
HAUSDORFF DIMENSION OF EXTREMELY SLOW MINIMAL

DYNAMICAL SYSTEMS AND HÖLDER PRESERVING
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Abstract. We study continuous functions f from compact perfect subsets C

of R onto C with vanishing derivative everywhere. We show that the domain of

such function can have Hausdorff dimension d for any d ∈ [0, 1) and that it can
be extended to a differentiable function F : R → R such that F is α-Hölder

for every α ∈ (0, 1). This last part is deduced from a novel generalization

of Jarńık’s differentiable extension theorem stating that every differentiable
map f : P → R, where P ⊂ R is compact, admits a differentiable extension

F : R→ R which preserves Hölder continuity of f .

1. Introduction

A dynamical system is any continuous function f from a metric (or, more gen-
eral, topological) space 〈X, d〉 into itself. It is a minimal system when the orbit
O(x) := {x, f(x), f2(x), . . .} of every x ∈ X is dense in X and it is a Cantor
system when X is homeomorphic to the Cantor ternary set. We say that an
f : 〈X, d〉 → 〈X, d〉 is extremely slow1 provided, for every λ ∈ (0, 1), f is a pointwise
contractive with the constant λ,2 that is, such that for every x ∈ X there is an open
U 3 x for which d(f(x), f(y)) ≤ λd(x, y) for every y ∈ U . Notice that if X ⊂ R
is considered with the standard distance, then f is extremely slow if, and only if,
f ′(x) = 0 for every non-isolated x ∈ X.

The first extremely slow minimal dynamical system f from a compact perfect
C ⊂ R onto C was described in a 2016 paper [8] of the first author and Jakub
Jasinski. Consecutively, such systems were studied in [1, 2, 7, 12].

It was noticed in [8] that any compact C ⊂ R that admits extremely slow dy-
namical system has Lebesgue measure 0, so it is nowhere dense in R. The first goal
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1In papers [2, 12] the authors refer to extremely slow dynamical systems simply as “slow

dynamical systems.” However, neither of these papers formally contains a definition of this notion

and the commonly used notion of “slow-fast dynamics” (see e.g. [16]) treats slowness as “the
magnitude of the derivative being less than 1,” rather than being equal to 0. So, adding adjective

“extremely” to the term we describe seems appropriate.
2In [5] such functions are refered to as pointwise contractive with the same contraction constant,

λ, and denoted as (uPC). Note that this notion is considerably weaker than that of being locally

contractive with constant λ, which is commonly defined as “for every x ∈ X there is an open
U 3 x for which d(f(y), f(z)) ≤ λd(x, y) for every y, z ∈ U .” For a more detailed discussion of
these two (and other related) notions see [5].
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of this paper is to show, in Theorem 2.1, that such sets C can still be relatively
large: they can have Hausdorff dimension arbitrarily close to 1.

All extremely slow dynamical system described so far in the literature are of the
form

(1) f = h ◦ σ ◦ h−1 : C→ C,

where C ⊂ R is compact, σ : X → X is a dynamical system, and h : X → R is
an embedding with C = h[X]. Following [2] we say that a function f given by (1)
constitutes an embedding of σ into R.

The originally constructed extremely slow f from [8], its considerably simplified
form described in [7], as well as all examples constructed in this manuscript are of
the form (1), with σ being a minimal dynamical system on 2ω (where 2ω denotes
the set of all sequences from ω := {0, 1, 2, . . .} into 2 := {0, 1}) known as a binary
odometer or add-one-and-carry adding machine and defined as

(2) σ(〈1, 1, . . . , 1, 0, sk+1, sk+2, . . . 〉) := 〈0, 0, . . . , 0, 1, sk+1, sk+2, . . . 〉

and σ(〈1, 1, 1, . . . 〉) := 〈0, 0, 0, . . . 〉. However, this choice of sigma is dictated only
by its simplicity and other dynamical systems can also be embedded into R as
extremely slow systems. In fact, Boroński, Kupka, and Oprocha proved in [2] that
every minimal Cantor dynamical system admits extremely slow embedding into
R. In addition, in [12] Gangloff and Oprocha characterized all Cantor dynamical
systems that admit extremely slow embeddings into R.

