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Abstract

In this paper we use the version CPAgame
prism of the Covering Property

Axiom, which has been formulated by Ciesielski and Pawlikowski and
holds in the iterated perfect set model, to study the relations between
different kinds of ultrafilters on ω and Q. In particular, we will give a
full account for the logical relations between the properties of being a
selective ultrafilter, a P -point, a Q-point, and an ω1-OK point.

1 Introduction

We use standard set theoretical notation and terminology as in [10]. In
particular, if A is a set |A| denotes its cardinality and P(A) the set of all its
subsets. Lower case Greek letters denote ordinal numbers. The first infinite
cardinal is ω and ω1 is the first uncountable cardinal. The cardinality of R is
denoted by c. We also use the letter κ to denote any unespecified uncountable
cardinal. If A and B are arbitrary sets, then we write A ⊆∗ B provided that
|A \B| < ω.

Let U be a nonprincipal ultrafilter on an infinite countable set X. (We
will use for X either ω or Q.) We say that:

∗This work is a part of author’s Ph.D. thesis written at West Virginia University under
the supervision of Professor Krzysztof Ciesielski. The author wishes to thank Professor
Ciesielski for his guidance, patience, and encouragement.
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• U is a P -point if for every partition P of X either U ∩ P 	= ∅ or there
exists a U ∈ U such that U ∩ P is finite for each P ∈ P.

• U is a Q-point if for every partition P of X into finite sets there exists
a U ∈ U such that |U ∩ P | ≤ 1 for each P ∈ P.

• U is selective if for every partition P of X either U ∩ P 	= ∅ or there
exists a U ∈ U such that |U ∩ P | ≤ 1 for each P ∈ P.

• U is a κ-OK point, where κ is an infinite cardinal number, provided
for every 〈Vn ∈ U : n < ω〉 there exists a 〈Uα ∈ U : α < κ〉 such that⋂n
i=1 Uαi

⊆∗ Vn for every n < ω and α0 < · · · < αn < κ. Sequence
〈Uα ∈ U : α < κ〉 will be referred to as OK for 〈Vn ∈ U : n < ω〉.

It is obvious from the definitions that

Fact 1.1 U is a selective ultrafilter if and only if U is simultaneously a P -
point and a Q-point.

P -points have been studied extensively by many people in connection
with the remainder ω∗ of the Čech-Stone compactification of the integers
and the problem of its homogeneity. The existence of P -points cannot be
proven or refuted in the usual framework of set theory ZFC (see, e.g., [15]
or [2]) but they do exist under several additional set theoretical assumptions
like the Continuum Hypothesis CH or Martin’s Axiom MA.

Given a nonprincipal ultrafilter U on X we say that B ⊆ U is a basis for
U if for every U ∈ U there exists a B ∈ B such that B ⊆ U . We define the
character of U as χ(U) = min{|B| : B is a basis for U}. If κ = χ(U) then we
say that the ultrafilter U is κ-generated.

In [11], K. Kunen introduced κ-OK points to give a proof of the nonho-
mogeneity of ω∗ without any extra assumption beyond ZFC. The following
results are relevant to this paper.

Proposition 1.2 (Kunen [11]) Every P -point is κ-OK for every κ.

Proposition 1.3 (Kunen [11]) There are 2c many distinct c-OK points on ω.
Moreover, these ultrafilters can be made c-generated.

Consider Q with the subspace topology induced by the usual topology on
R and denote by Perf(Q) the family of its perfect subsets (i.e., closed subsets
with no isolated points).
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• A nonprincipal filter U on Q is crowded if the family Perf(Q)∩U forms
a basis for U .

The crowded ultrafilters have been studied in connection with the remain-
der of the Čech-Stone compactification of Q and their existence follows from
the Continuum Hypothesis, Martin’s Axiom for countable posets [7], or from
the equality b = c [6].

In [4, thm. 4.8 and cor. 4.14] Ciesielski and Pawlikowski showed that
CPAgame

prism implies that there exist ω1-generated selective ultrafilters as well
as ω1-generated nonselective P -points. Since a nonselective P -point cannot
be a Q-point (see Fact 1.1), this second result shows that CPAgame

prism implies
that there exists a P -point which is not a Q-point. In the same paper, [4,
thm. 4.22], the authors also established the existence of an ω1-generated
crowded ultrafilter on Q under CPAgame

prism. They also proved, [4, prop. 4.25],
that a crowded ultrafilter cannot be a P -point.

In this paper we establish, under CPAgame
prism, the existence of a nonse-

lective Q-point (i.e., a Q-point which is not a P -point) by constructing an
ω1-generated crowded Q-point which is also an ω1-OK point (Corollary 6.15).
This improves our construction from [13] of an ω1-generated crowded Q-point
on Q. We also prove, under CPAgame

prism, that there exist crowded ω1-generated
Q-points that are not ω1-OK points (Corollary 5.4), crowded ω1-generated
ω1-OK points which are neither P -points nor Q-points (Theorem 6.13), and
crowded ω1-generated ultrafilters on ω that are neither Q-points nor ω1-OK
points (Theorem 4.3). These complete all the logical implications between
being a P -point, a Q-point, or an ω1-OK point as Table 1 shows.

Besides the properties explicitly listed in Table 1 we consider also two
other properties: being ω1-generated (with ω1 < c) and being crowded.

As mentioned above, the first four examples from Table 1 are also crowded.
On the other hand that no other example from Table 1 can be crowded, since
a crowded ultrafilter cannot be a P -point [4, prop. 4.25]. It is also easy to
see that we can destroy the property of being crowded without changing
any of the remaining properties. To see this, note that if U is an ultrafil-
ter on Q and f is a bijection between Q and a scattered subset S of Q,
then V = {A ⊆ Q : f−1(A) ∈ U} is a noncrowded ultrafilter that has the
remaining properties identical to that of U .

One of the key features of our examples is that they are all ω1-generated
with ω1 < c. This cannot be achieved in ZFC, since in many models of
ZFC, for example under MA, every nonprincipal ultrafilter on a countable
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P -point Q-point ω1-OK point Existence Reference
− − − under CPAgame

prism Theorem 4.3

− − + under CPAgame
prism Theorem 6.13

− + − under CPAgame
prism Corollary 5.4

− + + under CPAgame
prism Corollary 6.15

+ − − No, in ZFC Proposition 1.2
+ − + under CPAgame

prism [4] or [5]

+ + − No, in ZFC Proposition 1.2
+ + + under CPAgame

prism [4] or [5]

Table 1: Existence of different ultrafilters. All constructed ultrafilters are
nonprincipal and ω1-generated. Moreover, the first four examples can be
made also crowded.

set has character c. On the other hand, every example cited in Table 1 can
be constructed under MA if we are willing to settle for c-generated filters.
An interesting issue is whether under CPAgame

prism the examples from Table 1
must be ω1-generated. The answer is positive for the last example from
the table, since Ciesielski and Pawlikowski proved (see [4, cor. 2.7] or [5,
cor. 1.5.4]) that under CPAgame

prism every selective ultrafilter is ω1-generated.
There is some indication suggesting that CPAgame

prism implies that every P -
point is ω1-generated. This would take care of the bottom half of the table.
Recently, the autor have constructed, under CPAgame

prism, a crowded Q-point
of character c. This will appear in a forthcoming paper. This particular
example is not a weak P -point so it cannot be an ω1-OK point. (See [11,
Lemma 1.3].) The existence of an example of character c as in the fourth row
in the table is left open. The first two examples from Table 1 do not need to
be ω1-generated. By Proposition 4.1 the Fubini product U ⊗U , where U is a
Kunen’s example from Proposition 1.3, is as the first ultrafilter from Table 1.
The second of these is justified by a slight modification1 of Kunen’s example
from Proposition 1.3.

Finally, let us address a question, whether any of the examples from
Table 1 can be constructed in ZFC. The answer is clearly no for all but the
first two examples, since there are models of ZFC with no P -points (see [15])

1Let F0 be the dual filter of the ideal I0 = {A ⊆ ω : limn→∞|A ∩ Pn| < +∞}, where
{Pn : n < ω} is the partition of ω such that Pn = {m < ω : 2n − 1 ≤ m < 2n+1 − 1}.
Construct a c by c independent linked family w.r.t F0 and follow the argument from [11].
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as well as models of ZFC with no Q-points (see [14]). There are, however,
a ZFC examples for the first two entries of Table 1 as mentioned above.
These need not be ω1-generated, as we already noted. Whether they can be
crowded remains unclear, since it is an open problem if there exists a crowded
ultrafilter in ZFC.

2 Axiom CPAgame
prism and other preliminaries

The framework of CPA rests on the concept of a prism. If C denotes the
space 2ω with its usual product topology then we define for a Polish space X

Perf(X) = {C ⊆ X : C is homeomorphic to C}.

If 0 < α < ω1 is an ordinal let Φprism(α) be the set of all continuous injections
f : Cα → Cα with the property that

f(x) � ξ = f(y) � ξ ⇐⇒ x � ξ = y � ξ for all ξ < α and x, y ∈ Cα.

Then we define Pα = {range(f) : f ∈ Φprism(α)} and Pω1 =
⋃

0<α<ω1
Pα. The

elements of Pω1 are called the iterated perfect sets. The simplest elements of
Pα are of the form C =

∏
ξ<αCξ, where Cξ ∈ Perf(C) for every ξ < α. We

refer to them as perfect cubes.
If X is a Polish space, then a prism in X is a pair 〈f, P 〉 where f : E → X

is injective and continuous, E ∈ Pω1 , and P = f [E]. Function f can be
considered as a coordinate system imposed on P . We will usually abuse this
terminology and refer to P itself as a prism. In this case function f , given
only implicitly, will be referred to as a witness function for P . If the domain
of the witness function of a prism P happens to be a perfect cube, we will
sometimes refer also to P as a cube in X.

If 〈f, P 〉 is a prism, then we say that Q is its subprism provided there
exists an iterated perfect set E ⊆ dom(f) such that Q = f [E]. We will refer
to Q as a subcube of P when E is a perfect cube. Notice that

Remark 2.1 If we need to prove that a prism P contains a subprism Q with
some “nice property,” we can always assume that the witness function f for
P is defined on the entire set Cα.

Proof. Indeed, assume that we can find a desired subprism Q of a prism
P as long as its witness function f is defined on the entire set Cα.
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Next, take an arbitrary witness function g from E ∈ Pα onto P and let
h ∈ Φprism(α) be onto E. Then f = g ◦ h is a continuous injection from
Cα onto P , so by the above assumption we can find a subprism Q of 〈f, P 〉
with the “nice property” we are after. To finish the argument it is enough to
note that Q is also a subprism of 〈g, P 〉. Indeed, since Q = f [E0] for some
E0 ∈ Pα, there exists an h0 ∈ Φprism(α) onto E0. But then h ◦ h0 ∈ Φprism(α)
and Q = f [E0] = (g ◦ h)[h0[C

α]] = g[h ◦ h0[C
α]] is a subprism of 〈g, P 〉 as

h ◦ h0[C
α] ∈ Pα.

