Weierstrass monster for calculus students

Krzysztof Chris Ciesielski^{a,b,} and David Miller^a

^aDepartment of Mathematics, West Virginia University, Morgantown, WV 26506-6310 ^bDepartment of Radiology, MIPG, University of Pennsylvania, Philadelphia, PA 19104-6021

Abstract

We present a simple example of a Weierstrass Monster—a continuous nowhere differentiable function $f: \mathbb{R} \to \mathbb{R}$ —that is accessible to anyone familiar with geometric series and epsilon-delta definition of derivative. As such, it can be incorporated into one variable calculus.

The construction of Weierstrass Monster that follows contains elements of those given by van der Waerden [5], McCarthy [1], and Minassian and Gaisser [3]. However, it uses mathematical tools simpler than those and other documented constructions of such a function. (See e.g. [4, 2].)

For every n in $\mathbb{Z}^+ = \{0, 1, 2, ...\}$, let $f_n(x) = \min_{k \in \mathbb{Z}} |x - \frac{k}{8^n}|$ be the distance from x in \mathbb{R} to the set $\frac{1}{8^n} \mathbb{Z} = \{\frac{k}{8^n} : k \in \mathbb{Z}\}$. Then

$$f(x) = \sum_{n=0}^{\infty} 4^n f_n(x)$$
 is continuous nowhere differentiable.

Figure 1 shows this Monster function and the first two approximations of it. Note that $4^n f_n(x) \leq 4^n \frac{1}{2} 8^{-n} = 2^{-n-1}$ for every $n \in \mathbb{Z}^+$.

Figure 1: The graphs of: f_0 (lower left), $f_0 + f_1$ (upper left), and f (right)

Continuity of *f*: Choose $x_0 \in \mathbb{R}$ and $\varepsilon > 0$. We need to find $\delta > 0$ such that $|x_0 - x| < \delta$ implies $|f(x_0) - f(x)| < \varepsilon$. To see this, choose $n \in \mathbb{Z}^+$ such that $\frac{1}{2^{n+1}} < \frac{\varepsilon}{3}$. Since $F_n(x) = \sum_{i=0}^n 4^i f_i(x)$ is continuous, there exists a $\delta > 0$ such that $|F_n(x_0) - F_n(x)| < \frac{\varepsilon}{3}$ provided $|x_0 - x| < \delta$. Thus, $|x_0 - x| < \delta$ implies that

$$\begin{aligned} |f(x_0) - f(x)| &= \left| \left(F_n(x_0) + \sum_{i=n+1}^{\infty} 4^i f_i(x_0) \right) - \left(F_n(x) + \sum_{i=n+1}^{\infty} 4^i f_i(x) \right) \right| \\ &\leq \left| F_n(x_0) - F_n(x) \right| + \left| \sum_{i=n+1}^{\infty} 4^i f_i(x_0) \right| + \left| \sum_{i=n+1}^{\infty} 4^i f_i(x) \right| \\ &\leq \frac{\varepsilon}{3} + \left(\sum_{i=n+1}^{\infty} \frac{1}{2^{i+1}} \right) + \left(\sum_{i=n+1}^{\infty} \frac{1}{2^{i+1}} \right) = \frac{\varepsilon}{3} + 2 \left(\frac{1}{2^{n+1}} \right) < \varepsilon. \end{aligned}$$

Nowhere differentiability of f: Fix an $n \in \mathbb{Z}^+$. For every $k \in \mathbb{Z}$, let $x_k = \frac{k}{8^n}$. Then, for every $i \ge n$, we have $x_k, x_{k+1} \in \frac{1}{8^i}\mathbb{Z}$ and $f_i(x_k) = f_i(x_{k+1}) = 0$. Also, we have $\frac{f_i(x_k) - f_i(x_{k+1})}{x_k - x_{k+1}} = \pm 1$ for every i < n. Thus, using inequalities $|a - b| \ge |a| - |b|$ and $|a_1 + \cdots + a_{n-2}| \le |a_1| + \cdots + |a_{n-2}|$,

$$\left| \frac{f(x_k) - f(x_{k+1})}{x_k - x_{k+1}} \right| = \left| \frac{\sum_{i=0}^{n-1} 4^i f_i(x_k) - \sum_{i=0}^{n-1} 4^i f_i(x_{k+1})}{x_k - x_{k+1}} \right|$$