The definition of h in the first paper [8] was quite intricate. However, in [7] its
definition is of the following considerably simpler format, very similar to one we
use in this article:

(3) h(s) :=
∑∞
n=0 2sn3−(n+1)N(s�n),

where N(s � n) is the natural number for which the following 0-1 sequence
ν(s, n) = 〈tn, tn−1, . . . , t0〉 := 〈1, 1 − sn−1, sn−2, . . . , s0〉 is its binary representa-
tion, that is,

(4) N(s � n) :=
∑
i≤n

ti2
i =

∑
i<n−1

si2
i + (1− sn−1)2n−1 + 2n.

Notice that

(5) 2n ≤ N(s � n) ≤
∑
i≤n 2i < 2n+1 for every s ∈ 2ω.

1.1. Hausdorff dimension. Recall that the Hausdorff dimension dimH(E) of a
set E ⊂ R is defined as follows, see e.g. [9]. For ρ ≥ 0 and δ > 0 let

Hρδ(E) := inf

{∑
U∈U
|U |ρ : U is a δ-cover of E

}
,

where |U | denotes the diameter of U and by δ-cover of E we mean a cover of E by
sets of diameter less than or equal to δ. It is well known and easy to see that the
value of Hρδ(E) remains unchanged when in its definition we allow only δ-covers by
open intervals. The Hausdorff ρ-dimensional measure of E is defined as

(6) Hρ(E) := lim
δ→0+

Hρδ(E).
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It is well defined, as the map ρ 7→ Hρδ(E) is monotone. The Hausdorff dimension
dimH(E) is defined as the only number d ≥ 0 such that

Hρ(E) =∞ for every ρ ∈ [0, d) and Hρ(E) = 0 for every ρ > d.

Remark 1.1. If C0 := h[2ω] for h given by (3), then dimH(C0) = 0.

Proof. For every n < ω and t ∈ 2n let [t] := {s ∈ 2ω : t ⊂ s}. Notice that if s ∈ [t],
then ∑

i<n

2si3
−(i+1)N(s�i) ≤ h(s) ≤

∑
i<n

2si3
−(i+1)N(s�i) +

∞∑
i=n

2 · 3−(i+1)N(s�i).

So, as N(s � i) ≥ N(s � n) ≥ 2n for any i ≥ n,

|h([s])| ≤
∞∑
i=n

2 ·3−(i+1)N(s�i) ≤
∞∑
i=n

2 ·3−(i+1)2n ≤
∞∑
i=0

2 ·3−(n+1)2n−i = 3 ·3−(n+1)2n .

Therefore, U = {h[t] : t ∈ 2n} is a 3−n-cover of C0 and, for every d > 0,

Hd3−n(C0) ≤
∑
s∈2n

|h[s]|d ≤ 2n · 3 · 3−d(n+1)2n →n→∞ 0.

Hence, indeed C0 has Hausdorff dimension 0. �

The remark shows that C0 is, in the sense of Hausdorff dimension, as small as
it gets. One of the goals of this paper is to show, see Theorem 2.1, that there are
compact perfect sets C admitting extremely slow minimal dynamical systems that
are as big as possible, that is, of Hausdorff dimension arbitrarily close to 1.

1.2. α-Hölder property. Let α ∈ (0, 1] and f be a function from P ⊂ R into R.
Recall that f is α-Hölder provided there exists a constant C such that

|f(x)− f(y)| ≤ C|x− y|α for all x, y ∈ P .

In [2, Question 1.4] the authors ask if every minimal Cantor dynamical system
can be embedded into R as (extremely) slow Cantor dynamical system f such that
f can be extended to differentiable F which is also α-Hölder for some α ∈ (0, 1).
The second goal of this paper is to show, see Theorem 3.1, that the answer to this
question is positive for the binary odometer σ defined in (2).

In what follows we will use the following two simple and certainly known facts
on Hölder continuity. For reader convenience we include here their proofs.

Fact 1.2. Let α ∈ (0, 1] and P ⊂ R be closed. Assume that there is a C > 0 such
that F : R→ R is α-Hölder with constant C on the closure cl(J) of every connected
component J of R \ P , that is,

(7) |F (x)− F (y)| ≤ C|x− y|α for all x, y ∈ cl(J).

If F � P is α-Hölder, then F is also α-Hölder.

Proof. Increasing C, if necessary, we can assume that also

|F (x)− F (y)| ≤ C|x− y|α for all x, y ∈ P .

