$\mathrm{CPA}^{\mathrm{game}}_{\mathrm{prism}}$ and ultrafilters on $\mathbb Q$ and ω

Andres Millán*

Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA; e-mail: amillan@math.wvu.edu

July 15, 2004

Abstract

In this paper we use the version CPA_{prism}^{game} of the Covering Property Axiom, which has been formulated by Ciesielski and Pawlikowski and holds in the iterated perfect set model, to study the relations between different kinds of ultrafilters on ω and \mathbb{Q} . In particular, we will give a full account for the logical relations between the properties of being a selective ultrafilter, a *P*-point, a *Q*-point, and an ω_1 -OK point.

1 Introduction

We use standard set theoretical notation and terminology as in [10]. In particular, if A is a set |A| denotes its cardinality and $\mathcal{P}(A)$ the set of all its subsets. Lower case Greek letters denote ordinal numbers. The first infinite cardinal is ω and ω_1 is the first uncountable cardinal. The cardinality of \mathbb{R} is denoted by \mathfrak{c} . We also use the letter κ to denote any unespecified uncountable cardinal. If A and B are arbitrary sets, then we write $A \subseteq^* B$ provided that $|A \setminus B| < \omega$.

Let \mathcal{U} be a nonprincipal ultrafilter on an infinite countable set X. (We will use for X either ω or \mathbb{Q} .) We say that:

^{*}This work is a part of author's Ph.D. thesis written at West Virginia University under the supervision of Professor Krzysztof Ciesielski. The author wishes to thank Professor Ciesielski for his guidance, patience, and encouragement.

- \mathcal{U} is a *P*-point if for every partition \mathcal{P} of *X* either $\mathcal{U} \cap \mathcal{P} \neq \emptyset$ or there exists a $U \in \mathcal{U}$ such that $U \cap P$ is finite for each $P \in \mathcal{P}$.
- \mathcal{U} is a *Q*-point if for every partition \mathcal{P} of *X* into finite sets there exists a $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$.
- \mathcal{U} is *selective* if for every partition \mathcal{P} of X either $\mathcal{U} \cap \mathcal{P} \neq \emptyset$ or there exists a $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$.
- \mathcal{U} is a κ -OK point, where κ is an infinite cardinal number, provided for every $\langle V_n \in \mathcal{U} : n < \omega \rangle$ there exists a $\langle U_\alpha \in \mathcal{U} : \alpha < \kappa \rangle$ such that $\bigcap_{i=1}^n U_{\alpha_i} \subseteq^* V_n$ for every $n < \omega$ and $\alpha_0 < \cdots < \alpha_n < \kappa$. Sequence $\langle U_\alpha \in \mathcal{U} : \alpha < \kappa \rangle$ will be referred to as OK for $\langle V_n \in \mathcal{U} : n < \omega \rangle$.

It is obvious from the definitions that

Fact 1.1 \mathcal{U} is a selective ultrafilter if and only if \mathcal{U} is simultaneously a *P*-point and a *Q*-point.

P-points have been studied extensively by many people in connection with the remainder ω^* of the Čech-Stone compactification of the integers and the problem of its homogeneity. The existence of *P*-points cannot be proven or refuted in the usual framework of set theory ZFC (see, e.g., [15] or [2]) but they do exist under several additional set theoretical assumptions like the *Continuum Hypothesis* CH or *Martin's Axiom* MA.

Given a nonprincipal ultrafilter \mathcal{U} on X we say that $\mathcal{B} \subseteq \mathcal{U}$ is a basis for \mathcal{U} if for every $U \in \mathcal{U}$ there exists a $B \in \mathcal{B}$ such that $B \subseteq U$. We define the *character* of \mathcal{U} as $\chi(\mathcal{U}) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a basis for } \mathcal{U}\}$. If $\kappa = \chi(\mathcal{U})$ then we say that the ultrafilter \mathcal{U} is κ -generated.

In [11], K. Kunen introduced κ -OK points to give a proof of the nonhomogeneity of ω^* without any extra assumption beyond ZFC. The following results are relevant to this paper.

Proposition 1.2 (Kunen [11]) Every *P*-point is κ -OK for every κ .

Proposition 1.3 (Kunen [11]) There are $2^{\mathfrak{c}}$ many distinct \mathfrak{c} -OK points on ω . Moreover, these ultrafilters can be made \mathfrak{c} -generated.

Consider \mathbb{Q} with the subspace topology induced by the usual topology on \mathbb{R} and denote by $\operatorname{Perf}(\mathbb{Q})$ the family of its perfect subsets (i.e., closed subsets with no isolated points).

• A nonprincipal filter \mathcal{U} on \mathbb{Q} is *crowded* if the family $\operatorname{Perf}(\mathbb{Q}) \cap \mathcal{U}$ forms a basis for \mathcal{U} .

The crowded ultrafilters have been studied in connection with the remainder of the Čech-Stone compactification of \mathbb{Q} and their existence follows from the Continuum Hypothesis, Martin's Axiom for countable posets [7], or from the equality $\mathfrak{b} = \mathfrak{c}$ [6].

In [4, thm. 4.8 and cor. 4.14] Ciesielski and Pawlikowski showed that CPA_{prism}^{game} implies that there exist ω_1 -generated selective ultrafilters as well as ω_1 -generated nonselective *P*-points. Since a nonselective *P*-point cannot be a *Q*-point (see Fact 1.1), this second result shows that CPA_{prism}^{game} implies that there exists a *P*-point which is not a *Q*-point. In the same paper, [4, thm. 4.22], the authors also established the existence of an ω_1 -generated crowded ultrafilter on \mathbb{Q} under CPA_{prism}^{game} . They also proved, [4, prop. 4.25], that a crowded ultrafilter cannot be a *P*-point.

In this paper we establish, under $\text{CPA}_{\text{prism}}^{\text{game}}$, the existence of a nonselective Q-point (i.e., a Q-point which is not a P-point) by constructing an ω_1 -generated crowded Q-point which is also an ω_1 -OK point (Corollary 6.15). This improves our construction from [13] of an ω_1 -generated crowded Q-point on Q. We also prove, under $\text{CPA}_{\text{prism}}^{\text{game}}$, that there exist crowded ω_1 -generated Q-points that are not ω_1 -OK points (Corollary 5.4), crowded ω_1 -generated ω_1 -OK points which are neither P-points nor Q-points (Theorem 6.13), and crowded ω_1 -generated ultrafilters on ω that are neither Q-points nor ω_1 -OK points (Theorem 4.3). These complete all the logical implications between being a P-point, a Q-point, or an ω_1 -OK point as Table 1 shows.

Besides the properties explicitly listed in Table 1 we consider also two other properties: being ω_1 -generated (with $\omega_1 < \mathfrak{c}$) and being crowded.

As mentioned above, the first four examples from Table 1 are also crowded. On the other hand that no other example from Table 1 can be crowded, since a crowded ultrafilter cannot be a *P*-point [4, prop. 4.25]. It is also easy to see that we can destroy the property of being crowded without changing any of the remaining properties. To see this, note that if \mathcal{U} is an ultrafilter on \mathbb{Q} and f is a bijection between \mathbb{Q} and a scattered subset S of \mathbb{Q} , then $\mathcal{V} = \{A \subseteq \mathbb{Q}: f^{-1}(A) \in \mathcal{U}\}$ is a noncrowded ultrafilter that has the remaining properties identical to that of \mathcal{U} .

One of the key features of our examples is that they are all ω_1 -generated with $\omega_1 < \mathfrak{c}$. This cannot be achieved in ZFC, since in many models of ZFC, for example under MA, every nonprincipal ultrafilter on a countable

<i>P</i> -point	Q-point	ω_1 -OK point	Existence	Reference
—	_	—	under CPA_{prism}^{game}	Theorem 4.3
—	-	+	under CPA ^{game} _{prism}	Theorem 6.13
—	+	—	under CPA ^{game} _{prism}	Corollary 5.4
—	+	+	under CPA_{prism}^{game}	Corollary 6.15
+	-	—	No, in ZFC	Proposition 1.2
+	-	+	under CPA_{prism}^{game}	[4] or [5]
+	+	_	No, in ZFC	Proposition 1.2
+	+	+	under CPA_{prism}^{game}	[4] or [5]

July 15, 2004

Table 1: Existence of different ultrafilters. All constructed ultrafilters are nonprincipal and ω_1 -generated. Moreover, the first four examples can be made also crowded.

set has character \mathfrak{c} . On the other hand, every example cited in Table 1 can be constructed under MA if we are willing to settle for \mathfrak{c} -generated filters. An interesting issue is whether under CPA_{prism}^{game} the examples from Table 1 must be ω_1 -generated. The answer is positive for the last example from the table, since Ciesielski and Pawlikowski proved (see [4, cor. 2.7] or [5, cor. 1.5.4]) that under CPA^{game}_{prism} every selective ultrafilter is ω_1 -generated. There is some indication suggesting that CPA_{prism}^{game} implies that every Ppoint is ω_1 -generated. This would take care of the bottom half of the table. Recently, the autor have constructed, under CPA_{prism}^{game} , a crowded Q-point of character \mathfrak{c} . This will appear in a forthcoming paper. This particular example is not a weak P-point so it cannot be an ω_1 -OK point. (See [11, Lemma 1.3].) The existence of an example of character \mathfrak{c} as in the fourth row in the table is left open. The first two examples from Table 1 do not need to be ω_1 -generated. By Proposition 4.1 the Fubini product $\mathcal{U} \otimes \mathcal{U}$, where \mathcal{U} is a Kunen's example from Proposition 1.3, is as the first ultrafilter from Table 1. The second of these is justified by a slight modification¹ of Kunen's example from Proposition 1.3.

Finally, let us address a question, whether any of the examples from Table 1 can be constructed in ZFC. The answer is clearly no for all but the first two examples, since there are models of ZFC with no P-points (see [15])

¹Let \mathcal{F}_0 be the dual filter of the ideal $\mathcal{I}_0 = \{A \subseteq \omega : \overline{\lim}_{n \to \infty} |A \cap P_n| < +\infty\}$, where $\{P_n : n < \omega\}$ is the partition of ω such that $P_n = \{m < \omega : 2^n - 1 \le m < 2^{n+1} - 1\}$. Construct a \mathfrak{c} by \mathfrak{c} independent linked family w.r.t \mathcal{F}_0 and follow the argument from [11].

as well as models of ZFC with no Q-points (see [14]). There are, however, a ZFC examples for the first two entries of Table 1 as mentioned above. These need not be ω_1 -generated, as we already noted. Whether they can be crowded remains unclear, since it is an open problem if there exists a crowded ultrafilter in ZFC.

2 Axiom CPA_{prism}^{game} and other preliminaries

The framework of CPA rests on the concept of a *prism*. If \mathfrak{C} denotes the space 2^{ω} with its usual product topology then we define for a Polish space \mathfrak{X}

 $\operatorname{Perf}(\mathfrak{X}) = \{ C \subseteq \mathfrak{X} \colon C \text{ is homeomorphic to } \mathfrak{C} \}.$

If $0 < \alpha < \omega_1$ is an ordinal let $\Phi_{\text{prism}}(\alpha)$ be the set of all continuous injections $f: \mathfrak{C}^{\alpha} \to \mathfrak{C}^{\alpha}$ with the property that

$$f(x) \upharpoonright \xi = f(y) \upharpoonright \xi \iff x \upharpoonright \xi = y \upharpoonright \xi$$
 for all $\xi < \alpha$ and $x, y \in \mathfrak{C}^{\alpha}$.

Then we define $\mathbb{P}_{\alpha} = \{ \operatorname{range}(f) : f \in \Phi_{\operatorname{prism}}(\alpha) \}$ and $\mathbb{P}_{\omega_1} = \bigcup_{0 < \alpha < \omega_1} \mathbb{P}_{\alpha}$. The elements of \mathbb{P}_{ω_1} are called the *iterated perfect sets*. The simplest elements of \mathbb{P}_{α} are of the form $C = \prod_{\xi < \alpha} C_{\xi}$, where $C_{\xi} \in \operatorname{Perf}(\mathfrak{C})$ for every $\xi < \alpha$. We refer to them as *perfect cubes*.

If \mathfrak{X} is a Polish space, then a *prism* in \mathfrak{X} is a pair $\langle f, P \rangle$ where $f: E \to \mathfrak{X}$ is injective and continuous, $E \in \mathbb{P}_{\omega_1}$, and P = f[E]. Function f can be considered as a coordinate system imposed on P. We will usually abuse this terminology and refer to P itself as a prism. In this case function f, given only implicitly, will be referred to as a *witness function* for P. If the domain of the witness function of a prism P happens to be a perfect cube, we will sometimes refer also to P as a *cube* in \mathfrak{X} .

If $\langle f, P \rangle$ is a prism, then we say that Q is its *subprism* provided there exists an iterated perfect set $E \subseteq \text{dom}(f)$ such that Q = f[E]. We will refer to Q as a *subcube* of P when E is a perfect cube. Notice that

Remark 2.1 If we need to prove that a prism P contains a subprism Q with some "nice property," we can always assume that the witness function f for P is defined on the entire set \mathfrak{C}^{α} .

PROOF. Indeed, assume that we can find a desired subprism Q of a prism P as long as its witness function f is defined on the entire set \mathfrak{C}^{α} .

Next, take an arbitrary witness function g from $E \in \mathbb{P}_{\alpha}$ onto P and let $h \in \Phi_{\text{prism}}(\alpha)$ be onto E. Then $f = g \circ h$ is a continuous injection from \mathfrak{C}^{α} onto P, so by the above assumption we can find a subprism Q of $\langle f, P \rangle$ with the "nice property" we are after. To finish the argument it is enough to note that Q is also a subprism of $\langle g, P \rangle$. Indeed, since $Q = f[E_0]$ for some $E_0 \in \mathbb{P}_{\alpha}$, there exists an $h_0 \in \Phi_{\text{prism}}(\alpha)$ onto E_0 . But then $h \circ h_0 \in \Phi_{\text{prism}}(\alpha)$ and $Q = f[E_0] = (g \circ h)[h_0[\mathfrak{C}^{\alpha}]] = g[h \circ h_0[\mathfrak{C}^{\alpha}]]$ is a subprism of $\langle g, P \rangle$ as $h \circ h_0[\mathfrak{C}^{\alpha}] \in \mathbb{P}_{\alpha}$.

Since in the game defined below we will need to consider singletons in the same position as prisms as defined above, in what follows *singletons will* be considered as prisms. If P is a singleton in \mathfrak{X} then its only subprism is P itself.

The following theorem is one of the principal tools for finding subprism of a prism, so also for using CPA. This result is a refinement of a theorem proved independently by H.G. Eggleston [8] and M.L. Brodskiĭ [3].

Proposition 2.2 (K. Ciesielski and J. Pawlikowski, [5, claim 1.1.5]) Let $0 < \alpha < \omega_1$ and consider \mathfrak{C}^{α} with its usual topology and its usual product measure. If G is a Borel subset of \mathfrak{C}^{α} which is either of second category or of positive measure, then G contains a perfect cube E. In particular $E \in \mathbb{P}_{\alpha}$.

Strictly speaking, in [5, claim 1.1.5] (see also [4, claim 2.3]) the result is proved only for $\alpha = \omega$. But this easily implies the above version.

We will need also the following fusion lemma, which is an easy compilation of Lammas 3.1.1 and 3.1.2 from [5]. The proof of the compilation is identical to that of [5, cor. 3.1.3].

