1, . . . ,m}

µC(si, tk) = µC(ti, sk). (14)

Indeed, since tk ∈ P 1
skS we have µC(tk, sk) > µC(tk, si). Therefore, by (4),

µC(tk, si) = µC(si, sk). Similarly, ti ∈ P 1
siS

implies µC(ti, si) > µC(ti, sk) so, by
(4), µC(ti, sk) = µC(si, sk). This proves (14).

Now, to prove (†) take distinct i, k ∈ {1, . . . ,m}. We need to show that
µC(si, ti) > µC(si, tk). But ti ∈ P 1

siS
implies µC(ti, si) > µC(ti, sk). Combining

this with (14) gives µC(si, ti) = µC(ti, si) > µC(ti, sk) = µC(si, tk).

3.4 How to choose seed generating families S?

In a general setting, the title question is well beyond the scope of this paper.
What we will discuss here is only its very restricted version: Given S, how to
modify it to get either the same or a better segmentation?

The first of the results presented here estimates the size of minimal subsets
TS of P 1

SS for which the segmentations
{
P I

SS : S ∈ S
}

and
{
P I

TST : S ∈ S
}

are

equal, where T = {TS : S ∈ S}.

Proposition 3.10 For every A ∈ S let UA =
{
P 1
{s}SA

: s ∈ A
}
\ {∅}, where

SA = S \ {A}. Then

(a) Sets in UA are pairwise disjoint.
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(b) If T ⊆ P 1
AS = P 1

ASA
, then P 1

TSA
= P 1

ASA
if and only if T intersects every

P ∈ UA.

In particular, if for every A ∈ S we choose a TA ⊆ P 1
AS which intersects every

P ∈ UA and put T = {TA : A ∈ S}, then
{
P j

SS : S ∈ S
}

=
{
P j

TST : S ∈ S
}

for
every j ≥ 0.

Proof. (a) If u ∈ P 1
{s}SA

∩ P 1
{t}SA

for some s, t ∈ A, then, by Corollary 2.7,

P 1
{s}SA

= P 1
{u}SA

= P 1
{t}SA

.

(b) Let A0 ⊂ A be minimal such that
{
P 1
{s}SA

: s ∈ A0

}
= UA. By (5) we

have T ⊆ P 1
AS =

⋃UA. Thus, for every t ∈ T there is a unique at ∈ A0 such
that t ∈ P 1

{at}SA
. Note that P 1

{t}SA
= P 1

{at}SA
follows from Corollary 2.7. Let

A1 = {at : t ∈ T}. Then, by (5), P 1
TSA

=
⋃

a∈A1
P 1
{a}SA

⊆ ⋃
a∈A0

P 1
{a}SA

= P 1
ASA

and the equation holds precisely when A1 = A0, that is, when T intersects
every P ∈ UA.

The value of Proposition 3.10 comes from the fact that, usually, the size of UA

is quite small, even if the set A is quite big. Note also, that it is possible that the
equation

{
P I

SS : S ∈ S
}

=
{
P I

TST : S ∈ S
}

may hold for sets TA ⊆ P 1
AS which

do not intersect every P ∈ UA. Such a situation is described in Example 3.16.

Lemma 3.11 Let A ∈ S and E =
{
s ∈ A : µC(s, T ) = 1 for some T ∈ S0

}
,

where S0 = S \ {A}. If A0 = A \ E, then P j
A0S0

= P j
AS0

for every j ≥ 0.

Proof. Inclusion P j
A0S0

⊆ P j
AS0

follows from Lemma 3.9(a). We just need to

show that P j
AS0

⊆ P j
A0S0

. This will be proved by induction on j ≥ 0.

For j = 0 it is obvious, as both sets are empty. So, assume that for some j we
have P j

AS0
⊆ P j

A0S0
. We need to prove that P j+1

AS0
⊆ P j+1

A0S0
. For this, choose a

c ∈ P j+1
AS0

. We need to show that c ∈ P j+1
A0S0

.

So, fix a T ∈ S0. We need to prove µC(c, A0) > µ
C\P j

A0S0 (c, T ) = µ
C\P j

AS0 (c, T ),
where the equation follows from our inductive assumption that P j

AS0
= P j

A0S0
.