Choose any p < q. It is enough to show that |F (p)− F (q)| ≤ 3C|p− q|α.
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If [p, q]∩P = ∅, then [p, q] is contained in a single connected component of R\P ,
so the inequality holds. So, assume that [p, q] ∩ P 6= ∅, let x = min[p, q] ∩ P , and
y = max[p, q] ∩ P . Then,

|F (p)− F (q)| ≤ |F (p)− F (x)|+ |F (x)− F (y)|+ |F (y)− F (q)|
≤ C|p− x|α + C|x− y|α + C|y − q|α ≤ 3C|p− q|α

as needed. �

Fact 1.3. Let a < b, P ⊂ [a, b] be compact, and F : (−∞, a] ∪ P ∪ [b,∞) → R be
such that F � (−∞, a] ≡ F (minP ) and F � [b,∞) ≡ F (maxP ). Then, for every
α ∈ (0, 1], F is α-Hölder if, and only if, F � P is α-Hölder.

Proof. Forward implication is obvious. To see the other implication, assume that
F � P is α-Hölder with constant C, choose x1, x2 ∈ (−∞, a] ∪ P ∪ [b,∞) such that
x1 ≤ x2, and define r := max{x1,minP} and s := min{x2,maxP}. Then

|F (x1)− F (x2)| = |F (r)− F (s)| ≤ C|r − s|α ≤ C|x1 − x2|α,

that is, indeed F is α-Hölder. �

It is well known (see e.g. [11]) and easy to see that

(8) if P is compact, f is α-Hölder, and β ∈ (0, α), then f is also β-Hölder.

2. Slow systems of any Hausdorff dimension

The entire content of this section is devoted to prove the following result.

Theorem 2.1. For every d ∈ [0, 1) there exists an extremely slow minimal dy-
namical system fd : Cd → Cd such that Cd ⊂ R is compact and has Hausdorff
dimension d.

By Remark 1.1, we can assume that d > 0. So, fix d ∈ (0, 1] and define p := 2−1/d.
Notice that p ∈ (0, 1/2] and

d = logp(1/2).

For n < ω define n̂ := 0 when n < 2 and n̂ := blog2 log2 nc for n ≥ 2. Thus, the
map n 7→ n̂ is nondecreasing. Also, for n ≥ 2 we have n̂ ≤ log2 log2 n < n̂ + 1, so
2n̂ ≤ log2 n < 2 · 2n̂ and, by (5), for every s ∈ 2ω,

(9)
1

2
log2 n ≤ 2n̂ ≤ N(s � n̂) < 2n̂+1 ≤ 2 log2 n,

where N is as defined in (4). Function fd is defined similarly as f given by (1), (3),
and (4):

(10) fd := hd ◦ σ ◦ h−1
d : Cd → Cd,

where σ : 2ω → 2ω is the add-one-and-carry adding machine defined in (2) while
hd : 2ω → R is defined as

hd(s) :=
∑∞
n=0 snp

n+ψ(s�n),

where ψ(s � n) := N(s � n̂)2. Notice that the sequence 〈ψ(s � n)〉n is nondecreasing.
Similarly as earlier, we put Cd := hd[2

ω].
In the rest of this section we prove that fd, for d ∈ (0, 1), is as claimed in

Theorem 2.1. We also indicate where the argument does not work for d = 1.
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2.1. Geometrical description of Cd. For n < ω and t ∈ 2n let

It := [at, bt] where at := inf hd([t]) and bt := suphd([t]).

Let ψn := (2 log2 n)2 and notice that, by (9), ψn > ψ(t). Next, we will show

(11) pn+ψn ≤ |It| <
1

1− p
pn+ψ(t) ≤ pn−1+ψ(t).

To see this, let s ∈ 2ω be an extension of t such that si = 1 for every i ≥ n and
notice that |It| = bt − at =

∑∞
i=n p

i+ψ(s�i). Then, the lower estimate of |It| in (11)

is justified by
∑∞
i=n p

i+ψ(s�i) > pn+ψ(s�n) ≥ pn+ψn , while the upper estimates by

∞∑
i=n

pi+ψ(s�i) <

∞∑
i=n

pi+ψ(t) =
1

1− p
pn+ψ(t) ≤ pn−1+ψ(t),

where the last inequality holds since p
1−p ≤ 1 for any p ∈ [0, 1/2].

Next, notice that if t̂ j ∈ 2n+1 is an extension of t such that (t̂ j)n = j, then (11)
and the inequality ψ(t̂ 0) ≤ ψ(t̂ 1) imply that

(12) bt̂ 0 = at + |It̂ 0| < at + p(n+1)−1+ψ(t̂ 0) ≤ at + pn+ψ(t̂ 1) = at̂ 1.