Proposition 2.3 (K. Ciesielski and J. Pawlikowski [5]) Let $0 < \alpha < \omega_1$ and for every $n < \omega$ let $\mathcal{D}_n \subseteq [\mathbb{P}_{\alpha}]^{<\omega}$ be a family of pairwise disjoint sets such that $\emptyset \in \mathcal{D}_n$, \mathcal{D}_n is closed under refinements, and

(†) for every $\mathcal{E} \in \mathcal{D}_n$ and $E \in \mathbb{P}_\alpha$ which is disjoint with $\bigcup \mathcal{E}$ there exists an $E' \in \mathbb{P}_\alpha \cap \mathcal{P}(E)$ such that $\{E'\} \cup \mathcal{E} \in \mathcal{D}_n$.

Then for every $n < \omega$ there is a family $\mathcal{E}_n = \{E_k : k < 2^n\} \in \mathcal{D}_n$ of pairwise disjoint sets such that $E = \bigcap_{n < \omega} \bigcup \mathcal{E}_n \in \mathbb{P}_\alpha$.

For a Polish space \mathfrak{X} consider the following game GAME_{prism}(\mathfrak{X}) of length ω_1 played by two players, Player I and Player II. At each stage $\xi < \omega_1$ of

the game Player I can play an arbitrary prism P_{ξ} in \mathfrak{X} (i.e., P_{ξ} either is a singleton in \mathfrak{X} or it belongs to $\operatorname{Perf}(\mathfrak{X})$ and comes with a witness function) and Player II must respond by playing a subprism Q_{ξ} of P_{ξ} . The game $\langle \langle P_{\xi}, Q_{\xi} \rangle \colon \xi < \omega_1 \rangle$ is won by Player I provided

$$\mathfrak{X} = \bigcup_{\xi < \omega_1} Q_{\xi};$$

otherwise Player II wins. A strategy for Player II is any function S such that $S(\langle \langle P_{\eta}, Q_{\eta} \rangle : \eta < \xi \rangle, P_{\xi})$ is a subprism of P_{ξ} for every partial game $\langle \langle P_{\eta}, Q_{\eta} \rangle : \eta < \xi \rangle$. We say that a game $\langle \langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ is played according to a strategy S for Player II provided $Q_{\xi} = S(\langle \langle P_{\eta}, Q_{\eta} \rangle : \eta < \xi \rangle, P_{\xi})$ for every $\xi < \omega_1$. A strategy S for Player II is a *winning strategy* provided Player II wins any game played according the strategy S.

The following principle captures a combinatorial core of the iterated Sacks model.

CPA^{game}_{prism}: $\mathfrak{c} = \omega_2$ and for any Polish space \mathfrak{X} Player II has no winning strategy in the game GAME_{prism}(\mathfrak{X}).

The axiom is consequence of a slightly more general principle, similar in spirit, called CPA, see [5]. Its importance comes from the following theorem.

Proposition 2.4 (K. Ciesielski and J. Pawlikowski [5, thm. 7.2.1]) CPA holds in the iterated perfect set model. In particular, CPA is consistent with ZFC set theory.

The proof of the consistency of CPA_{prism}^{game} can be also found in [4, thm. 5.3].

A set $B \subseteq \mathbb{Q}$ is *scattered* if every nonempty subset of B has isolated points. It is easy to see that the scattered subsets of \mathbb{Q} form an ideal, which we will denote by \mathcal{I}_S . The following facts will be used in what follows. For the proofs see [4] or [5, Fact 5.5.1].

Fact 2.5 Every nonscattered set $B \subseteq \mathbb{Q}$ contains a subset from $\operatorname{Perf}(\mathbb{Q})$.

Let \mathcal{J} be an ideal on a countable set X. Then we define $\mathcal{J}^+ = \mathcal{P}(X) \setminus \mathcal{J}$. We say that \mathcal{J} is *weakly selective* if for every $A \in \mathcal{J}^+$ and $f: A \to X$ there exists a $B \in \mathcal{P}(A) \cap \mathcal{J}^+$ such that $f \upharpoonright B$ is either one-to-one or constant. **Fact 2.6** The ideals $[\omega]^{<\omega}$ and \mathcal{I}_S are weakly selective.

The proof of the following result can be found in [4, lem. 4.9(b)] or in [5, lem. 5.3.4(b)], where $[X]^{\omega}$ comes with a subspace topology of $\mathcal{P}(X)$, with $\mathcal{P}(X)$ being identified with 2^X via characteristic function.

Proposition 2.7 (K. Ciesielski, J. Pawlikowski [4, 5]) Let X be countably infinite and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be a weakly selective ideal. For every prism $P \subseteq [X]^{\omega}$ and every $A \in \mathcal{J}^+$ there exist a subprism Q of P, a $B \in \mathcal{P}(A) \cap \mathcal{J}^+$, and an i < 2 such that $g \upharpoonright B$ is constant equal to i for every $g \in Q$.

3 Some important lemmas.

Let X be a countably infinite set. If $\mathcal{F} \subseteq [X]^{\omega}$ is nonempty, we say that \mathcal{F} has the strong finite intersection property, SFIP, provided that $|\bigcap F| = \omega$ for every nonempty $F \in [\mathcal{F}]^{<\omega}$. The following is a very well known and easy fact.

Lemma 3.1 If $\mathcal{F} \subseteq [X]^{\omega}$ is nonempty, countable, and has the SFIP, then there exists a $C(\mathcal{F}) \in [X]^{\omega}$ such that $C(\mathcal{F}) \subseteq^* B$ for every $B \in \mathcal{F}$.

PROOF. If \mathcal{F} is finite, we can put $C(\mathcal{F}) = \bigcap \mathcal{F}$; otherwise $\mathcal{F} = \{B_n : n < \omega\}$ and we can pick inductively $b_n \in \bigcap_{k \le n} B_k$ such that $b_n \notin \{b_k : k < n\}$. The set $C(\mathcal{F}) = \{b_n : n < \omega\}$ works.

Let X be a countably infinite set. If the set $Z_X = [X]^{<\omega} \setminus \{\emptyset\}$ has the discrete topology then the product space $\mathcal{Z}_X = (Z_X)^{\omega}$ is a Polish space and the sets $U_{\langle n,a \rangle} = \{z \in \mathcal{Z} : z(n) = a\}$, where $a \in [\omega]^{<\omega}$ and $n < \omega$, constitute a subbasis for the product topology. Consider the set

 $\mathcal{P}_X = \{ z \in \mathcal{Z}_X : \{ z(k) \colon k < \omega \} \text{ is a partition of } \omega \}.$

If $X = \omega$ we will drop the indexes, that is, $\mathcal{Z} = \mathcal{Z}_{\omega}$ and $\mathcal{P} = \mathcal{P}_{\omega}$.

Lemma 3.2 \mathcal{P}_X is a G_{δ} subset of \mathcal{Z}_X . Therefore \mathcal{P}_X is a Polish space with the relative topology inherited from \mathcal{Z}_X .

PROOF. We can assume that $X = \omega$. If $A = \{z \in \mathcal{Z} : \bigcup_{n < \omega} z(n) = \omega\}$ and $B = \{z \in \mathcal{Z} : \{z(n) : n < \omega\}$ is pairwise disjoint} then $\mathcal{P} = A \cap B$. The set A is G_{δ} because we have $A = \bigcap_{k \in \omega} \bigcup_{n < \omega} \bigcup \{U_{\langle n, a \rangle} : a \in [\omega]^{<\omega} \& k \in a\}$. The set B is G_{δ} since it can be written as $\bigcap_{m < n < \omega} \bigcup \{U_{\langle m, a \rangle} \cap U_{\langle n, b \rangle} : a \cap b = \emptyset\}$. Thus, \mathcal{P} is G_{δ} in \mathcal{Z} .

Definition 1 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X containing all the singletons. We say that \mathcal{J} is *Q*-like provided that for every $A \in \mathcal{J}^+$ there exists a countable indexed family $\{A_n \in [A]^{\omega} : n < \omega\}$ such that no set $\{b_n : n < \omega\}$ belongs to \mathcal{J} provided $b_n \in A_n$ for every $n < \omega$.

Lemma 3.3 Let X be a countably infinite set, let \mathcal{J} be a Q-like ideal on X and let $A \in \mathcal{J}^+$ be arbitrary. If P is a prism on \mathcal{P}_X , then there exist a subprism Q of P and a $B \in \mathcal{P}(A) \cap \mathcal{J}^+$ such that $|z(k) \cap B| \leq 1$ for every $z \in Q$ and $k < \omega$. Moreover, if P is a cube than Q can be chosen as a subcube of P.

PROOF. We can suppose that $X = \omega$. Let $\langle A_n \in [A]^{\omega} : n < \omega \rangle$ be the sequence associated to A in the definition of Q-like.

Case (a): If $P = \{z\}$ then, define a sequence $\langle b_n \in \omega : n < \omega \rangle$ inductively such that $b_n \in A_n \setminus \bigcup \{z(k) : k < \omega \& z(k) \cap \{b_0, \ldots, b_{n-1}\} \neq \emptyset \}$ for every $n < \omega$. It is easy to see that $B = \{b_n : n < \omega\}$ works.

Case (b): If $P \in \operatorname{Perf}(\mathcal{P}_{\omega})$, let f be a witness function for P. By Remark 2.1 we can assume that f acts from \mathfrak{C}^{α} onto P. Thus, P is a cube. It is enough to find its subcube with the desired properties.

Let μ be the standard product probability measure on \mathfrak{C}^{α} . We construct, by induction on $n < \omega$, a sequence $\langle K_n : n < \omega \rangle$ of open subsets of \mathfrak{C}^{α} and two sequences, $\langle b_n \in A_n : n < \omega \rangle$ and $\langle B_n \in [\omega]^{<\omega} : n < \omega \rangle$, such that for every $n < \omega$:

- (i) $b_n > \max\left(\{b_i : i < n\} \cup \bigcup_{j < n} B_j\right),$
- (ii) $\mu(K_n) \ge 1 2^{-(n+2)}$, and
- (iii) $f(h)(k) \subseteq B_n$ for every $h \in K_n$ and $k < \omega$ for which $b_n \in f(h)(k)$.

If this construction is possible, put $B = \{b_n : n < \omega\}$. Then, clearly $B \in \mathcal{P}(A) \cap \mathcal{J}^+$ since that \mathcal{J} is Q-like and $b_n \in A_n$ for every $n < \omega$. Condition (ii) implies that $\mu(\bigcap_{n < \omega} K_n) \geq \frac{1}{2}$. Hence, by Proposition 2.2, there exists a perfect cube $C \subseteq \bigcap_{n < \omega} K_n$. Then Q = f[C] is a subcube of P and the pair $\langle Q, B \rangle$ is as required. To see this, it is enough to show that $|z(k) \cap B| \leq 1$ for every $z \in Q$ and $k < \omega$. Let z = f(h) for some $h \in C$. By conditions (i) and (iii), for every $b_j \in z(k) = f(h)(k)$ and n > j we have that $b_n \notin z(k)$. Therefore, no two elements of B are in the same z(k) or, in other words, $|z(k) \cap B| \leq 1$ for every $k < \omega$.

Next, we show that the inductive construction is possible. Let $n < \omega$ be such that the appropriate b_i , K_i , and B_i are already constructed for every i < n. We will construct b_n , K_n , and B_n satisfying (i)–(iii). We pick an b_n as an arbitrary element of A_n satisfying condition (i). Next, we define $L = \{a \in [\omega]^{<\omega} : b_n \in a\}$ and note that $\{f^{-1}(U_{\langle m,a \rangle}) : \langle m,a \rangle \in \omega \times L\}$ is a partition of \mathfrak{C}^{α} into clopen sets. Thus, we can find a finite set $S \subseteq \omega \times L$ such that $K_n = \bigcup \{f^{-1}(U_{\langle m,a \rangle}) : \langle m,a \rangle \in S\}$ satisfies condition (ii). Let $B_n = \bigcup \{a : \langle m,a \rangle \in S \text{ for some } m < \omega\}$. Then clearly, B_n is finite. To see that it satisfies (iii), take an $h \in K_n$. Then $f(h) \in U_{\langle m,a \rangle}$ for some $\langle m,a \rangle \in S$. Let $k < \omega$ be such that $b_n \in f(h)(k)$. Since we have also $b_n \in a = f(h)(m)$, we conclude that k = m. So, $f(h)(k) = f(h)(m) = a \subseteq B_n$.

Definition 2 Let X be a countably infinite set. We say that an ideal \mathcal{J} on X is *prism-friendly* provided that it contains all singletons and

(•) given a prism P in 2^X and an $A \in \mathcal{J}^+$ there exists a subprism Q of P, a $B \in \mathcal{P}(A) \cap \mathcal{J}^+$, and an i < 2 such that $g \upharpoonright B$ is constant equal i for every $g \in Q$.

Definition 3 Let X be a countably infinite set. We say that an ideal \mathcal{J} on X is *rich* if it is prism-friendly and

(#) given an $A \in \mathcal{J}^+$ there exists a family $\mathcal{A} \subseteq \mathcal{P}(A) \cap \mathcal{J}^+$ of cardinality \mathfrak{c} which is almost disjoint, that is, such that $|A \cap B| < \omega$ for every distinct $A, B \in \mathcal{A}$.

Also, notice that, in ZFC, condition (•) does not imply condition (#). Indeed, if \mathcal{U} is a selective ultrafilter, then its dual ideal $\mathcal{I}_{\mathcal{U}}$ is weakly selective. So, see [5], $\mathcal{I}_{\mathcal{U}}$ is prism-friendly. However, $\mathcal{I}_{\mathcal{U}}^+ = \mathcal{U}$ and no two members in \mathcal{U} can be almost disjoint.

Lemma 3.4 The ideals $[\omega]^{<\omega}$ and \mathcal{I}_S are Q-like and rich.

PROOF. It is easy to see that $[\omega]^{<\omega}$ is *Q*-like. To see that \mathcal{I}_S is also *Q*-like pick any $A \in \mathcal{I}_S^+$. By Fact 2.6 we can assume that $A \in \operatorname{Perf}(\mathbb{Q})$. Let \mathcal{B} be a countable basis for the topology on \mathbb{Q} and let $\{A_n : n < \omega\}$ be an enumeration of the set $\{S \cap A : S \in \mathcal{B} \& |S \cap A| = \omega\}$. If $b_n \in A_n$ for every $n < \omega$ then $B = \{b_n : n < \omega\}$ is dense in A and in consequence, it is in \mathcal{I}_S^+ .

By Fact 2.6, the ideals $[\omega]^{<\omega}$ and \mathcal{I}_S are weakly selective so, by Proposition 2.7, they are prism-friendly. Thus, we need only to check that each of these ideals satisfies the condition (#) from the definition of rich ideal.

It is well known that (#) holds for $[\omega]^{<\omega}$. To check that (#) also holds for \mathcal{I}_S , fix a countable basis \mathcal{B} for the topology on \mathbb{Q} and pick an $A \in \mathcal{I}_S^+$. By Fact 2.5, we can assume that $A \in \operatorname{Perf}(\mathbb{Q})$. Let $\{B_n: n < \omega\}$ be an enumeration of $\mathcal{B}_A = \{B \in \mathcal{B}: |B \cap A| = \omega\}$ and construct $\{a_s: s \in 2^{<\omega}\}$ by induction on the length of s in such a way that $\{a_s: s \in 2^n\} \in [A \cap B_n]^{2^n}$ and that $\{a_s: s \in 2^n\} \cap \bigcup \{a_t: t \in 2^{<n}\} = \emptyset$ for every $n < \omega$. If for $x \in 2^{\omega}$ we put $A_x = \{a_{x|n}: n < \omega\}$, then $A_x \in \mathcal{I}_S^+$ for every $x \in 2^{\omega}$, since A_x is dense in A. Then $\mathcal{A} = \{A_x: x \in 2^{\omega}\}$ is almost disjoint and satisfies (#).