Since in the game defined below we will need to consider singletons in
the same position as prisms as defined above, in what follows singletons will
be considered as prisms. If P is a singleton in X then its only subprism is P
itself.

The following theorem is one of the principal tools for finding subprism
of a prism, so also for using CPA. This result is a refinement of a theorem
proved independently by H.G. Eggleston [8] and M.L. Brodskĭı [3].

Proposition 2.2 (K. Ciesielski and J. Pawlikowski, [5, claim 1.1.5]) Let
0 < α < ω1 and consider Cα with its usual topology and its usual product
measure. If G is a Borel subset of Cα which is either of second category or of
positive measure, then G contains a perfect cube E. In particular E ∈ Pα.

Strictly speaking, in [5, claim 1.1.5] (see also [4, claim 2.3]) the result is
proved only for α = ω. But this easily implies the above version.

We will need also the following fusion lemma, which is an easy compilation
of Lammas 3.1.1 and 3.1.2 from [5]. The proof of the compilation is identical
to that of [5, cor. 3.1.3].

Proposition 2.3 (K. Ciesielski and J. Pawlikowski [5]) Let 0 < α < ω1 and
for every n < ω let Dn ⊆ [Pα]

<ω be a family of pairwise disjoint sets such
that ∅ ∈ Dn, Dn is closed under refinements, and

(†) for every E ∈ Dn and E ∈ Pα which is disjoint with
⋃
E there exists

an E ′ ∈ Pα ∩ P(E) such that {E ′} ∪ E ∈ Dn.

Then for every n < ω there is a family En = {Ek : k < 2n} ∈ Dn of pairwise
disjoint sets such that E =

⋂
n<ω

⋃
En ∈ Pα.

For a Polish space X consider the following game GAMEprism(X) of length
ω1 played by two players, Player I and Player II. At each stage ξ < ω1 of
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the game Player I can play an arbitrary prism Pξ in X (i.e., Pξ either is a
singleton in X or it belongs to Perf(X) and comes with a witness function)
and Player II must respond by playing a subprism Qξ of Pξ. The game
〈〈Pξ, Qξ〉 : ξ < ω1〉 is won by Player I provided

X =
⋃
ξ<ω1

Qξ;

otherwise Player II wins. A strategy for Player II is any function S such
that S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) is a subprism of Pξ for every partial game
〈〈Pη, Qη〉 : η < ξ〉. We say that a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 is played according
to a strategy S for Player II provided Qξ = S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) for every
ξ < ω1. A strategy S for Player II is a winning strategy provided Player II
wins any game played according the strategy S.

The following principle captures a combinatorial core of the iterated Sacks
model.

CPAgame
prism: c = ω2 and for any Polish space X Player II has no winning strat-
egy in the game GAMEprism(X).

The axiom is consequence of a slightly more general principle, similar in
spirit, called CPA, see [5]. Its importance comes from the following theorem.

Proposition 2.4 (K. Ciesielski and J. Pawlikowski [5, thm. 7.2.1]) CPA
holds in the iterated perfect set model. In particular, CPA is consistent with
ZFC set theory.

The proof of the consistency of CPAgame
prism can be also found in [4, thm. 5.3].

A set B ⊆ Q is scattered if every nonempty subset of B has isolated
points. It is easy to see that the scattered subsets of Q form an ideal, which
we will denote by IS. The following facts will be used in what follows. For
the proofs see [4] or [5, Fact 5.5.1].

Fact 2.5 Every nonscattered set B ⊆ Q contains a subset from Perf(Q).

Let J be an ideal on a countable set X. Then we define J + = P(X)\J .
We say that J is weakly selective if for every A ∈ J + and f : A → X there
exists a B ∈ P(A) ∩ J + such that f � B is either one-to-one or constant.
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Fact 2.6 The ideals [ω]<ω and IS are weakly selective.

The proof of the following result can be found in [4, lem. 4.9(b)] or in
[5, lem. 5.3.4(b)], where [X]ω comes with a subspace topology of P(X), with
P(X) being identified with 2X via characteristic function.

Proposition 2.7 (K. Ciesielski, J. Pawlikowski [4, 5]) Let X be countably
infinite and let J ⊆ P(X) be a weakly selective ideal. For every prism P ⊆
[X]ω and every A ∈ J + there exist a subprism Q of P , a B ∈ P(A) ∩ J +,
and an i < 2 such that g � B is constant equal to i for every g ∈ Q.

3 Some important lemmas.

Let X be a countably infinite set. If F ⊆ [X]ω is nonempty, we say that F
has the strong finite intersection property, SFIP, provided that |

⋂
F | = ω

for every nonempty F ∈ [F ]<ω. The following is a very well known and easy
fact.

Lemma 3.1 If F ⊆ [X]ω is nonempty, countable, and has the SFIP, then
there exists a C(F) ∈ [X]ω such that C(F) ⊆∗ B for every B ∈ F .

Proof. If F is finite, we can put C(F) =
⋂
F ; otherwise F = {Bn : n < ω}

and we can pick inductively bn ∈
⋂
k≤nBk such that bn /∈ {bk : k < n}. The

set C(F) = {bn : n < ω} works.

Let X be a countably infinite set. If the set ZX = [X]<ω \ {∅} has the
discrete topology then the product space ZX = (ZX)ω is a Polish space and
the sets U〈n,a〉 = {z ∈ Z : z(n) = a}, where a ∈ [ω]<ω and n < ω, constitute
a subbasis for the product topology. Consider the set

PX = {z ∈ ZX : {z(k) : k < ω} is a partition of ω}.

If X = ω we will drop the indexes, that is, Z = Zω and P = Pω.

Lemma 3.2 PX is a Gδ subset of ZX . Therefore PX is a Polish space with
the relative topology inherited from ZX .
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Proof. We can assume that X = ω. If A = {z ∈ Z :
⋃
n<ω z(n) = ω} and

B = {z ∈ Z : {z(n) : n < ω} is pairwise disjoint} then P = A ∩ B. The set
A is Gδ because we have A =

⋂
k∈ω

⋃
n<ω

⋃
{U〈n,a〉 : a ∈ [ω]<ω & k ∈ a}. The

set B is Gδ since it can be written as
⋂
m<n<ω

⋃
{U〈m,a〉 ∩ U〈n,b〉 : a ∩ b = ∅}.

Thus, P is Gδ in Z.

Definition 1 LetX be a countably infinite set and let J ⊆ P(X) be an ideal
on X containing all the singletons. We say that J is Q-like provided that for
every A ∈ J + there exists a countable indexed family {An ∈ [A]ω : n < ω}
such that no set {bn : n < ω} belongs to J provided bn ∈ An for every n < ω.

Lemma 3.3 Let X be a countably infinite set, let J be a Q-like ideal on
X and let A ∈ J + be arbitrary. If P is a prism on PX , then there exist a
subprism Q of P and a B ∈ P(A) ∩ J + such that |z(k) ∩ B| ≤ 1 for every
z ∈ Q and k < ω. Moreover, if P is a cube than Q can be chosen as a
subcube of P .

Proof. We can suppose that X = ω. Let 〈An ∈ [A]ω : n < ω〉 be the
sequence associated to A in the definition of Q-like.

Case (a): If P = {z} then, define a sequence 〈bn ∈ ω : n < ω〉 inductively
such that bn ∈ An \

⋃
{z(k) : k < ω & z(k) ∩ {b0, . . . , bn−1} 	= ∅} for every

n < ω. It is easy to see that B = {bn : n < ω} works.
Case (b): If P ∈ Perf(Pω), let f be a witness function for P . By Re-

mark 2.1 we can assume that f acts from Cα onto P . Thus, P is a cube. It
is enough to find its subcube with the desired properties.

Let µ be the standard product probability measure on Cα. We construct,
by induction on n < ω, a sequence 〈Kn : n < ω〉 of open subsets of Cα and
two sequences, 〈bn ∈ An : n < ω〉 and 〈Bn ∈ [ω]<ω : n < ω〉, such that for
every n < ω:

(i) bn > max
(
{bi : i < n} ∪

⋃
j<nBj

)
,

(ii) µ(Kn) ≥ 1− 2−(n+2), and

(iii) f(h)(k) ⊆ Bn for every h ∈ Kn and k < ω for which bn ∈ f(h)(k).

If this construction is possible, put B = {bn : n < ω}. Then, clearly
B ∈ P(A) ∩ J + since that J is Q-like and bn ∈ An for every n < ω.
Condition (ii) implies that µ

(⋂
n<ωKn

)
≥ 1

2
. Hence, by Proposition 2.2,
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there exists a perfect cube C ⊆
⋂
n<ωKn. Then Q = f [C] is a subcube of

P and the pair 〈Q,B〉 is as required. To see this, it is enough to show that
|z(k) ∩ B| ≤ 1 for every z ∈ Q and k < ω. Let z = f(h) for some h ∈ C.
By conditions (i) and (iii), for every bj ∈ z(k) = f(h)(k) and n > j we have
that bn /∈ z(k). Therefore, no two elements of B are in the same z(k) or, in
other words, |z(k) ∩B| ≤ 1 for every k < ω.

Next, we show that the inductive construction is possible. Let n < ω be
such that the appropriate bi, Ki, and Bi are already constructed for every
i < n. We will construct bn, Kn, and Bn satisfying (i)–(iii). We pick an
bn as an arbitrary element of An satisfying condition (i). Next, we define
L = {a ∈ [ω]<ω : bn ∈ a} and note that

{
f−1

(
U〈m,a〉

)
: 〈m, a〉 ∈ ω × L

}
is a

partition of Cα into clopen sets. Thus, we can find a finite set S ⊆ ω × L
such that Kn =

⋃ {
f−1

(
U〈m,a〉

)
: 〈m, a〉 ∈ S

}
satisfies condition (ii). Let

Bn =
⋃
{a : 〈m, a〉 ∈ S for some m < ω}. Then clearly, Bn is finite. To see

that it satisfies (iii), take an h ∈ Kn. Then f(h) ∈ U〈m,a〉 for some 〈m, a〉 ∈ S.
Let k < ω be such that bn ∈ f(h)(k). Since we have also bn ∈ a = f(h)(m),
we conclude that k = m. So, f(h)(k) = f(h)(m) = a ⊆ Bn.

Definition 2 Let X be a countably infinite set. We say that an ideal J on
X is prism-friendly provided that it contains all singletons and

(•) given a prism P in 2X and an A ∈ J + there exists a subprism Q of P ,
a B ∈ P(A) ∩ J +, and an i < 2 such that g � B is constant equal i for
every g ∈ Q.

Definition 3 Let X be a countably infinite set. We say that an ideal J on
X is rich if it is prism-friendly and

(#) given an A ∈ J + there exists a family A ⊆ P(A) ∩ J + of cardinality
c which is almost disjoint, that is, such that |A ∩ B| < ω for every
distinct A,B ∈ A.