This means that the intervals in the family Cn := {It : t ∈ 2n} are pairwise dis-
joint, so that if s, t ∈ 2ω are distinct, then the sets {hd(s)} =

⋂
n<ω Is�n and

{hd(t)} =
⋂
n<ω It�n are disjoint. This implies that hd is indeed an embedding,

what was implicitly assumed in our definition (10) of function fd. Moreover, our
set Cd = hd[2

ω] can be also represented in the standard geometric format of the
Cantor ternary set:

Cd =
⋂
n<ω

⋃
Cn.

We will use this representation when calculating Hausdorff dimension of Cd.

2.2. Hausdorff dimension of Cd. So far, we proved that fd is a well defined min-
imal Cantor dynamical system. In this subsection we will show that dimH(Cd) = d.
This will be deduced from the following lemma.

Lemma 2.2. Let p ∈ (0, 1/2] and for every n < ω let Cn be a family of 2n pairwise
disjoint closed intervals such that each I ∈ Cn contains two intervals from Cn+1.

Assume that there is a sequence 〈ψn ∈ [0,∞) : n < ω〉 such that limn→∞
ψn
n+1 = 0

and

• the length of every I ∈ Cn is between pn+ψn and pn−1.

Then C :=
⋂
n<ω

⋃
Cn has Hausdorff dimension ρ := logp(1/2).

Notice that our set Cd satisfies the assumptions of this lemma: by (11) the
length of every It ∈ Cn is between pn+ψn and pn−1+ψ(t) ≤ pn−1. Also, clearly

limn→∞
ψn
n+1 = limn→∞

(2 log2 n)2

n+1 = 0. Therefore, the lemma implies that

dimH(Cd) = logp(1/2) = d.
Note that assumptions about Cn’s implies that every element of Cn+1 is included

in exactly one element of Cn.
The last paragraph of the following proof comes from [10, Mass distribution

principle 4.2].
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Proof of Lemma 2.2. To see dimH(C) ≤ ρ notice that, by •, for every n < ω all
sets in Cn have diameters less than or equal to pn−1. So, Cn is a pn−1-cover of C.
Moreover,

∑
I∈Cn |I|

ρ ≤ 2n(pn−1)ρ = 2n · (1/2)n−1 = 2. Therefore, by the property

(6), Hρ(C) = limn→∞Hρpn(C)≤ 2.
To see that dimH(C) ≥ ρ, fix an η ∈ (0, ρ). It is enough to show that Hη(C) > 0.

For this, let µ0 be the standard product measure on 2ω (i.e., such that µ0([s]) = 2−n

for every s ∈ 2n) and define a measure µ on R (referred sometimes as a mass
distribution of C) such that µ(U) = µ0(

⋃
{[t] : It ⊂ U}) for every open U ⊂ R. In

particular, µ(I) = 2−n for every I ∈ Cn.

Since limn→∞
n+ψn
n+1 = 1 < ρ

η we can find an m < ω such that

(13)
n+ ψn
n+ 1

≤ ρ

η
whenever n ≥ m.

The number M := sup
{
ψn
n+1 : n < ω

}
is finite, since limn→∞

ψn
n+1 = 0. Define

δ := p(M+1)(m+1) > 0 and notice that

(14) |I|η ≥ 1

2
µ(I) whenever |I| ≤ δ and I ∈ Cn for an n < ω.

Indeed, our assumption on the lengths of the intervals I ∈ Cn implies that
pn+ψn ≤ |I| ≤ δ = p(M+1)(m+1). Since

n+ ψn =

(
n+ ψn
n+ 1

)
(n+ 1) ≤

(
1 +

ψn
n+ 1

)
(n+ 1) ≤ (M + 1)(n+ 1),

we get p(M+1)(n+1) ≤ pn+ψn ≤ p(M+1)(m+1). Therefore, n ≥ m and, by (13),
(n+ ψn)η ≤ ρ(n+ 1). So, |I|η ≥ p(n+ψn)η ≥ pρ(n+1) = 2−(n+1) = 1

2µ(I).
The key fact for the rest of our argument is that

(15) |U |η ≥ 1

8
µ(U) for every open interval U with |U | ≤ δ.

