
Weierstrass monster for calculus students

Krzysztof Chris Ciesielski

a,b,
and David Miller

a

a
Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310

b
Department of Radiology, MIPG, University of Pennsylvania, Philadelphia, PA 19104-6021

Abstract

We present a simple example of a Weierstrass Monster—a continuous

nowhere di↵erentiable function f : R ! R—that is accessible to anyone

familiar with geometric series and epsilon-delta definition of derivative.

As such, it can be incorporated into one variable calculus.

The construction of Weierstrass Monster that follows contains elements of
those given by van der Waerden [5], McCarthy [1], and Minassian and Gaisser [3].
However, it uses mathematical tools simpler than those and other documented
constructions of such a function. (See e.g. [4, 2].)
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(x) is continuous nowhere di↵erentiable.

Figure 1 shows this Monster function and the first two approximations of it.
Note that 4nf

n

(x)  4n 1
28

�n = 2�n�1 for every n 2 Z+.
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Figure 1: The graphs of: f0 (lower left), f0 + f1 (upper left), and f (right)

Continuity of f : Choose x0 2 R and " > 0. We need to find � > 0 such that
|x0 � x| < � implies |f(x0) � f(x)| < ". To see this, choose n 2 Z+ such that
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The presented construction is just very close to 
[Theorem 7.18: W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1964].
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Nowhere di↵erentiability of f : Fix an n 2 Z+. For every k 2 Z, let x
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=
k

8n . Then, for every i � n, we have x
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To proceed further, notice that for every a < b < c and any function f ,

max
n

|f(c)�f(b)|
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Figure 2: Four slope con-
figurations for (1)

Indeed, let AC be the segment joining A = (a, f(a))
and C = (c, f(c)). If B = (b, f(b)) is above AC,

then f(c)�f(b)
c�b
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 f(b)�f(a)
b�a

; otherwise,
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c�b

, see Figure 2.

This implies (1).1

Now, for every x 2 R and every n 2 Z+, there exists a k 2 Z such that
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Indeed, if x is among the endpoints of
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. Otherwise, k
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1. So, f is not di↵erentiable

at x.
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Also, the negation of (1) gives a contradiction:
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