HAUSDORFF DIMENSION OF EXTREMELY SLOW MINIMAL DYNAMICAL SYSTEMS AND HÖLDER PRESERVING DIFFERENTIABLE EXTENSIONS

KRZYSZTOF CHRIS CIESIELSKI AND JAROSŁAW SWACZYNA

ABSTRACT. We study continuous functions f from compact perfect subsets \mathfrak{C} of \mathbb{R} onto \mathfrak{C} with vanishing derivative everywhere. We show that the domain of such function can have Hausdorff dimension d for any $d \in [0, 1)$ and that it can be extended to a differentiable function $F \colon \mathbb{R} \to \mathbb{R}$ such that F is α -Hölder for every $\alpha \in (0, 1)$. This last part is deduced from a novel generalization of Jarník's differentiable extension theorem stating that every differentiable map $f \colon P \to \mathbb{R}$, where $P \subset \mathbb{R}$ is compact, admits a differentiable extension $F \colon \mathbb{R} \to \mathbb{R}$ which preserves Hölder continuity of f.

1. INTRODUCTION

A dynamical system is any continuous function f from a metric (or, more general, topological) space $\langle X, d \rangle$ into itself. It is a minimal system when the orbit $O(x) := \{x, f(x), f^2(x), \ldots\}$ of every $x \in X$ is dense in X and it is a Cantor system when X is homeomorphic to the Cantor ternary set. We say that an $f: \langle X, d \rangle \to \langle X, d \rangle$ is extremely slow¹ provided, for every $\lambda \in (0, 1)$, f is a pointwise contractive with the constant λ ,² that is, such that for every $x \in X$ there is an open $U \ni x$ for which $d(f(x), f(y)) \leq \lambda d(x, y)$ for every $y \in U$. Notice that if $X \subset \mathbb{R}$ is considered with the standard distance, then f is extremely slow if, and only if, f'(x) = 0 for every non-isolated $x \in X$.

The first extremely slow minimal dynamical system f from a compact perfect $\mathfrak{C} \subset \mathbb{R}$ onto \mathfrak{C} was described in a 2016 paper [8] of the first author and Jakub Jasinski. Consecutively, such systems were studied in [1, 2, 7, 12].

It was noticed in [8] that any compact $\mathfrak{C} \subset \mathbb{R}$ that admits extremely slow dynamical system has Lebesgue measure 0, so it is nowhere dense in \mathbb{R} . The first goal

Date: 05/19/2023.

²⁰²⁰ Mathematics Subject Classification. Primary 37C05, 26A16; Secondary: 28A78, 37E99 Key words: minimal dynamical systems, extremely slow dynamical systems, Hausdorff dimension, Hölder property, differentiable extensions.

¹In papers [2, 12] the authors refer to extremely slow dynamical systems simply as "slow dynamical systems." However, neither of these papers formally contains a definition of this notion and the commonly used notion of "slow-fast dynamics" (see e.g. [16]) treats slowness as "the magnitude of the derivative being less than 1," rather than being equal to 0. So, adding adjective "extremely" to the term we describe seems appropriate.

²In [5] such functions are referred to as *pointwise contractive with the same contraction constant*, λ , and denoted as (uPC). Note that this notion is considerably weaker than that of *being locally contractive with constant* λ , which is commonly defined as "for every $x \in X$ there is an open $U \ni x$ for which $d(f(y), f(z)) \leq \lambda d(x, y)$ for every $y, z \in U$." For a more detailed discussion of these two (and other related) notions see [5].

of this paper is to show, in Theorem 2.1, that such sets \mathfrak{C} can still be relatively large: they can have Hausdorff dimension arbitrarily close to 1.

All extremely slow dynamical system described so far in the literature are of the form

(1)
$$f = h \circ \sigma \circ h^{-1} \colon \mathfrak{C} \to \mathfrak{C},$$

where $\mathfrak{C} \subset \mathbb{R}$ is compact, $\sigma: X \to X$ is a dynamical system, and $h: X \to \mathbb{R}$ is an embedding with $\mathfrak{C} = h[X]$. Following [2] we say that a function f given by (1) constitutes an *embedding of* σ *into* \mathbb{R} .

The originally constructed extremely slow f from [8], its considerably simplified form described in [7], as well as all examples constructed in this manuscript are of the form (1), with σ being a minimal dynamical system on 2^{ω} (where 2^{ω} denotes the set of all sequences from $\omega := \{0, 1, 2, ...\}$ into $2 := \{0, 1\}$) known as a *binary* odometer or add-one-and-carry adding machine and defined as

(2)
$$\sigma(\langle 1, 1, \dots, 1, 0, s_{k+1}, s_{k+2}, \dots \rangle) := \langle 0, 0, \dots, 0, 1, s_{k+1}, s_{k+2}, \dots \rangle$$

and $\sigma(\langle 1, 1, 1, \ldots \rangle) := \langle 0, 0, 0, \ldots \rangle$. However, this choice of sigma is dictated only by its simplicity and other dynamical systems can also be embedded into \mathbb{R} as extremely slow systems. In fact, Boroński, Kupka, and Oprocha proved in [2] that every minimal Cantor dynamical system admits extremely slow embedding into \mathbb{R} . In addition, in [12] Gangloff and Oprocha characterized all Cantor dynamical systems that admit extremely slow embeddings into \mathbb{R} .

The definition of h in the first paper [8] was quite intricate. However, in [7] its definition is of the following considerably simpler format, very similar to one we use in this article:

(3)
$$h(s) := \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \upharpoonright n)$ is the natural number for which the following 0-1 sequence $\nu(s,n) = \langle t_n, t_{n-1}, \ldots, t_0 \rangle := \langle 1, 1 - s_{n-1}, s_{n-2}, \ldots, s_0 \rangle$ is its binary representation, that is,

(4)
$$N(s \upharpoonright n) := \sum_{i \le n} t_i 2^i = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n.$$

Notice that

(5)
$$2^n \le N(s \upharpoonright n) \le \sum_{i \le n} 2^i < 2^{n+1}$$
 for every $s \in 2^{\omega}$.

