The presented construction is just very close to [Theorem 7.18: W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1964].

Weierstrass monster for calculus students

Krzysztof Chris Ciesielski ${ }^{\text {a,b, }}$ and David Miller ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310
${ }^{\text {b }}$ Department of Radiology, MIPG, University of Pennsylvania, Philadelphia, PA 19104-6021

Abstract

We present a simple example of a Weierstrass Monster-a continuous nowhere differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$-that is accessible to anyone familiar with geometric series and epsilon-delta definition of derivative. As such, it can be incorporated into one variable calculus.

The construction of Weierstrass Monster that follows contains elements of those given by van der Waerden [5], McCarthy [1], and Minassian and Gaisser [3]. However, it uses mathematical tools simpler than those and other documented constructions of such a function. (See e.g. [4, 2].)

For every n in $\mathbb{Z}^{+}=\{0,1,2, \ldots\}$, let $f_{n}(x)=\min _{k \in \mathbb{Z}}\left|x-\frac{k}{8^{n}}\right|$ be the distance from x in \mathbb{R} to the set $\frac{1}{8^{n}} \mathbb{Z}=\left\{\frac{k}{8^{n}}: k \in \mathbb{Z}\right\}$. Then

$$
f(x)=\sum_{n=0}^{\infty} 4^{n} f_{n}(x) \text { is continuous nowhere differentiable. }
$$

Figure 1 shows this Monster function and the first two approximations of it. Note that $4^{n} f_{n}(x) \leq 4^{n} \frac{1}{2} 8^{-n}=2^{-n-1}$ for every $n \in \mathbb{Z}^{+}$.

Figure 1: The graphs of: f_{0} (lower left), $f_{0}+f_{1}$ (upper left), and f (right)

Continuity of f : Choose $x_{0} \in \mathbb{R}$ and $\varepsilon>0$. We need to find $\delta>0$ such that $\left|x_{0}-x\right|<\delta$ implies $\left|f\left(x_{0}\right)-f(x)\right|<\varepsilon$. To see this, choose $n \in \mathbb{Z}^{+}$such that $\frac{1}{2^{n+1}}<\frac{\varepsilon}{3}$. Since $F_{n}(x)=\sum_{i=0}^{n} 4^{i} f_{i}(x)$ is continuous, there exists a $\delta>0$ such that $\left|F_{n}\left(x_{0}\right)-F_{n}(x)\right|<\frac{\varepsilon}{3}$ provided $\left|x_{0}-x\right|<\delta$. Thus, $\left|x_{0}-x\right|<\delta$ implies that

$$
\begin{aligned}
\left|f\left(x_{0}\right)-f(x)\right| & =\left|\left(F_{n}\left(x_{0}\right)+\sum_{i=n+1}^{\infty} 4^{i} f_{i}\left(x_{0}\right)\right)-\left(F_{n}(x)+\sum_{i=n+1}^{\infty} 4^{i} f_{i}(x)\right)\right| \\
& \leq\left|F_{n}\left(x_{0}\right)-F_{n}(x)\right|+\left|\sum_{i=n+1}^{\infty} 4^{i} f_{i}\left(x_{0}\right)\right|+\left|\sum_{i=n+1}^{\infty} 4^{i} f_{i}(x)\right| \\
& \leq \frac{\varepsilon}{3}+\left(\sum_{i=n+1}^{\infty} \frac{1}{2^{i+1}}\right)+\left(\sum_{i=n+1}^{\infty} \frac{1}{2^{i+1}}\right)=\frac{\varepsilon}{3}+2\left(\frac{1}{2^{n+1}}\right)<\varepsilon .
\end{aligned}
$$

Nowhere differentiability of f : Fix an $n \in \mathbb{Z}^{+}$. For every $k \in \mathbb{Z}$, let $x_{k}=$ $\frac{k}{8^{n}}$. Then, for every $i \geq n$, we have $x_{k}, x_{k+1} \in \frac{1}{8^{i}} \mathbb{Z}$ and $f_{i}\left(x_{k}\right)=f_{i}\left(x_{k+1}\right)=0$. Also, we have $\frac{f_{i}\left(x_{k}\right)-f_{i}\left(x_{k+1}\right)}{x_{k}-x_{k+1}}= \pm 1$ for every $i<n$. Thus, using inequalities $|a-b| \geq|a|-|b|$ and $\left|a_{1}+\cdots+a_{n-2}\right| \leq\left|a_{1}\right|+\cdots+\left|a_{n-2}\right|$,