Also, notice that, in ZFC, condition (•) does not imply condition (#).
Indeed, if U is a selective ultrafilter, then its dual ideal IU is weakly selective.
So, see [5], IU is prism-friendly. However, I+

U = U and no two members in U
can be almost disjoint.

Lemma 3.4 The ideals [ω]<ω and IS are Q-like and rich.
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Proof. It is easy to see that [ω]<ω is Q-like. To see that IS is also Q-
like pick any A ∈ I+

S . By Fact 2.6 we can assume that A ∈ Perf(Q). Let
B be a countable basis for the topology on Q and let {An : n < ω} be an
enumeration of the set {S ∩ A : S ∈ B & |S ∩ A| = ω}. If bn ∈ An for every
n < ω then B = {bn : n < ω} is dense in A and in consequence, it is in I+

S .
By Fact 2.6, the ideals [ω]<ω and IS are weakly selective so, by Proposi-

tion 2.7, they are prism-friendly. Thus, we need only to check that each of
these ideals satisfies the condition (#) from the definition of rich ideal.

It is well known that (#) holds for [ω]<ω. To check that (#) also holds
for IS, fix a countable basis B for the topology on Q and pick an A ∈ I+

S .
By Fact 2.5, we can assume that A ∈ Perf(Q). Let {Bn : n < ω} be an
enumeration of BA = {B ∈ B : |B ∩A| = ω} and construct {as : s ∈ 2<ω} by
induction on the length of s in such a way that {as : s ∈ 2n} ∈ [A ∩Bn]2n

and that {as : s ∈ 2n}∩
⋃
{at : t ∈ 2<n} = ∅ for every n < ω. If for x ∈ 2ω we

put Ax = {ax�n : n < ω}, then Ax ∈ I+
S for every x ∈ 2ω, since Ax is dense

in A. Then A = {Ax : x ∈ 2ω} is almost disjoint and satisfies (#).

Definition 4 Let X be a countably infinite set and let J ⊆ P(X) be an
ideal on X containing all singletons. The Fubini product of the ideals [ω]<ω

and J is the ideal K on ω×X denoted [ω]<ω ⊗J and defined as the family
of all subsets A of ω ×X such that

supp(A)
def
= {n < ω : (A)n ∈ J +} is finite,

where (A)n = {x ∈ X : 〈n, x〉 ∈ A}.

Lemma 3.5 If J is a Q-like ideal, then K = [ω]<ω ⊗ J is also Q-like.

Proof. Let A ∈ K+. For each n ∈ supp(A) let {Amn ∈ [(A)n]
ω : m < ω}

be a family from the definition of Q-like for (A)n ∈ J +. Then the family
{{n} × Amn : n ∈ supp(A) & m < ω} satisfies the definition of Q-like for the
set A.

Lemma 3.6 Let X be a countably infinite set, J a prism-friendly ideal
on X, P a prism in 2ω×X , I ∈ [ω]ω, and let 〈An ∈ J + : n ∈ I〉 be arbi-
trary. Then, there exist a subprism Q of P , a set J ∈ [I]ω, a sequence
〈Bn ∈ P(An) ∩ J + : n ∈ J〉, and an i < 2, such that g � B is constant equal
i for every g ∈ Q provided that B =

⋃
{{n} ×Bn : n ∈ J}.

In particular, if J is prism-friendly, then so is K = [ω]<ω ⊗ J .
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Proof. We can suppose that I = ω. If P is a singleton the lemma follows
easily from the fact that J is an ideal containing the singletons and the
pigeon hole principle. So, suppose that P ∈ Perf(2ω×X). Let f be a function
witnessing that P is a prism. By Remark 2.1 we can assume that f is defined
on Cα for some 0 < α < ω1. We will construct a subprism Q0 of P and a
sequence 〈Bn ∈ [An]

ω ∩ J + : n < ω〉 such that for every n < ω

g � {n} ×Bn is constant for every g ∈ Q0. (1)

This will be done using Proposition 2.3.
For each n < ω let Dn be the collection of all pairwise disjoint families

E ∈ [Pα]
<ω such that there exists an A〈E,n〉 ∈ [An]

ω ∩ I+ with the property
that for every E ∈ E

f(h) � {n} × A〈E,n〉 = f(h
′
) � {n} × A〈E,n〉 for all h, h

′ ∈ E. (2)

Clearly, each Dn is closed under refinaments. To see that Dn satisfies
the condition (†) from Proposition 2.3 pick E ∈ Dn and E ∈ Pα such that
E ∩

⋃
E = ∅. Decreasing A〈E,n〉, if necessary, we can assume that X \ A〈E,n〉

is infinite. Let bn : ω × X → X be any bijection such that bn(n, a) = a for
every a ∈ A〈E,n〉. This bijection induces a homeomorphism fn : 2ω×X → 2X

defined by fn(g)(x) = g(b−1
n (x)) for every g ∈ 2ω×X and x ∈ X. Clearly, fn is

continuous and injective. Hence, Q∗ = (fn ◦ f)[E] is a prism in 2X . Since J
is prism-friendly, we can find a subprism Q∗∗ of Q∗, an A

′ ∈ [A〈E,n〉]
ω ∩ J +,

and an i < 2 such that g[A
′
] = {i} for every g ∈ Q∗∗. But Q∗∗ = fn[E

′
] for

some E
′ ∈ Pα ∩ P(E). So, if we put E ′

= E ∪ {E ′} and A〈E ′
,n〉 = A

′
we get

that E ′ ∈ Dn and the condition (†) is satisfied. Thus, by Proposition 2.3,
for every n < ω there exists a family En = {Ek : k < 2n} ∈ Dn of pairwise
disjoint sets with E0 =

⋂
n<ω

⋃
En ∈ Pα. We will prove that Q0 = f [E0]

satisfies (1) with some sequence 〈Bn : n < ω〉.
To see this fix an n < ω, for each k < 2n pick an hk ∈ Ek, and define

ϕn : A〈En,n〉 → 22n
by ϕn(p)(k) = f(hk)(n, p). Since A〈En,n〉 ∈ I+ and J is an

ideal, we can find an sn ∈ 22n
such that Bn = ϕ−1

n (sn) ∈ J +. To see that
Bn satisfies (1), pick a g ∈ Q0. Then there exists a k < 2n and an h ∈ Ek
such that g = f(h). Since Bn ⊆ A〈En,n〉, by (2) we have that g � {n} ×Bn =
f(hk) � {n} × Bn. In particular, g(p) = f(hk)(n, p) = ϕn(p)(k) = sn(k) for
every p ∈ Bn. So, g � {n} ×Bn is constant equal to sn(k) and (1) holds.

To finish the proof of the lemma pick a bn ∈ Bn for each n < ω. Then,
the set S = {〈n, bn〉 ∈ {n}×Bn : n < ω} is a selector for {{n}×Bn : n < ω}.
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Let I = [ω × X]<ω. Then I is weakly selective and S ∈ I+. If we identify
2ω×X with P(ω×X), then Q0 can be treated as a prism in P(ω×X). Since
[ω×X]ω is residual in P(ω×X), by Proposition 2.2 we can assume that Q0

is a prism in [ω ×X]ω. So, by Proposition 2.7, there exist a subprism Q of
Q0, a set S0 ∈ [S]ω, and an i < 2 such that g[S0] = {i} for every g ∈ Q.
Define J = {n < ω : 〈n, bn〉 ∈ S0}.

To see that the conclusion of the lemma holds take a g ∈ Q and an
〈n, b〉 ∈ B. Then n ∈ J and b ∈ Bn. So, by (1), g(n, b) = g(n, bn) = i, since
〈n, bn〉 ∈ S0.

Lemma 3.7 Let X be a countably infinite set and let J ⊆ P(X) be an ideal
containing all singletons and satisfying condition (#) from the definition of
a rich ideal. Then the ideal K = [ω]<ω ⊗ J also satisfies (#).

In particular, if J is rich, then so is K.

Proof. Let A ∈ K+. Then supp(A) is infinite. Let A = {Aξ : ξ < c} ⊆
[supp(A)]ω be an almost disjoint family. Since J satisfies (#), for every n < ω
there exists an almost disjoint family Bn = {Bnξ : ξ < c} ⊆ P((A)n) ∩ J +. If
for every ξ < c we define

Uξ =
⋃
{{n} ×Bnξ : n ∈ Aξ},

then the family {Uξ : ξ < c} ⊆ P(A) ∩ K+ works. The other part of the
lemma is consequence of this and of Lemma 3.6.

4 An ω1-generated crowded bad point.

Definition 5 If U and V are ultrafilters then, the Fubini product of U and
V is defined as

U ⊗ V = {A ⊆ ω × ω : {n : (A)n ∈ V} ∈ U}.

Proposition 4.1 (Folklore) If U and V are nonprincipal ultrafilters in ω
then U ⊗V is a nonprincipal ultrafilter which is not a P -point, a Q-point, or
even an ω1-OK point.
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Proof. It is easy to see that U ⊗V is a nonprincipal ultrafilter. To see that
U ⊗V cannot be a P -point observe that the set {Lm : m < ω} of all sections
Lm = {〈m,n〉 : n ∈ ω} is a partition of ω×ω into infinite pieces not in U ⊗V
and that every X ∈ U ⊗ V intersects infiniteley many Lm’s on an infinite set.

To see that U ⊗ V cannot be a Q-point consider the partial partition
{Pn : n < ω} of ω × ω where Pn = {〈m,n〉 : m ≤ n} for every n < ω. Notice
that

⋃
n<ω Pn ∈ U ⊗V. Let P ⊆ [ω× ω]<ω be a partition of ω× ω such that

{Pn : n < ω} ⊆ P. It is easy to see that there is no X ∈ U ⊗ V such that
|X ∩ P | ≤ 1 for every P ∈ P.

To see that U ⊗V is not an ω1-OK point consider {Vn : n < ω} ⊆ U ⊗ V,
where Vn =

⋃
m>n Lm. By the way of contradiction, suppose that the se-

quence Ū = 〈Uξ ∈ U ⊗ V : ξ < ω1〉 is OK for {Vn : n < ω}. Then, by the
pigeon hole principle, there exist an m < ω and an X ∈ [ω1]

ω1 such that
(Uξ)m ∈ V for every ξ ∈ X. Pick ordinals ξ1 < ξ2 < · · · < ξm in X. Since Ū
is OK for {Vn : n < ω} we have that

⋂m
i=1 Uξi ⊆∗ Vm ⊆ ω×ω\Lm. Therefore,

|
⋂m
i=1 Uξi ∩ Lm| < ω. But also, (

⋂m
i=1 Uξi)m =

⋂m
i=1(Uξi)m ∈ V . This implies

that |(
⋂m
i=1 Uξi) ∩ Lm| = ω, which is a contradiction.