1.1. Hausdorff dimension. Recall that the Hausdorff dimension $\dim_H(E)$ of a set $E \subset \mathbb{R}$ is defined as follows, see e.g. [9]. For $\rho \geq 0$ and $\delta > 0$ let

$$\mathcal{H}^{\rho}_{\delta}(E) := \inf \left\{ \sum_{U \in \mathcal{U}} |U|^{\rho} \colon \mathcal{U} \text{ is a } \delta \text{-cover of } E \right\}$$

where |U| denotes the diameter of U and by δ -cover of E we mean a cover of E by sets of diameter less than or equal to δ . It is well known and easy to see that the value of $\mathcal{H}^{\rho}_{\delta}(E)$ remains unchanged when in its definition we allow only δ -covers by open intervals. The Hausdorff ρ -dimensional measure of E is defined as

(6)
$$\mathcal{H}^{\rho}(E) := \lim_{\delta \to 0^+} \mathcal{H}^{\rho}_{\delta}(E).$$

It is well defined, as the map $\rho \mapsto \mathcal{H}^{\rho}_{\delta}(E)$ is monotone. The Hausdorff dimension $\dim_{H}(E)$ is defined as the only number $d \geq 0$ such that

$$\mathcal{H}^{\rho}(E) = \infty$$
 for every $\rho \in [0, d)$ and $\mathcal{H}^{\rho}(E) = 0$ for every $\rho > d$.

Remark 1.1. If $\mathfrak{C}_0 := h[2^{\omega}]$ for h given by (3), then $\dim_H(\mathfrak{C}_0) = 0$.

Proof. For every $n < \omega$ and $t \in 2^n$ let $[t] := \{s \in 2^\omega : t \subset s\}$. Notice that if $s \in [t]$, then

$$\sum_{i < n} 2s_i 3^{-(i+1)N(s \restriction i)} \le h(s) \le \sum_{i < n} 2s_i 3^{-(i+1)N(s \restriction i)} + \sum_{i=n}^{\infty} 2 \cdot 3^{-(i+1)N(s \restriction i)}.$$

So, as $N(s \upharpoonright i) \ge N(s \upharpoonright n) \ge 2^n$ for any $i \ge n$,

$$|h([s])| \le \sum_{i=n}^{\infty} 2 \cdot 3^{-(i+1)N(s \restriction i)} \le \sum_{i=n}^{\infty} 2 \cdot 3^{-(i+1)2^n} \le \sum_{i=0}^{\infty} 2 \cdot 3^{-(n+1)2^n - i} = 3 \cdot 3^{-(n+1)2^n}.$$

Therefore, $\mathcal{U} = \{h[t] : t \in 2^n\}$ is a 3^{-n} -cover of \mathfrak{C}_0 and, for every d > 0,

$$\mathcal{H}^{d}_{3^{-n}}(\mathfrak{C}_{0}) \leq \sum_{s \in 2^{n}} |h[s]|^{d} \leq 2^{n} \cdot 3 \cdot 3^{-d(n+1)2^{n}} \to_{n \to \infty} 0.$$

Hence, indeed \mathfrak{C}_0 has Hausdorff dimension 0.

The remark shows that \mathfrak{C}_0 is, in the sense of Hausdorff dimension, as small as it gets. One of the goals of this paper is to show, see Theorem 2.1, that there are compact perfect sets \mathfrak{C} admitting extremely slow minimal dynamical systems that are as big as possible, that is, of Hausdorff dimension arbitrarily close to 1.

1.2. α -Hölder property. Let $\alpha \in (0,1]$ and f be a function from $P \subset \mathbb{R}$ into \mathbb{R} . Recall that f is α -Hölder provided there exists a constant C such that

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$
 for all $x, y \in P$.

In [2, Question 1.4] the authors ask if every minimal Cantor dynamical system can be embedded into \mathbb{R} as (extremely) slow Cantor dynamical system f such that f can be extended to differentiable F which is also α -Hölder for some $\alpha \in (0, 1)$. The second goal of this paper is to show, see Theorem 3.1, that the answer to this question is positive for the binary odometer σ defined in (2).

In what follows we will use the following two simple and certainly known facts on Hölder continuity. For reader convenience we include here their proofs.

Fact 1.2. Let $\alpha \in (0, 1]$ and $P \subset \mathbb{R}$ be closed. Assume that there is a C > 0 such that $F \colon \mathbb{R} \to \mathbb{R}$ is α -Hölder with constant C on the closure cl(J) of every connected component J of $\mathbb{R} \setminus P$, that is,

(7)
$$|F(x) - F(y)| \le C|x - y|^{\alpha} \text{ for all } x, y \in \operatorname{cl}(J).$$

If $F \upharpoonright P$ is α -Hölder, then F is also α -Hölder.

Proof. Increasing C, if necessary, we can assume that also

$$|F(x) - F(y)| \le C|x - y|^{\alpha} \text{ for all } x, y \in P.$$

Choose any p < q. It is enough to show that $|F(p) - F(q)| \leq 3C|p - q|^{\alpha}$.

If $[p,q] \cap P = \emptyset$, then [p,q] is contained in a single connected component of $\mathbb{R} \setminus P$, so the inequality holds. So, assume that $[p,q] \cap P \neq \emptyset$, let $x = \min[p,q] \cap P$, and $y = \max[p,q] \cap P$. Then,

$$\begin{aligned} |F(p) - F(q)| &\leq |F(p) - F(x)| + |F(x) - F(y)| + |F(y) - F(q)| \\ &\leq C|p - x|^{\alpha} + C|x - y|^{\alpha} + C|y - q|^{\alpha} \leq 3C|p - q|^{\alpha} \end{aligned}$$

as needed.

Fact 1.3. Let $a < b, P \subset [a, b]$ be compact, and $F: (-\infty, a] \cup P \cup [b, \infty) \to \mathbb{R}$ be such that $F \upharpoonright (-\infty, a] \equiv F(\min P)$ and $F \upharpoonright [b, \infty) \equiv F(\max P)$. Then, for every $\alpha \in (0, 1]$, F is α -Hölder if, and only if, $F \upharpoonright P$ is α -Hölder.

Proof. Forward implication is obvious. To see the other implication, assume that $F \upharpoonright P$ is α -Hölder with constant C, choose $x_1, x_2 \in (-\infty, a] \cup P \cup [b, \infty)$ such that $x_1 \leq x_2$, and define $r := \max\{x_1, \min P\}$ and $s := \min\{x_2, \max P\}$. Then

$$|F(x_1) - F(x_2)| = |F(r) - F(s)| \le C|r - s|^{\alpha} \le C|x_1 - x_2|^{\alpha},$$

that is, indeed F is α -Hölder.