Definition 4 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X containing all singletons. The *Fubini product* of the ideals $[\omega]^{<\omega}$ and \mathcal{J} is the ideal \mathcal{K} on $\omega \times X$ denoted $[\omega]^{<\omega} \otimes \mathcal{J}$ and defined as the family of all subsets A of $\omega \times X$ such that

$$\operatorname{supp}(A) \stackrel{\text{def}}{=} \{n < \omega \colon (A)_n \in \mathcal{J}^+\} \text{ is finite,}$$

where $(A)_n = \{x \in X : \langle n, x \rangle \in A\}.$

Lemma 3.5 If \mathcal{J} is a Q-like ideal, then $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$ is also Q-like.

PROOF. Let $A \in \mathcal{K}^+$. For each $n \in \operatorname{supp}(A)$ let $\{A_n^m \in [(A)_n]^{\omega} \colon m < \omega\}$ be a family from the definition of Q-like for $(A)_n \in \mathcal{J}^+$. Then the family $\{\{n\} \times A_n^m \colon n \in \operatorname{supp}(A) \& m < \omega\}$ satisfies the definition of Q-like for the set A.

Lemma 3.6 Let X be a countably infinite set, \mathcal{J} a prism-friendly ideal on X, P a prism in $2^{\omega \times X}$, $I \in [\omega]^{\omega}$, and let $\langle A_n \in \mathcal{J}^+ : n \in I \rangle$ be arbitrary. Then, there exist a subprism Q of P, a set $J \in [I]^{\omega}$, a sequence $\langle B_n \in \mathcal{P}(A_n) \cap \mathcal{J}^+ : n \in J \rangle$, and an i < 2, such that $g \upharpoonright B$ is constant equal i for every $g \in Q$ provided that $B = \bigcup \{\{n\} \times B_n : n \in J\}$.

In particular, if \mathcal{J} is prism-friendly, then so is $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$.

PROOF. We can suppose that $I = \omega$. If P is a singleton the lemma follows easily from the fact that \mathcal{J} is an ideal containing the singletons and the pigeon hole principle. So, suppose that $P \in \operatorname{Perf}(2^{\omega \times X})$. Let f be a function witnessing that P is a prism. By Remark 2.1 we can assume that f is defined on \mathfrak{C}^{α} for some $0 < \alpha < \omega_1$. We will construct a subprism Q_0 of P and a sequence $\langle B_n \in [A_n]^{\omega} \cap \mathcal{J}^+ : n < \omega \rangle$ such that for every $n < \omega$

$$g \upharpoonright \{n\} \times B_n$$
 is constant for every $g \in Q_0$. (1)

This will be done using Proposition 2.3.

For each $n < \omega$ let \mathcal{D}_n be the collection of all pairwise disjoint families $\mathcal{E} \in [\mathbb{P}_{\alpha}]^{<\omega}$ such that there exists an $A_{\langle \mathcal{E}, n \rangle} \in [A_n]^{\omega} \cap \mathcal{I}^+$ with the property that for every $E \in \mathcal{E}$

$$f(h) \upharpoonright \{n\} \times A_{\langle \mathcal{E}, n \rangle} = f(h') \upharpoonright \{n\} \times A_{\langle \mathcal{E}, n \rangle} \text{ for all } h, h' \in E.$$
(2)

Clearly, each \mathcal{D}_n is closed under refinaments. To see that \mathcal{D}_n satisfies the condition (†) from Proposition 2.3 pick $\mathcal{E} \in \mathcal{D}_n$ and $E \in \mathbb{P}_\alpha$ such that $E \cap \bigcup \mathcal{E} = \emptyset$. Decreasing $A_{\langle \mathcal{E}, n \rangle}$, if necessary, we can assume that $X \setminus A_{\langle \mathcal{E}, n \rangle}$ is infinite. Let $b_n \colon \omega \times X \to X$ be any bijection such that $b_n(n, a) = a$ for every $a \in A_{\langle \mathcal{E}, n \rangle}$. This bijection induces a homeomorphism $f_n \colon 2^{\omega \times X} \to 2^X$ defined by $f_n(g)(x) = g(b_n^{-1}(x))$ for every $g \in 2^{\omega \times X}$ and $x \in X$. Clearly, f_n is continuous and injective. Hence, $Q^* = (f_n \circ f)[E]$ is a prism in 2^X . Since \mathcal{J} is prism-friendly, we can find a subprism Q^{**} of Q^* , an $A' \in [A_{\langle \mathcal{E}, n \rangle}]^{\omega} \cap \mathcal{J}^+$, and an i < 2 such that $g[A'] = \{i\}$ for every $g \in Q^{**}$. But $Q^{**} = f_n[E']$ for some $E' \in \mathbb{P}_\alpha \cap \mathcal{P}(E)$. So, if we put $\mathcal{E}' = \mathcal{E} \cup \{E'\}$ and $A_{\langle \mathcal{E}', n \rangle} = A'$ we get that $\mathcal{E}' \in \mathcal{D}_n$ and the condition (†) is satisfied. Thus, by Proposition 2.3, for every $n < \omega$ there exists a family $\mathcal{E}_n \in \mathbb{P}_\alpha$. We will prove that $Q_0 = f[E^0]$ satisfies (1) with some sequence $\langle B_n \colon n < \omega \rangle$.

To see this fix an $n < \omega$, for each $k < 2^n$ pick an $h_k \in E_k$, and define $\varphi_n \colon A_{\langle \mathcal{E}_n, n \rangle} \to 2^{2^n}$ by $\varphi_n(p)(k) = f(h_k)(n, p)$. Since $A_{\langle \mathcal{E}_n, n \rangle} \in \mathcal{I}^+$ and \mathcal{J} is an ideal, we can find an $s_n \in 2^{2^n}$ such that $B_n = \varphi_n^{-1}(s_n) \in \mathcal{J}^+$. To see that B_n satisfies (1), pick a $g \in Q_0$. Then there exists a $k < 2^n$ and an $h \in E_k$ such that g = f(h). Since $B_n \subseteq A_{\langle \mathcal{E}_n, n \rangle}$, by (2) we have that $g \upharpoonright \{n\} \times B_n = f(h_k) \upharpoonright \{n\} \times B_n$. In particular, $g(p) = f(h_k)(n, p) = \varphi_n(p)(k) = s_n(k)$ for every $p \in B_n$. So, $g \upharpoonright \{n\} \times B_n$ is constant equal to $s_n(k)$ and (1) holds.

To finish the proof of the lemma pick a $b_n \in B_n$ for each $n < \omega$. Then, the set $S = \{ \langle n, b_n \rangle \in \{n\} \times B_n \colon n < \omega \}$ is a selector for $\{\{n\} \times B_n \colon n < \omega \}$. Let $\mathcal{I} = [\omega \times X]^{<\omega}$. Then \mathcal{I} is weakly selective and $S \in \mathcal{I}^+$. If we identify $2^{\omega \times X}$ with $\mathcal{P}(\omega \times X)$, then Q_0 can be treated as a prism in $\mathcal{P}(\omega \times X)$. Since $[\omega \times X]^{\omega}$ is residual in $\mathcal{P}(\omega \times X)$, by Proposition 2.2 we can assume that Q_0 is a prism in $[\omega \times X]^{\omega}$. So, by Proposition 2.7, there exist a subprism Q of Q_0 , a set $S_0 \in [S]^{\omega}$, and an i < 2 such that $g[S_0] = \{i\}$ for every $g \in Q$. Define $J = \{n < \omega \colon \langle n, b_n \rangle \in S_0\}$.

To see that the conclusion of the lemma holds take a $g \in Q$ and an $\langle n, b \rangle \in B$. Then $n \in J$ and $b \in B_n$. So, by (1), $g(n, b) = g(n, b_n) = i$, since $\langle n, b_n \rangle \in S_0$.

Lemma 3.7 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal containing all singletons and satisfying condition (#) from the definition of a rich ideal. Then the ideal $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$ also satisfies (#).

In particular, if \mathcal{J} is rich, then so is \mathcal{K} .

PROOF. Let $A \in \mathcal{K}^+$. Then $\operatorname{supp}(A)$ is infinite. Let $\mathcal{A} = \{A_{\xi} : \xi < \mathfrak{c}\} \subseteq [\operatorname{supp}(A)]^{\omega}$ be an almost disjoint family. Since \mathcal{J} satisfies (#), for every $n < \omega$ there exists an almost disjoint family $\mathcal{B}_n = \{B_{\xi}^n : \xi < \mathfrak{c}\} \subseteq \mathcal{P}((A)_n) \cap \mathcal{J}^+$. If for every $\xi < \mathfrak{c}$ we define

$$U_{\xi} = \bigcup\{\{n\} \times B_{\xi}^n \colon n \in A_{\xi}\},\$$

then the family $\{U_{\xi}: \xi < \mathfrak{c}\} \subseteq \mathcal{P}(A) \cap \mathcal{K}^+$ works. The other part of the lemma is consequence of this and of Lemma 3.6.

4 An ω_1 -generated crowded bad point.

Definition 5 If \mathcal{U} and \mathcal{V} are ultrafilters then, the *Fubini product* of \mathcal{U} and \mathcal{V} is defined as

$$\mathcal{U} \otimes \mathcal{V} = \{ A \subseteq \omega \times \omega \colon \{ n \colon (A)_n \in \mathcal{V} \} \in \mathcal{U} \}.$$

Proposition 4.1 (Folklore) If \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters in ω then $\mathcal{U} \otimes \mathcal{V}$ is a nonprincipal ultrafilter which is not a *P*-point, a *Q*-point, or even an ω_1 -OK point.

PROOF. It is easy to see that $\mathcal{U} \otimes \mathcal{V}$ is a nonprincipal ultrafilter. To see that $\mathcal{U} \otimes \mathcal{V}$ cannot be a *P*-point observe that the set $\{L_m : m < \omega\}$ of all sections $L_m = \{\langle m, n \rangle : n \in \omega\}$ is a partition of $\omega \times \omega$ into infinite pieces not in $\mathcal{U} \otimes \mathcal{V}$ and that every $X \in \mathcal{U} \otimes \mathcal{V}$ intersects infinitely many L_m 's on an infinite set.

To see that $\mathcal{U} \otimes \mathcal{V}$ cannot be a Q-point consider the partial partition $\{P_n : n < \omega\}$ of $\omega \times \omega$ where $P_n = \{\langle m, n \rangle : m \leq n\}$ for every $n < \omega$. Notice that $\bigcup_{n < \omega} P_n \in \mathcal{U} \otimes \mathcal{V}$. Let $\mathcal{P} \subseteq [\omega \times \omega]^{<\omega}$ be a partition of $\omega \times \omega$ such that $\{P_n : n < \omega\} \subseteq \mathcal{P}$. It is easy to see that there is no $X \in \mathcal{U} \otimes \mathcal{V}$ such that $|X \cap P| \leq 1$ for every $P \in \mathcal{P}$.

To see that $\mathcal{U} \otimes \mathcal{V}$ is not an ω_1 -OK point consider $\{V_n : n < \omega\} \subseteq \mathcal{U} \otimes \mathcal{V}$, where $V_n = \bigcup_{m > n} L_m$. By the way of contradiction, suppose that the sequence $\overline{\mathcal{U}} = \langle U_{\xi} \in \mathcal{U} \otimes \mathcal{V} : \xi < \omega_1 \rangle$ is OK for $\{V_n : n < \omega\}$. Then, by the pigeon hole principle, there exist an $m < \omega$ and an $X \in [\omega_1]^{\omega_1}$ such that $(U_{\xi})_m \in \mathcal{V}$ for every $\xi \in X$. Pick ordinals $\xi_1 < \xi_2 < \cdots < \xi_m$ in X. Since $\overline{\mathcal{U}}$ is OK for $\{V_n : n < \omega\}$ we have that $\bigcap_{i=1}^m U_{\xi_i} \subseteq^* V_m \subseteq \omega \times \omega \setminus L_m$. Therefore, $|\bigcap_{i=1}^m U_{\xi_i} \cap L_m| < \omega$. But also, $(\bigcap_{i=1}^m U_{\xi_i})_m = \bigcap_{i=1}^m (U_{\xi_i})_m \in \mathcal{V}$. This implies that $|(\bigcap_{i=1}^m U_{\xi_i}) \cap L_m| = \omega$, which is a contradiction.

Given $f, g \in \omega^{\omega}$ we write $g \leq^* f$ provided that $g(n) \leq f(n)$ for all but finitely many $n < \omega$. We say that an $F \subseteq \omega^{\omega}$ is *dominating* provided that for every $g \in \omega^{\omega}$ there exists an $f \in F$ such that $g \leq^* f$. The *dominating number* \mathfrak{d} is defined as the minimum cardinality of a dominating family in ω^{ω} . This and other cardinal invariants have been studied extensively in the literature. See for example [1] or [2]. It is easy to show that $\omega_1 \leq \mathfrak{d} \leq \mathfrak{c}$ and that this is all that can be said in ZFC about the value of \mathfrak{d} . For instance, the continuum hipothesis implies that $\mathfrak{d} = \omega_1 = \mathfrak{c}$, while Martin's Axiom + $\mathfrak{c} > \omega_1$ imply that $\mathfrak{d} = \mathfrak{c} > \omega_1$. See, for example [10].

In [5, sec. 1.3] Ciesielski and Pawlikowski proved that a weak version of CPA_{prism}^{game} , called CPA_{cube} , implies that $cof(\mathcal{N}) = \omega_1 < \mathfrak{c}^2$. It is known that this fact implies that $\mathfrak{d} = \omega_1$.

It is not difficult to prove that $\mathfrak{d} = \omega_1$ implies that for every countable infinite set X there is an $F \subseteq ([\omega_1]^{<\omega})^X$ of cardinality ω_1 which is \subseteq -dominant, that is, such that

for every $g \in ([\omega_1]^{<\omega})^X$ there is an $f \in F$ with $g(x) \subseteq f(x)$ for all $x \in X$.

This follows from the fact that $([\omega_1]^{<\omega})^X = \bigcup_{\alpha < \omega_1} ([\alpha]^{<\omega})^X$. This is the form of $\mathfrak{d} = \omega_1$ which we will use in the next proposition.

 $^{{}^{2}}cof(\mathcal{N}) = \min\{|\mathcal{A}| \colon \mathcal{A} \subseteq \mathcal{N} \; \forall X \in \mathcal{N} \; \exists Y \in \mathcal{A} \; (X \subseteq Y)\}, \text{ where } \mathcal{N} \text{ is the null ideal on } \mathfrak{C}.$

Proposition 4.2 Assume $\mathfrak{d} = \omega_1$ and let X and Y be countably infinite sets. If \mathcal{U} and \mathcal{V} are ω_1 -generated ultrafilters on X and Y, respectively, then their Fubini product $\mathcal{U} \otimes \mathcal{V}$ is also ω_1 -generated.