However, since c ∈ P j+1
AS0

, we have µC(c, A) > µ
C\P j

AS0 (c, T ). Thus, to finish
the proof, it is enough to show that

µC(c, A0) ≥ µC(c, A). (15)

By way of contradiction, assume that (15) is false. Then µC(c, A) > µC(c, A0).
Let a ∈ A \ A0 ⊆ E be such that µC(c, a) = µC(c, A). Let T ∈ S0 be such
that µE(a, T ) = µC(a, T ) = 1 and let q be a path in E from a to T with
µ(q) = 1. Also, let p = 〈c1, . . . , cl〉 be a strongest path from c to a. Thus,
µ(p) = µC(c, a) = µC(c, A) > µC(c, A0). If p is disjoint with P j

AS0
then so is
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p + q and µ
C\P j

AS0 (c, T ) ≥ µ(p + q) = µ(p) = µC(c, A) contradicting c ∈ P j+1
AS0

.

So, assume that p intersects P j
AS0

= P j
A0S0

=
⋃

k<j Qk
A0S0

. Let k < j be minimal
such that p intersects Qk

A0S0
and let n ∈ {1, . . . , l} be such that cn ∈ Qk

A0S0
.

Then µC(cn, A0) > µC\P k
AS0 (cn, T ) ≥ µ(〈cn, . . . , cl〉 + q) = µ(〈cn, . . . , cl〉) ≥

µ(p) = µC(c, A). Also, µC(c, cn) ≥ µ(〈c1, . . . , cn〉) ≥ µ(p) = µC(c, A). So,

µC(c, A0) ≥ min
{
µC(c, cn), µC(cn, A0)

}
≥ µC(c, A), finishing the proof.

Recall that ES =
⋃

A∈S

{
s ∈ S : µC(s, t) = 1 for some t ∈ T ∈ S \ {A}

}
.

Proposition 3.12 For every S ∈ S, there exists a TS containing S \ES such
that if T = {TS : S ∈ S}, then

⋃ T =
⋃S, T ⊆ P 1

TT for every T ∈ T , and
P j

SS ⊆ P j
TST for every S ∈ S and j ≥ 0.

Proof. For s ∈ C let [s] = {t ∈ C : µC(s, t) = 1}. Thus, each [s] is an
equivalence class of an equivalence relation ∼ on C defined by s ∼ t if and
only if µC(s, t) = 1. In particular, the sets in F = {[s] ∩ ⋃S : s ∈ ⋃S}
are nonempty and pairwise disjoint. Let W ⊆ ⋃S be a selector of F , that
is, such that W intersects each [s] ∩ ⋃S at precisely one element. Define
TS =

⋃{[s] ∩ ⋃S : s ∈ S ∩W}. We will just sketch the proof that these sets
are as desired.

Clearly
⋃ T =

⋃S, as for every s ∈ ⋃S there are S ∈ S and w ∈ W ∩ S such
that s ∈ [w], so s ∈ [w] ∩ ⋃S ⊆ TS ⊆

⋃ T .

Next, fix an S ∈ S. To see that P j
SS ⊆ P j

TST put S0 = S \ {S} and notice that
S \ES ⊆ TS and that Z = C \ (S \ES) contains union of T0 = T \{TS}. Thus

P j
SS = P j

SS0
= P j

S\ESS0
= P j

S\ES{Z} ⊆ P j
TS{Z} ⊆ P j

TST0
= P j

TST .

Here, the second equation follows from Lemma 3.11, the first inclusion from
Fact 3.8(c), while the second inclusion is a consequence of Fact 3.8(b). The
proof of the third equation is very similar to that of Lemma 3.11 and uses the
fact that any [c] intersecting Z intersects also

⋃S0. (This proof relies also on
the fact that every strongest path p between spels in [c] is in P [c] and that
[c] ∩ P j

SS 6= ∅ implies [c] ⊆ P j
SS .)

The inclusion T ⊆ P 1
TT follows from Lemma 3.2 and the fact that ET = ∅.

3.5 Examples

In this subsection, we will present the examples announced earlier in this
paper, which show different limitations for our results. The examples are pre-
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sented in a graphical form, where vertices represent spels from a given scene
while a number next to an edge of a graph represents the affinity between the
connected vertices. Lack of an edge between vertices means that the affinity
between the spels they represent is equal to 0.

(a) (b)

Figure 6. Affinities for Examples 3.13 and 3.14.

Our first example shows that, unlike a nice path, a strongest path from an
a ∈ P j

dS to d need not to be contained in P j
dS.