To see (15), take an open interval U with |U | ≤ δ. If U ∩C = ∅, then µ(U) = 0 and
(15) holds. So assume that U ∩ C 6= ∅ and let n < ω be the smallest such that U
contains some J ∈ Cn. Then |J | ≤ |U | ≤ δ. Moreover, by the minimality of n, the
family F of all I ∈ Cn intersecting U can have at most 4 elements. In particular,
J ⊂ U ⊂

⋃
F and, by (14),

µ(U) ≤ µ(
⋃
F) =

∑
I∈F

µ(I) ≤ 4µ(J) ≤ 8|J |η ≤ 8|U |η,

implying (15).
Finally notice that if U is a δ-cover of C by open intervals then, by (15),∑

U∈U
|U |η ≥

∑
U∈U

1

8
µ(U) ≥ 1

8
µ
(⋃
U
)

=
1

8
µ(C) =

1

8
.

Thus Hη(C) = limδ→0+ Hηδ (C) ≥ 1
8 > 0, as needed. �

2.3. The derivative of fd for d < 1. It remains to show that f ′d(x) = 0 for every
x ∈ Cd. The argument for this is very similar to one used in [7] to show the same
result for f defined by (1), (3), and (4).

Notice that d ∈ (0, 1) ensures that p = 2−1/d < 1/2 so that p
1−p < 1. We start

with the following two observations.
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(a) For every s ∈ 2ω there is a k ∈ ω such that N(σ(s) � n̂) = N(s � n̂) + 1 for
every n > k.

(b) If n = min{i ∈ ω : si 6= ti} for some distinct s = 〈si〉 and t = 〈ti〉 from 2ω,

then
(

1− p
1−p

)
pn+ψ(s�n+1) ≤ |hd(s)− hd(t)| ≤

(
1 + p

1−p

)
pn+ψ(s�n+1).

To see (a) note that N(σ(s) � `) = N(s � `) + 1 whenever s � ` 6= 〈1, . . . , 1, 0〉.
Since s � ` = 〈1, . . . , 1, 0〉 for at most one ` < ω, there exists k0 such that

N(σ(s) � `) = N(s � `) + 1 provided ` > k0. Then k = 22k0+1

is as needed
since then n > k implies n̂ > k0.

To see (b), take s and t as in its assumption. Notice that n̂+ 1 ≤ n, so

(16) ψ(s � n+ 1) = (N(s � n̂+ 1))2 = (N(t � n̂+ 1))2 = ψ(t � n+ 1).

We may assume that sn = 1 and tn = 0. Let u = t � n = s � n. Then, using the
notation from Subsection 2.1, we have hd(t) ∈ Iû 0 = [aû 0, bû 0] and hd(s) ∈ Iû 1 =
[aû 1, bû 1]. So, by (12), aû 0 ≤ hd(t) ≤ bû 0 < aû 1 ≤ hd(s) ≤ bû 1. In particular, by
(11) and (16),

|hd(s)− hd(t)| ≥ aû 1 − bû 0 =
(
au + pn+ψ(û 1)

)
− (au + |Iû 0|)

≥ pn+ψ(û 1) − 1

1− p
pn+1+ψ(û 0) =

(
1− p

1− p

)
pn+ψ(s�n+1)

and

|hd(s)− hd(t)| ≤ bû 1 − aû 0 = (au + pn+ψ(û 1) + |Iû 1|)− au

≤ pn+ψ(û 1) +
1

1− p
pn+1+ψ(û 0) =

(
1 +

p

1− p

)
pn+ψ(s�n+1),

the desired (b).
To see that f ′d(hd(s)) = 0 for an s ∈ 2ω, choose a k ∈ ω satisfying (a) and let

δ > 0 be such that 0 < |hd(s) − hd(t)| < δ implies that n = min{i ∈ ω : si 6= ti}
is greater than k. Fix a t ∈ 2ω for which 0 < |hd(s) − hd(t)| < δ. Then we have
n = min{i ∈ ω : si 6= ti} = min{i ∈ ω : σ(s)i 6= σ(t)i} and, using (b) for the pairs
〈s, t〉 and 〈σ(s), σ(t)〉, we obtain

(17) |fd(hd(s))−fd(hd(t))|
|hd(s)−hd(t)| = |hd(σ(s))−hd(σ(t))|

|hd(s)−hd(t)| ≤ (1+ p
1−p )pn+ψ(σ(s)�n+1)

(1− p
1−p )pn+ψ(s�n+1)

.

Also, using (a), we get

ψ(σ(s) � n+ 1)− ψ(s � n+ 1) = (N(σ(s) � n̂+ 1))2 − (N(s � n̂+ 1))2

= (N(s � n̂+ 1) + 1)2 − (N(s � n̂+ 1))2

≥ N(s � n̂+ 1).

