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Abstract— The main subject of this paper is a theoretical study
of image segmentation algorithms in the multiregion competition
setting. In particular, we investigate such segmentations when the
competition is based on a value of the gradient magnitude of the
image. The idealized model for such segmentation is placed in our
theoretical segmentation framework from [7], [8]. We show that
this model is represented by the gradient based relative fuzzy
connectedness, RFC, algorithm. We also show that the model
is weakly represented by a level set multiregion competition
algorithm and that both algorithms are weakly model-equivalent.
A particular consequence of this theoretical result is that the
difficulties attributed to the level set multiregion competition
algorithms could be avoided by using the gradient based RFC
algorithm. We also describe a natural model for the fuzzy
connectedness algorithm used with the homogeneity based affinity
in the RFC setting and also for absolute fuzzy connectedness
algorithms.

I. INTRODUCTION

Image segmentation—the process of partitioning the im-
age domain into meaningful object regions—is perhaps the
most challenging and critical problem in image processing
and analysis. Its central position in image processing comes
from the fact that the delineation of objects is usually the
first step in other higher level processing tasks, like image
interpretation, diagnosis, analysis, visualization, and virtual
object manipulation.

The segmentation literature is enormous. General segmenta-
tion frameworks may be broadly classified into three groups:
boundary-based [6], [11], [12], [13], [15], [16], [19], [20],
[21], region-based [1], [2], [3], [4], [25], [26], [27], [28], [29],
and hybrid [5], [14]. As the nomenclature indicates, in the first
two groups the focus is on recognizing and delineating the
boundary or the region occupied by the object in the image. In
the third group, the focus is on exploiting the complementary
strengths of each of boundary-based and region-based strate-
gies to overcome their individual shortcomings.

Despite this vast literature, our knowledge in this subject has
several serious and fundamental gaps: (I) Most of the papers
confuse and mix up several disparate aspects of the theory:
the description of idealized segmentation models that form the
theoretical basis for the algorithms; the description of the seg-
mentation algorithms for digital images; the numerical issues
related to the implementation of the algorithms; and filtering
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issues (denoising, artifact removing, debluring, etc) related to
imperfect image acquisition. (II) A lack of methods allowing
comparison of different segmentation models at the theoretical
level, especially when models were introduced in different
mathematical frameworks such as differential equations (often
implemented via variational methods), differential geometry,
graph theory, etc. (III) A lack of definitions and methods that
relate idealized models with the related algorithms. (IV) A
lack of rigorous methods allowing a theoretical comparison of
segmentation algorithms.

In an attempt to address these issues, we introduced in [7],
[8] a general segmentation theory framework and used it to
show that the level set based delineation algorithm from [16] is
(weakly model-) equivalent to a simple and fast gradient based
absolute fuzzy connectedness algorithm of [29]. The present
paper is a continuation of the work initiated in [7], [8], with
the goal of extending the theory to image segmentations in the
multiregion competition setting.

Image segmentation algorithms expressed in a multiregion
competition setting have been studied in many different frame-
works: fuzzy connectedness [23], [28], [24], [9], level set
related [31], [17], [30], [18], and watershed [1], [22]. However,
their theories also have the gaps (I)-(IV) described above,
which we will address in this paper. Moreover, as noted in
a recent paper [18], multiregional segmentation algorithms in
a level set setting still face many challenges, like insuring that
the segmented regions are disjoint and insuring repeatability
of segmentations. In this paper, we present an equivalent
alternative which resolves these issues.

II. PRELIMINARIES

We will use the following terminology and notation, which
follows closely those from [7], [8]. The discussion and moti-
vation behind these notions can be found in [7], [8].

An (n-dimensional) idealized image is any function F from
a bounded connected subset Ω of the n-dimensional Euclidean
space Rn into R`. In what follows, we will always assume
that Ω is an open, bounded, connected subset of Rn, and
often it will be just an n-dimensional cube Ω = (a, b)n.
For the gradient based models we will also assume that F
is differentiable.

A delineation model M for a class F of idealized images is
any mapping 〈F, ~p 〉 M7→ O, which, for any image F : Ω → R`
from F and any additional parameters ~p (like initialization
seeds), associates a subset O of Ω interpreted as an object
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of the image F indicated by the parameters. We will write
M(F, ~p ) for the output O of M applied to 〈F, ~p 〉. A segmen-
tation model M for a class F of idealized images and k ob-
jects, k ≥ 1, is any mapping 〈F, ~p 〉 M7→ 〈O1, . . . , Ok〉, which,
for any image F : Ω → R` from F and any additional task-
speciffic parameters ~p, associates a sequence 〈O1, . . . , Ok〉 of
(usually pairwise disjoint) subsets Oi of Ω interpreted as the
objects of the image F indicated by the parameters. We will
write M(F, ~p ) for the output 〈O1, . . . , Ok〉 of M applied
to 〈F, ~p 〉. Any segmentation model M for k objects will be
identified with k delineation models M1, . . . ,Mk, that is,
M(F, ~p ) = 〈M1(F, ~p ), . . . ,Mk(F, ~p )〉.