It is well known (see e.g. [11]) and easy to see that

(8) if P is compact, f is α -Hölder, and $\beta \in (0, \alpha)$, then f is also β -Hölder.

2. Slow systems of any Hausdorff dimension

The entire content of this section is devoted to prove the following result.

Theorem 2.1. For every $d \in [0,1)$ there exists an extremely slow minimal dynamical system $f_d: \mathfrak{C}_d \to \mathfrak{C}_d$ such that $\mathfrak{C}_d \subset \mathbb{R}$ is compact and has Hausdorff dimension d.

By Remark 1.1, we can assume that d > 0. So, fix $d \in (0, 1]$ and define $p := 2^{-1/d}$. Notice that $p \in (0, 1/2]$ and

$$d = \log_p(1/2).$$

For $n < \omega$ define $\hat{n} := 0$ when n < 2 and $\hat{n} := \lfloor \log_2 \log_2 n \rfloor$ for $n \ge 2$. Thus, the map $n \mapsto \hat{n}$ is nondecreasing. Also, for $n \ge 2$ we have $\hat{n} \le \log_2 \log_2 n < \hat{n} + 1$, so $2^{\hat{n}} \le \log_2 n < 2 \cdot 2^{\hat{n}}$ and, by (5), for every $s \in 2^{\omega}$,

(9)
$$\frac{1}{2}\log_2 n \le 2^{\hat{n}} \le N(s \upharpoonright \hat{n}) < 2^{\hat{n}+1} \le 2\log_2 n,$$

where N is as defined in (4). Function f_d is defined similarly as f given by (1), (3), and (4):

(10)
$$f_d := h_d \circ \sigma \circ h_d^{-1} \colon \mathfrak{C}_d \to \mathfrak{C}_d,$$

where $\sigma: 2^{\omega} \to 2^{\omega}$ is the add-one-and-carry adding machine defined in (2) while $h_d: 2^{\omega} \to \mathbb{R}$ is defined as

$$h_d(s) := \sum_{n=0}^{\infty} s_n p^{n+\psi(s \upharpoonright n)}$$

where $\psi(s \upharpoonright n) := N(s \upharpoonright \hat{n})^2$. Notice that the sequence $\langle \psi(s \upharpoonright n) \rangle_n$ is nondecreasing. Similarly as earlier, we put $\mathfrak{C}_d := h_d[2^{\omega}]$.

In the rest of this section we prove that f_d , for $d \in (0,1)$, is as claimed in Theorem 2.1. We also indicate where the argument does not work for d = 1.

2.1. Geometrical description of \mathfrak{C}_d . For $n < \omega$ and $t \in 2^n$ let

 $I_t := [a_t, b_t]$ where $a_t := \inf h_d([t])$ and $b_t := \sup h_d([t])$.

Let $\psi_n := (2 \log_2 n)^2$ and notice that, by (9), $\psi_n > \psi(t)$. Next, we will show

(11)
$$p^{n+\psi_n} \le |I_t| < \frac{1}{1-p} p^{n+\psi(t)} \le p^{n-1+\psi(t)}.$$

To see this, let $s \in 2^{\omega}$ be an extension of t such that $s_i = 1$ for every $i \ge n$ and notice that $|I_t| = b_t - a_t = \sum_{i=n}^{\infty} p^{i+\psi(s \upharpoonright i)}$. Then, the lower estimate of $|I_t|$ in (11) is justified by $\sum_{i=n}^{\infty} p^{i+\psi(s \upharpoonright i)} > p^{n+\psi(s \upharpoonright n)} \ge p^{n+\psi_n}$, while the upper estimates by

$$\sum_{i=n}^{\infty} p^{i+\psi(s\restriction i)} < \sum_{i=n}^{\infty} p^{i+\psi(t)} = \frac{1}{1-p} \ p^{n+\psi(t)} \le p^{n-1+\psi(t)},$$

where the last inequality holds since $\frac{p}{1-p} \leq 1$ for any $p \in [0, 1/2]$.

Next, notice that if $t j \in 2^{n+1}$ is an extension of t such that $(t j)_n = j$, then (11) and the inequality $\psi(t 0) \leq \psi(t 1)$ imply that

(12)
$$b_{t^{\circ}0} = a_t + |I_{t^{\circ}0}| < a_t + p^{(n+1)-1+\psi(t^{\circ}0)} \le a_t + p^{n+\psi(t^{\circ}1)} = a_{t^{\circ}1}.$$

This means that the intervals in the family $C_n := \{I_t : t \in 2^n\}$ are pairwise disjoint, so that if $s, t \in 2^{\omega}$ are distinct, then the sets $\{h_d(s)\} = \bigcap_{n < \omega} I_{s \restriction n}$ and $\{h_d(t)\} = \bigcap_{n < \omega} I_{t \restriction n}$ are disjoint. This implies that h_d is indeed an embedding, what was implicitly assumed in our definition (10) of function f_d . Moreover, our set $\mathfrak{C}_d = h_d[2^{\omega}]$ can be also represented in the standard geometric format of the Cantor ternary set:

$$\mathfrak{C}_d = \bigcap_{n < \omega} \bigcup \mathcal{C}_n.$$

We will use this representation when calculating Hausdorff dimension of \mathfrak{C}_d .

2.2. Hausdorff dimension of \mathfrak{C}_d . So far, we proved that f_d is a well defined minimal Cantor dynamical system. In this subsection we will show that $\dim_H(\mathfrak{C}_d) = d$. This will be deduced from the following lemma.

Lemma 2.2. Let $p \in (0, 1/2]$ and for every $n < \omega$ let C_n be a family of 2^n pairwise disjoint closed intervals such that each $I \in C_n$ contains two intervals from C_{n+1} . Assume that there is a sequence $\langle \psi_n \in [0, \infty) : n < \omega \rangle$ such that $\lim_{n \to \infty} \frac{\psi_n}{n+1} = 0$ and

• the length of every $I \in \mathcal{C}_n$ is between $p^{n+\psi_n}$ and p^{n-1} .

Then $C := \bigcap_{n \leq \omega} \bigcup C_n$ has Hausdorff dimension $\rho := \log_n(1/2)$.