Example 3.13 Assume that a scene C contains spels a, b, c, d, and s, con-
nected as in Figure 6(a). Let S = {d, s}. Then P 1

sS = {c, s} and P 1
dS = {b, d}.

Also, a ∈ P 2
dS, since µC(a, d) = .5 > 0 = µC\P 1

dS(a, s). However, the path
p = 〈a, b, c, d〉 is strongest between a ∈ P 2

dS and d, but it is not inside P 2
dS.

The following example shows that the iterative analog of formula (5) is false.

Example 3.14 Assume that a scene C contains spels s, t, u, and c, connected
as in Figure 6(b). Let S = {s, t}, U = {u}, and S = {S, U}. Then P I

US = {u},
P 1

SS = {s, t}, and P I
SS = P 2

SS = {s, t, c}. However, P I
s{s,u} = P 1

s{s,u} = {s} and

P I
t{t,u} = P 1

t{t,u} = {t}, showing that
⋃

s∈S P I
s{s,u} = {s, t} 6= {s, t, c} = P I

SS .

(a) (b)

Figure 7. Affinities for Examples 3.15 and 3.16.

The following example shows that, in Corollary 2.7, we cannot weaken the
assumptions to ti ∈ P I

siS
, even if we also weaken the conclusion to P I

tiT
= P I

siS
.

Example 3.15 Assume that a scene C contains spels a, s, and t, connected
as in Figure 7(a). Let S = {s, t}. Then for j > 1 we have P 1

sS = {s} ( P j
sS =

{a, s} and P 1
tS = P j

tS = {t}. However, if we replace a seed s with a ∈ P 2
sS and
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put T = {a, t}, then for every i > 0 and j > 1, we have P i
tT = P i

tS = {t}, and
P i

aT = {a} 6= P j
sS.

The next example shows the limitations of the result from Proposition 3.10.

Example 3.16 Assume that a scene C contains spels s, t, u, and c, connected
as in Figure 7(b). Let S = {s, t}, U = {u}, and S = {S, U}. Then P 1

sU = {s, c}
is disjoint with P 1

tU = {t}. However, although TS = {s} does not intersect P 1
tU ,

we still have P I
TSU = P 2

tU = {s, c, t} = P I
SS .

4 The algorithm

In this section, we present an algorithm, called κIRMOFC (abbreviation for
iterative relative multi object fuzzy connectedness), allowing a set of seeds
for each object. Within this algorithm, the algorithm κFOEMS as described
in [18] for multi seeded AFC is called. κFOEMS takes as an input a given
scene C = 〈C, f〉, an affinity function κ, and a set S ⊂ C of seeds. Its output is
a connectivity scene Cκ,S = 〈C, fκ,S〉, where fκ,S(c) represents the strength of a
κ-strongest path from c to S. Aspects related to the computational efficiency
of algorithm κFOEMS have been addressed in [20,21]. For A ⊂ C, by the
restriction of κ to A we will understand an affinity κ′ on C such that, for
every distinct c, d ∈ C, we have κ′(c, d) = κ(c, d) for c, d ∈ A, and κ(c, d) = 0
otherwise. In the algorithm κIRMOFC, we will use the fact that, for distinct
c, d ∈ C, the number µA(c, d) is equal to µC(c, d) calculated with respect to
the restriction of κ to A.

Algorithm κIRMOFC

Input: C = 〈C, f〉, κ as defined in Section 2, a family S = {S1, S2, . . . , Sm}
of pairwise disjoint sets of seed spels such that κ(s, t) < 1 for any
s and t from distinct sets from S.

Output: For each S in S, iteratively defined fuzzy κ-object P I
SS containing

S and relative to a background containing W =
⋃

(S \ {S}).

Auxiliary
Data
Structures:

For each S ∈ S, the κ-connectivity scene Cκ,S = 〈C, fκ,S〉,
the κS-connectivity scenes CκS ,W = 〈C, fκS ,W 〉, where κS is
the restriction of κ to C \ P j

SS , and the temporary scenes
CS = 〈C, fS〉 such that fS corresponds to the characteristic
function of P j

SS . Index j refers to the iteration level; that is,
the number of completed while loops, in Steps 5–16, for each
fixed S.

begin
1. for each S ∈ S do
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2. compute Cκ,S by using κFOEMS;
3. set all elements of CS to 0 (this corresponds to setting P 0