A (n-dimensional) digital image is any function f from a
finite subset C of Rn into R`. A digital image f : C → R` is
a digitization of an idealized image F : Ω → R` provided f
is the restriction F � C of F to C, that is, C ⊂ Ω and f(c) =
F (c) for every c ∈ C. (This is the simplest scenario. Other
possibilities for the definition of this notion are described in [7,
Remark 4].)

A (digital) delineation algorithm A is any effectively de-
fined mapping 〈f, ~θ 〉 A7→ P , which, to any digital image
f : C → R` (possibly restricted to some subclass) and a
parameter vector ~θ (of additional task-specific information,
like seeds), associates a subset P of C interpreted as a segment
of the image f indicated by the parameters. We will write
A(f, ~θ ) for the output P of A applied to 〈f, ~θ 〉. A (digital)
segmentation algorithm A of k objects is identified with a
mapping A = 〈A1, . . . ,Ak〉, where each Ai is a delineation
algorithm.

The premise for connecting the delineation algorithm A
with a delineation model M is: The better the resolution
of the digital approximation f of the idealized image F ,
the closer the algorithm’s output A(f) will be to the model
output M(F ). Mathematically, this can be translated into the
following statement: A delineation algorithm A represents a
delineation model M for an image F provided, for every
sequence 〈fi〉∞i=1 of digitizations of F , if the resolutions of
fis approach the finest possible, then the segments A(fi, ~θ)
converge to the object M(F, ~θ). To remove ambiguity from
this definition schema, we need to introduce the following
notions.

Let Z stand for the set of all integer numbers and, for h > 0,
let (hZ)n = {hk : k ∈ Z}n be the rectangular grid of points
in Rn with the basic grid spacing h. For an idealized image
F : Ω → R`, we define Ωh = Ω ∩ (hZ)n. In what follows,
we will consider only the digitizations of F in the form
fi = F � Ωh/2i . (More general digitizations are discussed in
[7], [8].) We also need the following two limit notions. For
{Ai(η) : η ∈ R & i = 1, 2, 3, . . .}, we define limi,η

∗Ai(η) as
limη→0+

(⋂∞
j=1

⋃
i≥j Ai(η)

)
, and for double indexed family,

we put lim†
i,η,εAi(η, ε)

def= limε→0+

(
lim∗

i,η Ai(η, ε)
)
. These

two limit notions are different from the standard multivariable
limit in that the limiting process for lim∗ and lim† is hierarchi-
cal in nature: first the limit is taken over the index i (control-
ling convergence of resolution), second, over the parameter
η, and finally (in case of lim†) over the parameter ε. We
need to start with the limit over the resolution of fis, since it

controls the rate in which the difference quotient of F converge
to a derivative of F , and, for the representation theorem to
hold, this convergence must take precedence over any other
part of the limiting process. Now, we can formalize the
above intuitions. (A more general definition of representability,
which allows digitizations f = F � C of F for all possible
finite sets C, can be found in [7], [8].)

Let Aε,η(f, ~θ ) be a delineation algorithm, where ε, η ∈
R, and assume that Aε,0(f, ~θ ) = limη→0+ Aε,η(f, ~θ ). If
Aε(f, ~θ ) = Aε,0(f, ~θ ), then we say that the algorithm
Aε(f, ~θ ) weakly represents a delineation model M(f, ~θ ) for a
class F of idealized images provided, for every F : Ω → R`
from F , h > 0, and a parameter ~θ appropriate for F , the
limit lim†

i,η,εAε,η(F � Ωh/2i , ~θ ) exists and is a dense subset
of M(F, ~θ ). A segmentation algorithm A = 〈A1, . . . ,Ak〉
weakly represents a segmentation model M = 〈M1, . . . ,Mk〉
provided each Ai weakly represents Mi. Two segmenta-
tion (delineation) algorithms A and A′ are weakly model-
equivalent in a class F of idealized images provided there
exists a segmentation (delineation) model M for F such that
both A and A′ weakly represent M.

III. GRADIENT BASED SEGMENTATION MODEL IN A
MULTIREGIONAL COMPETITION SETTING

In [7], [8], we described a gradient based delineation model
MO and proved that it is represented by two well known delin-
eation algorithms: the absolute fuzzy connectedness algorithm
AO used with gradient based affinity [29], and the level set
delineation algorithm ALS in a version from Malladi, Sethian,
and Vemuri paper [16]. In this section we will describe a gra-
dient based segmentation model MORFC in a multiregional
competition setting and prove that it is represented by the
relative fuzzy connectedness, RFC, segmentation algorithm
of [28] used with gradient based affinity and denoted here by
AORFC . We will also show that there is a natural multiregion
competition version of the level set delineation algorithm
ALS , which is weakly model-equivalent to the segmentation
algorithm AORFC .