Notice that our set \mathfrak{C}_d satisfies the assumptions of this lemma: by (11) the length of every $I_t \in \mathcal{C}_n$ is between $p^{n+\psi_n}$ and $p^{n-1+\psi(t)} \leq p^{n-1}$. Also, clearly $\lim_{n\to\infty} \frac{\psi_n}{n+1} = \lim_{n\to\infty} \frac{(2\log_2 n)^2}{n+1} = 0$. Therefore, the lemma implies that $\dim_H(\mathfrak{C}_d) = \log_p(1/2) = d$.

Note that assumptions about C_n 's implies that every element of C_{n+1} is included in exactly one element of C_n .

The last paragraph of the following proof comes from [10, Mass distribution principle 4.2].

Proof of Lemma 2.2. To see $\dim_H(C) \leq \rho$ notice that, by \bullet , for every $n < \omega$ all sets in \mathcal{C}_n have diameters less than or equal to p^{n-1} . So, \mathcal{C}_n is a p^{n-1} -cover of C. Moreover, $\sum_{I \in \mathcal{C}_n} |I|^{\rho} \leq 2^n (p^{n-1})^{\rho} = 2^n \cdot (1/2)^{n-1} = 2$. Therefore, by the property (6), $\mathcal{H}^{\rho}(C) = \lim_{n \to \infty} \mathcal{H}^{\rho}_{p^n}(C) \leq 2$.

To see that $\dim_H(C) \geq \rho$, fix an $\eta \in (0, \rho)$. It is enough to show that $\mathcal{H}^{\eta}(C) > 0$. For this, let μ_0 be the standard product measure on 2^{ω} (i.e., such that $\mu_0([s]) = 2^{-n}$ for every $s \in 2^n$) and define a measure μ on \mathbb{R} (referred sometimes as a mass distribution of C) such that $\mu(U) = \mu_0(\bigcup\{[t]: I_t \subset U\})$ for every open $U \subset \mathbb{R}$. In particular, $\mu(I) = 2^{-n}$ for every $I \in \mathcal{C}_n$.

Since $\lim_{n\to\infty} \frac{n+\psi_n}{n+1} = 1 < \frac{\rho}{\eta}$ we can find an $m < \omega$ such that

(13)
$$\frac{n+\psi_n}{n+1} \le \frac{\rho}{\eta} \text{ whenever } n \ge m.$$

The number $M := \sup \left\{ \frac{\psi_n}{n+1} : n < \omega \right\}$ is finite, since $\lim_{n \to \infty} \frac{\psi_n}{n+1} = 0$. Define $\delta := p^{(M+1)(m+1)} > 0$ and notice that

(14)
$$|I|^{\eta} \ge \frac{1}{2}\mu(I)$$
 whenever $|I| \le \delta$ and $I \in \mathcal{C}_n$ for an $n < \omega$.

Indeed, our assumption on the lengths of the intervals $I \in C_n$ implies that $p^{n+\psi_n} \leq |I| \leq \delta = p^{(M+1)(m+1)}$. Since

$$n + \psi_n = \left(\frac{n + \psi_n}{n+1}\right)(n+1) \le \left(1 + \frac{\psi_n}{n+1}\right)(n+1) \le (M+1)(n+1),$$

we get $p^{(M+1)(n+1)} \leq p^{n+\psi_n} \leq p^{(M+1)(m+1)}$. Therefore, $n \geq m$ and, by (13), $(n+\psi_n)\eta \leq \rho(n+1)$. So, $|I|^\eta \geq p^{(n+\psi_n)\eta} \geq p^{\rho(n+1)} = 2^{-(n+1)} = \frac{1}{2}\mu(I)$.

The key fact for the rest of our argument is that

(15)
$$|U|^{\eta} \ge \frac{1}{8}\mu(U)$$
 for every open interval U with $|U| \le \delta$.

To see (15), take an open interval U with $|U| \leq \delta$. If $U \cap C = \emptyset$, then $\mu(U) = 0$ and (15) holds. So assume that $U \cap C \neq \emptyset$ and let $n < \omega$ be the smallest such that U contains some $J \in \mathcal{C}_n$. Then $|J| \leq |U| \leq \delta$. Moreover, by the minimality of n, the family \mathcal{F} of all $I \in \mathcal{C}_n$ intersecting U can have at most 4 elements. In particular, $J \subset U \subset \bigcup \mathcal{F}$ and, by (14),

$$\mu(U) \le \mu(\bigcup \mathcal{F}) = \sum_{I \in \mathcal{F}} \mu(I) \le 4\mu(J) \le 8|J|^{\eta} \le 8|U|^{\eta},$$

implying (15).

Finally notice that if \mathcal{U} is a δ -cover of C by open intervals then, by (15),

$$\sum_{U \in \mathcal{U}} |U|^{\eta} \ge \sum_{U \in \mathcal{U}} \frac{1}{8} \mu(U) \ge \frac{1}{8} \mu\left(\bigcup \mathcal{U}\right) = \frac{1}{8} \mu(C) = \frac{1}{8}$$

Thus $\mathcal{H}^{\eta}(C) = \lim_{\delta \to 0^+} \mathcal{H}^{\eta}_{\delta}(C) \ge \frac{1}{8} > 0$, as needed.

2.3. The derivative of f_d for d < 1. It remains to show that $f'_d(x) = 0$ for every $x \in \mathfrak{C}_d$. The argument for this is very similar to one used in [7] to show the same result for f defined by (1), (3), and (4).

Notice that $d \in (0,1)$ ensures that $p = 2^{-1/d} < 1/2$ so that $\frac{p}{1-p} < 1$. We start with the following two observations.

- (a) For every $s \in 2^{\omega}$ there is a $k \in \omega$ such that $N(\sigma(s) \upharpoonright \hat{n}) = N(s \upharpoonright \hat{n}) + 1$ for every n > k.
- (b) If $n = \min\{i \in \omega : s_i \neq t_i\}$ for some distinct $s = \langle s_i \rangle$ and $t = \langle t_i \rangle$ from 2^{ω} , then $\left(1 - \frac{p}{1-p}\right) p^{n+\psi(s\restriction n+1)} \leq |h_d(s) - h_d(t)| \leq \left(1 + \frac{p}{1-p}\right) p^{n+\psi(s\restriction n+1)}$.