From this, (17), and letting c :=
(1+ p

1−p )
(1− p

1−p )
, we get

(18)
|fd(hd(s))− fd(hd(t))|
|hd(s)− hd(t)|

≤

(
1 + p

1−p

)
pn+ψ(σ(s)�n+1)(

1− p
1−p

)
pn+ψ(s�n+1)

≤ c · pN(s�n̂+1).

Hence f ′d(hd(s)) = 0, as pN(s�n̂+1) is arbitrarily small for δ small enough.
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3. Hölder property of maps fd

The goal of this section is to prove the following result.

Theorem 3.1. For every d ∈ (0, 1) the extremely slow minimal dynamical sys-
tem fd : Cd → Cd defined in the previous section is α-Hölder for any α ∈ (0, 1).
Moreover, there exists a differentiable extension Fd : R → R of fd such that Fd is
α-Hölder for every α ∈ (0, 1).

The first step in the proof of this theorem is

Lemma 3.2. Every fd : Cd → Cd, with d ∈ (0, 1], is α-Hölder for any α ∈ (0, 1).

Proof. Fix α ∈ (0, 1). Since Cd is compact, it is enough to prove that

(19) there is a k < ω such that fd is α-Hölder on any set h([u]) with u ∈ 2k.

To see that (19) implies the lemma, first notice that, by the assumptions of (19),
there is a C1 > 0 such that fd is α-Hölder with constant C1 on any set h([u]) with
u ∈ 2k. Moreover, if E =

⋃
u∈2k{minh([u]),maxh([u])}, then there exists a C2 > 0

such that |fd(r)− fd(s)| ≤ C2|r− s|α for all r, s ∈ E. We claim that fd is α-Hölder
with constant C := 3 max{C1, C2}. To see this, choose x1, x2 ∈ Cd with x1 ≤ x2

and let u1, u2 ∈ 2k be such that x1 ∈ h([u1]) and x2 ∈ h([u2]). If u1 6= u2, let
r := maxh([u1]) and s := minh([u2]); otherwise put r = s = x1. Then

|fd(x1)− fd(x2)| = |fd(x1)− fd(r)|+ |fd(r)− fd(s)|+ |fd(s)− fd(x2)|
≤ C1|x1 − r|α + C2|r − s|α + C1|s− x2|α

≤ C1|x1 − x2|α + C2|x1 − x2|α + C1|x1 − x2|α

≤ C|x1 − x2|α

as needed.
To see that (19) is satisfied, fix k < ω and u ∈ 2k. Take distinct s = 〈si〉 and

t = 〈ti〉 from [u] with n = min{i ∈ ω : si 6= ti}. So n > k. Then, for cα :=
(1+ p

1−p )
(1− p

1−p )
α ,

we get the following simple variation of (18):

(20)
|fd(h(s))− fd(h(t))|
|h(s)− h(t)|α

≤

(
1 + p

1−p

)
pn+ψ(σ(s)�n+1)(

1− p
1−p

)α
pα(n+ψ(s�n+1))

≤ cαp
n

pα(n+ψ(s�n+1))
.

Also, by (9), we have ψ(s � n+ 1) = (N(s � n̂+ 1))2 ≤ (2 log2(n+ 1))2, so

(21)
cαp

n

pα(n+ψ(s�n+1))
≤ cαp

n

pα(n+ψ(s�n+1))
≤ cαp

n

pα(n+(2 log2(n+1))2)
.

Since α(n+(2 log2(n+1))2)
n →n→∞ α < 1, there is a k < ω such that for every n > k

we have α(n+(2 log2(n+1))2)
n < 1, that is, α(n+ (2 log2(n+ 1))2) < n. Therefore, by

(20) and (21), for every n > k

|fd(h(s))− fd(h(t))|
|h(s)− h(t)|α

≤ cαp
n

pα(n+(2 log2(n+1))2)
≤ cαp

n

pn
= cα,

that is, fd is indeed α-Hölder on any set h([u]) with u ∈ 2k. �

Theorem 3.1 follows immediately from this lemma and Theorem 4.1 from the
next section.
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4. Differential extensions preserving Hölder continuity

Jarńık’s differentiable extension theorem states that every real valued differen-
tiable function from a closed subset of R into R has a differentiable extension. For
the fascinating history of this theorem and its proof see [3]. (Compare also [6].) For
its generalizations, see [13] and [4]. To prove Theorem 3.1, we will need the follow-
ing generalization of Jarńık’s differentiable extension theorem, which is of interest
by its own right.