A. Gradient based RFC segmentation model MORFC and
related segmentation algorithm AORFC

1) The model: Let F : Ω → R` be a differentiable idealized
image. The task in a multiregion segmentation problem in this
idealized setting is to detect in F the exact spatial extent of
k > 1 objects O1, . . . , Ok indicated by the parameters ~p, that
is, finding M(F, ~p ) = 〈O1, . . . , Ok〉.

Assume that for a fixed idealized image F : Ω → R` and
every path (i.e., continuous mapping) p : [a, b] → Ω, possibly
restricted to some class of nice paths, we have associated its
strength µ(p). In a general RFC setting [23], [28], [9], we start
with transforming the notion of path strength to the global
connectivity measure µ(X,S), that assigns to non-empty sets
X,S ⊂ Ω the best strength in which X can be connected to S
by a path. In particular, in the case of path strength definition
based on gradient:

µ(p) = sup
t∈[a,b]

|OF (p(t))|, (1)
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where the strength is measured by a reverse inequality ≥
(see [10] for more on this approach), the global connectivity
measure is defined by a formula:

µ(X,S) = inf{µ(p) : p is a path from X to S}. (2)

If x ∈ Ω, we will write µ(x, S) in place of µ({x}, S). Notice
that, in (2), we do not require that the infimum is achieved.
In fact, it is not difficult to find a simple example in which
µ(X,S) < µ(p) for every path p from X to S.

Any RFC model takes as an input a pair 〈F, ~S〉, where
F is the image and ~S = 〈S1, . . . , Sk〉 is a sequence of the
non-empty sets of seeds, where each Si indicates the ith
object. In the case when a seed set Si is a singleton {si},
we will often replace Si with si in this representation. When
better connectivity strength means smaller number and the
connectivity strength is defined via (2), in the model output
MRFC(F, ~S ) = 〈M1

RFC(F, ~S ), . . . ,Mk
RFC(F, ~S )〉, the ith

object Mi
RFC(F, ~S ) is defined as

{x ∈ Ω: µ(x, Si) < µ(x, Sj) for all j 6= i}. (3)

In other words, the i-th object Mi
RFC(F, ~S ) is the set of

all x ∈ Ω that are better connected to the reference seed
set Si than to any other seed set Sj . This is the competition
among objects for their members via FC. Note that definition
(3) insures that the objects Oi = Mi

RFC(F, ~S ) are pairwise
disjoint. When path strength is gradient based, we denote
MRFC as MORFC .

Definition (3) stresses the competitive nature of membership
assignment to Mi

RFC . However, for our analysis, it will be
more convenient to use an equivalent alternative definition for
Mi

ORFC . First we note the following simple fact, where we
assume that the path strength is defined by (1).

Lemma 1: For every x, s ∈ Ω and non-empty T ⊂ Ω,
we have max{µ(x, s), µ(x, T )} ≥ µ(s, T ). In particular,
if µ(x, s) < µ(x, T ), then µ(x, T ) = µ(s, T ). Moreover,
µ(x, s) < µ(x, T ) if and only if µ(x, s) < µ(s, T ).
PROOF. First, by way of contradiction, assume that
max{µ(x, s), µ(x, T )} < µ(s, T ). Then, there are paths p1

from s to x and p2 from x to T such that µ(pi) < µ(s, T ) for
i = 1, 2. Let p be a path from s to T that first follows path
p1 and then p2. Then, µ(p) < µ(s, T ), contradicting definition
(2) of µ(s, T ).

To prove the second part, assume that µ(x, s) < µ(x, T ).
By the first part, µ(x, T ) ≥ µ(s, T ). In addition, the inequality
µ(x, T ) < µ(s, T ) implies max{µ(s, x), µ(x, T )} < µ(s, T ),
contradicting the first part of the lemma. Therefore, indeed,
µ(x, T ) = µ(s, T ).

Finally, by the second part, µ(x, s) < µ(x, T ) implies that
µ(x, s) < µ(x, T ) = µ(s, T ), while µ(x, s) < µ(s, T ) implies
µ(x, s) = µ(s, x) < µ(s, T ) = µ(x, T ).

For a fixed image F , a seed sequence ~S = 〈S1, . . . , Sk〉, i ∈
{1, . . . , k}, and s ∈ Si, let Ti =

⋃
j 6=i Sj and θsi = µ(s, Ti).

By (3), Mi
ORFC(F, ~S ) = {x ∈ Ω: µ(x, Si) < µ(x, Ti)} =⋃

s∈Si
{x ∈ Ω: µ(x, s) < µ(x, Ti)}. Since, by Lemma 1,

{x ∈ Ω: µ(x, s) < µ(x, Ti)} = {x ∈ Ω: µ(x, s) < µ(s, Ti)},

we conclude that

Mi
ORFC(F, ~S ) =

⋃
s∈Si

{x ∈ Ω: µ(x, s) < θsi }. (4)

In other words, Mi
ORFC(F, ~S ) is equal to the union, over all

s ∈ Si, of the gradient based absolute FC model outcomes
MO(F, θsi , s ) = {x ∈ Ω: µ(x, s) < θsi } from [7] defined as
(see [7, thm 13])

{x ∈ Ω: µ(p) < θsi for some path p from x to s}.