SS = ∅);
4. set κS = κ and flag = true;
5. while flag = true do
6. set flag = false;
7. compute CκS ,W by using κFOEMS;
8. for all c ∈ C do
9. if fS(c) = 0 and fκ,S(c) > fκS ,W (c) then

10. set fS(c) = 1;
11. set flag = true;
12. for all d ∈ C, d 6= c, do
13. set κS(c, d) = 0;
14. endfor ;
15. endif ;
16. endfor ;
17. endwhile;
18. output P I

SS = {c ∈ C : fS(c) = 1};
19. endfor ;

end

In the above algorithm each run of the loop of Steps 2–18 is independent of
the other runs and can be considered as a subroutine (similar to algorithm
κIFROE from [15]) which for seeds S and W returns an IRFC object contain-
ing S and relative to a background containing W . The value of flag determines
whether in the previous run of the loop in Steps 6–16 there was at least one
spel which was added to the object P I

SS (i.e., changed value of fS(c) from 0
to 1). Since the number of spels c ∈ C is finite, eventually no change is made
and the loop terminates. Each time the algorithm enters the loop in Steps
6–16, fS is the characteristic function of the previous stage, say jth stage,
P j

SS is the approximation of P I
SS , while κS is the restriction of κ to C \ P j

SS .
Notice that this situation remains true when Steps 6–16 of the next stage
are completed. Indeed, the loop of Steps 9–15 is entered for each c and the
if statement is performed only if c was not yet in P j

SS , but the inequality

µC(c, S) = fκ,S(c) > fκS ,W (c) = µC\P j
SS (c, W ) indicates that c is added to

P j+1
SS . This is done at Step 10, while the loop in Steps 12–14 restricts current

κS to C \ {c}. Thus, when Steps 9–15 are finished, all seeds from C \ P j
SS

for which µC(c, S) > µC\P j
SS (c, W ) are added to P j+1

SS , and the new κS is the
restriction of the old κS to

⋂
c∈P j+1

SS \P j
SS

(C \ {c}), so it is the restriction of κ to

the set (C \ P j
SS) ∩ ⋂

c∈P j+1
SS \P j

SS
(C \ {c}) = C \ P j+1

SS . The argument from this

paragraph justifies the following result.

Proposition 4.1 For any scene C = 〈C, f〉 over 〈Zn, α〉, for any fuzzy affinity
relation κ in C, and for any non-empty family S of non-empty pairwise disjoint
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subsets of C such that κ(s, t) < 1 for any s and t from distinct sets from S,
algorithm κIRFCMO terminates, S ⊂ P I

SS for every S ∈ S, and the family
{P I

SS : S ∈ S} is the IRFC segmentation of C.

5 Results and evaluation

5.1 Qualitative Evaluation

In this section, we present the results of application of the IRFC method
and compare them with the results obtained by using RFC. Specifically, we
present qualitative results of the following three experiments: (1) segmentation
of individual vertebra from a 3D CT scene of a human cervical spine; (2)
artery/vein separation in contrast-enhanced MR angiograms; (3) segmentation
of white matter (WM), gray matter (GM), and cerebro-vascular fluid (CSF)
in simulated MR scenes obtained from BrainWebMR simulator [22].

(a) (b)

(c) (d)

Figure 8. (a) An axial slice from the CT scene of a patient’s cervical spine.
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The contact area between the two cervical vertebrae C1 and C2 is shown
by an arrow. (b) A surface rendition of the vertebral column consisting of
three vertebrae segmented by using AFC. (c) A Maximal Intensity Projection
(MIP) rendition of a 3D contrast enhanced MR angiography scene of the body
region from belly to knee. (d) A surface rendition of the entire vascular tree
segmented by AFC from this scene.