Theorem 4.1. Every differentiable map f : P → R, where P ⊂ R is closed, admits
a differentiable extension F : R → R such that if P is compact, then F preserves
Hölder continuity of f , that is, if f is α-Hölder for some α ∈ (0, 1], then so is F .

Proof. We can assume that P is compact and that the set

H := {α ∈ (0, 1] : f is α-Hölder}
is not empty, since otherwise the result follows immediately from Jarńık’s differen-
tiable extension theorem. By (8), if α ∈ H and β ∈ (0, α), then β ∈ H.

Let f̄ : R → R be the linear interpolation3 of f which is constant on each un-
bounded connected component of R \ P , choose a < b such that P ⊂ (a, b), and

define P̃ := (−∞, a] ∪ P ∪ [b,∞) together with f̃ := f̄ � P̃ . Then f̃ is still dif-

ferentiable and, by Fact 1.3 used with F = f̃ , f̃ is α–Hölder for every α ∈ H. In
addition, f̄ is also the linear interpolation of f̃ .

Let J be the family of all connected components of R \ P̃ and Π be the set of
all endpoints of the intervals in J . Notice that all J ∈ J are bounded.

It is easy to see (compare e.g. [3]) that f̄ is differentiable at all points x ∈ R \Π.
Also, f̄ is differentiable at least from one side at every x ∈ Π. Moreover,

(22) f̄ is α-Hölder for every α ∈ H.

Indeed, this follows from Fact 1.2 used with F = f̄ as long as there is C > 0 such
that

(23) |f̄(x)− f̄(y)| ≤ C|x− y|α for every J ∈ J and all x, y ∈ cl(J).

To see (23), fix an α ∈ H and let C be such that |f̃(x)− f̃(y)| ≤ C|x− y|α for all

x, y ∈ P̃ . Now, if J = (a, b) and p, q ∈ cl(J), then |f̃(p)−f̃(q)|
|p−q| = |f̃(a)−f̃(b)|

|a−b| and

|f̃(p)−f̃(q)|
|p−q|α = |p− q|1−α |f̃(p)−f̃(q)|

|p−q| ≤ |a− b|1−α |f̃(a)−f̃(b)|
|a−b| = |f̃(a)−f̃(b)|

|a−b|α ≤ C,

justifying (23) and (22).
The proof of Jarńık’s differentiable extension theorem presented in [3] obtains

F by modifying f̄ on the family K = {Kn : n < ω} of small pairwise disjoint
closed intervals, each contained in the closure of an J ∈ J and sharing with J
one endpoint. More specifically, for each n < ω one finds a continuous function
fn : R→ R with support contained in Kn and defines

(24) F := f̄ +
∑
n<ω

fn.

This modification ensures differentiability at points x ∈ Π from appropriate sides
that needed adjustment, while the small size of each Kn ensures preservation of
other (unilateral, pointwise) differentiability of f̄ . In general, it is not clear that

3This means that f̄ is linear on the closure of every connected component of R \ P .
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such defined F must preserve Hölder continuity. But we will show that some small
modification of the definitions of functions fn indeed ensures such preservation.
Note that without loss of generality we may assume that each x ∈ Π belongs to
exactly one Kn, as fn may be the zero function.

To see this, note that functions fn are defined in [3] as fn(x) :=
∫ x
−∞ hn(t) dt,

where hn is continuous on Kn and zero on its complement, see [3, Figure 3]. Also,

(i) if f is Lipschitz with constant L, then hn[R] ⊂ [−2L, 2L].

In addition, if the lengths of the intervals Kn are further shrinking and new func-
tions hn are the horizontal proportional shrinking versions of their original selves,
then F defined by (24) remains everywhere differentiable. Hence, to finish the proof
we just need to show that if numbers |Kn| are small enough, then F is α-Hölder
for every α ∈ H.

Towards this goal, let A = supH and choose a non-decreasing sequence 〈αn〉n in
H converging to A such that if A ∈ H, then αn = A for all n < ω. If 1 ∈ H, that
is, f is Lipschitz, then no change is necessary. Indeed, by (i), F defined by (24) is
already Lipschitz,4 so, every α ∈ (0, 1), the property (8) implies that F � [a, b] is
α-Hölder and, by Fact 1.3 used with P = [a, b], so is F .