In what follows we will assume that the ith object is identified
only by a single seed, that is, that Si = {si} for some si ∈ C.
In this case we define θi = θsi

i = µ(si, Ti) and equation (4)
reduces to

Mi
ORFC(F, ~S ) = {x ∈ Ω: µ(x, si) < θi}. (5)

Clearly, we would like to ascertain that the seeds Si
indicating the ith object Oi = Mi

ORFC(F, ~S ) belong to this
object. However, this requires some extra assumption on the
choice of sets Si. For example, since objects are pairwise
disjoint, inclusions Si ⊂ Oi clearly require that sets Si are
also pairwise disjoint. This, however, is not sufficient. The
fully characterizing condition is as follows.

Theorem 2: Let F be a differentiable idealized image and
~S = 〈S1, . . . , Sk〉 be a sequence of seed sets. For every
i ∈ {1, . . . , k} we have Si ⊂ Mi

ORFC(F, ~S ) if and only if
|OF (s)| < µ(s, Sj) for every j 6= i and s ∈ Si.
PROOF. Notice that for every path p from s ∈ Si to Si we
have µ(s, s) ≤ |OF (s)| ≤ µ(p) ≤ µ(s, Si) ≤ µ(s, s), where
the first inequality is justified by a constant path. Therefore,
by (3), s ∈Mi

ORFC(F, ~S ) if and only if |OF (s)| = µ(s, s) =
µ(s, Si) < µ(s, Sj) for every j 6= i.

It is also worth noting that if Si is connected and is a subset
of Oi = Mi

ORFC(F, ~S ), then Oi is also connected, since, in
this case, Oi is a union of the paths intersecting Si, that is, a
union of connected sets, each of which intersects a connected
core Si ⊂ Oi.

2) The algorithm: Having discussed delineation and seg-
mentation modesl based on gradient, we turn now to connect-
ing this model with the delineation and segmentation algo-
rithms. First, our discussion will focus on an RFC algorithm
and subsequently a level set algorithm, both for multiregion
segmentation. Let f : C → R` be a digital image, where
C ⊂ (hZ)n for some h > 0. We will think of f as a
digitization of an idealized image F : Ω → R`, that is, that
C = Ωh and f = F � C. We will assume that there exists an
α ∈ [h, n2h] such that two spatial elements (spels) c, d ∈ C
are adjacent provided ||c − d|| ≤ α, where ||x|| denotes
the Euclidean norm of x = 〈x1, . . . , xn〉 ∈ Rn, that is,
||x|| =

√
x2

1 + · · ·+ x2
n. Recall that a path p in C is any

sequence 〈c1, . . . , ck〉 of spels in C, where consecutive ci and
ci+1 are adjacent; p is from x ∈ C to y ∈ C if c1 = x and
ck = y; it is from S ⊂ C to T ⊂ C if c1 ∈ S and ck ∈ T . A
gradient based strength of a path p = 〈c1, . . . , ck〉 is defined
as

µ(p) = max
i=1,...,k

|Of(ci)|, (6)
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where |Of(c)| = ||〈D1f(c), . . . , Dnf(c)〉||. Here an approxi-
mate partial derivative Dif(c) is defined as ∞ if none of the
spels c± hei belongs to C and by a formula

Dif(c) = max
{∣∣∣∣f(c)− f(d)

h

∣∣∣∣ : d = c± hei ∈ C
}
, (7)

where ei is the unit vector in the direction of the ith variable.
For non-empty sets X,S ⊂ C, the discrete global

connectivity measure is defined precisely as in the idealized
case, µ(X,S) = inf{µ(p) : p is a path from X to S}. The
k-object gradient based RFC algorithm of [28] has an output
AORFC(f, ~S ) = 〈A1

ORFC(f, ~S ), . . . ,AkORFC(f, ~S )〉, where
AiORFC(f, ~S ) = {x ∈ C : µ(x, Si)< µ(x, Sj) for all j 6= i}.
Here ~S = 〈S1, . . . , Sk〉 and each set Si represents seeds
indicated the ith object. As above, we assume that Si = {si}
is a singleton. Since the discrete analog of Lemma 1 can be
easily established, the analog of (5) also holds. (This was
first proved in [10, thm. 6].)

AiORFC(f, ~S ) = {x ∈ C : µ(x, si) < θ̂i}, (8)

where θ̂i = minj 6=i µ(si, sj). Thus, AiORFC(f, ~S ) equals
AO(f, θ̂i, si) defined in [7] as

{x ∈ C : µ(p) < θ̂i for some path p from x to si}.