Given f, g ∈ ωω we write g ≤∗ f provided that g(n) ≤ f(n) for all but
finitely many n < ω. We say that an F ⊆ ωω is dominating provided that
for every g ∈ ωω there exists an f ∈ F such that g ≤∗ f . The dominating
number d is defined as the minimum cardinality of a dominating family in
ωω. This and other cardinal invariants have been studied extensively in the
literature. See for example [1] or [2]. It is easy to show that ω1 ≤ d ≤ c and
that this is all that can be said in ZFC about the value of d. For instance,
the continuum hipothesis implies that d = ω1 = c, while Martin’s Axiom +
c > ω1 imply that d = c > ω1. See, for example [10].

In [5, sec. 1.3] Ciesielski and Pawlikowski proved that a weak version of
CPAgame

prism, called CPAcube, implies that cof(N ) = ω1 < c.2 It is known that
this fact implies that d = ω1.

It is not difficult to prove that d = ω1 implies that for every countable in-
finite set X there is an F ⊆ ([ω1]

<ω)X of cardinality ω1 which is ⊆-dominant,
that is, such that

for every g ∈ ([ω1]
<ω)X there is an f ∈ F with g(x) ⊆ f(x) for all x ∈ X.

This follows from the fact that ([ω1]
<ω)X =

⋃
α<ω1

([α]<ω)X . This is the form
of d = ω1 which we will use in the next proposition.

2cof(N ) = min{|A| : A ⊆ N ∀X ∈ N ∃Y ∈ A (X ⊆ Y)}, where N is the null ideal on C.
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Proposition 4.2 Assume d = ω1 and let X and Y be countably infinte sets.
If U and V are ω1-generated ultrafilters on X and Y , respectively, then their
Fubini product U ⊗ V is also ω1-generated.

Proof. Let {Uα : α < ω1} and {Vβ : β < ω1} be the bases for U and V ,
respectively. Since d = ω1, there exists a ⊆-dominant family 〈fγ : γ < ω1〉 ⊆
([ω1]

<ω)X . We claim that the family {Wα,γ : 〈α, γ〉 ∈ ω1 × ω1} ⊆ U ⊗ V,
where Wα,γ =

⋃
{{x} ×

⋂
β∈fγ(x) Vβ : x ∈ Uα}, is a basis for U ⊗V. To check

this, pick an A ∈ U ⊗ V. Then, {x ∈ X : {y : 〈x, y〉 ∈ A} ∈ V} ∈ U . Pick
an α < ω1 such that Uα ⊆ {x ∈ X : {y : 〈x, y〉 ∈ A} ∈ V}. Then, given an
x ∈ Uα there exists a βx < ω1 such that Vβx ⊆ {y ∈ Y : 〈x, y〉 ∈ A}. This
implies that {x} × Vβx ⊆ A for every x ∈ Uα.

Consider the function g : X → [ω1]
<ω defined as

g(x) =

{
{βx} if x ∈ Uα
∅ otherwise.

Since 〈fγ : γ < ω1〉 is a ⊆-dominant family, there exists a γ < ω1 such that
g(x) ⊆ fγ(x) for every x ∈ Uα. This implies that βx ∈ fγ(x) and that
{x} ×

⋂
β∈fγ(x) Vβ ⊆ A for every x ∈ Uα. Hence, Wα,γ ⊆ A.

Theorem 4.3 CPAgame
prism implies that there exists an ω1-generated crowded

ultrafilter which is not a P -point, a Q-point, or even an ω1-OK point.

Proof. CPAgame
prism implies the existence of an ω1-generated crowded ultra-

filter U on Q, see [4, prop. 4.25]. We will show that U ⊗ U is as desired.
By Proposition 4.1, it is not a P -point, a Q-point, or an ω1-OK point.

Also, since CPAgame
prism implies d = ω1, by Proposition 4.2 the ultrafilter U ⊗U

is ω1-generated by some family B.
To see that U ⊗ U can be treated as crowded, consider Q × Q as the

product of 〈Q, τd〉 and 〈Q, τs〉, where τd is the discrete topology and τs is the
standard topology. Then Q×Q is homemorphic to Q.

For B ∈ B let B̄ = {x : (B)x ∈ B} ∈ U}. Using Fact 2.5, for every x ∈ B̄
we can choose a subsetBx ∈ Perf(Q) of (B)x. LetB∗ =

⋃
{{x}×Bx : x ∈ B̄}.

Then B∗ is a perfect subset of Q×Q. Thus, {B∗ : B ∈ B} is a basis of U ⊗U
of cardinality ω1 formed with perfect subsets of Q×Q.
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5 A crowded Q-point which is not an ω1-OK

point.

Definition 6 Let X be a countably infinite set and let J ⊆ P(X) be an
ideal on X. If A,B ∈ J + we write A *J B if and only if A \B ∈ J .

Definition 7 Let X be a countably infinite set and let J ⊆ P(X) be an
ideal on X. We say that J has the extension property provided that for
every *J -decreasing sequence 〈An ∈ J + : n < ω〉 there exists an A ∈ J +

such that A *J An for every n < ω.

Let X and J be as above and let K = [ω]<ω ⊗ J . We will consider a
relation + defined on K+ as

A + B ⇔ supp(A) ⊆∗ supp(B) & (A)n *J (B)n ∀n ∈ supp(A) ∩ supp(B).

Note that for A,B ∈ K+

A ⊆ B =⇒ A + B =⇒ A *K B

but none of these implications can be reversed. Also, it is not difficult to see
that the relation + is not transitive. Nevertheless, we say that for ξ < ω1

a sequence 〈Uη ∈ K+ : η < ξ〉 is +-decreasing provided Uη + Uζ for every
ζ < η < ξ.

Lemma 5.1 Let X be a countably infinite set, let J ⊆ P(X) be an ideal on
X with the extension property, and let K = [ω]<ω⊗J . Then, for every ξ < ω1

and every +-decreasing sequence 〈Uη ∈ K+ : η < ξ〉 there exists a C ∈ K+

such that C + Uη for every η < ξ. Moreover, the sequence 〈Uη : η ≤ ξ〉 is
+-decreasing for every Uξ ∈ P(C) ∩ K+.

Proof. sequence. Since the sequence 〈supp(Uη) : η < ξ〉 is ⊆∗-decreasing,
we can find an S ∈ [ω]ω such that S ⊆∗ Uη for every η < ξ. For each
m ∈ S consider the set Im = {η < ξ : m ∈ supp(Uη)}. Then, since J has
the extension property, we can find a Cm ∈ J + such that Cm *J (Uη)m for
every η ∈ Im. Put C =

⋃
{{m} × Cm : m ∈ S}. Then clearly C + Uη for

every η < ξ. The additional part follows from the fact that U ⊂ C + V
implies U + V .
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Lemma 5.2 Let X, J , and K be as above. Let 〈Uξ ∈ K+ : ξ < ω1〉 be a
+-decreasing sequence in K+ such that for every g ∈ ω ×X there exists a
ξ < ω1 such that g � Uξ is constant. Then, the family {Uξ : ξ < ω1} forms a
base for a nonprincipal ultrafilter on ω ×X which is not an ω1-OK point.

Proof. We check first that the family {Uξ : ξ < ω1} has SFIP . So, choose
ξ0 < · · · < ξn < ω1. Since Uξn + · · · + Uξ1 + Uξ0 we can pick an m ∈⋂
i≤n supp(Uξi). If Im = {ξ < ω1 : m ∈ supp(Aξ)}, then {ξi : i ≤ n} ⊆ Im.

Therefore, (Uξn)m *J · · · *J (Uξ0)m. This implies that (
⋂
i≤n Uξi)m ∈ J +.

In particular, (
⋂
i≤n Uξi)m is infinite and so is

⋂
i≤n Uξi . Let U be a filter

generated {Uξ : ξ < ω1}.
To see that U is actually an ultrafilter, pick any A ⊆ ω ×X. Then, there

exists a ξ < ω1 and an i < 2 such that χA � Uξ is constant equal i. If i = 0
then Uξ ⊆ (ω ×X) \ A and (ω×X)\A ∈ U . If i = 1 then Uξ ⊆ A and A ∈ U .
Therefore, U is an ultrafilter and {Uξ : ξ < ω1} is a base for U . Observe that
U is nonprincipal because each set in U contains an infinite set Uξ.

To see that U is not an ω1-OK point consider a sequence 〈Vn ∈ U : n < ω〉,
where Vn =

⋃
i>n({i} × X). Suppose that there exists a 〈Wξ ∈ U : ξ < ω1〉

which is OK for 〈Vn ∈ U : n < ω〉. Since {Uξ : ξ < ω1} is a basis for U , for
every for every ξ < ω1 there exists a Uαξ

⊆ Wξ. This implies that

〈Uαξ
: ξ < ω1〉 is OK for 〈Vn ∈ U : n < ω〉.

By the pigeon hole principle, there exist a T ∈ [ω1]
ω1 and an m < ω such

that m = min(supp(Uαξ
)) for every ξ ∈ T . Hence, T ⊆ Im. Pick any

ordinals αξ0 < · · · < αξm in T . Since 〈Uαξ
: ξ < ω1〉 is OK for 〈Vn ∈ U : < ω〉

we have that
⋂
i≤m Uαξi

⊆∗ Vm. Hence, |(
⋂
i≤m Uαξi

) ∩ ({m} ×X)| < ω by
the definition of Vm. On the other hand, {αξi : i ≤ m} ⊆ Im. Therefore,
(Uαξ0

)m *J · · · *J (Uαξm
)m. This implies that |(

⋂
i≤m Uαξi

)m| = ω. So,
|(
⋂
i≤m Uαξi

) ∩ ({m} ×X)| = ω. This contradiction indicates that U cannot
be an ω1-OK point.

Let X, J , and K be as before and let D ⊆ J + be dense in the sense that
for every A ∈ J + there exists a D ∈ D such that D ⊆ A. Then, the family
D∗ ⊆ K+ consisting of the sets of the form

⋃
{{n} ×Dn : n ∈ I} is dense in

K+, where I ∈ [ω]ω and Dn ∈ D for every n ∈ I. Recall also that Pω×X is
the space of all partitions of ω×X into finite pieces, as defined in Section 3.

Theorem 5.3 Let X be a countably infinite set, let J ⊆ P(X) be an ideal
with the extension property, and let D ⊆ J + be dense. If J is prism-friendly
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and Q-like and K = [ω]<ω ⊗ J , then CPAgame
prism implies that there exists an

ω1-generated Q-point U on ω×X which is not an ω1-OK point and such that
U ∩ D∗ is a basis for U .

Proof. We construct a+-decreasing sequence 〈Uξ ∈ K+ ∩ D∗ : ξ < ω1〉 such
that:

(i) For every g ∈ 2ω×X there exists a ξ < ω1 such that g � Uξ is constant.

(ii) For every z ∈ Pω×X there exists a ξ < ω1 such that |z(k)∩Uξ| ≤ 1 for
every k ∈ ω.