Thus, we may assume that 1 /∈ H and so, αn < 1 for all n < ω. For every n < ω
decrease the length of Kn so that the resulting F satisfies

(25) |F (x)− F (y)| ≤ |x− y|αi for every x, y ∈ Kn and i ≤ n.

To see that this can be done, notice that shrinking of Kn does not change Lipschitz
constant Ln of F on Kn, which is bounded by the sum of the Lipschitz constant
of f̄ on Kn and the supremum of |hn|[Kn]. Since, for any x, y ∈ Kn, we have
|F (x) − F (y)| ≤ Ln|x − y| = Ln|x − y|1−αn |x − y|αn ≤ Ln|Kn|1−αn |x − y|αi , it is
enough to shrink Kn so that its new diameter Dn satisfies LnD

1−αn
n ≤ 1.

To finish the proof, it is enough to show that F defined by (24) and satisfying (25)
is as needed. Indeed, clearly F is everywhere differentiable. Next, fix an α ∈ H.
To finish the proof it is enough to show that F is α-Hölder. For this, choose an
i < ω such that α ≤ αi. We claim that

(26) F is αi-Hölder.

This will be proved by applying Fact 1.2 to F and the set P̃ . Let C be such that
f̄ is αi-Hölder with a constant C and let J0 be the set of all J ∈ J such that
Kn ⊂ cl(J) for some n < i. Notice that

(27) F � cl(J) is αi-Hölder with a constant C + 2 for every J ∈ J \ J0.

Indeed, let J = (p, q). Find a K ∈ K containing p and put Kp := K. Analo-
gously let Kq be the unique K ∈ K satisfying q ∈ K. Notice that, by (25) and
the definition of J0, F on Kp, as well as on Kq, is αi-Hölder with a constant 1.
Finally, to see (27), choose x1, x2 ∈ [p, q] with x1 ≤ x2. We need to show that
|F (x1) − F (x2)| ≤ (C + 2)|x1 − x2|αi . If both points x1 and x2 are in either Kp

or Kq, then this inequality holds. So, assume that this is not the case and let

4A Lipschitz differentiable extension version of Jarńık’s theorem can also be found in [14].
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r := max{x1,maxKp} and s := min{x2,minKq}. Then

|F (x1)− F (x2)| ≤ |F (x1)− F (r)|+ |F (r)− F (s)|+ |F (s)− F (x2)|
≤ |x1 − r|αi + C|r − s|αi + |s− x2|αi

≤ (C + 2)|x1 − x2|αi

justifying (27). Next notice that, for every J ∈ J0, F � cl(J) is Lipschitz, so, by (8),
it is also αi-Hölder some constant CJ . Combining this with (27), we conclude that
the assumption (7) of Fact 1.2 is satisfied with a constant max{C+2,maxJ∈J0 CJ}.
This completes the proof of (26).

Finally, to see that F is α-Hölder, notice that, by (26), F � [a, b] is αi-Hölder.
So, by (8) and the inequality α ≤ αi, F � [a, b] is also α-Hölder. So, by Fact 1.3,
F is indeed α-Hölder. �

5. Final remarks and open problems

Although for d = 1 our minimal dynamical system fd : Cd → Cd is well defined
and, by Lemma 2.2, Cd has Hausdorff dimension d = 1, it is not clear if this fd
is extremely slow. Specifically, the number p associated with d = 1 equals to
p = 2−1/d = 1

2 , so that the number 1− p
1−p in the estimation (b) from Subsection

2.3 becomes 0. This renders the estimate useless. Thus, the following problems
remain open.

Problem 5.1. Does there exist an extremely slow minimal dynamical system
f : C → C such that C ⊂ R is compact and of Hausdorff dimension 1?

Notice that for any n ≥ 2, if a function F : Cnd → Cnd is defined by a formula
F (〈xi〉ni=1) = 〈fd(xi)〉ni=1, then clearly F is an extremely slow dynamical system
with dimH(Cnd ) ≥ n dimH(Cd) = nd, see e.g. [15]. Thus, an extremely slow dynam-
ical system on a compact subset of Rn can have Hausdorff dimension arbitrarily
close to n, so greater than 1. However, such defined F is not a minimal dynamical
system.

Another interesting question, natural in the context of this work, is

Problem 5.2. Does there exist an extremely slow dynamical system f on a com-
pact C ⊂ R such that f is Lipschitz?
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