PROOF. Let $\{U_{\alpha}: \alpha < \omega_1\}$ and $\{V_{\beta}: \beta < \omega_1\}$ be the bases for \mathcal{U} and \mathcal{V} , respectively. Since $\mathfrak{d} = \omega_1$, there exists a \subseteq -dominant family $\langle f_{\gamma}: \gamma < \omega_1 \rangle \subseteq$ $([\omega_1]^{<\omega})^X$. We claim that the family $\{W_{\alpha,\gamma}: \langle \alpha, \gamma \rangle \in \omega_1 \times \omega_1\} \subseteq \mathcal{U} \otimes \mathcal{V}$, where $W_{\alpha,\gamma} = \bigcup \{\{x\} \times \bigcap_{\beta \in f_{\gamma}(x)} V_{\beta}: x \in U_{\alpha}\}$, is a basis for $\mathcal{U} \otimes \mathcal{V}$. To check this, pick an $A \in \mathcal{U} \otimes \mathcal{V}$. Then, $\{x \in X: \{y: \langle x, y \rangle \in A\} \in \mathcal{V}\} \in \mathcal{U}$. Pick an $\alpha < \omega_1$ such that $U_{\alpha} \subseteq \{x \in X: \{y: \langle x, y \rangle \in A\} \in \mathcal{V}\}$. Then, given an $x \in U_{\alpha}$ there exists a $\beta_x < \omega_1$ such that $V_{\beta_x} \subseteq \{y \in Y: \langle x, y \rangle \in A\}$. This implies that $\{x\} \times V_{\beta_x} \subseteq A$ for every $x \in U_{\alpha}$.

Consider the function $g: X \to [\omega_1]^{<\omega}$ defined as

$$g(x) = \begin{cases} \{\beta_x\} & \text{if } x \in U_\alpha \\ \emptyset & \text{otherwise.} \end{cases}$$

Since $\langle f_{\gamma} \colon \gamma < \omega_1 \rangle$ is a \subseteq -dominant family, there exists a $\gamma < \omega_1$ such that $g(x) \subseteq f_{\gamma}(x)$ for every $x \in U_{\alpha}$. This implies that $\beta_x \in f_{\gamma}(x)$ and that $\{x\} \times \bigcap_{\beta \in f_{\gamma}(x)} V_{\beta} \subseteq A$ for every $x \in U_{\alpha}$. Hence, $W_{\alpha,\gamma} \subseteq A$.

Theorem 4.3 CPA^{game}_{prism} implies that there exists an ω_1 -generated crowded ultrafilter which is not a *P*-point, a *Q*-point, or even an ω_1 -OK point.

PROOF. CPA^{game}_{prism} implies the existence of an ω_1 -generated crowded ultrafilter \mathcal{U} on \mathbb{Q} , see [4, prop. 4.25]. We will show that $\mathcal{U} \otimes \mathcal{U}$ is as desired.

By Proposition 4.1, it is not a *P*-point, a *Q*-point, or an ω_1 -OK point. Also, since CPA^{game}_{prism} implies $\mathfrak{d} = \omega_1$, by Proposition 4.2 the ultrafilter $\mathcal{U} \otimes \mathcal{U}$ is ω_1 -generated by some family \mathcal{B} .

To see that $\mathcal{U} \otimes \mathcal{U}$ can be treated as crowded, consider $\mathbb{Q} \times \mathbb{Q}$ as the product of $\langle \mathbb{Q}, \tau_d \rangle$ and $\langle \mathbb{Q}, \tau_s \rangle$, where τ_d is the discrete topology and τ_s is the standard topology. Then $\mathbb{Q} \times \mathbb{Q}$ is homemorphic to \mathbb{Q} .

For $B \in \mathcal{B}$ let $\overline{B} = \{x : (B)_x \in B\} \in \mathcal{U}\}$. Using Fact 2.5, for every $x \in \overline{B}$ we can choose a subset $B^x \in \operatorname{Perf}(\mathbb{Q})$ of $(B)_x$. Let $B^* = \bigcup\{\{x\} \times B^x : x \in \overline{B}\}$. Then B^* is a perfect subset of $\mathbb{Q} \times \mathbb{Q}$. Thus, $\{B^* : B \in \mathcal{B}\}$ is a basis of $\mathcal{U} \otimes \mathcal{U}$ of cardinality ω_1 formed with perfect subsets of $\mathbb{Q} \times \mathbb{Q}$.

5 A crowded Q-point which is not an ω_1 -OK point.

Definition 6 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X. If $A, B \in \mathcal{J}^+$ we write $A \preceq^{\mathcal{J}} B$ if and only if $A \setminus B \in \mathcal{J}$.

Definition 7 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X. We say that \mathcal{J} has the *extension property* provided that for every $\preceq^{\mathcal{J}}$ -decreasing sequence $\langle A_n \in \mathcal{J}^+ : n < \omega \rangle$ there exists an $A \in \mathcal{J}^+$ such that $A \preceq^{\mathcal{J}} A_n$ for every $n < \omega$.

Let X and \mathcal{J} be as above and let $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$. We will consider a relation \sqsubseteq defined on \mathcal{K}^+ as

 $A \sqsubseteq B \Leftrightarrow \operatorname{supp}(A) \subseteq^* \operatorname{supp}(B) \& (A)_n \preceq^{\mathcal{J}} (B)_n \forall n \in \operatorname{supp}(A) \cap \operatorname{supp}(B).$

Note that for $A, B \in \mathcal{K}^+$

$$A \subseteq B \Longrightarrow A \sqsubseteq B \Longrightarrow A \preceq^{\mathcal{K}} B$$

but none of these implications can be reversed. Also, it is not difficult to see that the relation \sqsubseteq is not transitive. Nevertheless, we say that for $\xi < \omega_1$ a sequence $\langle U_\eta \in \mathcal{K}^+ : \eta < \xi \rangle$ is \sqsubseteq -decreasing provided $U_\eta \sqsubseteq U_\zeta$ for every $\zeta < \eta < \xi$.

Lemma 5.1 Let X be a countably infinite set, let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X with the extension property, and let $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$. Then, for every $\xi < \omega_1$ and every \sqsubseteq -decreasing sequence $\langle U_\eta \in \mathcal{K}^+ : \eta < \xi \rangle$ there exists a $C \in \mathcal{K}^+$ such that $C \sqsubseteq U_\eta$ for every $\eta < \xi$. Moreover, the sequence $\langle U_\eta : \eta \leq \xi \rangle$ is \sqsubseteq -decreasing for every $U_\xi \in \mathcal{P}(C) \cap \mathcal{K}^+$.

PROOF. sequence. Since the sequence $\langle \operatorname{supp}(U_{\eta}) : \eta < \xi \rangle$ is \subseteq^* -decreasing, we can find an $S \in [\omega]^{\omega}$ such that $S \subseteq^* U_{\eta}$ for every $\eta < \xi$. For each $m \in S$ consider the set $I_m = \{\eta < \xi : m \in \operatorname{supp}(U_{\eta})\}$. Then, since \mathcal{J} has the extension property, we can find a $C_m \in \mathcal{J}^+$ such that $C_m \preceq^{\mathcal{J}} (U_{\eta})_m$ for every $\eta \in I_m$. Put $C = \bigcup \{\{m\} \times C_m : m \in S\}$. Then clearly $C \sqsubseteq U_{\eta}$ for every $\eta < \xi$. The additional part follows from the fact that $U \subset C \sqsubseteq V$ implies $U \sqsubseteq V$. **Lemma 5.2** Let X, \mathcal{J} , and \mathcal{K} be as above. Let $\langle U_{\xi} \in \mathcal{K}^+ : \xi < \omega_1 \rangle$ be a \sqsubseteq -decreasing sequence in \mathcal{K}^+ such that for every $g \in \omega \times X$ there exists a $\xi < \omega_1$ such that $g \upharpoonright U_{\xi}$ is constant. Then, the family $\{U_{\xi} : \xi < \omega_1\}$ forms a base for a nonprincipal ultrafilter on $\omega \times X$ which is not an ω_1 -OK point.

PROOF. We check first that the family $\{U_{\xi}: \xi < \omega_1\}$ has SFIP. So, choose $\xi_0 < \cdots < \xi_n < \omega_1$. Since $U_{\xi_n} \sqsubseteq \cdots \sqsubseteq U_{\xi_1} \sqsubseteq U_{\xi_0}$ we can pick an $m \in \bigcap_{i \leq n} \operatorname{supp}(U_{\xi_i})$. If $I_m = \{\xi < \omega_1 : m \in \operatorname{supp}(A_{\xi})\}$, then $\{\xi_i : i \leq n\} \subseteq I_m$. Therefore, $(U_{\xi_n})_m \preceq^{\mathcal{J}} \cdots \preceq^{\mathcal{J}} (U_{\xi_0})_m$. This implies that $(\bigcap_{i \leq n} U_{\xi_i})_m \in \mathcal{J}^+$. In particular, $(\bigcap_{i \leq n} U_{\xi_i})_m$ is infinite and so is $\bigcap_{i \leq n} U_{\xi_i}$. Let \mathcal{U} be a filter generated $\{U_{\xi}: \xi < \omega_1\}$.

To see that \mathcal{U} is actually an ultrafilter, pick any $A \subseteq \omega \times X$. Then, there exists a $\xi < \omega_1$ and an i < 2 such that $\chi_A \upharpoonright U_{\xi}$ is constant equal i. If i = 0then $U_{\xi} \subseteq (\omega \times X) \setminus A$ and $(\omega \times X) \setminus A \in \mathcal{U}$. If i = 1 then $U_{\xi} \subseteq A$ and $A \in \mathcal{U}$. Therefore, \mathcal{U} is an ultrafilter and $\{U_{\xi} : \xi < \omega_1\}$ is a base for \mathcal{U} . Observe that \mathcal{U} is nonprincipal because each set in \mathcal{U} contains an infinite set U_{ξ} .

To see that \mathcal{U} is not an ω_1 -OK point consider a sequence $\langle V_n \in \mathcal{U} : n < \omega \rangle$, where $V_n = \bigcup_{i>n} (\{i\} \times X)$. Suppose that there exists a $\langle W_{\xi} \in \mathcal{U} : \xi < \omega_1 \rangle$ which is OK for $\langle V_n \in \mathcal{U} : n < \omega \rangle$. Since $\{U_{\xi} : \xi < \omega_1\}$ is a basis for \mathcal{U} , for every for every $\xi < \omega_1$ there exists a $U_{\alpha_{\xi}} \subseteq W_{\xi}$. This implies that

$$\langle U_{\alpha_{\xi}} : \xi < \omega_1 \rangle$$
 is OK for $\langle V_n \in \mathcal{U} : n < \omega \rangle$.

By the pigeon hole principle, there exist a $T \in [\omega_1]^{\omega_1}$ and an $m < \omega$ such that $m = \min(\operatorname{supp}(U_{\alpha_{\xi}}))$ for every $\xi \in T$. Hence, $T \subseteq I_m$. Pick any ordinals $\alpha_{\xi_0} < \cdots < \alpha_{\xi_m}$ in T. Since $\langle U_{\alpha_{\xi}} : \xi < \omega_1 \rangle$ is OK for $\langle V_n \in \mathcal{U} : < \omega \rangle$ we have that $\bigcap_{i \leq m} U_{\alpha_{\xi_i}} \subseteq^* V_m$. Hence, $|(\bigcap_{i \leq m} U_{\alpha_{\xi_i}}) \cap (\{m\} \times X)| < \omega$ by the definition of V_m . On the other hand, $\{\alpha_{\xi_i} : i \leq m\} \subseteq I_m$. Therefore, $(U_{\alpha_{\xi_0}})_m \preceq^{\mathcal{J}} \cdots \preceq^{\mathcal{J}} (U_{\alpha_{\xi_m}})_m$. This implies that $|(\bigcap_{i \leq m} U_{\alpha_{\xi_i}})_m| = \omega$. So, $|(\bigcap_{i \leq m} U_{\alpha_{\xi_i}}) \cap (\{m\} \times X)| = \omega$. This contradiction indicates that \mathcal{U} cannot be an ω_1 -OK point.

Let X, \mathcal{J} , and \mathcal{K} be as before and let $\mathcal{D} \subseteq \mathcal{J}^+$ be dense in the sense that for every $A \in \mathcal{J}^+$ there exists a $D \in \mathcal{D}$ such that $D \subseteq A$. Then, the family $\mathcal{D}^* \subseteq \mathcal{K}^+$ consisting of the sets of the form $\bigcup \{\{n\} \times D_n : n \in I\}$ is dense in \mathcal{K}^+ , where $I \in [\omega]^{\omega}$ and $D_n \in \mathcal{D}$ for every $n \in I$. Recall also that $\mathcal{P}_{\omega \times X}$ is the space of all partitions of $\omega \times X$ into finite pieces, as defined in Section 3.

Theorem 5.3 Let X be a countably infinite set, let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal with the extension property, and let $\mathcal{D} \subseteq \mathcal{J}^+$ be dense. If \mathcal{J} is prism-friendly

and Q-like and $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$, then $\operatorname{CPA}_{\operatorname{prism}}^{\operatorname{game}}$ implies that there exists an ω_1 -generated Q-point \mathcal{U} on $\omega \times X$ which is not an ω_1 -OK point and such that $\mathcal{U} \cap \mathcal{D}^*$ is a basis for \mathcal{U} .

PROOF. We construct a \sqsubseteq -decreasing sequence $\langle U_{\xi} \in \mathcal{K}^+ \cap \mathcal{D}^* : \xi < \omega_1 \rangle$ such that:

- (i) For every $g \in 2^{\omega \times X}$ there exists a $\xi < \omega_1$ such that $g \upharpoonright U_{\xi}$ is constant.
- (ii) For every $z \in \mathcal{P}_{\omega \times X}$ there exists a $\xi < \omega_1$ such that $|z(k) \cap U_{\xi}| \le 1$ for every $k \in \omega$.

If this construction is possible, then, by Lemma 5.1, $\{U_{\xi} \in \mathcal{D}^* : \xi < \omega_1\}$ is a basis for a nonprincipal ultrafilter \mathcal{U} on $\omega \times X$ which is not an ω_1 -OK point. To see that \mathcal{U} is a Q-point pick an arbitrary $z \in \mathcal{P}_{\omega \times X}$. Then, by condition (ii), there exists a $\xi < \omega_1$ such that $|z(k) \cap U_{\xi}| \leq 1$ for every $k < \omega$. Therefore, \mathcal{U} is an ω_1 -generated Q-point.

Let $\mathcal{Y} = 2^{\omega \times X} \cup \mathcal{P}_{\omega \times X}$ and consider it with the topology τ formed with all sets $A \subseteq \mathcal{Y}$ such that $A \cap 2^{\omega \times X}$ and $A \cap \mathcal{P}_{\omega \times X}$ are open in $2^{\omega \times X}$ and $\mathcal{P}_{\omega \times X}$, respectively. Then $\langle \mathcal{Y}, \tau \rangle$ is a Polish space. Note that, by Lemmas 3.5 and 3.6, the ideal \mathcal{K} is Q-like and prism-friendly. For a prism P in \mathcal{Y} and $U \in \mathcal{K}^+$ we choose a subprism Q(U, P) of P and $B(U, P) \in \mathcal{P}(U) \cap \mathcal{D}^*$ as follows.

- If $U \cap 2^{\omega \times X} \neq \emptyset$, then we can choose a subprism $P_0 \subseteq 2^{\omega \times X}$ of P. The choice of P_0 is obvious if P is a singleton; otherwise it follows from Proposition 2.2. Then Q(U, P) is a subprism of P_0 such that Q(U, P) and $B(U, P) \in \mathcal{P}(U) \cap \mathcal{K}^+$ satisfy condition (•) from the definition of the prism-friendly ideal.
- If $U \cap 2^{\omega \times X} = \emptyset$, then P is a prism in $\mathcal{P}_{\omega \times X}$. Then, by Lemma 3.3, there exist a subprism Q(U, P) of P and a $B(U, P) \in \mathcal{P}(U) \cap \mathcal{K}^+$ such that $|z(k) \cap B(U, P)| \leq 1$ for every $z \in Q(U, P)$ and $k < \omega$.

We can also assume that $B(U, P) \in \mathcal{D}^*$, since \mathcal{D}^* is dense in \mathcal{K}^+ .