The aim of our first experiment is to compare the performances of RFC and
IRFC in segmenting the individual vertebrae. Figure 8(a) displays a region
of interest from a slice in the 3D CT data (size: 512 × 512 × 77, voxel size
0.23×0.23×1.0 mm3). In CT scenes, bones appear bright, and it is not difficult
to segment them from the rest of the body region. Figure 8(b) displays a sur-
face rendition of the cervical spine column after segmenting it from other bones
and soft tissues by using AFC. Here, AFC is used instead of simple threshold-
ing since the former simultaneously removes other non-vertebral bone regions
which otherwise would have to be segmented by using a subsequent connec-
tivity analysis. Also, AFC outperforms simple thresholding and connectivity
analysis for spels with partial bone occupancy. Our aim in this experiment
is to segment the three vertebrae (C1–C3) from the spinal section shown in
Figure 8(b). The major challenges in separating the individual vertebrae are:
(1) complex shape and geometry of the contact regions between two successive
vertebrae; (2) the fuzzy fusion at these junctions (see Figure 8(a)); (3) porous
interior of the vertebrae due to the existence of cancellous trabecular bone.
It is difficult to separate these vertebrae by using intensity-based features.
Therefore, we applied a morphology-based separation through the use of RFC
and IRFC methods. The following preprocessing steps were applied first. The
cavities created by the trabecular bone network were separately filled in each
slice to generate the bone region RB. We used RB to define an affinity relation
κ utilized in the RFC and IRFC separations of the vertebrae as follows.

First, for a given scene 〈C, f〉, a separate bone volume fraction scene 〈C, fB〉
was computed by setting

fB(c) =


1 for c ∈ RB and f(c) ≥ Bonemax,

f(c)−Bonemin

Bonemax−Bonemin
for c ∈ RB and Bonemin < f(c) < Bonemax,

0 otherwise,

where Bonemax and Bonemin represent maximal and minimal intensities of
spels in RB, respectively.

For a path p = 〈c1, c2, . . . , cl〉 in C, wherein the consecutive spels are 26-

35



adjacent, we define its fuzzy length as

πB(p) =
l−1∑
i=1

1

2
(fB(ci) + fB(ci+1)) · distance(ci, ci+1).

(If 1
2
(fB(ci) + fB(ci+1)) · distance(ci, ci+1) is interpreted as an average bone

density of the link 〈ci, ci+1〉, then πB(p) is approximately the total bone mass
of p.) The fuzzy distance transform [23] is derived from fB as follows:

ΩB(c) = min
d6∈RB

{πB(p) : p is a path with adjacent consecutive spels from c to d}.

(Under the interpretation as above, ΩB(c) is the smallest mass of a path
connecting c with the complement of RB.) Now, affinity between spels c and
d is defined as given below, where N = maxc∈C ΩB(c):

µκ(c, d) =


max{ΩB(c), ΩB(d)}/N for adjacent c 6= d,

1 c = d,

0 otherwise.

(16)

Next, RFC and IRFC algorithms were applied to 〈C, f〉 by using the affinity
relation defined above on 〈C, fB〉. The same set of seeds, selected manually, was
used for both methods. The results of vertebral separation obtained by using
RFC and IRFC are illustrated in Figures 9(a)-(d), (a) and (c) showing the
results on a slice, and (b) and (d) depicting the result via 3D surface rendering.
In both figures, voxels segmented as part of a specific vertebra are assigned
the same color. In the slice display, spels shown white indicate that they were
not assigned to any specific bone. Although RFC has succeeded in capturing
the skeletal core of each vertebra after segmentation, it has lost most of the
regions of each bone (too many white spels in the slice display) and the results
are obviously not acceptable. Despite fuzzy fusion at contact regions between
the vertebrae, IRFC has successfully separated them. IRFC stopped after 8,
14, and 15 iterations, respectively, for the first, second, and third vertebra.
For the particular affinity function defined above, the results of RFC-based
vertebral separation are similar to the results that may be obtained by using
morphological erosion with a ball of appropriate size. The beauty of RFC is
that, effectively, the radius of the eroding ball is automatically computed by
the RFC method. The results obtained by IRFC cannot be produced by using
a simple morphological operation.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. (a) A slice display of the separation of cervical vertebra by applying
RFC for the slice shown in Figure 8(a). White spels are not assigned to any
specific vertebra. (b) Color surface rendition of the three vertebra segmented
by RFC. (c)-(d) Same as (a)-(b), respectively, but by using IRFC. (e) Color
surface rendition of arterial (red) and veinous (blue) trees segmented by RFC.
(f) Same as (e) but by using IRFC.
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(a) (b) (c)

(d) (e)

Figure 10. Results of WM, GM, and CSF segmentation on simulated MR
scenes produced by BrainWebMR simulator. (a)-(c) Matching slices from sim-
ulated PD, T1-, and T2-weighted MR data sets. (d) Segmentation of WM
(dark), GM (intermediate brightness), and CSF (bright) regions obtained by
using RFC. (e) Same as (d) but for IRFC.