If this construction is possible, then, by Lemma 5.1, {Uξ ∈ D∗ : ξ < ω1}
is a basis for a nonprincipal ultrafilter U on ω × X which is not an ω1-OK
point. To see that U is a Q-point pick an arbitrary z ∈ Pω×X . Then, by
condition (ii), there exists a ξ < ω1 such that |z(k)∩Uξ| ≤ 1 for every k < ω.
Therefore, U is an ω1-generated Q-point.

Let Y = 2ω×X ∪Pω×X and consider it with the topology τ formed with
all sets A ⊆ Y such that A ∩ 2ω×X and A ∩ Pω×X are open in 2ω×X and
Pω×X , respectively. Then 〈Y , τ〉 is a Polish space. Note that, by Lemmas 3.5
and 3.6, the ideal K is Q-like and prism-friendly. For a prism P in Y and
U ∈ K+ we choose a subprism Q(U, P ) of P and B(U, P ) ∈ P(U) ∩ D∗ as
follows.

• If U ∩ 2ω×X 	= ∅, then we can choose a subprism P0 ⊆ 2ω×X of P . The
choice of P0 is obvious if P is a singleton; otherwise it follows from
Proposition 2.2. Then Q(U, P ) is a subprism of P0 such that Q(U, P )
and B(U, P ) ∈ P(U) ∩ K+ satisfy condition (•) from the definition of
the prism-friendly ideal.

• If U ∩ 2ω×X = ∅, then P is a prism in Pω×X . Then, by Lemma 3.3,
there exist a subprism Q(U, P ) of P and a B(U, P ) ∈ P(U) ∩ K+ such
that |z(k) ∩B(U, P )| ≤ 1 for every z ∈ Q(U, P ) and k < ω.

We can also assume that B(U, P ) ∈ D∗, since D∗ is dense in K+.
Also, for ξ < ω1 and a +-decreasing sequence 〈Uη ∈ K+ : η < ξ〉 let Cξ =

C(〈Uη : η < ξ〉) be such that Cξ + Uη for every η < ξ. Its existence follows
from Lemma 5.1. Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(C(〈Uη : η < ξ〉), Pξ),



CPAgame
prism and ultrafilters on ω and Q July 15, 2004 19

where the Uη’s are defined inductively by Uη = B(C(〈Uζ : ζ < η〉), Pη).
By CPAgame

prism, the strategy S is not a winning strategy for Player II.
So, there exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S in which
Player II loses. Thus, Y =

⋃
ξ<ω1

Qξ. Let 〈Uξ ∈ D∗ : ξ < ω1〉 ⊆ K+ be the
sequence created in this game. This sequence is +-decreasing by construction
and Lemma 5.1. By the observations made before we only need to check that
〈Uξ : ξ < ω1〉 satisfy conditions (i) and (ii).

If g ∈ 2ω×X , then there exists a ξ < ω1 such that g ∈ Qξ. So, Qξ ⊆ 2ω×X

and, by the construction, g � Uξ is constant. This proves (i). Similarly, if
z ∈ Pω×X , then there exists a ξ < ω1 such that z ∈ Qξ. Hence, Qξ ⊆ Pω×X
and, by the construction, |z(k)∩Uξ| ≤ 1 for every k < ω. This proves (ii).

Corollary 5.4 CPAgame
prism implies that there exists an ω1-generated crowded

Q-point which is not an ω1-OK point.

Proof. Consider X = ω × Q with the product topology, where ω has the
discrete topology and Q has the subspace topology inherited from R. Then
X is homeomorphic to Q. We will find an ideal J ⊆ P(X) to which we will
apply Theorem 5.3.

Let J = [ω]<ω ⊗ IS. It is clear that J contains all singletons. Also,
J is prism-friendly by Lemmas 3.4 and 3.6 and Q-like by Lemmas 3.4
and 3.5. To see that J has the extension property pick a *J -decreasing
sequence 〈An ∈ J + : n < ω〉. By induction construct an increasing sequence
〈nk : k < ω〉 such that nk ∈ supp(Ak)\ supp

(⋃
i<k(Ak \ Ai)

)
. The choice can

be made, since the set supp
(⋃

i<k(Ak \ Ai)
)

is finite, as
⋃
i<k(Ak \ Ai) ∈ J .

The choice of nk gives also
(⋃

i<k(Ak \ Ai)
)
nk
∈ IS. Thus,

(⋂
i≤k Ai

)
nk
/∈ IS.

Put B =
⋃ {

{nk} ×
(⋂

i≤k Ai
)
nk

: k < ω
}

. Then B ∈ J + and B *J An for
every n < ω.

Since D̄ = Perf(Q) is dense in (IS)+, the family D = D̄∗ is dense in J +.
Applying Theorem 5.3 to J and D, we can find an ω1-generated Q-point U
on ω×X which is not an ω1-OK point and such that U ∩D∗ contains a basis
for U . Since ω ×X is homeomorphic to Q and D∗ consists of perfect set in
ω ×X, it follows that U is crowded.
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6 Crowded ω1-generated ω1-OK points which

are not P -points.

In this section we prove that the axiom CPAgame
prism implies the existence of an

ω1-OK point which is not a P -point. For this, we follow the schema used in
[9] for the construction of such an ultrafilter in the model of ZFC obtained
by adding Sacks reals side-by-side. Since that proof uses CH in the ground
model, we have to modify things a bit to make it work in the context of
CPAgame

prism. One possiblity for avoiding the use of CH is to replace it with
some weaker principle consistent with CPAgame

prism like, for instance, d = ω1.
Let Γ denote the set of all nonzero limit ordinals below ω1. The following
fact is a simple generalization of the remark above Proposition 4.2.

Fact 6.1 (d = ω1) There exist a sequence 〈gδ : δ < ω1〉 of functions from ω
into [ω1]

<ω and a partition {Sδ ∈ [ω1]
ω1 : δ < ω1} of Γ such that:

• For every h : ω → ω1 there is a δ < ω1 such that h(n) ∈ gδ(n) for every
n < ω.

•
⋃

rang(gδ) = min(Sδ) for every δ < ω1.

Fix a countably infinite set X and put P = {{m} ×X : m < ω}. Then,
P is a partition of ω×X into infinitely many infinite pieces. The idea of the
proof is to find a sequence 〈Uα : α < ω1〉 that forms a base for a nonprincipal
ultrafilter U on ω × X such that every Uα has infinite intersection with
infinitely many members of P and, for each δ < ω1,

〈Uα : α ∈ Sδ〉 is OK for




⋂
η∈gδ(n)

Uη : n < ω


 .

To see that such an U is an ω1-OK point pick 〈Vn : n < ω〉 ∈ (U)ω. Since
the sequence 〈Uα : α < ω1〉 is a basis for U , for every n < ω there is a ξn < ω1

such that Uξn ⊆ Vn. Therefore, there exists a δ < ω1 such that ξn ∈ gδ(n)
for every n < ω. Then 〈Uα : α ∈ Sδ〉 is OK for 〈Vn : n < ω〉 since for any
sequence α0 < · · · < αn of elements in Sδ we have:⋂

i≤n
Uαi

⊆∗
⋂

η∈gδ(n)

Uη ⊆ Uξn ⊆ Vn.
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Observe that U cannot be a P -point because each Uα intersects infinitely
many members of P on an infinite set.

Let us start with fixing a rich ideal J ⊆ P(X) and a dense D ⊆ J +. We
will consider the ideal K = [ω]<ω ⊗ J on ω × X and the set D∗ ⊆ K+ as
defined in Section 5. We also fix, for each ξ ∈ Γ, an enumeration {ξi : i < ω}
of ξ.

Let T be the set of triples 〈I, f, B〉 satisfying the following requirements:

• I is an infinite subset of ω,

• f ∈
∏
m<ω(P(X) ∩ D), and

• B ∈
∏
m∈ω(P(f(m)) ∩ D)ω1 such that every B(m) is a sequence of

almost disjoint sets.

If ξ ≤ ω1 and 〈〈Iη, fη, Bη〉 ∈ T : η < ξ〉, the
sequence 〈Uη : η < ξ〉 associated with it is defined by

Uη =
⋃
{{m} × fη(m) : m ∈ Iη}.

Note that each Uη is in D∗.
To prove that the resulting ultrafilter U in our construction is in fact an

ω1-OK point we will consider for every δ < ω1, η < ξ, and m < ω the sets
K(η,m) = {ζ < η : fη(m) ⊆ fζ(m)}, the numbers kδ(η,m) = |K(η,m)∩ Sδ|,
and the functions lδ defined by:

lδ(η,m) =



∞ if

⋃
rang(gδ) ⊆ K(η,m)

−1 if gδ(0) 	⊆ K(η,m)

max{l < ω :
⋃
gδ[l + 1] ⊆ K(η,m)} otherwise.

Definition 8 For ξ ≤ ω1 a sequence 〈〈Iη, fη, Bη〉 ∈ T : η < ξ〉 is good if:

(a) For every ζ < η < ξ and m < ω, either fζ(m)∩ fη(m) is finite, or there
exists a γ ≤ η such that fη(m) ⊆ Bζ(m)(γ) ⊂ fζ(m).

(b) For every 0 < η < ξ and m < ω there exists a ζ < η such that
fη(m) ⊆ Bζ(m)(η).
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(c) If η < ξ is limit and {mi : i < ω} is the increasing enumeration of Iη,
then

mi ∈
⋂
j≤i
Iηj

and fη(mi) ⊆
⋂
j≤i
fηj

(mi),

where {ηj : j < ω} is our fixed enumeration of η.

(d) fη(m) = B0(m)(η) for every m ∈ ω \ Iη.

(e) If η + 1 < ξ, then Iη+1 ⊆ Iη and fη+1(m) ⊆ Bη(m)(η + 1) ⊆ fη(m) for
every m ∈ Iη+1.

(f) If δ < ω1, η < ξ, and η ∈ Sδ, then lδ(η,m) > kδ(η,m) for every m ∈ Iη.

(g) If δ < ω1, η < ξ, and
⋃

rang(gδ) ⊆ η, then

lim
m∈Iη
m→∞

(lδ(η,m)− kδ(η,m)) = ∞.

Remark 6.2 It follows from (c) and (e) that if ζ < η < ξ, then Iη ⊆∗ Iζ .

Remark 6.3 It is also easy to check that if ξ ≤ ω1 is a limit ordinal, then
the sequence 〈〈Iζ , fζ , Bζ〉 ∈ T : ζ < ξ〉 is good if and only if the sequence
〈〈Iζ , fζ , Bζ〉 ∈ T : ζ < η〉 is good for every η < ξ.

Remark 6.4 It is not difficult to see that

if α < β < ξ, then fβ(m) ⊆ fα(m) for all but finitely many m ∈ Iβ. (3)

If β ∈ Γ this follows from (c). If Γ ∩ (α, β] = ∅, then it follows from (e). If
Γ ∩ (α, β] 	= ∅ then there exist a maximal γ ∈ Γ ∩ (α, β] and, by the above
two cases, fβ(m) ⊆ fγ(m) ⊆ fα(m) for all but finitely many m ∈ Iβ.