Also, for $\xi < \omega_1$ and a \sqsubseteq -decreasing sequence $\langle U_\eta \in \mathcal{K}^+ : \eta < \xi \rangle$ let $C_{\xi} = C(\langle U_\eta : \eta < \xi \rangle)$ be such that $C_{\xi} \sqsubseteq U_{\eta}$ for every $\eta < \xi$. Its existence follows from Lemma 5.1. Consider the following strategy S for Player II:

$$S(\langle \langle P_{\eta}, Q_{\eta} \rangle \colon \eta < \xi \rangle, P_{\xi}) = Q(C(\langle U_{\eta} \colon \eta < \xi \rangle), P_{\xi}),$$

where the U_{η} 's are defined inductively by $U_{\eta} = B(C(\langle U_{\zeta} : \zeta < \eta \rangle), P_{\eta}).$

By CPA^{game}_{prism}, the strategy S is not a winning strategy for Player II. So, there exists a game $\langle \langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ played according to S in which Player II loses. Thus, $\mathcal{Y} = \bigcup_{\xi < \omega_1} Q_{\xi}$. Let $\langle U_{\xi} \in \mathcal{D}^* : \xi < \omega_1 \rangle \subseteq \mathcal{K}^+$ be the sequence created in this game. This sequence is \sqsubseteq -decreasing by construction and Lemma 5.1. By the observations made before we only need to check that $\langle U_{\xi} : \xi < \omega_1 \rangle$ satisfy conditions (i) and (ii).

If $g \in 2^{\omega \times X}$, then there exists a $\xi < \omega_1$ such that $g \in Q_{\xi}$. So, $Q_{\xi} \subseteq 2^{\omega \times X}$ and, by the construction, $g \upharpoonright U_{\xi}$ is constant. This proves (i). Similarly, if $z \in \mathcal{P}_{\omega \times X}$, then there exists a $\xi < \omega_1$ such that $z \in Q_{\xi}$. Hence, $Q_{\xi} \subseteq \mathcal{P}_{\omega \times X}$ and, by the construction, $|z(k) \cap U_{\xi}| \leq 1$ for every $k < \omega$. This proves (ii).

Corollary 5.4 CPA^{game}_{prism} implies that there exists an ω_1 -generated crowded Q-point which is not an ω_1 -OK point.

PROOF. Consider $X = \omega \times \mathbb{Q}$ with the product topology, where ω has the discrete topology and \mathbb{Q} has the subspace topology inherited from \mathbb{R} . Then X is homeomorphic to \mathbb{Q} . We will find an ideal $\mathcal{J} \subseteq \mathcal{P}(X)$ to which we will apply Theorem 5.3.

Let $\mathcal{J} = [\omega]^{<\omega} \otimes \mathcal{I}_S$. It is clear that \mathcal{J} contains all singletons. Also, \mathcal{J} is prism-friendly by Lemmas 3.4 and 3.6 and Q-like by Lemmas 3.4 and 3.5. To see that \mathcal{J} has the extension property pick a $\preceq^{\mathcal{J}}$ -decreasing sequence $\langle A_n \in \mathcal{J}^+ : n < \omega \rangle$. By induction construct an increasing sequence $\langle n_k : k < \omega \rangle$ such that $n_k \in \operatorname{supp}(A_k) \setminus \operatorname{supp}(\bigcup_{i < k} (A_k \setminus A_i))$. The choice can be made, since the set $\operatorname{supp}(\bigcup_{i < k} (A_k \setminus A_i))$ is finite, as $\bigcup_{i < k} (A_k \setminus A_i) \in \mathcal{J}$. The choice of n_k gives also $(\bigcup_{i < k} (A_k \setminus A_i))_{n_k} \in \mathcal{I}_S$. Thus, $(\bigcap_{i \le k} A_i)_{n_k} \notin \mathcal{I}_S$. Put $B = \bigcup \{\{n_k\} \times (\bigcap_{i \le k} A_i)_{n_k} : k < \omega\}$. Then $B \in \mathcal{J}^+$ and $B \preceq^{\mathcal{J}} A_n$ for every $n < \omega$.

Since $\overline{\mathcal{D}} = \operatorname{Perf}(\mathbb{Q})$ is dense in $(\mathcal{I}_S)^+$, the family $\mathcal{D} = \overline{\mathcal{D}}^*$ is dense in \mathcal{J}^+ . Applying Theorem 5.3 to \mathcal{J} and \mathcal{D} , we can find an ω_1 -generated Q-point \mathcal{U} on $\omega \times X$ which is not an ω_1 -OK point and such that $\mathcal{U} \cap \mathcal{D}^*$ contains a basis for \mathcal{U} . Since $\omega \times X$ is homeomorphic to \mathbb{Q} and \mathcal{D}^* consists of perfect set in $\omega \times X$, it follows that \mathcal{U} is crowded.

6 Crowded ω_1 -generated ω_1 -OK points which are not *P*-points.

In this section we prove that the axiom $\text{CPA}_{\text{prism}}^{\text{game}}$ implies the existence of an ω_1 -OK point which is not a *P*-point. For this, we follow the schema used in [9] for the construction of such an ultrafilter in the model of ZFC obtained by adding Sacks reals side-by-side. Since that proof uses CH in the ground model, we have to modify things a bit to make it work in the context of $\text{CPA}_{\text{prism}}^{\text{game}}$. One possiblity for avoiding the use of CH is to replace it with some weaker principle consistent with $\text{CPA}_{\text{prism}}^{\text{game}}$ like, for instance, $\mathfrak{d} = \omega_1$. Let Γ denote the set of all nonzero limit ordinals below ω_1 . The following fact is a simple generalization of the remark above Proposition 4.2.

Fact 6.1 $(\mathfrak{d} = \omega_1)$ There exist a sequence $\langle g_{\delta} : \delta < \omega_1 \rangle$ of functions from ω into $[\omega_1]^{<\omega}$ and a partition $\{S_{\delta} \in [\omega_1]^{\omega_1} : \delta < \omega_1\}$ of Γ such that:

- For every $h: \omega \to \omega_1$ there is a $\delta < \omega_1$ such that $h(n) \in g_{\delta}(n)$ for every $n < \omega$.
- $\bigcup \operatorname{rang}(g_{\delta}) = \min(S_{\delta})$ for every $\delta < \omega_1$.

Fix a countably infinite set X and put $\mathcal{P} = \{\{m\} \times X : m < \omega\}$. Then, \mathcal{P} is a partition of $\omega \times X$ into infinitely many infinite pieces. The idea of the proof is to find a sequence $\langle U_{\alpha} : \alpha < \omega_1 \rangle$ that forms a base for a nonprincipal ultrafilter \mathcal{U} on $\omega \times X$ such that every U_{α} has infinite intersection with infinitely many members of \mathcal{P} and, for each $\delta < \omega_1$,

$$\langle U_{\alpha} \colon \alpha \in S_{\delta} \rangle$$
 is OK for $\left\{ \bigcap_{\eta \in g_{\delta}(n)} U_{\eta} \colon n < \omega \right\}.$

To see that such an \mathcal{U} is an ω_1 -OK point pick $\langle V_n : n < \omega \rangle \in (\mathcal{U})^{\omega}$. Since the sequence $\langle U_{\alpha} : \alpha < \omega_1 \rangle$ is a basis for \mathcal{U} , for every $n < \omega$ there is a $\xi_n < \omega_1$ such that $U_{\xi_n} \subseteq V_n$. Therefore, there exists a $\delta < \omega_1$ such that $\xi_n \in g_{\delta}(n)$ for every $n < \omega$. Then $\langle U_{\alpha} : \alpha \in S_{\delta} \rangle$ is OK for $\langle V_n : n < \omega \rangle$ since for any sequence $\alpha_0 < \cdots < \alpha_n$ of elements in S_{δ} we have:

$$\bigcap_{i \le n} U_{\alpha_i} \subseteq^* \bigcap_{\eta \in g_{\delta}(n)} U_{\eta} \subseteq U_{\xi_n} \subseteq V_n.$$

Observe that \mathcal{U} cannot be a *P*-point because each U_{α} intersects infinitely many members of \mathcal{P} on an infinite set.

Let us start with fixing a rich ideal $\mathcal{J} \subseteq \mathcal{P}(X)$ and a dense $\mathcal{D} \subseteq \mathcal{J}^+$. We will consider the ideal $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$ on $\omega \times X$ and the set $\mathcal{D}^* \subseteq \mathcal{K}^+$ as defined in Section 5. We also fix, for each $\xi \in \Gamma$, an enumeration $\{\xi_i : i < \omega\}$ of ξ .

Let \mathcal{T} be the set of triples $\langle I, f, B \rangle$ satisfying the following requirements:

- I is an infinite subset of ω ,
- $f \in \prod_{m < \omega} (\mathcal{P}(X) \cap \mathcal{D})$, and
- $B \in \prod_{m \in \omega} (\mathcal{P}(f(m)) \cap \mathcal{D})^{\omega_1}$ such that every B(m) is a sequence of almost disjoint sets.
- If $\xi \leq \omega_1$ and $\langle \langle I_\eta, f_\eta, B_\eta \rangle \in \mathcal{T} : \eta < \xi \rangle$, the sequence $\langle U_\eta : \eta < \xi \rangle$ associated with it is defined by

$$U_{\eta} = \bigcup \{\{m\} \times f_{\eta}(m) \colon m \in I_{\eta}\}.$$

Note that each U_{η} is in \mathcal{D}^* .

To prove that the resulting ultrafilter \mathcal{U} in our construction is in fact an ω_1 -OK point we will consider for every $\delta < \omega_1$, $\eta < \xi$, and $m < \omega$ the sets $K(\eta, m) = \{\zeta < \eta : f_\eta(m) \subseteq f_\zeta(m)\}$, the numbers $k_\delta(\eta, m) = |K(\eta, m) \cap S_\delta|$, and the functions l_δ defined by:

$$l_{\delta}(\eta, m) = \begin{cases} \infty & \text{if } \bigcup \operatorname{rang}(g_{\delta}) \subseteq K(\eta, m) \\ -1 & \text{if } g_{\delta}(0) \not\subseteq K(\eta, m) \\ \max\{l < \omega \colon \bigcup g_{\delta}[l+1] \subseteq K(\eta, m)\} & \text{otherwise.} \end{cases}$$

Definition 8 For $\xi \leq \omega_1$ a sequence $\langle \langle I_\eta, f_\eta, B_\eta \rangle \in \mathcal{T} : \eta < \xi \rangle$ is good if:

- (a) For every $\zeta < \eta < \xi$ and $m < \omega$, either $f_{\zeta}(m) \cap f_{\eta}(m)$ is finite, or there exists a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_{\zeta}(m)(\gamma) \subset f_{\zeta}(m)$.
- (b) For every $0 < \eta < \xi$ and $m < \omega$ there exists a $\zeta < \eta$ such that $f_{\eta}(m) \subseteq B_{\zeta}(m)(\eta)$.

 CPA_{prism}^{game} and ultrafilters on ω and \mathbb{Q} July 15, 2004

(c) If $\eta < \xi$ is limit and $\{m_i : i < \omega\}$ is the increasing enumeration of I_{η} , then

$$m_i \in \bigcap_{j \le i} I_{\eta_j}$$
 and $f_{\eta}(m_i) \subseteq \bigcap_{j \le i} f_{\eta_j}(m_i),$

where $\{\eta_j : j < \omega\}$ is our fixed enumeration of η .

- (d) $f_{\eta}(m) = B_0(m)(\eta)$ for every $m \in \omega \setminus I_{\eta}$.
- (e) If $\eta + 1 < \xi$, then $I_{\eta+1} \subseteq I_{\eta}$ and $f_{\eta+1}(m) \subseteq B_{\eta}(m)(\eta+1) \subseteq f_{\eta}(m)$ for every $m \in I_{\eta+1}$.
- (f) If $\delta < \omega_1, \eta < \xi$, and $\eta \in S_{\delta}$, then $l_{\delta}(\eta, m) > k_{\delta}(\eta, m)$ for every $m \in I_{\eta}$.
- (g) If $\delta < \omega_1$, $\eta < \xi$, and $\bigcup \operatorname{rang}(g_{\delta}) \subseteq \eta$, then

$$\lim_{\substack{m \in I_{\eta} \\ m \to \infty}} (l_{\delta}(\eta, m) - k_{\delta}(\eta, m)) = \infty.$$

Remark 6.2 It follows from (c) and (e) that if $\zeta < \eta < \xi$, then $I_{\eta} \subseteq^* I_{\zeta}$.

Remark 6.3 It is also easy to check that if $\xi \leq \omega_1$ is a limit ordinal, then the sequence $\langle \langle I_{\zeta}, f_{\zeta}, B_{\zeta} \rangle \in \mathcal{T} : \zeta < \xi \rangle$ is good if and only if the sequence $\langle \langle I_{\zeta}, f_{\zeta}, B_{\zeta} \rangle \in \mathcal{T} : \zeta < \eta \rangle$ is good for every $\eta < \xi$.

Remark 6.4 It is not difficult to see that

if
$$\alpha < \beta < \xi$$
, then $f_{\beta}(m) \subseteq f_{\alpha}(m)$ for all but finitely many $m \in I_{\beta}$. (3)

If $\beta \in \Gamma$ this follows from (c). If $\Gamma \cap (\alpha, \beta] = \emptyset$, then it follows from (e). If $\Gamma \cap (\alpha, \beta] \neq \emptyset$ then there exist a maximal $\gamma \in \Gamma \cap (\alpha, \beta]$ and, by the above two cases, $f_{\beta}(m) \subseteq f_{\gamma}(m) \subseteq f_{\alpha}(m)$ for all but finitely many $m \in I_{\beta}$.

Remark 6.5 For every $0 < \eta < \xi$ and $m < \omega$ there exists a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_0(m)(\gamma)$. This follows from condition (b), since every strictly decreasing sequence of ordinals is finite.

The dual filter of an ideal \mathcal{K} on a set $\omega \times X$ is the family $\mathcal{F}_{\mathcal{K}}$ defined as $\mathcal{F}_{\mathcal{K}} = \{(\omega \times X) \setminus A : A \in \mathcal{K}\}$. The importance of the definition of a good sequence derives from the following lemma.

Lemma 6.6 Let X be a countably infinite set, $\mathcal{J} \subseteq \mathcal{P}(X)$ a rich ideal in X, $\mathcal{D} \subseteq \mathcal{J}^+$ a dense family, and let $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$. If $\langle \langle I_{\xi}, f_{\xi}, B_{\xi} \rangle \in \mathcal{T} : \xi < \omega_1 \rangle$ is a good sequence such that for every $g \in 2^{\omega \times X}$ there exists a $\xi < \omega_1$ such that $g \upharpoonright U_{\xi}$ is constant, then $\langle U_{\xi} \in \mathcal{D}^* : \xi < \omega_1 \rangle$ forms a base for a nonprincipal ultrafilter on $\omega \times X$ extending $\mathcal{F}_{\mathcal{K}}$ which is an ω_1 -OK point but not a P-point.

PROOF. The fact that $\{U_{\xi}: \xi < \omega_1\} \subseteq \mathcal{D}^*$ follows immediately from the definition of U_{η} and \mathcal{D}^* .