$$
\begin{aligned}
& \left|\frac{f\left(x_{k}\right)-f\left(x_{k+1}\right)}{x_{k}-x_{k+1}}\right|=\left|\frac{\sum_{i=0}^{n-1} 4^{i} f_{i}\left(x_{k}\right)-\sum_{i=0}^{n-1} 4^{i} f_{i}\left(x_{k+1}\right)}{x_{k}-x_{k+1}}\right| \\
& \quad=\left|\sum_{i=0}^{n-1} \frac{f_{i}\left(x_{k}\right)-f_{i}\left(x_{k+1}\right)}{x_{k}-x_{k+1}} 4^{i}\right|=\left|\sum_{i=0}^{n-1} \pm 4^{i}\right| \geq\left| \pm 4^{n-1}\right|-\left|\sum_{i=0}^{n-2} \pm 4^{i}\right| \\
& \quad \geq 4^{n-1}-\sum_{i=0}^{n-2}\left| \pm 4^{i}\right|=4^{n-1}-\sum_{i=0}^{n-2} 4^{i}=4^{n-1}-\frac{4^{n-1}-1}{3}>\frac{2}{3} 4^{n-1} .
\end{aligned}
$$

To proceed further, notice that for every $a<b<c$ and any function f,

$$
\begin{equation*}
\max \left\{\frac{|f(c)-f(b)|}{c-b}, \frac{|f(b)-f(a)|}{b-a}\right\} \geq \frac{|f(c)-f(a)|}{c-a} \tag{1}
\end{equation*}
$$

Indeed, let $\overline{A C}$ be the segment joining $A=(a, f(a))$ and $C=(c, f(c))$. If $B=(b, f(b))$ is above $\overline{A C}$, then $\frac{f(c)-f(b)}{c-b} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(b)-f(a)}{b-a}$; otherwise, $\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}$, see Figure 2.
 This implies (1). ${ }^{1}$

Now, for every $x \in \mathbb{R}$ and every $n \in \mathbb{Z}^{+}$, there Figure 2 : k Foum slope chn $x \in\left[\frac{k}{8^{n}}, \frac{k+1}{8^{n}}\right]$. We claim that figurations for (1)
$(*)$ there is $y_{n} \in\left\{\frac{k}{8^{n}}, \frac{k+1}{8^{n}}\right\}, y_{n} \neq x$, such that $\left|\frac{f(x)-f\left(y_{n}\right)}{x-y_{n}}\right| \geq\left|\frac{f\left(x_{k}\right)-f\left(x_{k+1}\right)}{x_{k}-x_{k+1}}\right|$.
Indeed, if x is among the endpoints of $\left[\frac{k}{8^{n}}, \frac{k+1}{8^{n}}\right]$, then the other endpoint can serve as y_{n}. Otherwise, $\frac{k}{8^{n}}<x<\frac{k+1}{8^{n}}$ and this follows from (1).

In particular, for every $n \in \mathbb{Z}^{+}$, there is a y_{n} such that $0<\left|x-y_{n}\right| \leq \frac{1}{8^{n}}$ and $\left|\frac{f(x)-f\left(y_{n}\right)}{x-y_{n}}\right| \geq\left|\frac{f\left(x_{k}\right)-f\left(x_{k+1}\right)}{x_{k}-x_{k+1}}\right| \geq \frac{2}{3} 4^{n-1} \rightarrow_{n} \infty$. So, f is not differentiable at x.

References

[1] J. McCarthy, An everywhere continuous nowhere differentiable function, Amer. Math. Monthly 60 (1953), 709.
[2] M. Jarnicki and P. Pflug, Continuous Nowhere Differentiable Functions, Springer Monographs in Mathematics, New York, 2015.
[3] D.P. Minassian and J.W. Gaisser, A simple Weierstrass function, Amer Math. Monthly 91 (1984) 254-256.

[^0][4] J. Thim, Continuous Nowhere Differentiable Functions, Master Thesis, Luleå University of Technology, 2003. Available at: https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf
[5] B. L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbare Stetige Funktion, Math. Z. 32 (1930), 474-475.

[^0]: ${ }^{1}$ Also, the negation of (1) gives a contradiction: $\frac{|f(c)-f(a)|}{c-a} \leq \frac{|f(c)-f(b)|}{c-a}+\frac{|f(b)-f(a)|}{c-a}=$ $\frac{c-b}{c-a} \frac{|f(c)-f(b)|}{c-b}+\frac{b-a}{c-a} \frac{|f(b)-f(a)|}{b-a}{ }^{\text {by }} \neg^{(1)} \frac{c-b}{c-a} \frac{|f(c)-f(a)|}{c-a}+\frac{b-a}{c-a} \frac{|f(c)-f(a)|}{c-a}=\frac{|f(c)-f(a)|}{c-a}$.