Theorem 3: Algorithm AORFC represents model MORFC

for the class of C1 idealized images F : Ω → R` for which Ω is
convex and |OF | is uniformly continuous on Ω.

In the statement of Theorem 3, we wrote “represents”
instead of “weakly represents” since the theorem is true in
this stronger form, with essentially unchanged proof. However,
since we did not formally define here this stronger repre-
sentability notion, we will prove only its weak representability
version.

PROOF. Fix a j = 1, . . . , k. We need to prove that the delin-
eation algorithm Â = AjORFC weakly represents delineation
model M̂ = Mj

ORFC . Let Âε,η(f, ~S ) = AO(f, θ̂j − η, Sj).
Then, by (8), Â(f, ~S ) = Âε,0(f, ~S ) = limη→0+ Âε,η(f, ~S ).
Fix ~S and F : Ω → R` as in theorem, and let h > 0. We need
to show that the limit L = lim†

i,η,εAε,η(F � Ωh/2i , ~S ) exists
and is a dense subset of M̂(F, ~S ). Since, by (8), M̂(F, ~S ) =
MO(F, θj , Sj ) and L = lim∗

i,η AO(F � Ωh/2i , θ̂j−η, Sj), our
task reduces to devising the proof that the limit exists and is
dense in MO(F, θj , Sj ). This seems to follow immediately
from [7, thm 16], since it was proved there that the limit
lim∗

i,η AO(F � Ωh/2i , θj − η, Sj) exists and is dense in
MO(F, θj , Sj ). However, θ̂j in the definition of L depends
on i (and on F � Ωh/2i) and, in general, is not equal to θj .
Thus, our proof requires a bit more delicate argument.

Let θ̂j(i) be the value of θ̂j for the image F � Ωh/2i . Notice
that

lim
i
θ̂j(i) = θj .

To see that limi θ̂j(i) ≤ θj , fix a δ > 0, and note that, by the
definition of θj , for every j′ 6= j there exists a path p̂ in Ω from
Sj to Sj′ with µ(p̂) < θj +δ/2. Then, by [7, lem 15], there is
an i0 such that, for every i > i0, there exists a path p in Ωh/2i

from Sj to Sj′ which is inside the closed ball B[range(p̂), ε]
of radius ε = 2nα ≤ 2n3h/2i. Since |OF | is continuous,
by increasing i0, if necessary, we may assume that |OF |(c) <
θj+δ/2 for every c ∈ B[range(p̂), ε]. In particular, this is true
for every c from p̂. But |O(F � Ωh/2i)| given by (6) uniformly
approximates |OF |, as proved in [7, lem 22]. In particular, for
i0 big enough, we have

∣∣|O(F � Ωh/2i)|(c)− |OF |(c)
∣∣ < δ/2.

So, µ(p) < θj+δ, proving θ̂j(i) < θj+δ for all i large enough.
Since δ > 0 was arbitrary, we conclude that limi θ̂j(i) ≤ θj .

To prove the other inequality, by way of contradiction,
assume that lim infi θ̂j(i) < θj and let δ > 0 be such that
lim infi θ̂j(i) < θj − δ. Then, for every i0, there is an i > i0
such that for every j′ 6= j there exists a path p in Ωh/2i

from Sj to Sj′ with µ(p) < θj − δ. Using again uniform
convergence of |O(F � Ωh/2i)| to |OF | we conclude that, for
i large enough, µ(p) < θj−δ implies that |OF |(c) < θj−δ/2
for every c from p. Let p̂ be a path on Ω obtained from p by
connecting consecutive spels in p by straight segments. Then
p̂ is in Ω, since Ω is convex. Now, from uniform continuity of
|OF | and the fact that the consecutive spels in p are of distance
at most α ≤ n2h/2i, we conclude that for i large enough
|OF |(x) < θj−δ/4 for every x from p̂. Thus, µ(p̂) < θj−δ/4.
Since for this particular i such a path exists for every j′ 6= j,
this contradicts the definition of θj .

Now it follows from [7, thm 16] that, for every η > 0 and
every r, there is an i0 > r such that for every i > i0

Ωh/2r ∩MO(F, θj − η, Sj) ⊆ AO(F � Ωh/2i , θj − η, Sj)
⊆ MO(F, θj , Sj).

This implies that for every η > 0 and every r, there is an
i0 > r such that for every i > i0

Ωh/2r ∩MO(F, θj − 2η, Sj) ⊆ AO(F � Ωh/2i , θ̂j − η, Sj)
⊆ MO(F, θj , Sj).

Indeed, for large i0 we have θj − 2η < θ̂j − η < θj − η/2, so

Ωh/2r∩MO(F, θj − 2η, Sj) ⊆ AO(F � Ωh/2i , θj − 2η, Sj)

⊆ AO(F � Ωh/2i , θ̂j − η, Sj)
⊆ AO(F � Ωh/2i , θj − η/2, Sj)
⊆ MO(F, θj , Sj).