$$= \left| \sum_{i=0}^{n-1} \frac{f_i(x_k) - f_i(x_{k+1})}{x_k - x_{k+1}} 4^i \right| = \left| \sum_{i=0}^{n-1} \pm 4^i \right| \ge \left| \pm 4^{n-1} \right| - \left| \sum_{i=0}^{n-2} \pm 4^i \right|$$

$$\ge 4^{n-1} - \sum_{i=0}^{n-2} \left| \pm 4^i \right| = 4^{n-1} - \sum_{i=0}^{n-2} 4^i = 4^{n-1} - \frac{4^{n-1} - 1}{3} > \frac{2}{3} 4^{n-1}.$$

To proceed further, notice that for every a < b < c and any function f,

$$\max\left\{\frac{|f(c)-f(b)|}{c-b}, \frac{|f(b)-f(a)|}{b-a}\right\} \ge \frac{|f(c)-f(a)|}{c-a}.$$
(1)
Indeed, let \overline{AC} be the segment joining $A = (a, f(a))$
and $C = (c, f(c))$. If $B = (b, f(b))$ is above \overline{AC} ,
then $\frac{f(c)-f(b)}{c-b} \le \frac{f(c)-f(a)}{c-a} \le \frac{f(b)-f(a)}{c-b}$; otherwise,
 $\frac{f(b)-f(a)}{b-a} \le \frac{f(c)-f(a)}{c-a} \le \frac{f(c)-f(b)}{c-b}$, see Figure 2.
This implies (1).¹

Now, for every $x \in \mathbb{R}$ and every $n \in \mathbb{Z}^+$, there Equations is the figure 2: $k \in \mathbb{Z}$ such that $x \in \left[\frac{k}{8^n}, \frac{k+1}{8^n}\right]$. We claim that

(*) there is
$$y_n \in \left\{\frac{k}{8^n}, \frac{k+1}{8^n}\right\}, y_n \neq x$$
, such that $\left|\frac{f(x) - f(y_n)}{x - y_n}\right| \ge \left|\frac{f(x_k) - f(x_{k+1})}{x_k - x_{k+1}}\right|$.

Indeed, if x is among the endpoints of $\left[\frac{k}{8^n}, \frac{k+1}{8^n}\right]$, then the other endpoint can serve as y_n . Otherwise, $\frac{k}{8^n} < x < \frac{k+1}{8^n}$ and this follows from (1). In particular, for every $n \in \mathbb{Z}^+$, there is a y_n such that $0 < |x - y_n| \le \frac{1}{8^n}$

In particular, for every $n \in \mathbb{Z}^+$, there is a y_n such that $0 < |x - y_n| \le \frac{1}{8^n}$ and $\left|\frac{f(x) - f(y_n)}{x - y_n}\right| \ge \left|\frac{f(x_k) - f(x_{k+1})}{x_k - x_{k+1}}\right| \ge \frac{2}{3}4^{n-1} \to_n \infty$. So, f is not differentiable at x.

References

- J. McCarthy, An everywhere continuous nowhere differentiable function, Amer. Math. Monthly 60 (1953), 709.
- [2] M. Jarnicki and P. Pflug, Continuous Nowhere Differentiable Functions, Springer Monographs in Mathematics, New York, 2015.
- [3] D.P. Minassian and J.W. Gaisser, A simple Weierstrass function, Amer Math. Monthly 91 (1984) 254–256.

¹Also, the negation of (1) gives a contradiction: $\frac{|f(c)-f(a)|}{c-a} \le \frac{|f(c)-f(b)|}{c-a} + \frac{|f(b)-f(a)|}{c-a} = \frac{c-b}{c-a} \frac{|f(c)-f(b)|}{c-b} + \frac{b-a}{c-a} \frac{|f(b)-f(a)|}{b-a} \le \frac{c-b}{c-a} \frac{|f(c)-f(a)|}{c-a} + \frac{b-a}{c-a} \frac{|f(c)-f(a)|}{c-a} = \frac{|f(c)-f(a)|}{c-a}.$

- [4] J. Thim, Continuous Nowhere Differentiable Functions, Master Thesis, Luleå University of Technology, 2003. Available at: https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf
- [5] B. L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbare Stetige Funktion, Math. Z. 32 (1930), 474–475.