Remark 6.5 For every 0 < η < ξ and m < ω there exists a γ ≤ η such
that fη(m) ⊆ B0(m)(γ). This follows from condition (b), since every strictly
decreasing sequence of ordinals is finite.

The dual filter of an ideal K on a set ω ×X is the family FK defined as
FK = {(ω × X) \ A : A ∈ K}. The importance of the definition of a good
sequence derives from the following lemma.
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Lemma 6.6 Let X be a countably infinite set, J ⊆ P(X) a rich ideal in X,
D ⊆ J + a dense family, and letK = [ω]<ω⊗J . If 〈〈Iξ, fξ, Bξ〉 ∈ T : ξ < ω1〉 is
a good sequence such that for every g ∈ 2ω×X there exists a ξ < ω1 such that
g � Uξ is constant, then 〈Uξ ∈ D∗ : ξ < ω1〉 forms a base for a nonprincipal
ultrafilter on ω×X extending FK which is an ω1-OK point but not a P -point.

Proof. The fact that {Uξ : ξ < ω1} ⊆ D∗ follows immediately from the
definition of Uη and D∗.

Next we prove that {Uξ : ξ < ω1} forms a base for a nonprincipal ultrafilter
U on ω ×X extending the filter FK. Given ξ0 < · · · < ξn pick a γ ∈ Γ with
γ > ξn. By (c), we have that almost every m ∈ Iγ is in

⋂
i≤n Iξi and that

fγ(m) ⊆
⋂
i≤n fξi(m). Therefore,

⋂
i≤n Uξi ∈ K+ and {Uξ : ξ < ω1} can be

extended to a proper filter U on ω × X. If A ⊆ ω ×X, then χA ∈ 2ω×X

and there exist a ξ < ω1 and an i < 2 such that χA � Uξ is constant equal
i. If i = 1 then Uξ ⊆ A and A ∈ U . If i = 0 then Uξ ⊆ (ω ×X) \ A so
(ω ×X) \A ∈ U . This proves that U is an ultrafilter and that {Uξ : ξ < ω1}
is a base for U . Since no A ∈ K contains any Uξ, it follows that U extends
FK. In particular, U is nonprincipal.

To see that U is not a P -point notice that every Uξ intersects infinitely
many pieces of the partition P = {{m} ×X : m < ω} on an infinite set and
so does every V ∈ U .

To prove that U is an ω1-OK point it is enough to prove that for every
δ < ω1

〈Uα : α ∈ Sδ〉 is OK for




⋂
η∈gδ(n)

Uη : n < ω


 . (4)

Pick δ < ω1 and ξ0 < · · · < ξn in Sδ. First, we prove that for every m ∈ Iξn

either
⋂
i≤n

fξi(m) is finite, or
⋂
i≤n

fξi(m) ⊆
⋂

η∈gδ(n)

fη(m). (5)

Indeed, assume that
⋂
i≤n fξi(m) is infinite. Then, by part (a) of Defini-

tion 8, ξi ∈ K(ξn,m) ∩ Sδ for each i ≤ n− 1. Therefore, kδ(ξn,m) ≥ n and
lδ(ξn,m) ≥ n+ 1 by Definition 8(f). In particular, gδ(n) ⊆ K(ξn,m). Hence,
by the definition of K(η,m),⋂

i≤n
fξi(m) ⊆ fξn(m) ⊆

⋂
η∈K(ξn,m)

fη(m) ⊆
⋂

η∈gδ(n)

fη(m).
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Also, Definition 8(c) implies that fξn(m) ⊆
⋂
η∈gδ(n) fη(m) for all but finitely

many m ∈ Iξn . Thus, the set s =
{
m ∈ Iξn :

⋂
i≤n fξi(m) 	⊆

⋂
η∈gδ(n) fη(m)

}
is finite. Moreover, by (5),

⋂
i≤n fξi(m) is finite for every m ∈ s. So,

⋂
i≤n

Uξi =
⋃

m∈
⋂

i≤n Iξi

(
{m} ×

⋂
i≤qn

fξi(m)

)

⊆
⋃
m∈Iξn

(
{m} ×

⋂
i≤n

fξi(m)

)

=
⋃
m∈s

(
{m} ×

⋂
i≤n

fξi(m)

)
∪

⋃
m∈Iξn\s

(
{m} ×

⋂
i≤n

fξi(m)

)

⊆∗
⋃

m∈Iξn\s


{m} × ⋂

η∈gδ(n)

fξi(m)




⊆
⋃
m∈Iξn


{m} × ⋂

η∈gδ(n)

fξi(m)


 =

⋃
η∈gδ(n)

Uη,

which proves (4). So U is an ω1-OK point.

Lemma 6.7 Let 〈〈Iη, fη, Bη〉 ∈ T : η < ξ〉 be a sequence satisfying condition
(a) from Definition 8 and let α < β < ξ and m < ω be such that fβ(m) ⊆
Bα(m)(β). Then K(β,m) = K(α,m) ∪ {α}. In particular, if the sequence
satisfies conditions (a) and (b) from Definition 8, then the set K(η,m) is
finite for every η < ξ and m < ω.

Proof. If η ∈ K(β,m), then η < β and fβ(m) ⊆ fη(m). Also, since
fβ(m) ⊆ Bα(m)(β) ⊆ fα(m) we have that |fη(m) ∩ fα(m)| = ω. If α < η,
then, by condition (a), there exists a γ ≤ η such that fη(m) ⊆ Bα(m)(γ);
therefore fη(m) ⊆ Bα(m)(γ) ∩Bα(m)(β), which is impossible. Thus, η ≤ α.
If η < α, then, again by (a), there is a γ ≤ α such that fα(m) ⊆ Bη(m)(γ).
Since Bη(m)(γ) ⊆ fη(m), we conclude that fα(m) ⊆ fη(m). Therefore,
η ∈ K(α,m) and this proves that K(β,m) ⊆ K(α,m) ∪ {α}.

Since fβ(m) ⊆ Bα(m)(β) ⊆ fα(m) we have that α ∈ K(β,m). If η ∈
K(α,m), then fα(m) ⊆ fη(m). But since fβ(m) ⊆ Bα(m)(β) ⊆ fα(m) we



CPAgame
prism and ultrafilters on ω and Q July 15, 2004 25

have that fβ(m) ⊆ fη(m). Therefore, η ∈ K(β,m) and this proves that
K(α,m) ∪ {α} ⊆ K(β,m). Thus, K(β,m) = K(α,m) ∪ {α}.

Since condition (b) implies that for every 0 < η < ξ and m < ω there
exists a ζ < η such that fη(m) ⊆ Bζ(m)(η), we have that for every 0 < η < ξ
there exists a ζ < η such that K(η,m) = K(ζ,m) ∪ {ζ}. Since K(0,m) = ∅
for every m < ω, we can prove, by induction on η, that K(η,m) is finite for
every η < ξ and m < ω.

Lemma 6.8 If ξ ∈ Γ and 〈〈Iη, fη, Bη〉 ∈ T : η < ξ〉 is good, then there exists
an 〈Iξ, fξ, Bξ〉 ∈ T such that the sequence 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ〉 is good.

Proof. Let {ξj : j < ω} be the fixed enumeration of ξ. Since Sδ’s are
pairwise disjoint, the set {δ < ω1 : min(Sδ) < ξ} is countable and it can be
enumerated as {δi : i < ω}. Let δ∗ < ω1 be such that ξ ∈ Sδ∗ . We define
Iξ = {mi : i < ω} inductively. Suppose that mj has already been defined for
every j < i. Put

εi = max(gδ∗(0) ∪ gδ∗(0) ∪ {ξj : j ≤ i} ∪ {min(Sδj) : j ≤ i}) + 1 < ξ.

Note that εi < ξ since Remark 6.2 implies that Iεi ⊆∗ ⋂
j≤i Iξj . Thus, we can

pick an mi ∈ Iεi ∩
⋂
j≤i Iξj so that:

(i) mi > mj for every j < i,

(ii) lδj(εi,mi)− kδj(εi,mi) > i for every j ≤ i, and

(iii) fεi(mi) ⊆
⋂
j≤i fξj(mi) ∩

⋂
{fη(mi) : η ∈ gδ∗(0) ∪ gδ∗(1)}.

Condition (ii) can be achieved since
⋃

rang(gδj) ⊆ min(Sδj) < εi < ξ and
{〈Iη, fη, Bη〉 : η < ξ} is good, so, by (g),

lim
m∈Iεi
m→∞

(lδj(εi,m)− kδj(εi,m)) = ∞

for every j ≤ i. Condition (iii) can be ensured by Remark 6.4, since ξj < εi
for j ≤ i and η < εiforallη ∈ gδ∗(0) ∪ gδ∗(1). This completes the inductive
definition of Iξ. Define fξ : ω → D as

fξ(m) =



Bεi(mi)(ξ) if m = mi ∈ Iξ

B0(m)(ξ) otherwise.
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The Bξ can be defined by taking for each m < ω an arbitrary ω1-sequence
of almost disjoint sets in P(fξ(m)) ∩ D. This completes the definition of
〈Iξ, fξ, Bξ〉.

To make sure that (a) holds it is enough to check it only for the pair
〈η, ξ〉 in place of 〈ζ, η〉. So, choose an η < ξ and m < ω. We need to
show that either fξ(m) ∩ fη(m) is finite, or there exists a γ ≤ ξ such that
fξ(m) ⊆ Bη(m)(γ). We will consider several cases.

m /∈ Iξ: We will consider here two subcases.

η = 0: Then fξ(m) = B0(m)(ξ) = Bη(m)(γ) for γ = ξ.

η > 0: Apply Remark 6.5 to find γ ≤ η such that fη(m) ⊆ B0(m)(γ).
Since fξ(m) = B0(m)(ξ), we have that |fξ(m) ∩ fη(m)| < ω.

m = mi ∈ Iξ: We will consider here three subcases.

εi < η: We will show that |fξ(m) ∩ fη(m)| < ω. So, by way of contradic-
tion, assume that |fξ(m) ∩ fη(m)| = ω. Therefore, the sets

fξ(m)∩ fη(m) = Bεi(m)(ξ)∩ fη(m) ⊆ fεi(m)∩ fη(m) are infinite.
So, by (a), there exists a γ ≤ η such that fη(m) ⊆ Bεi(m)(γ).
Thus, Bεi(m)(ξ)∩Bεi(m)(γ) = fξ(m)∩Bεi(m)(γ) ⊇ fξ(m)∩fη(m)
is infinite, which is impossible, as γ ≤ η < ξ. This implies that
|fξ(m) ∩ fη(m)| < ω.

εi > η: If fεi(m)∩fη(m) is finite then so is fξ(m)∩fη(m) ⊆ fεi(m)∩fη(m).
Otherwise, by (a), there is a γ ≤ εi such that fεi(m) ⊆ Bη(m)(γ).
So, fξ(m) = Bεi(m)(ξ) ⊆ fεi(m) ⊆ Bη(m)(γ).