This implies (for an easy proof see [7, thm 16]) that
lim∗

i,η AO(F � Ωh/2i , θ̂j−η, Sj) = MO(F, θj , Sj)∩
⋃
r Ωh/2r ,

so the limit exists and is dense in MO(F, θj , Sj).

B. Multiregion competition level set segmentation algorithm
ALS RFC representing model MORFC

We turn now to the level set setting for connecting it with
the model MORFC .

Let Ω ⊂ Rn be open and bounded. For a digital image
f : Ωh → R`, a simple closed surface S ⊂ Ω and ε, θ > 0
let AεLS(f, θ, S) denote a delineation algorithm from [16]
propagating curve S with speed (1 + |OF |)−1 − εκ, where
κ is curvature of the front. It has been argued in [7] that AεLS
weakly represents model MO.
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Formally, in the algorithm AεLS(f, θ, S), one propagates a
digital closed surface Sh ⊂ Ωh approximating S, and not
S itself. This will be of some importance for the following
definition of an algorithm ALS RFC in the multiregion setting
for the level set approach. For a sequence ~S = 〈S1, . . . , Sk〉
of simple closed surfaces in Ω, ε, h > 0, and a digital image
f : Ωh → R` define

AεLS RFC(f, ~S ) = 〈AεLS(f, θ̄1, S1), . . . ,AεLS(f, θ̄k, Sk)〉,

where θ̄i = minj 6=i µ(Shi , S
h
j ).

Theorem 4: Algorithm ALS RFC weakly represents model
MORFC for the class of C1 idealized images F : Ω → R` for
which Ω is convex and |OF | is uniformly continuous on Ω. In
particular, the segmentation algorithms ALS RFC and AORFC

are weakly equivalent for this class of images.
SKETCH OF PROOF. We already know that the algo-
rithm AεLS(F � Ωh/2i , θj , Sj) converges to MO(F, θj , Sj)
in terms of the limit lim†. We need to show that also
AεLS(F � Ωh/2i , θ̂j , Sj) converges to MO(F, θj , Sj). But,
similarly as in the proof of Theorem 3 it can be shown that
limi θ̄j(i) = θj . (Note that, in general, θ̄j(i) 6= θ̂j(i), since
θ̂j(i) is defined with the help of sets Sm, while θ̄j(i) is defined
from sets Sh/2

i

m .) These two facts can be used to show that
AεLS(F � Ωh/2i , θ̂j , Sj) converges to MO(F, θj , Sj).

I will add

more

details

later.
C. Invariance properties

We note that model MORFC and algorithm AORFC have
the following robustness property.

Theorem 5: For every idealized image F and a sequence of
seed sets ~S = 〈S1, . . . Sk〉, if MORFC(F, ~S ) = 〈O1, . . . , Ok〉,
Ti ⊂ Oi for i = 1, . . . k, and ~T = 〈T1, . . . Tk〉, then
MORFC(F, ~S ) = MORFC(F, ~T ).

Similarly, for every digital image f and a sequence of seed
sets ~S = 〈S1, . . . Sk〉, if AORFC(f, ~S ) = 〈O1, . . . , Ok〉, Ti ⊂
Oi for i = 1, . . . k, and ~T = 〈T1, . . . Tk〉, thenAORFC(f, ~S ) =
AORFC(f, ~T ).
PROOF. First consider the case of MORFC . Fix distinct i and
j. Since Ti ⊂ Oi, we have µ(Si, Ti) < θi ≤ µ(Si, Sj). So,
by Lemma 1, µ(Ti, Sj) = µ(Si, Sj). Similarly, Tj ⊂ Oj
implies µ(Sj , Tj) < θj ≤ µ(Si, Sj) = µ(Ti, Sj). So, again by
Lemma 1, µ(Ti, Tj) = µ(Ti, Sj) = µ(Si, Sj). Thus, numbers
θi obtained from ~S and from ~T are identical. The proof is
completed by noticing that MO(F, θi, Si) = MO(F, θi, Ti),
which follows from [7, thm 14], or another application of
Lemma 1.

The proof of the same property for AORFC is essentially
the same.

We note that neither AεLS nor AεLS RFC has the above
robustness property, since the speed of the front depends on its
curvature (it is reduced by εκ), and the curvature of the initial
surface can influence the stopping point of the propagation.

Model MORFC is also invariant under the isometric (i.e.,
distance preserving) transformation of the scene domain.
(Compare [7, thm 15].)

Theorem 6: MORFC(F ◦ I, I[~S]) = I
[
MORFC(F, ~S)

]
for every isometry I of Rn, differentiable image F , and a seed
sequence ~S.
PROOF. This follows from the similar property of model MO

(see [7, thm 15]) or directly from the fact that the gradient
magnitude remains unchanged under isometrical transforma-
tion of the function domain.