To see (a) note that $N(\sigma(s) \upharpoonright \ell) = N(s \upharpoonright \ell) + 1$ whenever $s \upharpoonright \ell \neq \langle 1, \ldots, 1, 0 \rangle$. Since $s \upharpoonright \ell = \langle 1, \ldots, 1, 0 \rangle$ for at most one $\ell < \omega$, there exists k_0 such that $N(\sigma(s) \upharpoonright \ell) = N(s \upharpoonright \ell) + 1$ provided $\ell > k_0$. Then $k = 2^{2^{k_0+1}}$ is as needed since then n > k implies $\hat{n} > k_0$.

To see (b), take s and t as in its assumption. Notice that $\widehat{n+1} \leq n$, so

(16)
$$\psi(s \upharpoonright n+1) = (N(s \upharpoonright \widehat{n+1}))^2 = (N(t \upharpoonright \widehat{n+1}))^2 = \psi(t \upharpoonright n+1).$$

We may assume that $s_n = 1$ and $t_n = 0$. Let $u = t \upharpoonright n = s \upharpoonright n$. Then, using the notation from Subsection 2.1, we have $h_d(t) \in I_{u^{\circ}0} = [a_{u^{\circ}0}, b_{u^{\circ}0}]$ and $h_d(s) \in I_{u^{\circ}1} = [a_{u^{\circ}1}, b_{u^{\circ}1}]$. So, by (12), $a_{u^{\circ}0} \leq h_d(t) \leq b_{u^{\circ}0} < a_{u^{\circ}1} \leq h_d(s) \leq b_{u^{\circ}1}$. In particular, by (11) and (16),

$$\begin{aligned} |h_d(s) - h_d(t)| &\geq a_{u^{\hat{1}}} - b_{u^{\hat{0}}} = \left(a_u + p^{n+\psi(u^{\hat{1}})}\right) - \left(a_u + |I_{u^{\hat{0}}}|\right) \\ &\geq p^{n+\psi(u^{\hat{1}})} - \frac{1}{1-p} \ p^{n+1+\psi(u^{\hat{0}})} = \left(1 - \frac{p}{1-p}\right) p^{n+\psi(s\restriction n+1)} \end{aligned}$$

and

$$\begin{aligned} |h_d(s) - h_d(t)| &\leq b_{u\hat{1}} - a_{u\hat{0}} = (a_u + p^{n + \psi(u\hat{1})} + |I_{u\hat{1}}|) - a_u \\ &\leq p^{n + \psi(u\hat{1})} + \frac{1}{1 - p} p^{n + 1 + \psi(u\hat{0})} = \left(1 + \frac{p}{1 - p}\right) p^{n + \psi(s \restriction n + 1)}, \end{aligned}$$

the desired (b).

To see that $f'_d(h_d(s)) = 0$ for an $s \in 2^{\omega}$, choose a $k \in \omega$ satisfying (a) and let $\delta > 0$ be such that $0 < |h_d(s) - h_d(t)| < \delta$ implies that $n = \min\{i \in \omega : s_i \neq t_i\}$ is greater than k. Fix a $t \in 2^{\omega}$ for which $0 < |h_d(s) - h_d(t)| < \delta$. Then we have $n = \min\{i \in \omega : s_i \neq t_i\} = \min\{i \in \omega : \sigma(s)_i \neq \sigma(t)_i\}$ and, using (b) for the pairs $\langle s, t \rangle$ and $\langle \sigma(s), \sigma(t) \rangle$, we obtain

(17)
$$\frac{|f_d(h_d(s)) - f_d(h_d(t))|}{|h_d(s) - h_d(t)|} = \frac{|h_d(\sigma(s)) - h_d(\sigma(t))|}{|h_d(s) - h_d(t)|} \le \frac{\left(1 + \frac{p}{1-p}\right) p^{n+\psi(\sigma(s)\restriction n+1)}}{\left(1 - \frac{p}{1-p}\right) p^{n+\psi(s\restriction n+1)}}.$$

Also, using (a), we get

$$\begin{split} \psi(\sigma(s)\upharpoonright n+1) - \psi(s\upharpoonright n+1) &= (N(\sigma(s)\upharpoonright \widehat{n+1}))^2 - (N(s\upharpoonright \widehat{n+1}))^2 \\ &= (N(s\upharpoonright \widehat{n+1})+1)^2 - (N(s\upharpoonright \widehat{n+1}))^2 \\ &\geq N(s\upharpoonright \widehat{n+1}). \end{split}$$

From this, (17), and letting $c := \frac{\left(1 + \frac{p}{1-p}\right)}{\left(1 - \frac{p}{1-p}\right)}$, we get

(18)
$$\frac{|f_d(h_d(s)) - f_d(h_d(t))|}{|h_d(s) - h_d(t)|} \le \frac{\left(1 + \frac{p}{1-p}\right) p^{n+\psi(\sigma(s)\restriction n+1)}}{\left(1 - \frac{p}{1-p}\right) p^{n+\psi(s\restriction n+1)}} \le c \cdot p^{N(s\restriction n+1)}.$$

Hence $f'_d(h_d(s)) = 0$, as $p^{N(s \mid \widehat{n+1})}$ is arbitrarily small for δ small enough.

3. Hölder property of maps f_d

The goal of this section is to prove the following result.

Theorem 3.1. For every $d \in (0, 1)$ the extremely slow minimal dynamical system $f_d: \mathfrak{C}_d \to \mathfrak{C}_d$ defined in the previous section is α -Hölder for any $\alpha \in (0, 1)$. Moreover, there exists a differentiable extension $F_d: \mathbb{R} \to \mathbb{R}$ of f_d such that F_d is α -Hölder for every $\alpha \in (0, 1)$.

The first step in the proof of this theorem is

Lemma 3.2. Every $f_d : \mathfrak{C}_d \to \mathfrak{C}_d$, with $d \in (0, 1]$, is α -Hölder for any $\alpha \in (0, 1)$.

Proof. Fix $\alpha \in (0, 1)$. Since \mathfrak{C}_d is compact, it is enough to prove that

(19) there is a $k < \omega$ such that f_d is α -Hölder on any set h([u]) with $u \in 2^k$.