εi = η: Clearly fξ(m) = Bεi(m)(ξ) = Bη(m)(γ) for γ = ξ.

Conditions (b), (c), and (d) are immediate from the definition of fξ.
Condition (e) holds because 〈〈Iη, fη, Bη〉 : η < ξ〉 is good and ξ is a limit
ordinal.

To prove (f) and (g) first observe that, by Lemma 6.7, for every i < ω we
have K(ξ,mi) = K(εi,mi) ∪ {εi}. This implies that lδj(εi,mi) ≤ lδj(ξ,mi)
and kδj(ξ,mi) = kδj(εi,mi) for every j ≤ i, because εi is a succesor ordinal.
In particular, for every j ≤ i we have

lδj(ξ,mi)− kδj(ξ,mi) ≥ lδj(εi,mi)− kδj(εi,mi). (6)
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To see (f) fix anm = mi ∈ Iξ. We need to show that lδ∗(ξ,m) > kδ∗(ξ,m).
First assume that ξ = min(Sδ∗). Then, K(ξ,m) ⊆ ξ is disjoint with Sδ∗ , so
kδ∗(ξ,m) = |K(ξ,m) ∩ Sδ∗| = 0. On the other hand, condition (iii) implies
that

⋃
gδ∗ [2] ⊆ K(ξ,m). So, lδ∗(ξ,m) ≥ 1 > 0 = kδ∗(ξ,m). Next, consider

the case when ξ > min(Sδ∗). Then, δ∗ = δi for some i < ω. Therefore, (ii)
and (6) imply that

lδ∗(ξ,mi)− kδ∗(ξ,mi) ≥ lδi(εi,mi)− kδi(εi,mi) > i ≥ 0.

Thus (f) holds.
To see (g) fix a δ < ω1 such that

⋃
rang(gδ) ⊆ ξ. We need to show that

limi→∞(lδ(ξ,mi) − kδ(ξ,mi)) = ∞. First assume that ξ > min(Sδ). Then
δ = δj for some j < ω. So, by (ii) and (6), we have that for all i ≥ j

lδ(ξ,mi)− kδ(ξ,mi) = lδj(ξ,mi)− kδj(ξ,mi) ≥ lδj(εi,mi)− kδj(εi,mi) ≥ i.

This ensures that (g) holds. Finally, assume that ξ ≤ min(Sδ). Then, for
every m < ω, we have K(ξ,m) ∩ Sδ = ∅ and so, kδ(ξ,m) = 0. Thus, in this
case it is enough to show that limi→∞ lδ(ξ,mi) = ∞. But for every l < ω
we have

⋃
gδ[l + 1] ⊆ ξ = {ξj : j < ω}. Thus, there exists an i0 < ω such

that
⋃
gδ[l + 1] ⊆ ξ = {ξj : j ≤ i0}. Since, by (iii), for every i ≥ i0 we have

{ξj : j ≤ i} ⊆ K(ξ,mi) we conclude that
⋃
gδ[l + 1] ⊆ K(ξ,mi) for every

i ≥ i0. Thus, lδ(ξ,mi) ≥ l for every i ≥ i0 and so limi→∞ lδ(ξ,mi) = ∞.

Lemma 6.9 Let 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ〉 be a good sequence, I ∈ [Iξ]
ω, and

let 〈Dm ∈ P(Bξ(m)(ξ + 1)) ∩ D : m ∈ I〉 be arbitrary. Then, the sequence
〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ + 1〉 is good, where 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T is defined
as

(i) Iξ+1 = I,

(ii) fξ+1(m) =



Dm if m ∈ Iξ+1

B0(m)(ξ + 1) otherwise,

(iii) Bξ+1(m) ∈ (P(fξ+1(m)) ∩ D)ω1 is any almost disjoint sequence for ev-
ery m < ω.

Proof. To show that (a) holds it is enough to check it only for the pair
〈η, ξ + 1〉 in place of 〈ζ, η〉. So, choose an η < ξ + 1 and m < ω. We need to
show that either fξ+1(m) ∩ fη(m) is finite, or there exists a γ ≤ ξ + 1 such
that fξ+1(m) ⊆ Bη(m)(γ). We consider several cases.
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m /∈ Iξ+1: We will consider two subcases.

η = 0: Then fξ+1(m) = B0(m)(ξ + 1) = Bη(m)(γ) for γ = ξ + 1.

η > 0: Apply Remark 6.5 to find a γ ≤ η such that fη(m) ⊆∗ B0(m)(γ).
Since fξ+1(m) = B0(m)(ξ+1), we have that |fξ+1(m)∩fη(m)| < ω.

m ∈ Iξ+1: We compare η with ξ.

η < ξ: By (a) either |fξ(m) ∩ fη(m)| < ω or there exists a γ ≤ ξ such
that fξ(m) ⊆∗ Bη(m)(γ). Since

fξ+1(m) ⊆ Bξ(m)(ξ + 1) ⊆ fξ(m) we have that |fξ+1(m)∩fη(m)| <
ω or fξ+1(m) ⊆ Bη(m)(γ).

η = ξ: Clearly fξ+1(m) = Dm ⊆ Bξ(m)(ξ+ 1) = Bη(m)(γ) for γ = ξ+ 1.

This proves that (a) holds.
Conditions (b), (d), and (e) are obvious by the definition of fξ+1. Condi-

tions (c) and (f) hold, since there are no new limit ordinals η < ξ + 1.
To see that (g) holds take a δ < ω1 such that

⋃
rang(gδ) ⊆ ξ + 1. Then

also
⋃

rang(gδ) ⊆ ξ since, by Fact 6.1,
⋃

rang(gδ) = min(Sδ) is a limit
ordinal. Thus, limm∈Iξ

m→∞
(lδ(ξ,m) − kδ(ξ,m)) = ∞. Also, by Lemma 6.7 and

the definition of fξ+1(m) we have K(ξ+1,m) = K(ξ,m)∪{ξ} for every m ∈
Iξ+1. This implies that kδ(ξ+1,m) ≤ kδ(ξ,m) + 1 and lδ(ξ,m) ≤ lδ(ξ + 1,m)
for every m ∈ Iξ+1. So, lδ(ξ + 1,m)− kδ(ξ + 1,m) ≥ lδ(ξ,m)− kδ(ξ,m)− 1.
Since Iξ+1 ⊆ Iξ is infinite, we have

lim
m∈Iξ+1
m→∞

(lδ(ξ + 1,m)− kδ(ξ + 1,m)) ≥ lim
m∈Iξ
m→∞

(lδ(ξ,m)− kδ( xi,m)− 1) = ∞.

So, (h) holds.

Corollary 6.10 Let 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ〉 be good. If P is a prism in
2ω×X , then there exists an 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T , a suprism Q of P , and an
i < 2 such that

(i) 〈〈Iη, fη, Bη〉 : η ≤ ξ + 1〉 is good and

(ii) g � Uξ+1 is constant equal to i for every g ∈ Q.
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Proof. Apply Lemma 3.6 to the prism P , the set Iξ, and the family
{Bξ(m)(ξ + 1): m ∈ Iξ} to find a subprism Q of P , a set Iξ+1 ∈ [Iξ]

ω, a
sequence 〈Bm ∈ P(B(m)(ξ + 1)) ∩ J + : m ∈ Iξ+1〉, and an i < 2 such that
g � B is constant equal to i, where B =

⋃
{{m}×Bm : m ∈ Iξ+1}. For every

m ∈ Iξ+1 choose Dm ∈ P(Bm) ∩ D. Then, if we define fξ+1 and Bξ+1 as in
Lemma 6.9, 〈〈Iη, fη, Bη〉 : η ≤ ξ + 1〉 is good and g � Uξ+1 is constant equal
to i.

Corollary 6.11 Let X be a countably infinite set, J ⊆ P(X) a Q-like ideal
on X, 〈〈Iη, fη, Bη〉 ∈ T : η ≤ ξ〉 be good, and P be a prism on Pω×X . Then,
there exists a 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T and a subprism Q of P such that

(i) 〈〈Iη, fη, Bη〉 : η ≤ ξ + 1〉 is good and

(ii) |z(k) ∩ Uξ+1| ≤ 1 for every z ∈ Q and k < ω.

Proof. Let A =
⋃
{{m} × Bξ(m)(ξ + 1): m ∈ Iξ}. Then A ∈ K+ and, by

Lemma 3.5, K is Q-like. So, by Lemma 3.3, there is a subprism Q of P and
a B ∈ P(A) ∩ K+ such that |z(k) ∩ B| ≤ 1 for every z ∈ Q and k < ω. Let
Iξ+1 = supp(B) ⊆ Iξ and for every m ∈ Iξ+1 choose Dm ∈ P((B)m) ∩ D.
Then, if we define fξ+1 and Bξ+1 as in Lemma 6.9, 〈〈Iη, fη, Bη〉 : η ≤ ξ + 1〉
is good and |z(k) ∩ Uξ+1| ≤ 1 for every z ∈ Q and k < ω.

Theorem 6.12 Let X be a countably infinite set, J ⊆ P(X) be a rich ideal,
let D ⊆ J + be a dense family, and put K = [ω]<ω ⊗ J . Then, CPAgame

prism

implies that there exists an ω1-generated ω1-OK point extending FK with a
basis {Uξ : ξ < ω1} ⊆ D∗ which is not a P -point.

Proof. To define a triple 〈I0, f0, B0〉 put I0 = ω, for every m < ω define
f0(m) = X, and let B0(m) = 〈B0(m)(γ) : γ < ω1〉 be an arbitrary ω1-
sequence of almost disjoint sets in P(f0(m)) ∩ D.

For a good sequence 〈〈Iη, fη, Bη〉 : η ≤ ξ〉 and a prism P in 2ω×X let
us define a subprism Q(〈〈Iη, fη, Bη〉 : η ≤ ξ〉, P ) = Q of P and the triple
T (〈〈Iη, fη, Bη〉 : η ≤ ξ〉, P ) = 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T as in Corollary 6.10. We
define a strategy S for Player II in the game GAMEprism(2ω×X) as:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(〈〈Iη, fη, Bη〉 : η ≤ ξ〉, Pξ),

where 〈〈Iη, fη, Bη〉 : η ≤ ξ〉 is a good sequence defined by induction on η ≤ ξ
as follows. Assume that 〈〈Iζ , fζ , Bζ〉 : ζ < η〉 is already defined.
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If η = 0, then 〈Iη, fη, Bη〉 = 〈I0, f0, B0〉 is defined as above.
If η = ζ + 1, then we put 〈Iη, fη, Bη〉 = T (〈〈Iδ, fδ, Bδ〉 : δ ≤ ζ〉, Pζ).
If η ∈ Γ, then 〈Iη, fη, Bη〉 is found using Lemma 6.8.
Notice that the sequence 〈〈Iζ , fζ , Bζ〉 : ζ < η〉 is good by the inductive

hypothesis and Remark 6.3.
By CPAgame

prism strategy S is not a winning strategy for Player II. So, there
exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S for which Player II
loses, this is, 2ω×X =

⋃
ξ<ω1

Qξ. If 〈〈Iξ, fξ, Bξ〉 ∈ T : ξ < ω1〉 is the sequence
created when Player II uses strategy S, then this sequence is good by con-
struction. Application of Lemma 6.6 to this sequence finishes the proof.