We point out that algorithm AORFC does not have this
property.

IV. MODELS FOR FUZZY CONNECTEDNESS ALGORITHMS
USING HOMOGENEITY BASED AFFINITY

In this section, we will further explore delineation models
specifically for FC.

Let f : C → R` be a digital image, where its support C is of
the form Ωh for some h > 0 and open convex bounded subset
Ω of Rn. We will also assume that the adjacency relation is
defined with α = h; that is, that spels c, d ∈ Ωh are adjacent
if and only if ||c − d|| ≤ h. Thus, any two adjacent spels
lie on a line parallel to an axis of Rn. Now, we will define
homogeneity based affinity ψ : C2 → [0,∞] for the image f
as follows: ψ(c, c) = 0 for every c ∈ C, ψ(c, d) = ∞ for
nonadjacent c, d ∈ C, and, for distinct adjacent c, d ∈ C, we
put

ψ(c, d) =
|f(c)− f(d)|
||c− d||

=
|f(c)− f(d)|

h
. (9)

Here, the idea is that the larger the value of ψ(c, d), the weaker
is the affinity (connectivity) between c and d. Note that usually
([23], [24], [27], [28], [29]) the homogeneity based affinity is
defined by a formula ψ̄(c, d) = e−|f(c)−f(d)|/σ2

for some σ >
0. However, it was proved in [10] that the affinity functions
ψ̄ and ψ are strongly equivalent, in a sense that the output
of any version of the standard fuzzy connectedness algorithm
remains unchanged, if one of these affinities is replaced by
the other. (Of course, in the thresholding case of absolute
FC to provide the final segmentation, the threshold needs to
be adjusted, but the adjustment is effective and unique.) The
gradient based and homogeneity based affinities are similar,
in a sense that they both measure the local strength of spel
connectedness via magnitude of image intensity rate of change
— an approximation of derivative’s magnitude. However, the
homogeneity based affinity uses only the directional rate of
change in the direction of the path, while the gradient based
affinity uses the magnitude of the gradient, which has the
maximal magnitude among all possible directional derivatives
at the same point for each spel in the path.

As before, a path p in C is any sequence 〈c1, . . . , ck〉 of
spels in C, where consecutive ci and ci+1 are adjacent. A
path p = 〈c〉 will be identified with the path 〈c, c〉. The
homogeneity based strength of p = 〈c1, . . . , ck〉, where we
assume that k > 1 according to the above identification, is
defined as the strength of the weakest link 〈ci, ci+1〉 in p, that
is, as

µ(p) = max
i=1,...,k−1

ψ(ci, ci+1).

The output of the homogeneity based absolute fuzzy connect-
edness, AFC, algorithm Aψ applied to an image f to obtain
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an object that is indicated by a set of seeds S ⊂ C and a
threshold θ is defined as

Aψ(f, S, θ) = {x ∈ C : µ(S, x) < θ},

where µ(S,X) = inf{µ(p) : p is a path from S to X}, or,
equivalently, as

{x ∈ C : µ(p) < θ for some path p from S to x}.

The k-object homogeneity based RFC algorithm applied to an
f and a sequence ~S = 〈S1, . . . , Sk〉 of seeds is defined as
AψRFC(f, ~S ) = 〈A1

ψRFC(f, ~S ), . . . ,AkψRFC(f, ~S )〉, where

AiψRFC(f, ~S ) = {x ∈ C : µ(Si, x)< µ(Sj , x) for all j 6= i}
= {x ∈ C : µ(Si, x) < θ̂i}

and θ̂i = minj 6=i µ(Si, Sj). The second equation above in
the definition of AiψRFC is justified by a discrete analog of
Lemma 1 proved in [10].

A. Idealized models Mψ and MψRFC for Aψ and AψRFC
Fix an open, convex, and bounded subset Ω of Rn. Let

P0 be the family of all straight segment paths in Ω parallel
to any of the axes and let P consist of the paths which are
finite unions of the segments from P0. For a continuously
differentiable idealized image F : Ω → R`, define the strength
of a path p : [a, b] → R` from P0 as

µ(p) = sup{|DF (p(t))| : t ∈ [a, b]},

where DF is the directional (so partial) derivative of F in the
direction of p. Also, if p = p1 ∪ · · · ∪ ps ∈ P is a union of
segments pi from P0, then we put µ(p) = supi=1,...,s µ(pi).
Also, for X,S ⊂ Ω, put µ(S,X) = 0 if S intersects X , while
for disjoint S and X define

µ(S,X) = inf{µ(p) : p ∈ P is a path from S to X}.

For a non-empty S ⊂ Ω and θ ≥ 0 we define model Mψ as

Mψ(F, S, θ) = {x ∈ Ω: µ(S, x) < θ}.