Next we prove that $\{U_{\xi}: \xi < \omega_1\}$ forms a base for a nonprincipal ultrafilter \mathcal{U} on $\omega \times X$ extending the filter $\mathcal{F}_{\mathcal{K}}$. Given $\xi_0 < \cdots < \xi_n$ pick a $\gamma \in \Gamma$ with $\gamma > \xi_n$. By (c), we have that almost every $m \in I_{\gamma}$ is in $\bigcap_{i \leq n} I_{\xi_i}$ and that $f_{\gamma}(m) \subseteq \bigcap_{i \leq n} f_{\xi_i}(m)$. Therefore, $\bigcap_{i \leq n} U_{\xi_i} \in \mathcal{K}^+$ and $\{U_{\xi}: \xi < \omega_1\}$ can be extended to a proper filter \mathcal{U} on $\omega \times X$. If $A \subseteq \omega \times X$, then $\chi_A \in 2^{\omega \times X}$ and there exist a $\xi < \omega_1$ and an i < 2 such that $\chi_A \upharpoonright U_{\xi}$ is constant equal *i*. If i = 1 then $U_{\xi} \subseteq A$ and $A \in \mathcal{U}$. If i = 0 then $U_{\xi} \subseteq (\omega \times X) \setminus A$ so $(\omega \times X) \setminus A \in \mathcal{U}$. This proves that \mathcal{U} is an ultrafilter and that $\{U_{\xi}: \xi < \omega_1\}$ is a base for \mathcal{U} . Since no $A \in \mathcal{K}$ contains any U_{ξ} , it follows that \mathcal{U} extends $\mathcal{F}_{\mathcal{K}}$. In particular, \mathcal{U} is nonprincipal.

To see that \mathcal{U} is not a *P*-point notice that every U_{ξ} intersects infinitely many pieces of the partition $\mathcal{P} = \{\{m\} \times X : m < \omega\}$ on an infinite set and so does every $V \in \mathcal{U}$.

To prove that \mathcal{U} is an ω_1 -OK point it is enough to prove that for every $\delta < \omega_1$

$$\langle U_{\alpha} \colon \alpha \in S_{\delta} \rangle$$
 is OK for $\left\{ \bigcap_{\eta \in g_{\delta}(n)} U_{\eta} \colon n < \omega \right\}.$ (4)

Pick $\delta < \omega_1$ and $\xi_0 < \cdots < \xi_n$ in S_{δ} . First, we prove that for every $m \in I_{\xi_n}$

either
$$\bigcap_{i \le n} f_{\xi_i}(m)$$
 is finite, or $\bigcap_{i \le n} f_{\xi_i}(m) \subseteq \bigcap_{\eta \in g_\delta(n)} f_\eta(m).$ (5)

Indeed, assume that $\bigcap_{i\leq n} f_{\xi_i}(m)$ is infinite. Then, by part (a) of Definition 8, $\xi_i \in K(\xi_n, m) \cap S_{\delta}$ for each $i \leq n-1$. Therefore, $k_{\delta}(\xi_n, m) \geq n$ and $l_{\delta}(\xi_n, m) \geq n+1$ by Definition 8(f). In particular, $g_{\delta}(n) \subseteq K(\xi_n, m)$. Hence, by the definition of $K(\eta, m)$,

$$\bigcap_{i \le n} f_{\xi_i}(m) \subseteq f_{\xi_n}(m) \subseteq \bigcap_{\eta \in K(\xi_n, m)} f_{\eta}(m) \subseteq \bigcap_{\eta \in g_{\delta}(n)} f_{\eta}(m).$$

 CPA_{prism}^{game} and ultrafilters on ω and \mathbb{Q} July 15, 2004

Also, Definition 8(c) implies that $f_{\xi_n}(m) \subseteq \bigcap_{\eta \in g_{\delta}(n)} f_{\eta}(m)$ for all but finitely many $m \in I_{\xi_n}$. Thus, the set $s = \left\{ m \in I_{\xi_n} \colon \bigcap_{i \leq n} f_{\xi_i}(m) \not\subseteq \bigcap_{\eta \in g_{\delta}(n)} f_{\eta}(m) \right\}$ is finite. Moreover, by (5), $\bigcap_{i \leq n} f_{\xi_i}(m)$ is finite for every $m \in s$. So,

$$\begin{split} \bigcap_{i \leq n} U_{\xi_{i}} &= \bigcup_{m \in \bigcap_{i \leq n} I_{\xi_{i}}} \left(\{m\} \times \bigcap_{i \leq qn} f_{\xi_{i}}(m) \right) \\ &\subseteq \bigcup_{m \in I_{\xi_{n}}} \left(\{m\} \times \bigcap_{i \leq n} f_{\xi_{i}}(m) \right) \\ &= \bigcup_{m \in s} \left(\{m\} \times \bigcap_{i \leq n} f_{\xi_{i}}(m) \right) \cup \bigcup_{m \in I_{\xi_{n}} \setminus s} \left(\{m\} \times \bigcap_{i \leq n} f_{\xi_{i}}(m) \right) \\ &\subseteq^{*} \bigcup_{m \in I_{\xi_{n}} \setminus s} \left(\{m\} \times \bigcap_{\eta \in g_{\delta}(n)} f_{\xi_{i}}(m) \right) \\ &\subseteq \bigcup_{m \in I_{\xi_{n}}} \left(\{m\} \times \bigcap_{\eta \in g_{\delta}(n)} f_{\xi_{i}}(m) \right) = \bigcup_{\eta \in g_{\delta}(n)} U_{\eta}, \end{split}$$

which proves (4). So \mathcal{U} is an ω_1 -OK point.

Lemma 6.7 Let $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \in \mathcal{T} : \eta < \xi \rangle$ be a sequence satisfying condition (a) from Definition 8 and let $\alpha < \beta < \xi$ and $m < \omega$ be such that $f_{\beta}(m) \subseteq B_{\alpha}(m)(\beta)$. Then $K(\beta, m) = K(\alpha, m) \cup \{\alpha\}$. In particular, if the sequence satisfies conditions (a) and (b) from Definition 8, then the set $K(\eta, m)$ is finite for every $\eta < \xi$ and $m < \omega$.

PROOF. If $\eta \in K(\beta, m)$, then $\eta < \beta$ and $f_{\beta}(m) \subseteq f_{\eta}(m)$. Also, since $f_{\beta}(m) \subseteq B_{\alpha}(m)(\beta) \subseteq f_{\alpha}(m)$ we have that $|f_{\eta}(m) \cap f_{\alpha}(m)| = \omega$. If $\alpha < \eta$, then, by condition (a), there exists a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_{\alpha}(m)(\gamma)$; therefore $f_{\eta}(m) \subseteq B_{\alpha}(m)(\gamma) \cap B_{\alpha}(m)(\beta)$, which is impossible. Thus, $\eta \leq \alpha$. If $\eta < \alpha$, then, again by (a), there is a $\gamma \leq \alpha$ such that $f_{\alpha}(m) \subseteq B_{\eta}(m)(\gamma)$. Since $B_{\eta}(m)(\gamma) \subseteq f_{\eta}(m)$, we conclude that $f_{\alpha}(m) \subseteq f_{\eta}(m)$. Therefore, $\eta \in K(\alpha, m)$ and this proves that $K(\beta, m) \subseteq K(\alpha, m) \cup \{\alpha\}$.

Since $f_{\beta}(m) \subseteq B_{\alpha}(m)(\beta) \subseteq f_{\alpha}(m)$ we have that $\alpha \in K(\beta, m)$. If $\eta \in K(\alpha, m)$, then $f_{\alpha}(m) \subseteq f_{\eta}(m)$. But since $f_{\beta}(m) \subseteq B_{\alpha}(m)(\beta) \subseteq f_{\alpha}(m)$ we

 CPA_{prism}^{game} and ultrafilters on ω and \mathbb{Q} July 15, 2004

have that $f_{\beta}(m) \subseteq f_{\eta}(m)$. Therefore, $\eta \in K(\beta, m)$ and this proves that $K(\alpha, m) \cup \{\alpha\} \subseteq K(\beta, m)$. Thus, $K(\beta, m) = K(\alpha, m) \cup \{\alpha\}$.

Since condition (b) implies that for every $0 < \eta < \xi$ and $m < \omega$ there exists a $\zeta < \eta$ such that $f_{\eta}(m) \subseteq B_{\zeta}(m)(\eta)$, we have that for every $0 < \eta < \xi$ there exists a $\zeta < \eta$ such that $K(\eta, m) = K(\zeta, m) \cup \{\zeta\}$. Since $K(0, m) = \emptyset$ for every $m < \omega$, we can prove, by induction on η , that $K(\eta, m)$ is finite for every $\eta < \xi$ and $m < \omega$.

Lemma 6.8 If $\xi \in \Gamma$ and $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \in \mathcal{T} : \eta < \xi \rangle$ is good, then there exists an $\langle I_{\xi}, f_{\xi}, B_{\xi} \rangle \in \mathcal{T}$ such that the sequence $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \in \mathcal{T} : \eta \leq \xi \rangle$ is good.

PROOF. Let $\{\xi_j: j < \omega\}$ be the fixed enumeration of ξ . Since S_{δ} 's are pairwise disjoint, the set $\{\delta < \omega_1: \min(S_{\delta}) < \xi\}$ is countable and it can be enumerated as $\{\delta_i: i < \omega\}$. Let $\delta^* < \omega_1$ be such that $\xi \in S_{\delta^*}$. We define $I_{\xi} = \{m_i: i < \omega\}$ inductively. Suppose that m_j has already been defined for every j < i. Put

$$\varepsilon_i = \max(g_{\delta^*}(0) \cup g_{\delta^*}(0) \cup \{\xi_j : j \le i\} \cup \{\min(S_{\delta_j}) : j \le i\}) + 1 < \xi.$$

Note that $\varepsilon_i < \xi$ since Remark 6.2 implies that $I_{\varepsilon_i} \subseteq^* \bigcap_{j \leq i} I_{\xi_j}$. Thus, we can pick an $m_i \in I_{\varepsilon_i} \cap \bigcap_{j < i} I_{\xi_j}$ so that:

- (i) $m_i > m_j$ for every j < i,
- (ii) $l_{\delta_i}(\varepsilon_i, m_i) k_{\delta_i}(\varepsilon_i, m_i) > i$ for every $j \leq i$, and
- (iii) $f_{\varepsilon_i}(m_i) \subseteq \bigcap_{j \le i} f_{\xi_j}(m_i) \cap \bigcap \{ f_\eta(m_i) \colon \eta \in g_{\delta^*}(0) \cup g_{\delta^*}(1) \}.$

Condition (ii) can be achieved since $\bigcup \operatorname{rang}(g_{\delta_j}) \subseteq \min(S_{\delta_j}) < \varepsilon_i < \xi$ and $\{\langle I_\eta, f_\eta, B_\eta \rangle : \eta < \xi\}$ is good, so, by (g),

$$\lim_{\substack{m\in I_{\varepsilon_i}\\m\to\infty}} (l_{\delta_j}(\varepsilon_i,m) - k_{\delta_j}(\varepsilon_i,m)) = \infty$$

for every $j \leq i$. Condition (iii) can be ensured by Remark 6.4, since $\xi_j < \varepsilon_i$ for $j \leq i$ and $\eta < \varepsilon_i forall \eta \in g_{\delta^*}(0) \cup g_{\delta^*}(1)$. This completes the inductive definition of I_{ξ} . Define $f_{\xi} \colon \omega \to \mathcal{D}$ as

$$f_{\xi}(m) = \begin{cases} B_{\varepsilon_i}(m_i)(\xi) & \text{if } m = m_i \in I_{\xi} \\ \\ B_0(m)(\xi) & \text{otherwise.} \end{cases}$$

The B_{ξ} can be defined by taking for each $m < \omega$ an arbitrary ω_1 -sequence of almost disjoint sets in $\mathcal{P}(f_{\xi}(m)) \cap \mathcal{D}$. This completes the definition of $\langle I_{\xi}, f_{\xi}, B_{\xi} \rangle$.

To make sure that (a) holds it is enough to check it only for the pair $\langle \eta, \xi \rangle$ in place of $\langle \zeta, \eta \rangle$. So, choose an $\eta < \xi$ and $m < \omega$. We need to show that either $f_{\xi}(m) \cap f_{\eta}(m)$ is finite, or there exists a $\gamma \leq \xi$ such that $f_{\xi}(m) \subseteq B_{\eta}(m)(\gamma)$. We will consider several cases.

 $m \notin I_{\xi}$: We will consider here two subcases.

- $\eta = 0$: Then $f_{\xi}(m) = B_0(m)(\xi) = B_{\eta}(m)(\gamma)$ for $\gamma = \xi$.
- $\eta > 0$: Apply Remark 6.5 to find $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_0(m)(\gamma)$. Since $f_{\xi}(m) = B_0(m)(\xi)$, we have that $|f_{\xi}(m) \cap f_{\eta}(m)| < \omega$.

 $m = m_i \in I_{\xi}$: We will consider here three subcases.

- $\varepsilon_i < \eta$: We will show that $|f_{\xi}(m) \cap f_{\eta}(m)| < \omega$. So, by way of contradiction, assume that $|f_{\xi}(m) \cap f_{\eta}(m)| = \omega$. Therefore, the sets $f_{\xi}(m) \cap f_{\eta}(m) = B_{\varepsilon_i}(m)(\xi) \cap f_{\eta}(m) \subseteq f_{\varepsilon_i}(m) \cap f_{\eta}(m)$ are infinite. So, by (a), there exists a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_{\varepsilon_i}(m)(\gamma)$. Thus, $B_{\varepsilon_i}(m)(\xi) \cap B_{\varepsilon_i}(m)(\gamma) = f_{\xi}(m) \cap B_{\varepsilon_i}(m)(\gamma) \supseteq f_{\xi}(m) \cap f_{\eta}(m)$ is infinite, which is impossible, as $\gamma \leq \eta < \xi$. This implies that $|f_{\xi}(m) \cap f_{\eta}(m)| < \omega$.
- $\begin{aligned} \varepsilon_i > \eta: & \text{If } f_{\varepsilon_i}(m) \cap f_{\eta}(m) \text{ is finite then so is } f_{\xi}(m) \cap f_{\eta}(m) \subseteq f_{\varepsilon_i}(m) \cap f_{\eta}(m). \\ & \text{Otherwise, by (a), there is a } \gamma \leq \varepsilon_i \text{ such that } f_{\varepsilon_i}(m) \subseteq B_{\eta}(m)(\gamma). \\ & \text{So, } f_{\xi}(m) = B_{\varepsilon_i}(m)(\xi) \subseteq f_{\varepsilon_i}(m) \subseteq B_{\eta}(m)(\gamma). \end{aligned}$

$$\varepsilon_i = \eta$$
: Clearly $f_{\xi}(m) = B_{\varepsilon_i}(m)(\xi) = B_{\eta}(m)(\gamma)$ for $\gamma = \xi$.

Conditions (b), (c), and (d) are immediate from the definition of f_{ξ} . Condition (e) holds because $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle : \eta < \xi \rangle$ is good and ξ is a limit ordinal.