The aim of our second experiment is to demonstrate how IRFC can be em-
ployed to separate arteries and veins in contrast-enhanced MR angiography
scenes. MR imaging approaches [25] exist which attempt to elicit different
types of signals from the arteries and veins through carefully designed imag-
ing protocols and thereby to distinguish arteries from veins. Here, we use RFC
and IRFC to separate artery/vein trees from MR scenes that are acquired by
using long resident blood-pool contrast agents [26] which do not produce dif-
ferent signals from the arteries and veins, but which provide a better overall
definition of the vessels themselves. Figure 8(c) shows a maximum intensity
projection (MIP) rendition from a patient MRA scene (size: 512 × 512 × 60;
resolution: 0.94× 0.94× 1.8 mm3) of the body region from belly to knee. Fig-
ure 8(d) shows a surface rendition of the whole fuzzy vascular structure that
was segmented by using AFC from the original MRA data set. Figures 9(e)
and (f) show renditions of the fuzzy arterial and veinous trees separated via
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RFC and IRFC, respectively. Note that, in this experiment, RFC (or, IRFC)
was applied between arteries and veins so that when the arterial tree was
segmented the veinous tree served as the background and vice versa.

For this experiment, a morphology-based affinity was computed in a manner
similar to the first experiment Equation (16), except that no 2D cavity filling
was necessary. In this case, the algorithm stopped after nine iterations. Clearly,
IRFC has captured more thin branches in segmented arterial and veinous tress
than those captured by RFC. Also, RFC segmentation of the main arterial
branch on the right appears largely broken and the same is true for the main
veinous branch on the left. On the other hand, the main branches in IRFC
segmentation of both arterial and veinous trees appear complete, continuous,
and smooth.

The results of segmentation, by using RFC and IRFC, of WM, GM, CSF
in a simulated MR scene produced by the BrainWebMR simulator [22] are
presented in Figure 10. Figures 10(a)-(c) show corresponding slices from the
simulated proton density, T1-, and T2-weighted MR data sets. Affinity was
computed from the three MR data sets after combining them into one vec-
torial scene [27]. A set of seeds was manually specified for each of the three
regions, and the regions were segmented by using RFC and IRFC. These re-
sults are shown in Figures 10(d) and (e). It may be noted that there is not
much difference between the segmentation results for RFC and IRFC. As in
this example, when one object wraps around the entire boundary of the other
object, the scope of refinement of segmentation by using IRFC is reduced.
Generally, IRFC outperforms RFC when a relatively large part of one object
comes close to a large part of another object, forming a fuzzy interface be-
tween them, but otherwise the remaining smaller aspects of the objects have a
clean association with the two objects, as in our second example above. This
situation can also occur in a multi object setting, as in our first example.

5.2 A Quantitative Evaluation

The purpose of this experiment is to quantitatively evaluate the performance
of IRFC and compare it with the performance of RFC under various levels of
noise, blurring, and intensity inhomogeneity in the scene. Toward this goal,
five 2D scenes CT = 〈C, fT 〉, T ∈ {1, 2, 3, 4, 5}, were created by using the
drawing tools supported by 3DVIEWNIX [24]. Each of these scenes contained
four separate objects and a background. The object regions and the back-
ground were assigned different constant intensities. One such scene is shown
in Figure 11(a). Next, each scene CT was modified by: blurring it (via a 2D
Gaussian kernel) at one of three fixed blur levels B1 > B2 > B3; adding noise
at one of three fixed levels N1 > N2 > N3; and introducing to it intensity
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inhomogeneity from one of three fixed levels I1, I2, I3. A scene CT with added
blur B ∈ {B1, B2, B3}, noise N ∈ {N1, N2, N3}, and intensity inhomogeneity
I ∈ {I1, I2, I3}, is denoted as CT

BNI = 〈C, fT
BNI〉. Thus, from each of the five

scenes CT , we generated 27 modified phantom scenes CT
BNI . Three of these 135

phantom scenes, generated from the scene CT of Figure 11(a), are illustrated
in Figures 11(c)-(e).

In each scene CT = 〈C, fT 〉, each spel c ∈ C is assigned to a unique object. Let
LT : C → {0, 1, 2, 3, 4} denote the true object labeling function; that is, the set
{c ∈ C : LT (c) = i} is the i-th object for i ∈ {1, 2, 3, 4} and the background,
when i = 0. Figure 11(b), used as a reference, presents the true object labeling
for Figure 11(a). We will denote by OT the set of all spels with non-zero label
in CT .