Also, the k-object homogeneity based RFC model applied to
image F and sequence ~S = 〈S1, . . . , Sk〉 of seeds is defined
as MψRFC(F, ~S ) = 〈M1

ψRFC(F, ~S ), . . . ,Mk
ψRFC(F, ~S )〉,

where

Mi
ψRFC(F, ~S ) = {x ∈ Ω: µ(Si, x) < θi}

and θi = minj 6=i µ(Si, Sj).
Theorem 7: Algorithms Aψ and AψRFC weakly represent,

respectively, models Mψ and MψRFC for the class of C1

idealized images F : Ω → R` for which Ω is convex and |OF |
is uniformly continuous on Ω.
SKETCH OF PROOF. The proof that algorithms Aψ weakly
represents Mψ requires only a small modification of the proof
of [7, corollary 17] that the gradient based AFC algorithm
AO represents model MO. It is also similar to the proof of
Theorem 3. Basically, if one starts with S ⊂ Ωh and θ > 0,

then for every η > 0 and r, there is an i0 > r such that, for
every i > i0,

Ωh/2r ∩Mψ(F, θ − η, S) ⊆ Aψ(F � Ωh/2i , θ − η, S)
⊆ Mψ(F, θ, S).

This is proved precisely as [7, thm 16], the only modification
being that every path p̂ : [a, b] → Ω from P is approximated
by a path p in Ωh/2i with the same number and direction of
“segments” that p̂ has. Since the homogeneity based affinity,
as defined in (9), approximates directional derivative of F used
in the definition of µ(p̂), we have |µ(p̂)−µ(p)| < η provided
h/2i is small enough and p is close enough to p̂. The proof
that the inclusions imply the desired representability is exactly
the same as in [7, thm 16] and is very similar to that presented
for Theorem 3.

The proof that AψRFC represents MψRFC is essentially
the same as that for Theorem 3.

It is worth noting that, unlike for the model MO, the object
Mψ(F, S, θ) need not be open in Ω. However, it is open in
a hyperplane parallel to a vector space spanned by some axis
in Rn.

B. Invariance properties

First we note that algorithm AψRFC and model MψRFC

have the robustness property, described formally in Theorem 5.
For the algorithm, the proof that uses repeatedly an appropriate
form of Lemma 1 can be found in [23] and [9, cor 2.7]). The
robustness of MψRFC , which essentially follows from the
robustness property of AψRFC and Theorem 7, can be proved
as Theorem 5.

Next, note that MψRFC is also invariant under image trans-
lations, since translations preserve the directional derivatives.

Theorem 8: MψRFC(F ◦ t, t[~S]) = t
[
MψRFC(F, ~S)

]
for

every translation t of Rn, differentiable image F , and a seed
sequence ~S.

Similar result is also true for Mψ . However, neither
MψRFC nor Mψ is invariant under image rotations. For
MψRFC this is best seen in the following example.

Example 9: Let Ω be a circle in R2 centered at the origin
and of radius 2, and let F : Ω → R be given by F (x, y) = x.
Let ~S = 〈{(0, 0)}, {(0, 1)}〉. Then MψRFC(F, ~S ) = 〈∅, ∅〉,
since the straight segment path joining the seeds has the best
possible strength 0. However, if r is a 30◦ counter clock-
wise rotation about the origin, then MψRFC(F ◦ r, r[~S ]) =
〈L0, L1〉, where Li is an intersection of Ω with the vertical
line containing r((0, i)). This is the case since the partial
derivatives are constant and equal ∂

∂y (F ◦ r) = 1
2 and

∂
∂x (F ◦ r) =

√
3

2 .
The lack of invariance of MψRFC and Mψ under rotation

comes from our restriction of the direction of paths, which in
turn restricts the directional derivatives used in the definition
of path strength to the partial derivatives. One might suggest to
relax the path restriction, to allow either all piecewise smooth
or piecewise straight paths. Indeed, this seems to solve the
problem, since the resulting model, call it M∗

ψ , is indeed
rotation invariant. However, there are two problems with this
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approach. First of all, there are difficulties in defining the
algorithm representing the resulting model, since in the scenes
with support Ωh it is difficult to approximate the directional
derivatives in all possible directions. (Nevertheless, including
all directions can be handled, following the ideas from [2].)
However, there is a less obvious, but more serious, problem:
for a very large class of C1 images F : Ω → R, the delineated
object is trivial—it equals the entire scene domain Ω. This is
best seen in the following simple example.

Example 10: Let Ω be a circle in R2 centered at the origin
and for every σ > 0 let Fσ : Ω → R be the Gaussian
Fσ(x, y) = e−(x2+y2)/σ2

. Although the magnitude of gradient
(and partial derivative along each axis) can be arbitrary large,
we have M∗

ψ(Fσ, θ, S) = Ω for arbitrary σ, θ > 0, and non-
empty S ⊂ Ω. This is the case, since between any c, d ∈ Ω
there is a path p from c to d with the magnitude of directional
derivative along p being smaller than θ at every point on p.
The path is formed as a spiral following closely the circles
centered at the origin.
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