To prove (f) and (g) first observe that, by Lemma 6.7, for every $i < \omega$ we have $K(\xi, m_i) = K(\varepsilon_i, m_i) \cup \{\varepsilon_i\}$. This implies that $l_{\delta_j}(\varepsilon_i, m_i) \leq l_{\delta_j}(\xi, m_i)$ and $k_{\delta_j}(\xi, m_i) = k_{\delta_j}(\varepsilon_i, m_i)$ for every $j \leq i$, because ε_i is a successor ordinal. In particular, for every $j \leq i$ we have

$$l_{\delta_j}(\xi, m_i) - k_{\delta_j}(\xi, m_i) \ge l_{\delta_j}(\varepsilon_i, m_i) - k_{\delta_j}(\varepsilon_i, m_i).$$
(6)

To see (f) fix an $m = m_i \in I_{\xi}$. We need to show that $l_{\delta^*}(\xi, m) > k_{\delta^*}(\xi, m)$. First assume that $\xi = \min(S_{\delta^*})$. Then, $K(\xi, m) \subseteq \xi$ is disjoint with S_{δ^*} , so $k_{\delta^*}(\xi, m) = |K(\xi, m) \cap S_{\delta^*}| = 0$. On the other hand, condition (iii) implies that $\bigcup g_{\delta^*}[2] \subseteq K(\xi, m)$. So, $l_{\delta^*}(\xi, m) \ge 1 > 0 = k_{\delta^*}(\xi, m)$. Next, consider the case when $\xi > \min(S_{\delta^*})$. Then, $\delta^* = \delta_i$ for some $i < \omega$. Therefore, (ii) and (6) imply that

$$l_{\delta^*}(\xi, m_i) - k_{\delta^*}(\xi, m_i) \ge l_{\delta_i}(\varepsilon_i, m_i) - k_{\delta_i}(\varepsilon_i, m_i) > i \ge 0.$$

Thus (f) holds.

To see (g) fix a $\delta < \omega_1$ such that $\bigcup \operatorname{rang}(g_{\delta}) \subseteq \xi$. We need to show that $\lim_{i\to\infty} (l_{\delta}(\xi, m_i) - k_{\delta}(\xi, m_i)) = \infty$. First assume that $\xi > \min(S_{\delta})$. Then $\delta = \delta_j$ for some $j < \omega$. So, by (ii) and (6), we have that for all $i \ge j$

$$l_{\delta}(\xi, m_i) - k_{\delta}(\xi, m_i) = l_{\delta_j}(\xi, m_i) - k_{\delta_j}(\xi, m_i) \ge l_{\delta_j}(\varepsilon_i, m_i) - k_{\delta_j}(\varepsilon_i, m_i) \ge i.$$

This ensures that (g) holds. Finally, assume that $\xi \leq \min(S_{\delta})$. Then, for every $m < \omega$, we have $K(\xi, m) \cap S_{\delta} = \emptyset$ and so, $k_{\delta}(\xi, m) = 0$. Thus, in this case it is enough to show that $\lim_{i\to\infty} l_{\delta}(\xi, m_i) = \infty$. But for every $l < \omega$ we have $\bigcup g_{\delta}[l+1] \subseteq \xi = \{\xi_j : j < \omega\}$. Thus, there exists an $i_0 < \omega$ such that $\bigcup g_{\delta}[l+1] \subseteq \xi = \{\xi_j : j \leq i_0\}$. Since, by (iii), for every $i \geq i_0$ we have $\{\xi_j : j \leq i\} \subseteq K(\xi, m_i)$ we conclude that $\bigcup g_{\delta}[l+1] \subseteq K(\xi, m_i)$ for every $i \geq i_0$. Thus, $l_{\delta}(\xi, m_i) \geq l$ for every $i \geq i_0$ and so $\lim_{i\to\infty} l_{\delta}(\xi, m_i) = \infty$.

Lemma 6.9 Let $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \in \mathcal{T} : \eta \leq \xi \rangle$ be a good sequence, $I \in [I_{\xi}]^{\omega}$, and let $\langle D_m \in \mathcal{P}(B_{\xi}(m)(\xi+1)) \cap \mathcal{D} : m \in I \rangle$ be arbitrary. Then, the sequence $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \in \mathcal{T} : \eta \leq \xi + 1 \rangle$ is good, where $\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1} \rangle \in \mathcal{T}$ is defined as

(i) $I_{\xi+1} = I$,

(ii)
$$f_{\xi+1}(m) = \begin{cases} D_m & \text{if } m \in I_{\xi+1} \\ \\ B_0(m)(\xi+1) & \text{otherwise,} \end{cases}$$

(iii) $B_{\xi+1}(m) \in (\mathcal{P}(f_{\xi+1}(m)) \cap \mathcal{D})^{\omega_1}$ is any almost disjoint sequence for every $m < \omega$.

PROOF. To show that (a) holds it is enough to check it only for the pair $\langle \eta, \xi + 1 \rangle$ in place of $\langle \zeta, \eta \rangle$. So, choose an $\eta < \xi + 1$ and $m < \omega$. We need to show that either $f_{\xi+1}(m) \cap f_{\eta}(m)$ is finite, or there exists a $\gamma \leq \xi + 1$ such that $f_{\xi+1}(m) \subseteq B_{\eta}(m)(\gamma)$. We consider several cases.

 $m \notin I_{\xi+1}$: We will consider two subcases.

- $\eta = 0$: Then $f_{\xi+1}(m) = B_0(m)(\xi+1) = B_\eta(m)(\gamma)$ for $\gamma = \xi + 1$.
- $\eta > 0$: Apply Remark 6.5 to find a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq^* B_0(m)(\gamma)$. Since $f_{\xi+1}(m) = B_0(m)(\xi+1)$, we have that $|f_{\xi+1}(m) \cap f_{\eta}(m)| < \omega$.

 $m \in I_{\xi+1}$: We compare η with ξ .

 $\begin{aligned} \eta < \xi: & \text{By (a) either } |f_{\xi}(m) \cap f_{\eta}(m)| < \omega \text{ or there exists a } \gamma \leq \xi \text{ such that } f_{\xi}(m) \subseteq^* B_{\eta}(m)(\gamma). & \text{Since} \\ & f_{\xi+1}(m) \subseteq B_{\xi}(m)(\xi+1) \subseteq f_{\xi}(m) \text{ we have that } |f_{\xi+1}(m) \cap f_{\eta}(m)| < \omega \text{ or } f_{\xi+1}(m) \subseteq B_{\eta}(m)(\gamma). \end{aligned}$

$$\eta = \xi$$
: Clearly $f_{\xi+1}(m) = D_m \subseteq B_{\xi}(m)(\xi+1) = B_{\eta}(m)(\gamma)$ for $\gamma = \xi + 1$.

This proves that (a) holds.

Conditions (b), (d), and (e) are obvious by the definition of $f_{\xi+1}$. Conditions (c) and (f) hold, since there are no new limit ordinals $\eta < \xi + 1$.

To see that (g) holds take a $\delta < \omega_1$ such that $\bigcup \operatorname{rang}(g_{\delta}) \subseteq \xi + 1$. Then also $\bigcup \operatorname{rang}(g_{\delta}) \subseteq \xi$ since, by Fact 6.1, $\bigcup \operatorname{rang}(g_{\delta}) = \min(S_{\delta})$ is a limit ordinal. Thus, $\lim_{\substack{m \in I_{\xi} \\ m \to \infty}} (l_{\delta}(\xi, m) - k_{\delta}(\xi, m)) = \infty$. Also, by Lemma 6.7 and the definition of $f_{\xi+1}(m)$ we have $K(\xi+1,m) = K(\xi,m) \cup \{\xi\}$ for every $m \in I_{\xi+1}$. This implies that $k_{\delta}(\xi+1,m) \leq k_{\delta}(\xi,m) + 1$ and $l_{\delta}(\xi,m) \leq l_{\delta}(\xi+1,m)$ for every $m \in I_{\xi+1}$. So, $l_{\delta}(\xi+1,m) - k_{\delta}(\xi+1,m) \geq l_{\delta}(\xi,m) - k_{\delta}(\xi,m) - 1$. Since $I_{\xi+1} \subseteq I_{\xi}$ is infinite, we have

$$\lim_{\substack{m \in I_{\xi+1} \\ m \to \infty}} (l_{\delta}(\xi+1,m) - k_{\delta}(\xi+1,m)) \ge \lim_{\substack{m \in I_{\xi} \\ m \to \infty}} (l_{\delta}(\xi,m) - k_{\delta}(xi,m) - 1) = \infty.$$

So, (h) holds.

Corollary 6.10 Let $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \in \mathcal{T} : \eta \leq \xi \rangle$ be good. If P is a prism in $2^{\omega \times X}$, then there exists an $\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1} \rangle \in \mathcal{T}$, a suprism Q of P, and an i < 2 such that

- (i) $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi + 1 \rangle$ is good and
- (ii) $g \upharpoonright U_{\xi+1}$ is constant equal to *i* for every $g \in Q$.

PROOF. Apply Lemma 3.6 to the prism P, the set I_{ξ} , and the family $\{B_{\xi}(m)(\xi+1): m \in I_{\xi}\}$ to find a subprism Q of P, a set $I_{\xi+1} \in [I_{\xi}]^{\omega}$, a sequence $\langle B_m \in \mathcal{P}(B(m)(\xi+1)) \cap \mathcal{J}^+: m \in I_{\xi+1} \rangle$, and an i < 2 such that $g \upharpoonright B$ is constant equal to i, where $B = \bigcup \{\{m\} \times B_m: m \in I_{\xi+1}\}$. For every $m \in I_{\xi+1}$ choose $D_m \in \mathcal{P}(B_m) \cap \mathcal{D}$. Then, if we define $f_{\xi+1}$ and $B_{\xi+1}$ as in Lemma 6.9, $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle: \eta \leq \xi + 1 \rangle$ is good and $g \upharpoonright U_{\xi+1}$ is constant equal to i.

Corollary 6.11 Let X be a countably infinite set, $\mathcal{J} \subseteq \mathcal{P}(X)$ a Q-like ideal on X, $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \in \mathcal{T} : \eta \leq \xi \rangle$ be good, and P be a prism on $\mathcal{P}_{\omega \times X}$. Then, there exists a $\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1} \rangle \in \mathcal{T}$ and a subprism Q of P such that

- (i) $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi + 1 \rangle$ is good and
- (ii) $|z(k) \cap U_{\xi+1}| \leq 1$ for every $z \in Q$ and $k < \omega$.

PROOF. Let $A = \bigcup \{\{m\} \times B_{\xi}(m)(\xi + 1) \colon m \in I_{\xi}\}$. Then $A \in \mathcal{K}^+$ and, by Lemma 3.5, \mathcal{K} is Q-like. So, by Lemma 3.3, there is a subprism Q of P and a $B \in \mathcal{P}(A) \cap \mathcal{K}^+$ such that $|z(k) \cap B| \leq 1$ for every $z \in Q$ and $k < \omega$. Let $I_{\xi+1} = \operatorname{supp}(B) \subseteq I_{\xi}$ and for every $m \in I_{\xi+1}$ choose $D_m \in \mathcal{P}((B)_m) \cap \mathcal{D}$. Then, if we define $f_{\xi+1}$ and $B_{\xi+1}$ as in Lemma 6.9, $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi + 1 \rangle$ is good and $|z(k) \cap U_{\xi+1}| \leq 1$ for every $z \in Q$ and $k < \omega$.

Theorem 6.12 Let X be a countably infinite set, $\mathcal{J} \subseteq \mathcal{P}(X)$ be a rich ideal, let $\mathcal{D} \subseteq \mathcal{J}^+$ be a dense family, and put $\mathcal{K} = [\omega]^{<\omega} \otimes \mathcal{J}$. Then, $\operatorname{CPA}_{\operatorname{prism}}^{\operatorname{game}}$ implies that there exists an ω_1 -generated ω_1 -OK point extending $\mathcal{F}_{\mathcal{K}}$ with a basis $\{U_{\xi} : \xi < \omega_1\} \subseteq \mathcal{D}^*$ which is not a P-point.

PROOF. To define a triple $\langle I_0, f_0, B_0 \rangle$ put $I_0 = \omega$, for every $m < \omega$ define $f_0(m) = X$, and let $B_0(m) = \langle B_0(m)(\gamma) : \gamma < \omega_1 \rangle$ be an arbitrary ω_1 -sequence of almost disjoint sets in $\mathcal{P}(f_0(m)) \cap \mathcal{D}$.

For a good sequence $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi \rangle$ and a prism P in $2^{\omega \times X}$ let us define a subprism $Q(\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi \rangle, P) = Q$ of P and the triple $T(\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi \rangle, P) = \langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1} \rangle \in \mathcal{T}$ as in Corollary 6.10. We define a strategy S for Player II in the game $\text{GAME}_{\text{prism}}(2^{\omega \times X})$ as:

$$S(\langle \langle P_{\eta}, Q_{\eta} \rangle \colon \eta < \xi \rangle, P_{\xi}) = Q(\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \le \xi \rangle, P_{\xi}),$$

where $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi \rangle$ is a good sequence defined by induction on $\eta \leq \xi$ as follows. Assume that $\langle \langle I_{\zeta}, f_{\zeta}, B_{\zeta} \rangle \colon \zeta < \eta \rangle$ is already defined.

If $\eta = 0$, then $\langle I_{\eta}, f_{\eta}, B_{\eta} \rangle = \langle I_0, f_0, B_0 \rangle$ is defined as above.

If $\eta = \zeta + 1$, then we put $\langle I_{\eta}, f_{\eta}, B_{\eta} \rangle = T(\langle \langle I_{\delta}, f_{\delta}, B_{\delta} \rangle : \delta \leq \zeta \rangle, P_{\zeta}).$

If $\eta \in \Gamma$, then $\langle I_{\eta}, f_{\eta}, B_{\eta} \rangle$ is found using Lemma 6.8.

Notice that the sequence $\langle \langle I_{\zeta}, f_{\zeta}, B_{\zeta} \rangle \colon \zeta < \eta \rangle$ is good by the inductive hypothesis and Remark 6.3.

By CPA^{game}_{prism} strategy S is not a winning strategy for Player II. So, there exists a game $\langle \langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ played according to S for which Player II loses, this is, $2^{\omega \times X} = \bigcup_{\xi < \omega_1} Q_{\xi}$. If $\langle \langle I_{\xi}, f_{\xi}, B_{\xi} \rangle \in \mathcal{T} : \xi < \omega_1 \rangle$ is the sequence created when Player II uses strategy S, then this sequence is good by construction. Application of Lemma 6.6 to this sequence finishes the proof.

Theorem 6.13 CPA^{game}_{prism} implies that there exists an ω_1 -generated, crowded ω_1 -OK point on \mathbb{Q} which is neither a *P*-point nor a *Q*-point.

PROOF. The idea is to apply Theorem 6.12 to an appropriate ideal to get a crowded ultrafilter which is not a Q-point. Consider $X = \mathbb{Q} \times \omega$ with a natural product topology. Then, X is homeomorphic to \mathbb{Q} . For every $m < \omega$ put $P_m = \{n < \omega : 2^m - 1 \le n < 2^{m+1} - 1\}$. Then $\{P_m : m < \omega\}$ is a partition of ω and $|P_m| = 2^m$. For $A \subset \mathbb{Q} \times \omega$ put

$$N_A(m) = \max\{k < \omega \colon \exists \ U \in \mathcal{I}_S^+ \ \exists \ P \in [P_m]^k \ U \times P \subseteq A\}$$

and define $\mathcal{J} \subseteq \mathcal{P}(\mathbb{Q} \times \omega)$ as

$$\mathcal{J} = \{ A \subseteq \mathbb{Q} \times \omega \colon \overline{\lim}_{m \to \infty} N_A(m) < \infty \}.$$

To see that \mathcal{J} is closed under finite unions notice first that

$$N_{A\cup B}(m) \leq N_A(m) + N_B(m)$$
 for every $m < \omega$ and $A, B \subseteq \mathbb{Q} \times \omega$.