Object labeling of the phantom scenes is accomplished in two steps — sep-
aration of the foreground from background, and separation among the four
objects. This is because the nature of the segmentation task between back-
ground and foreground is entirely different from segmentation among objects
within the foreground. In the former case, there is a clear intensity difference,
and a simpler approach like AFC works fine. On the other hand, among the
different foreground objects there is no clear intensity difference and intensity-
based approaches will not work. After segmenting the foreground from the
background by using AFC, a fuzzy membership scene was created as follows.
Let OT

BNI denote the set of spels in the foreground region and let ρ and σ
denote the mean and standard deviation of spel intensity values over OT

BNI .

A foreground fuzzy membership value ϕT
BNI(c) at a spel c ∈ OT

BNI was then
created, defined by

ϕT
BNI(c) =

 e−
(fT

BNI
(c)−ρ)2

2σ2 if fT
BNI(c) < ρ,

1 otherwise.

A fuzzy distance transformation map was then computed from 〈C, ϕT
BNI〉,

which was utilized to define affinity as described previously Equation (16).
Finally, RFC and IRFC methods were applied to obtain multi-object segmen-
tations within the foreground region. Segmentations resulting from RFC and
IRFC for scenes in Figures 11(c)-(e) are shown, respectively, in Figures 11(f)-
(h) and (i)-(k). In these displays, white colored spels represent foreground
spels that are not assigned to any specific region. (Those were referred to as
“boundary spels” in our theoretical discussion.) Clearly IRFC has successfully
separated the objects while preserving the thin branches, and RFC has cap-
tured only the core of the objects and the results are similar to those that can
be obtained via morphological erosion.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 11. (a) A hand drawn scene with four iso-intensity objects and a dark
background. (b) Object labeling in the true scene. (c)-(e) Three phantom
scenes generated from (a) at different levels of blur, noise, and inhomogene-
ity. (f)-(h) Multi-object segmentations of (c)-(e), respectively, by using RFC.
(i)-(k) Segmentation of (c)-(e) by using IRFC.
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Let RFC-LT
BNI(c) and IRFC-LT

BNI(c) denote the object labels estimated at
a spel c from a phantom scene CT

BNI by using RFC and IRFC, respectively. We
use here the label value 5 for the foreground spels which are not assigned to any
of the four objects. A similarity measure between LT (c) and RFC-LT

BNI(c) (or
IRFC-LT

BNI(c)) is necessary to assess the performance of the two methods.
Unlike the one object case, establishing agreement with truth in the case of
multiple objects simultaneously is tricky. Here, we have used a figure-of-merit
(FOM) that gives a full score only when the label of a spel in the segmentation
matches with the true label at that spel; otherwise the score is 0. Specifically,
the figure of merit X-FOMT

BNI , with X ∈ {RFC, IRFC}, for the phantom
scene CT

BNI is defined as

X-FOMT
BNI =

∑
c∈C F (X-LT

BNI(c), L
T (c))

‖OT ∪OT
BNI‖

× 100,

where symbol ‖OT ∪ OT
BNI‖ denotes the number of spels in OT ∪ OT

BNI , and
F (a, b) = 1 for a = b and F (a, b) = 0 for a 6= b . Finally, at any given blur,
noise, and inhomogeneity level BNI, the mean and the standard deviation
values of X-FOMT

BNI , for T ∈ {1, 2, 3, 4, 5}, are computed. Tables 1 and 2 list
the mean and standard deviation of these FOM values for RFC and IRFC
methods, respectively. It is clear from these tables that the performance of
IRFC is superior to that of RFC.

B1N1I1 31.29(4.36) B2N1I1 26.23(4.90) B3N1I1 25.56(5.36)

B1N1I2 26.67(3.78) B2N1I2 24.83(5.12) B3N1I2 21.72(5.78)

B1N1I3 26.51(4.68) B2N1I3 21.92(5.23) B3N1I3 20.31(6.09)

B1N2I1 26.69(3.89) B2N2I1 24.42(4.89) B3N2I1 21.73(5.45)

B1N2I2 24.28(5.11) B2N2I2 19.89(5.13) B3N2I2 17.93(5.85)

B1N2I3 22.47(3.96) B2N2I3 18.29(5.24) B3N2I3 15.92(6.12)

B1N3I1 25.49(5.21) B2N3I1 21.92(4.99) B3N3I1 18.00(5.54)