To see that (19) implies the lemma, first notice that, by the assumptions of (19), there is a $C_1 > 0$ such that f_d is α -Hölder with constant C_1 on any set h([u]) with $u \in 2^k$. Moreover, if $E = \bigcup_{u \in 2^k} \{\min h([u]), \max h([u])\}$, then there exists a $C_2 > 0$ such that $|f_d(r) - f_d(s)| \le C_2 |r - s|^{\alpha}$ for all $r, s \in E$. We claim that f_d is α -Hölder with constant $C := 3 \max\{C_1, C_2\}$. To see this, choose $x_1, x_2 \in \mathfrak{C}_d$ with $x_1 \le x_2$ and let $u_1, u_2 \in 2^k$ be such that $x_1 \in h([u_1])$ and $x_2 \in h([u_2])$. If $u_1 \neq u_2$, let $r := \max h([u_1])$ and $s := \min h([u_2])$; otherwise put $r = s = x_1$. Then

$$\begin{aligned} |f_d(x_1) - f_d(x_2)| &= |f_d(x_1) - f_d(r)| + |f_d(r) - f_d(s)| + |f_d(s) - f_d(x_2)| \\ &\leq C_1 |x_1 - r|^{\alpha} + C_2 |r - s|^{\alpha} + C_1 |s - x_2|^{\alpha} \\ &\leq C_1 |x_1 - x_2|^{\alpha} + C_2 |x_1 - x_2|^{\alpha} + C_1 |x_1 - x_2|^{\alpha} \\ &\leq C |x_1 - x_2|^{\alpha} \end{aligned}$$

as needed.

To see that (19) is satisfied, fix $k < \omega$ and $u \in 2^k$. Take distinct $s = \langle s_i \rangle$ and $t = \langle t_i \rangle$ from [u] with $n = \min\{i \in \omega : s_i \neq t_i\}$. So n > k. Then, for $c_\alpha := \frac{\left(1 + \frac{p}{1-p}\right)^{\alpha}}{\left(1 - \frac{p}{1-p}\right)^{\alpha}}$, we get the following simple variation of (18):

(20)
$$\frac{|f_d(h(s)) - f_d(h(t))|}{|h(s) - h(t)|^{\alpha}} \le \frac{\left(1 + \frac{p}{1-p}\right) p^{n+\psi(\sigma(s)\restriction n+1)}}{\left(1 - \frac{p}{1-p}\right)^{\alpha} p^{\alpha(n+\psi(s\restriction n+1))}} \le \frac{c_{\alpha}p^n}{p^{\alpha(n+\psi(s\restriction n+1))}}.$$

Also, by (9), we have $\psi(s \upharpoonright n+1) = (N(s \upharpoonright n+1))^2 \le (2\log_2(n+1))^2$, so

(21)
$$\frac{c_{\alpha}p^{\alpha}}{p^{\alpha(n+\psi(s\restriction n+1))}} \le \frac{c_{\alpha}p^{\alpha}}{p^{\alpha(n+\psi(s\restriction n+1))}} \le \frac{c_{\alpha}p^{\alpha}}{p^{\alpha(n+(2\log_2(n+1))^2)}}.$$

Since $\frac{\alpha(n+(2\log_2(n+1))^2)}{n} \rightarrow_{n\to\infty} \alpha < 1$, there is a $k < \omega$ such that for every n > k we have $\frac{\alpha(n+(2\log_2(n+1))^2)}{n} < 1$, that is, $\alpha(n+(2\log_2(n+1))^2) < n$. Therefore, by (20) and (21), for every n > k

$$\frac{|f_d(h(s)) - f_d(h(t))|}{|h(s) - h(t)|^{\alpha}} \le \frac{c_{\alpha} p^n}{p^{\alpha(n + (2\log_2(n+1))^2)}} \le \frac{c_{\alpha} p^n}{p^n} = c_{\alpha},$$

that is, f_d is indeed α -Hölder on any set h([u]) with $u \in 2^k$.

Theorem 3.1 follows immediately from this lemma and Theorem 4.1 from the next section.

4. Differential extensions preserving Hölder continuity

Jarník's differentiable extension theorem states that every real valued differentiable function from a closed subset of \mathbb{R} into \mathbb{R} has a differentiable extension. For the fascinating history of this theorem and its proof see [3]. (Compare also [6].) For its generalizations, see [13] and [4]. To prove Theorem 3.1, we will need the following generalization of Jarník's differentiable extension theorem, which is of interest by its own right.

Theorem 4.1. Every differentiable map $f: P \to \mathbb{R}$, where $P \subset \mathbb{R}$ is closed, admits a differentiable extension $F: \mathbb{R} \to \mathbb{R}$ such that if P is compact, then F preserves Hölder continuity of f, that is, if f is α -Hölder for some $\alpha \in (0, 1]$, then so is F.

Proof. We can assume that P is compact and that the set

$$H := \{ \alpha \in (0, 1] : f \text{ is } \alpha \text{-H\"older} \}$$

is not empty, since otherwise the result follows immediately from Jarník's differentiable extension theorem. By (8), if $\alpha \in H$ and $\beta \in (0, \alpha)$, then $\beta \in H$.

Let $f \colon \mathbb{R} \to \mathbb{R}$ be the linear interpolation³ of f which is constant on each unbounded connected component of $\mathbb{R} \setminus P$, choose a < b such that $P \subset (a, b)$, and define $\tilde{P} := (-\infty, a] \cup P \cup [b, \infty)$ together with $\tilde{f} := \bar{f} \upharpoonright \tilde{P}$. Then \tilde{f} is still differentiable and, by Fact 1.3 used with $F = \tilde{f}, \tilde{f}$ is α -Hölder for every $\alpha \in H$. In addition, \bar{f} is also the linear interpolation of \tilde{f} .

Let \mathcal{J} be the family of all connected components of $\mathbb{R} \setminus \tilde{P}$ and Π be the set of all endpoints of the intervals in \mathcal{J} . Notice that all $J \in \mathcal{J}$ are bounded.

It is easy to see (compare e.g. [3]) that \overline{f} is differentiable at all points $x \in \mathbb{R} \setminus \Pi$. Also, \overline{f} is differentiable at least from one side at every $x \in \Pi$. Moreover,

(22)
$$\overline{f}$$
 is α -Hölder for every $\alpha \in H$.