Indeed, take a $P \subseteq P_m$ of cardinality $N_{A\cup B}(m)$ and $U \in \mathcal{I}_S^+$ such that $U \times P \subseteq A \cup B$. Let $h: U \times P \to 2$ be a characteristic function of $A \cap (U \times P)$ and let $\varphi: U \to 2^P$ be defined by $\varphi(u)(p) = h(u, p)$. Since 2^P is finite, there exists a $g \in 2^P$ such that $V = \varphi^{-1}(g)$ belongs to \mathcal{I}_S^+ . Let $P_A = g^{-1}(1)$ and $P_B = g^{-1}(0)$. Then $V \times P_A \subseteq A$ and $V \times P_B \subseteq B$. Therefore, $N_A(m) \ge |P_A|$ and $N_B(m) \ge |P_B|$. So, $N_{A\cup B}(m) = |P| = |P_A| + |P_B| \le N_A(m) + N_B(m)$.

The above proved inequality easily implies that

$$\overline{\lim}_{m \to \infty} N_{A \cup B}(m) \le \overline{\lim}_{m \to \infty} N_A(m) + \overline{\lim}_{m \to \infty} N_B(m)$$

for every and $A, B \subseteq \mathbb{Q} \times \omega$. Thus, \mathcal{J} is closed under finite unions. Since it clearly is closed also under subsets, we can conclude that \mathcal{J} is an ideal on $\mathbb{Q} \times \omega$ containing all the singletons. We will prove that

the ideal
$$\mathcal{J}$$
 is rich. (7)

First notice how (7) implies the theorem. Since $\operatorname{Perf}(\mathbb{Q})$ is dense in \mathcal{I}_S^+ , it is easy to see that $\mathcal{D} = \operatorname{Perf}(\mathbb{Q} \times \omega)$ is dense in \mathcal{J}^+ . Let \mathcal{U} be an ultrafilter on $\omega \times X$ from Theorem 6.12 applied to \mathcal{J} and \mathcal{D} . Since $X = \mathbb{Q} \times \omega$ is homeomorphic to \mathbb{Q} , so is $\omega \times X$ and \mathcal{D}^* contains only its perfect subsets. Therefore, \mathcal{U} can be considered as crowded. Moreover, a partition $\mathcal{P} =$ $\{\{n\} \times (\{q\} \times P_m): q \in \mathbb{Q} \& n, m < \omega\}$ of $\omega \times X$ into finite sets does not admit partial selector in \mathcal{U} , since each such partial selector belongs to $\mathcal{K} = [\omega]^{<\omega} \times \mathcal{J}$. Thus, \mathcal{U} is not a Q-point.

To prove property (7) fix an $A \in \mathcal{J}^+$. Then there exist $\langle m_k \in \omega : k < \omega \rangle$, $\{U_k \in \mathcal{I}_S^+ : k < \omega\}$, and $\langle Q_k \subseteq P_{m_k} : k < \omega \rangle$ such that $U_k \times Q_k \subseteq A$ and $|Q_k| > k \cdot 2^{2^k}$ for every $k < \omega$.

First we prove condition (#) from Definition 3. Since, by Lemma 3.4, the ideal \mathcal{I}_S on \mathbb{Q} is rich, for every $k < \omega$ there exists an almost disjoint family $\{U_f^k \colon f \in 2^{\omega}\} \subseteq \mathcal{P}(U_k) \cap \mathcal{I}_S^+$. Also, for every $k < \omega$ there exists a pairwise disjoint family $\{A_s \colon s \in 2^k\} \subseteq [Q_k]^k$. For $f \in 2^{\omega}$ define $A_f = \bigcup \{U_f^k \times A_{f \upharpoonright k} \colon k < \omega\}$. Then, $\{A_f \colon f \in 2^{\omega}\} \subseteq \mathcal{P}(A) \cap \mathcal{J}^+$ is almost disjoint, proving (#).

To prove that \mathcal{J} is prism-friendly let P be a prism in 2^X . If P is singleton then condition (•) is clearly satisfied. So, assume that $P \in \operatorname{Perf}(2^X)$ and let f be a witness function for it. By Remark 2.1 we can assume that f is defined on \mathfrak{C}^{α} for some $0 < \alpha < \omega_1$. Our first goal is to find a subprism Q' of P and two sequences $\{V_k \subseteq U_k \colon k < \omega\} \subseteq \mathcal{I}_S^+$ and $\{A_k \in [P_{m_k}]^k \colon k < \omega\}$ such that

$$g \upharpoonright V_k \times A_k$$
 is constant for every $g \in Q'$. (8)

For every $k < \omega$ define \mathcal{D}_k as the set of all disjoint collections $\mathcal{E} \in [\mathbb{P}_{\alpha}]^{<\omega}$ such that there exists a $V_{\langle \mathcal{E}, k \rangle} \in \mathcal{P}(U_k) \cap \mathcal{I}_S^+$ such that for every $q \in Q_k$, $E \in \mathcal{E}$, and $h, h' \in E$, each f(h) is constant on $V_{\langle \mathcal{E}, k \rangle} \times \{q\}$ and

$$f(h) \upharpoonright V_{\langle \mathcal{E}, k \rangle} \times \{q\} = f(h') \upharpoonright V_{\langle \mathcal{E}, k \rangle} \times \{q\}.$$
(9)

It is immediate that \mathcal{D}_k is closed under refinaments. To prove that \mathcal{D}_k satisfies the condition (†) from Proposition 2.3 let $\mathcal{E} \in \mathcal{D}_k$ and $E \in \mathbb{P}_{\alpha}$ be such

that $E \cap \bigcup \mathcal{E} = \emptyset$. Let $\{q_i : i \leq r\}$ be an enumeration of Q_k . Using Proposition 2.7, construct inductively decreasing sequences $\langle E_i \in \mathbb{P}_{\alpha} \cap \mathcal{P}(E) : i \leq r \rangle$, $\langle V_i \in \mathcal{P}(V_{\langle \mathcal{E}, k \rangle}) \cap \mathcal{I}_S^+ : i \leq r \rangle$, and a sequence $\langle j_i < 2 : i \leq r \rangle$ such that for every $i \leq r$

$$f(h) \upharpoonright V_i \times \{q_i\}$$
 is constant equal to j_i for every $h \in E_i$. (10)

Therefore, if we put $E' = E_r$ and $V_{\langle \mathcal{E} \cup \{E'\}, k \rangle} = V_r$, then $\mathcal{E} \cup \{E'\} \in \mathcal{D}_k$ and condition (†) is satisfied. Thus, by Proposition 2.3, for every $k < \omega$ there exists a family $\mathcal{E}_k = \{E_i : i < 2^k\} \in \mathcal{D}_k$ of pairwise disjoint sets with $E^0 = \bigcap_{k < \omega} \bigcup \mathcal{E}_k \in \mathbb{P}_\alpha$. We will prove that $Q' = f[E^0]$ satisfies (8) with $V_k = V_{\langle \mathcal{E}_k, k \rangle}$ and some sequence $\langle A_k \in [Q_k]^k : k < \omega \rangle$.

To see this fix $k < \omega$ and $v_0 \in V_k = V_{\langle \mathcal{E}_k, k \rangle}$, and for each $i < 2^k$ pick an $h_i \in E_i \in \mathcal{E}_k$. Define $\varphi_k \colon Q_k \to 2^{2^k}$ by $\varphi_k(p)(i) = f(h_i)(v_0, p)$. Since $|Q_k| > k \cdot 2^{2^k}$, there exists an $s_k \in 2^{2^k}$ such that $|\varphi_k^{-1}\{s_k\}| \ge k$. Pick an $A_k \in [\varphi_k^{-1}\{s_k\}]^k$. To see that the pair $\langle V_k, A_k \rangle$ satisfies (8), pick a $g \in Q'$. Then there exists an $i < 2^k$ and an $h \in E_i \in \mathcal{E}_k$ such that g = f(h). We will show that $g[V_k \times A_k] = \{s_k(i)\}$.

Let $\langle v, q \rangle \in V_k \times A_k$. Since, by (9), f(h) is constant on $V_k \times \{q\}$, we have $f(h)(v,q) = f(h)(v_0,h)$. Also, (9) gives $f(h)(v_0,q) = f(h_i)(v_0,q)$. Hence, $g(v,q) = f(h_i)(v_0,q) = \varphi_k(q)(i) = s_k(i)$. So, $g \upharpoonright V_k \times A_k$ is constant equal to $s_k(i)$ and (8) holds.

To finish the proof for every $k < \omega$ pick $\langle v_k, a_k \rangle \in V_k \times A_k$ and put $S = \{\langle v_k, a_k \rangle \colon k < \omega\}$. Let $\mathcal{I} = [X]^{<\omega}$. Then \mathcal{I} is weakly selective and $S \in \mathcal{I}^+$. If we identify 2^X with $\mathcal{P}(X)$, then Q' can be treated as a prism in $\mathcal{P}(X)$. Since $[X]^{\omega}$ is residual in $\mathcal{P}(X)$, by Proposition 2.2 we can assume that Q' is a prism in $[X]^{\omega}$. So, by Proposition 2.7, there exist a subprism Q of Q', a set $S_0 \in [S]^{\omega}$, and an i < 2 such that $g[S_0] = \{i\}$ for every $g \in Q$. Put $B = \bigcup \{V_k \times A_k \colon \langle v_k, a_k \rangle \in S_0\}$. Then, $g \upharpoonright B$ is constant equal i for every $g \in Q$. It is clear that $B \subseteq A$. Since $V_k \times A_k \subseteq B$ and $A_k \in [P_{m_k}]^k$ we have $N_B(m_k) \ge k$. This implies that $\overline{\lim_{m \to \infty}} N_B(m) = \infty$ and that $B \in \mathcal{J}^+$. So, Q and B satisfy (\bullet) .

Theorem 6.14 Let X be a countably infinite set, $\mathcal{J} \subseteq \mathcal{P}(X)$ a rich and Q-like ideal on X, and let $\mathcal{D} \subseteq \mathcal{J}^+$ be dense. Then, $\operatorname{CPA}_{\operatorname{prism}}^{\operatorname{game}}$ implies that there exists an ω_1 -generated, crowded ω_1 -OK point on $\omega \times X$ which is also a Q-point but not a P-point.

PROOF. This proof combines the elements of the proofs of Theorems 5.3 and 6.12. Let $\mathcal{Y} = \mathcal{P}_{\omega \times X} \cup 2^{\omega \times X}$ be as in Theorem 5.3.

For a good sequence $\bar{G} = \langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi \rangle$ and a prism P in \mathcal{Y} let us define a subprism $Q(\bar{G}, P)$ of P and a triple $T(\bar{G}, P) \in \mathcal{T}$ as follows.

- If $U \cap 2^{\omega \times X} \neq \emptyset$, then we can choose a subprism $P_0 \subseteq 2^{\omega \times X}$ of P. The choice of P_0 is obvious if P is a singleton, and it follows from Proposition 2.2, otherwise. Then we apply Corollary 6.10 to \bar{G} and P_0 to find appropriate subprism $Q(\bar{G}, P)$ of P_0 and $\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1} \rangle \in \mathcal{T}$. We put $T(\bar{G}, P) = \langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1} \rangle$.
- If $U \cap 2^{\omega \times X} = \emptyset$, then P is a prism in $\mathcal{P}_{\omega \times X}$. Then, we can use Corollary 6.11 to find appropriate $\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1} \rangle \in \mathcal{T}$ and a subprism $Q(\bar{G}, P)$ of P_0 . We put $T(\bar{G}, P) = \langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1} \rangle$.

We define a strategy S for Player II in the game $\text{GAME}_{\text{prism}}(\mathcal{Y})$ as:

$$S(\langle \langle P_{\eta}, Q_{\eta} \rangle \colon \eta < \xi \rangle, P_{\xi}) = Q(\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \le \xi \rangle, P_{\xi}),$$

where the sequence $\langle \langle I_{\eta}, f_{\eta}, B_{\eta} \rangle \colon \eta \leq \xi \rangle$ is defined as in Theorem 6.12.

By CPA^{game}_{prism} strategy S is not a winning strategy for Player II. So, there exists a game $\langle \langle P_{\xi}, Q_{\xi} \rangle \colon \xi < \omega_1 \rangle$ played according to S for which Player II loses, this is, $\mathcal{Y} = \bigcup_{\xi < \omega_1} Q_{\xi}$. If $\langle \langle I_{\xi}, f_{\xi}, B_{\xi} \rangle \in \mathcal{T} \colon \xi < \omega_1 \rangle$ is the sequence created when Player II uses strategy S, then, by Remark 6.3, this sequence is good.

If $g \in 2^{\omega \times X}$, then there exists a $\xi < \omega_1$ such that $g \in Q_{\xi}$. Therefore, $Q_{\xi} \subseteq 2^{\omega \times X}$ and $g \upharpoonright U_{\xi+1}$ is constant. Thus, by Lemma 6.6, the family $\{U_{\xi} \colon \xi < \omega_1\}$ forms a base for a nonprincipal ultrafilter \mathcal{U} on $\omega \times X$ which is an ω_1 -OK point but not a *P*-point. Note that $\{U_{\xi} \colon \xi < \omega_1\} \subseteq \mathcal{D}^*$. To see that \mathcal{U} is a *Q*-point, take a $z \in \mathcal{P}_{\omega \times X}$. Then, there exists a $\xi < \omega_1$ such that $z \in Q_{\xi}$. This means that $Q_{\xi} \subseteq \mathcal{P}_{\omega \times X}$ and that $|z(k) \cap U_{\xi+1}| \leq 1$ for every $k < \omega$. Hence, \mathcal{U} is also a *Q*-point.

Corollary 6.15 CPA^{game}_{prism} implies that there is an ω_1 -generated, crowded ω_1 -OK point on $\omega \times X$ which is also a Q-point but not a P-point.

PROOF. Apply Theorem 6.14 with $X = \mathbb{Q}$, $\mathcal{J} = \mathcal{I}_S$, and $\mathcal{D} = \operatorname{Perf}(\mathbb{Q})$.

References

- [1] Blass, A. *Combinatorial Characteristics of the Continuum*, to appear in the Handbook of Set Theory.
- [2] Bartoszyński, T. and Judah, H. Set Theory. On the structure of the Real Line, A.K. Peters Ltd, Wellesley, MA, 1995.
- [3] Brodskii, M.L. On some properties of sets of positive measure, Uspehi Matem. Nauk (N.S.) 4, No. 3 (31) (1949), 136–138.
- [4] Ciesielski, K. and Pawlikowski, J. Crowded and selective ultrafilters under the Covering Property Axiom, J. Appl. Anal. 9(1) (2003) 19–55.
- [5] Ciesielski, K. and Pawlikowski, J. *Covering Property Axiom* CPA, to appear in Cambridge Tracts in Mathematics, Cambridge University Press.
- [6] Coplakova, E. and Hart, K.P. Crowded rational Ultrafilters, Topology Appl. 97 (1999), 79–84.
- [7] van Douwen, E.K. Better closed ultrafilters on Q, Topology Appl. 47 (1992), 173–177.
- [8] Eggleston, H.G. Two measure properties of Cartesian product sets, Quart. J. Math. Oxford (2) 5 (1954), 108–115.
- [9] Hart, K.P. Ultrafilters of character ω_1 , J. Symbolic Logic **54(1)** (1989), 1–15.
- [10] Jech, T. Set Theory, Academic Press, New York, 1978.
- [11] Kunen, K. Weak P-points in N*, Colloquia Mathematica Societatis János Bolyai 23. Topology, Budapest (Hungary) (1978), 741–749.
- [12] Laver, R. On the consistency of Borel's Conjecture, Acta Math. 137, (1976), 151–169.
- [13] Millán, A. A crowded Q-point under CPA_{prism}^{game} , preprint.
- [14] Miller, A.W. There are no Q-points in Laver's model for the Borel Conjecture, Proc. Amer. Math. Soc. 78(1) (1980), 103–106.

[15] Wimmers, E.L. The Shelah P-point independence theorem Israel J. Math. 43(1) (1982), 28–48.