B1N3I2 22.58(4.76) B2N3I2 18.18(5.33) B3N3I2 15.78(6.02)

B1N3I3 20.09(4.59) B2N3I3 16.03(5.02) B3N3I3 15.93(6.11)

Table 1. The mean and standard deviation (in parenthesis) of the similarity
measure RFC-FOMT

BNI , T ∈ {1, 2, 3, 4, 5}, are shown for each blur, noise,
and inhomogeneity condition.
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B1N1I1 98.93(0.31) B2N1I1 98.38(0.37) B3N1I1 97.30(0.46)

B1N1I2 98.08(0.39) B2N1I2 96.78(0.40) B3N1I2 93.12(0.42)

B1N1I3 97.91(0.42) B2N1I3 94.49(0.34) B3N1I3 90.42(0.50)

B1N2I1 97.90(0.38) B2N2I1 95.91(0.29) B3N2I1 91.73(0.49)

B1N2I2 96.65(0.45) B2N2I2 90.60(0.40) B3N2I2 85.89(0.53)

B1N2I3 94.40(0.42) B2N2I3 87.41(0.38) B3N2I3 82.81(0.50)

B1N3I1 97.34(0.40) B2N3I1 92.62(0.35) B3N3I1 87.69(0.56)

B1N3I2 93.80(0.46) B2N3I2 86.70(0.42) B3N3I2 82.09(0.48)

B1N3I3 90.50(0.49) B2N3I3 83.30(0.46) B3N3I3 78.90(0.55)

Table 2. The mean and standard deviation (in parenthesis) of the similarity
measure IRFC-FOMT

BNI , T ∈ {1, 2, 3, 4, 5}, are shown for each blur, noise,
and inhomogeneity condition.

6 Concluding remarks

The theory of IRFC segmentation presented in this paper consolidates all
earlier versions of FC segmentation theories in a unified framework. This is
especially the case for the RFC theory, since any segmentation obtained with
the RFC algorithm is just a first iteration step in the IRFC based algorithm.
Since our exposition of the IRFC theory is presented with the iteration num-
ber as a parameter, the RFC results (viewed as the first-iteration-level-IRFC
results) are readily accessible due to the format of our presentation of the
IRFC theory.

It should also be stressed that the IRFC theory presented here is self contained.
We were not able to use the theoretical results from earlier papers in this
connection, because of the intricacy of the arguments needed for the IRFC
theory. Thus, from a theoretical point of view, this paper supplants previous
papers on FC theory.

Note also that, once the IRFC algorithm is implemented, there is no reason
to implement also an RFC based algorithm separately. There are two reasons
in support of this statement. First, it is easy to implement an IRFC algorithm
that will ask an operator whether to impose a maximal number N of iterations.
Then such an algorithm used with “no bound for N” is just our standard
IRFC algorithm, and when run with N = 1, it becomes a standard RFC
algorithm. Although this allows an implementation of RFC algorithm as a
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restricted version of IRFC, we do not believe that there is much benefit in
running RFC segmentation once an IRFC program is at hand. It is true that,
in principle, the RFC algorithm is simpler than IRFC, and in some cases (as
demonstrated in Figures 10(d) and (e)) the RFC program works just as well
as IRFC. However, in such cases, the first iteration of IRFC will already give
the RFC “good enough” segmentation; that is, the IRFC algorithm will stop
after just one iteration. Since the expense of running IRFC algorithm in the
case it stops after just one iteration is only slightly higher than running the
RFC algorithm, the benefit of an operator deciding whether to use IRFC or
RFC is minimal, even when there is no better performance of IRFC over RFC.

Apart from its generality, IRFC is a more powerful technique than RFC. Our
experiments indicate that there are potentially many situations wherein IRFC
would perform better than RFC, especially when multiple objects come close
to each other without one completely surrounding the other.

One area that requires careful scrutiny and that can make an impact on the
practical utility of FC methods in segmentation is the proper design of affin-
ity. In this paper, we have utilized mostly image-based strategies for defining
affinity, as described in previous publications. We have also shown (see Equa-
tion (16)) that morphology-based strategies can also be employed to devise
effective affinities. It is also conceivable that affinities can be constructed by
utilizing information available in statistical shape models [28]. A question nat-
urally arises then as to whether these three strategies can be combined in a
FC-driven segmentation task to construct affinities. We are currently studying
some of these issues in the context of specific imaging applications.
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