Indeed, this follows from Fact 1.2 used with $F=\bar{f}$ as long as there is C>0 such that

(23)
$$|\bar{f}(x) - \bar{f}(y)| \le C|x - y|^{\alpha}$$
 for every $J \in \mathcal{J}$ and all $x, y \in \mathrm{cl}(J)$.

To see (23), fix an $\alpha \in H$ and let C be such that $|\tilde{f}(x) - \tilde{f}(y)| \leq C|x - y|^{\alpha}$ for all $x, y \in \tilde{P}$. Now, if J = (a, b) and $p, q \in cl(J)$, then $\frac{|\tilde{f}(p) - \tilde{f}(q)|}{|p-q|} = \frac{|\tilde{f}(a) - \tilde{f}(b)|}{|a-b|}$ and

$$\frac{|\tilde{f}(p) - \tilde{f}(q)|}{|p - q|^{\alpha}} = |p - q|^{1 - \alpha} \frac{|\tilde{f}(p) - \tilde{f}(q)|}{|p - q|} \le |a - b|^{1 - \alpha} \frac{|\tilde{f}(a) - \tilde{f}(b)|}{|a - b|} = \frac{|\tilde{f}(a) - \tilde{f}(b)|}{|a - b|^{\alpha}} \le C,$$

justifying (23) and (22).

The proof of Jarník's differentiable extension theorem presented in [3] obtains F by modifying \overline{f} on the family $\mathcal{K} = \{K_n : n < \omega\}$ of small pairwise disjoint closed intervals, each contained in the closure of an $J \in \mathcal{J}$ and sharing with J one endpoint. More specifically, for each $n < \omega$ one finds a continuous function $f_n : \mathbb{R} \to \mathbb{R}$ with support contained in K_n and defines

(24)
$$F := \bar{f} + \sum_{n < \omega} f_n.$$

This modification ensures differentiability at points $x \in \Pi$ from appropriate sides that needed adjustment, while the small size of each K_n ensures preservation of other (unilateral, pointwise) differentiability of \overline{f} . In general, it is not clear that

³This means that \bar{f} is linear on the closure of every connected component of $\mathbb{R} \setminus P$.

such defined F must preserve Hölder continuity. But we will show that some small modification of the definitions of functions f_n indeed ensures such preservation. Note that without loss of generality we may assume that each $x \in \Pi$ belongs to exactly one K_n , as f_n may be the zero function.

To see this, note that functions f_n are defined in [3] as $f_n(x) := \int_{-\infty}^x h_n(t) dt$, where h_n is continuous on K_n and zero on its complement, see [3, Figure 3]. Also,

(i) if f is Lipschitz with constant L, then $h_n[\mathbb{R}] \subset [-2L, 2L]$.

In addition, if the lengths of the intervals K_n are further shrinking and new functions h_n are the horizontal proportional shrinking versions of their original selves, then F defined by (24) remains everywhere differentiable. Hence, to finish the proof we just need to show that if numbers $|K_n|$ are small enough, then F is α -Hölder for every $\alpha \in H$.

Towards this goal, let $A = \sup H$ and choose a non-decreasing sequence $\langle \alpha_n \rangle_n$ in H converging to A such that if $A \in H$, then $\alpha_n = A$ for all $n < \omega$. If $1 \in H$, that is, f is Lipschitz, then no change is necessary. Indeed, by (i), F defined by (24) is already Lipschitz,⁴ so, every $\alpha \in (0, 1)$, the property (8) implies that $F \upharpoonright [a, b]$ is α -Hölder and, by Fact 1.3 used with P = [a, b], so is F.

Thus, we may assume that $1 \notin H$ and so, $\alpha_n < 1$ for all $n < \omega$. For every $n < \omega$ decrease the length of K_n so that the resulting F satisfies

(25)
$$|F(x) - F(y)| \le |x - y|^{\alpha_i} \text{ for every } x, y \in K_n \text{ and } i \le n.$$

To see that this can be done, notice that shrinking of K_n does not change Lipschitz constant L_n of F on K_n , which is bounded by the sum of the Lipschitz constant of \overline{f} on K_n and the supremum of $|h_n|[K_n]$. Since, for any $x, y \in K_n$, we have $|F(x) - F(y)| \leq L_n |x - y| = L_n |x - y|^{1-\alpha_n} |x - y|^{\alpha_n} \leq L_n |K_n|^{1-\alpha_n} |x - y|^{\alpha_i}$, it is enough to shrink K_n so that its new diameter D_n satisfies $L_n D_n^{1-\alpha_n} \leq 1$.

To finish the proof, it is enough to show that F defined by (24) and satisfying (25) is as needed. Indeed, clearly F is everywhere differentiable. Next, fix an $\alpha \in H$. To finish the proof it is enough to show that F is α -Hölder. For this, choose an $i < \omega$ such that $\alpha \leq \alpha_i$. We claim that

(26)
$$F$$
 is α_i -Hölder

This will be proved by applying Fact 1.2 to F and the set \tilde{P} . Let C be such that \bar{f} is α_i -Hölder with a constant C and let \mathcal{J}_0 be the set of all $J \in \mathcal{J}$ such that $K_n \subset \operatorname{cl}(J)$ for some n < i. Notice that

(27) $F \upharpoonright \operatorname{cl}(J)$ is α_i -Hölder with a constant C + 2 for every $J \in \mathcal{J} \setminus \mathcal{J}_0$.

Indeed, let J = (p,q). Find a $K \in \mathcal{K}$ containing p and put $K^p := K$. Analogously let K^q be the unique $K \in \mathcal{K}$ satisfying $q \in K$. Notice that, by (25) and the definition of \mathcal{J}_0 , F on K^p , as well as on K^q , is α_i -Hölder with a constant 1. Finally, to see (27), choose $x_1, x_2 \in [p,q]$ with $x_1 \leq x_2$. We need to show that $|F(x_1) - F(x_2)| \leq (C+2)|x_1 - x_2|^{\alpha_i}$. If both points x_1 and x_2 are in either K^p or K^q , then this inequality holds. So, assume that this is not the case and let

10

⁴A Lipschitz differentiable extension version of Jarník's theorem can also be found in [14].

 $r := \max\{x_1, \max K^p\}$ and $s := \min\{x_2, \min K^q\}$. Then

$$|F(x_1) - F(x_2)| \leq |F(x_1) - F(r)| + |F(r) - F(s)| + |F(s) - F(x_2)|$$

$$\leq |x_1 - r|^{\alpha_i} + C|r - s|^{\alpha_i} + |s - x_2|^{\alpha_i}$$

$$\leq (C+2)|x_1 - x_2|^{\alpha_i}$$

justifying (27). Next notice that, for every $J \in \mathcal{J}_0$, $F \upharpoonright \operatorname{cl}(J)$ is Lipschitz, so, by (8), it is also α_i -Hölder some constant C_J . Combining this with (27), we conclude that the assumption (7) of Fact 1.2 is satisfied with a constant $\max\{C+2, \max_{J \in \mathcal{J}_0} C_J\}$. This completes the proof of (26).

Finally, to see that F is α -Hölder, notice that, by (26), $F \upharpoonright [a, b]$ is α_i -Hölder. So, by (8) and the inequality $\alpha \leq \alpha_i$, $F \upharpoonright [a, b]$ is also α -Hölder. So, by Fact 1.3, F is indeed α -Hölder.

5. FINAL REMARKS AND OPEN PROBLEMS

Although for d = 1 our minimal dynamical system $f_d: \mathfrak{C}_d \to \mathfrak{C}_d$ is well defined and, by Lemma 2.2, \mathfrak{C}_d has Hausdorff dimension d = 1, it is not clear if this f_d is extremely slow. Specifically, the number p associated with d = 1 equals to $p = 2^{-1/d} = \frac{1}{2}$, so that the number $1 - \frac{p}{1-p}$ in the estimation (b) from Subsection 2.3 becomes 0. This renders the estimate useless. Thus, the following problems remain open.

Problem 5.1. Does there exist an extremely slow minimal dynamical system $f: C \to C$ such that $C \subset \mathbb{R}$ is compact and of Hausdorff dimension 1?

Notice that for any $n \geq 2$, if a function $F: \mathfrak{C}_d^n \to \mathfrak{C}_d^n$ is defined by a formula $F(\langle x_i \rangle_{i=1}^n) = \langle f_d(x_i) \rangle_{i=1}^n$, then clearly F is an extremely slow dynamical system with $\dim_H(\mathfrak{C}_d^n) \geq n \dim_H(\mathfrak{C}_d) = nd$, see e.g. [15]. Thus, an extremely slow dynamical system on a compact subset of \mathbb{R}^n can have Hausdorff dimension arbitrarily close to n, so greater than 1. However, such defined F is not a minimal dynamical system.

Another interesting question, natural in the context of this work, is

Problem 5.2. Does there exist an extremely slow dynamical system f on a compact $C \subset \mathbb{R}$ such that f is Lipschitz?

References

- J. P. Boroński, J. Kupka, and P. Oprocha, *Edrei's conjecture revisited*, Ann. Henri Poincaré 19 (2018), no. 1, 267–281, DOI 10.1007/s00023-017-0623-9.
- [2] _____, All minimal Cantor systems on slow, Bull. Lond. Math. Soc. 51 (2019), no. 6, 937–944, DOI 10.1112/blms.12275.
- M. Ciesielska and K. C. Ciesielski, Differentiable extension theorem: a lost proof of V. Jarník, J. Math. Anal. Appl. 454 (2017), no. 2, 883–890, DOI 10.1016/j.jmaa.2017.05.032.
- [4] K. C. Ciesielski, Smooth extension theorems for one variable maps, J. Math. Anal. Appl. 479 (2019), no. 2, 1893–1905, DOI 10.1016/j.jmaa.2019.07.030. MR3987938
- [5] K. C. Ciesielski and J. Jasinski, Fixed point theorems for maps with local and pointwise contraction properties, Canad. J. Math. 70 (2018), no. 3, 538–594, DOI 10.4153/CJM-2016-055-2.
- [6] K. C. Ciesielski and J. B. Seoane-Sepúlveda, Differentiability versus continuity: Restriction and extension theorems and monstrous examples, Bull. Amer. Math. Soc. 56 (2019), no. 2, 211–260, DOI 10.1090/bull/1635.
- [7] K. C. Ciesielski, Monsters in calculus, Amer. Math. Monthly 125 (2018), no. 8, 739–744, DOI 10.1080/00029890.2018.1502011.

- [8] K. C. Ciesielski and J. Jasinski, An auto-homeomorphism of a Cantor set with derivative zero everywhere, J. Math. Anal. Appl. 434 (2016), no. 2, 1267–1280, DOI 10.1016/j.jmaa.2015.09.076.
- [9] K. J. Falconer, *The geometry of fractal sets*, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986.
- [10] K. Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014.
- [11] R. Fiorenza, Hölder and locally Hölder continuous functions, and open sets of class $C^k, C^{k,\lambda}$, Frontiers in Mathematics, Birkhäuser/Springer, Cham, 2016.
- [12] S. Gangloff and P. Oprocha, A Cantor dynamical system is slow if and only if all its finite orbits are attracting, Discrete Contin. Dyn. Syst. 42 (2022), no. 6, 3039–3064, DOI 10.3934/dcds.2022007.
- [13] M. Koc and L. Zajíček, A joint generalization of Whitney's C¹ extension theorem and Aversa-Laczkovich-Preiss' extension theorem, J. Math. Anal. Appl. 388 (2012), no. 2, 1027–1037, DOI 10.1016/j.jmaa.2011.10.049.
- [14] J. Mařík, Derivatives and closed sets, Acta Math. Hungar. 43 (1984), no. 1-2, 25–29, DOI 10.1007/BF01951320.
- [15] M. Reyes, On the dimension print of the Cartesian product of linear sets, Topology, measures, and fractals (Warnemünde, 1991), Math. Res., vol. 66, Akademie-Verlag, Berlin, 1992, pp. 100–108.
- [16] T. Witelski and M. Bowen, Methods of mathematical modelling, Springer Undergraduate Mathematics Series, Springer, Cham, 2015.

DEPARTMENT OF MATHEMATICS, WEST VIRGINIA UNIVERSITY, MORGANTOWN, WV 26506-6310 *Email address:* KCies@math.wvu.edu

INSTITUTE OF MATHEMATICS, ŁÓDŹ UNIVERSITY OF TECHNOLOGY, ŁÓDŹ, POLAND *Email address:* jaroslaw.swaczyna@p.lodz.pl