Theorem 6.13 CPAgame
prism implies that there exists an ω1-generated, crowded

ω1-OK point on Q which is neither a P -point nor a Q-point.

Proof. The idea is to apply Theorem 6.12 to an apropriate ideal to get
a crowded ultrafilter which is not a Q-point. Consider X = Q × ω with a
natural product topology. Then, X is homeomorphic to Q. For every m < ω
put Pm = {n < ω : 2m − 1 ≤ n < 2m+1 − 1}. Then {Pm : m < ω} is a
partition of ω and |Pm| = 2m. For A ⊂ Q× ω put

NA(m) = max{k < ω : ∃ U ∈ I+
S ∃ P ∈ [Pm]k U × P ⊆ A}

and define J ⊆ P(Q× ω) as

J = {A ⊆ Q× ω : limm→∞NA(m) <∞}.

To see that J is closed under finite unions notice first that

NA∪B(m) ≤ NA(m) +NB(m) for every m < ω and A,B ⊆ Q× ω.

Indeed, take a P ⊆ Pm of cardinality NA∪B(m) and U ∈ I+
S such that

U×P ⊆ A∪B. Let h : U×P → 2 be a characteristic function of A∩(U×P )
and let ϕ : U → 2P be defined by ϕ(u)(p) = h(u, p). Since 2P is finite, there
exists a g ∈ 2P such that V = ϕ−1(g) belongs to I+

S . Let PA = g−1(1) and
PB = g−1(0). Then V ×PA ⊆ A and V ×PB ⊆ B. Therefore, NA(m) ≥ |PA|
and NB(m) ≥ |PB|. So, NA∪B(m) = |P | = |PA|+ |PB| ≤ NA(m) +NB(m).

The above proved inequality easily implies that

limm→∞NA∪B(m) ≤ limm→∞NA(m) + limm→∞NB(m)
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for every and A,B ⊆ Q × ω. Thus, J is closed under finite unions. Since
it clearly is closed also under subsets, we can conclude that J is an ideal on
Q× ω containing all the singletons. We will prove that

the ideal J is rich. (7)

First notice how (7) implies the theorem. Since Perf(Q) is dense in I+
S ,

it is easy to see that D = Perf(Q×ω) is dense in J +. Let U be an ultrafilter
on ω × X from Theorem 6.12 applied to J and D. Since X = Q × ω is
homeomorphic to Q, so is ω × X and D∗ contains only its perfect subsets.
Therefore, U can be considered as crowded. Moreover, a partition P =
{{n} × ({q} × Pm) : q ∈ Q & n,m < ω} of ω × X into finite sets does
not admit partial selector in U , since each such partial selector belongs to
K = [ω]<ω × J . Thus, U is not a Q-point.

To prove property (7) fix an A ∈ J +. Then there exist 〈mk ∈ ω : k < ω〉,
{Uk ∈ I+

S : k < ω}, and 〈Qk ⊆ Pmk
: k < ω〉 such that Uk × Qk ⊆ A and

|Qk| > k · 22k
for every k < ω.

First we prove condition (#) from Definition 3. Since, by Lemma 3.4,
the ideal IS on Q is rich, for every k < ω there exists an almost disjoint
family {Ukf : f ∈ 2ω} ⊆ P(Uk) ∩ I+

S . Also, for every k < ω there exists

a pairwise disjoint family {As : s ∈ 2k} ⊆ [Qk]
k. For f ∈ 2ω define Af =⋃

{Ukf × Af�k : k < ω}. Then, {Af : f ∈ 2ω} ⊆ P(A) ∩ J + is almost disjoint,
proving (#).

To prove that J is prism-friendly let P be a prism in 2X . If P is singleton
then condition (•) is clearly satisfied. So, assume that P ∈ Perf(2X) and let
f be a witness function for it. By Remark 2.1 we can assume that f is defined
on Cα for some 0 < α < ω1. Our first goal is to find a subprism Q′ of P and
two sequences {Vk ⊆ Uk : k < ω} ⊆ I+

S and {Ak ∈ [Pmk
]k : k < ω} such that

g � Vk × Ak is constant for every g ∈ Q′. (8)

For every k < ω define Dk as the set of all disjoint collections E ∈ [Pα]
<ω such

that there exists a V〈E,k〉 ∈ P(Uk) ∩ I+
S such that for every q ∈ Qk, E ∈ E ,

and h, h
′ ∈ E, each f(h) is constant on V〈E,k〉 × {q} and

f(h) � V〈E,k〉 × {q} = f(h
′
) � V〈E,k〉 × {q}. (9)

It is immediate that Dk is closed under refinaments. To prove that Dk
satisfies the condition (†) from Proposition 2.3 let E ∈ Dk and E ∈ Pα be such
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that E ∩
⋃
E = ∅. Let {qi : i ≤ r} be an enumeration of Qk. Using Proposi-

tion 2.7, construct inductively decreasing sequences 〈Ei ∈ Pα ∩ P(E) : i ≤ r〉,
〈Vi ∈ P(V〈E,k〉) ∩ I+

S : i ≤ r〉, and a sequence 〈ji < 2: i ≤ r〉 such that for ev-
ery i ≤ r

f(h) � Vi × {qi} is constant equal to ji for every h ∈ Ei. (10)

Therefore, if we put E
′

= Er and V〈E∪{E′},k〉 = Vr, then E ∪ {E ′} ∈ Dk
and condition (†) is satisfied. Thus, by Proposition 2.3, for every k < ω
there exists a family Ek = {Ei : i < 2k} ∈ Dk of pairwise disjoint sets with
E0 =

⋂
k<ω

⋃
Ek ∈ Pα. We will prove that Q′ = f [E0] satisfies (8) with

Vk = V〈Ek,k〉 and some sequence 〈Ak ∈ [Qk]
k : k < ω〉.

To see this fix k < ω and v0 ∈ Vk = V〈Ek,k〉, and for each i < 2k pick

an hi ∈ Ei ∈ Ek. Define ϕk : Qk → 22k
by ϕk(p)(i) = f(hi)(v0, p). Since

|Qk| > k · 22k
, there exists an sk ∈ 22k

such that |ϕ−1
k {sk}| ≥ k. Pick an

Ak ∈ [ϕ−1
k {sk}]k. To see that the pair 〈Vk, Ak〉 satisfies (8), pick a g ∈ Q′.

Then there exists an i < 2k and an h ∈ Ei ∈ Ek such that g = f(h). We will
show that g[Vk × Ak] = {sk(i)}.

Let 〈v, q〉 ∈ Vk×Ak. Since, by (9), f(h) is constant on Vk×{q}, we have
f(h)(v, q) = f(h)(v0, h). Also, (9) gives f(h)(v0, q) = f(hi)(v0, q). Hence,
g(v, q) = f(hi)(v0, q) = ϕk(q)(i) = sk(i). So, g � Vk × Ak is constant equal to
sk(i) and (8) holds.

To finish the proof for every k < ω pick 〈vk, ak〉 ∈ Vk × Ak and put
S = {〈vk, ak〉 : k < ω}. Let I = [X]<ω. Then I is weakly selective and
S ∈ I+. If we identify 2X with P(X), then Q′ can be treated as a prism
in P(X). Since [X]ω is residual in P(X), by Proposition 2.2 we can assume
that Q′ is a prism in [X]ω. So, by Proposition 2.7, there exist a subprism Q
of Q′, a set S0 ∈ [S]ω, and an i < 2 such that g[S0] = {i} for every g ∈ Q.
Put B =

⋃
{Vk × Ak : 〈vk, ak〉 ∈ S0}. Then, g � B is constant equal i for

every g ∈ Q. It is clear that B ⊆ A. Since Vk ×Ak ⊆ B and Ak ∈ [Pmk
]k we

have NB(mk) ≥ k. This implies that limm→∞NB(m) = ∞ and that B ∈ J +.
So, Q and B satisfy (•).

Theorem 6.14 Let X be a countably infinite set, J ⊆ P(X) a rich and
Q-like ideal on X, and let D ⊆ J + be dense. Then, CPAgame

prism implies that
there exists an ω1-generated, crowded ω1-OK point on ω×X which is also a
Q-point but not a P -point.



CPAgame
prism and ultrafilters on ω and Q July 15, 2004 33

Proof. This proof combines the elements of the proofs of Theorems 5.3
and 6.12. Let Y = Pω×X ∪ 2ω×X be as in Theorem 5.3.

For a good sequence Ḡ = 〈〈Iη, fη, Bη〉 : η ≤ ξ〉 and a prism P in Y let us
define a subprism Q(Ḡ, P ) of P and a triple T (Ḡ, P ) ∈ T as follows.

• If U ∩ 2ω×X 	= ∅, then we can choose a subprism P0 ⊆ 2ω×X of P .
The choice of P0 is obvious if P is a singleton, and it follows from
Proposition 2.2, otherwise. Then we apply Corollary 6.10 to Ḡ and P0

to find appropriate subprism Q(Ḡ, P ) of P0 and 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T .
We put T (Ḡ, P ) = 〈Iξ+1, fξ+1, Bξ+1〉.

• If U ∩ 2ω×X = ∅, then P is a prism in Pω×X . Then, we can use Corol-
lary 6.11 to find appropriate 〈Iξ+1, fξ+1, Bξ+1〉 ∈ T and a subprism
Q(Ḡ, P ) of P0. We put T (Ḡ, P ) = 〈Iξ+1, fξ+1, Bξ+1〉.

We define a strategy S for Player II in the game GAMEprism(Y) as:

S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) = Q(〈〈Iη, fη, Bη〉 : η ≤ ξ〉, Pξ),

where the sequence 〈〈Iη, fη, Bη〉 : η ≤ ξ〉 is defined as in Theorem 6.12.
By CPAgame

prism strategy S is not a winning strategy for Player II. So, there
exists a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S for which Player II
loses, this is, Y =

⋃
ξ<ω1

Qξ. If 〈〈Iξ, fξ, Bξ〉 ∈ T : ξ < ω1〉 is the sequence
created when Player II uses strategy S, then, by Remark 6.3, this sequence
is good.

If g ∈ 2ω×X , then there exists a ξ < ω1 such that g ∈ Qξ. Therefore,
Qξ ⊆ 2ω×X and g � Uξ+1 is constant. Thus, by Lemma 6.6, the family
{Uξ : ξ < ω1} forms a base for a nonprincipal ultrafilter U on ω × X which
is an ω1-OK point but not a P -point. Note that {Uξ : ξ < ω1} ⊆ D∗. To see
that U is a Q-point, take a z ∈ Pω×X . Then, there exists a ξ < ω1 such that
z ∈ Qξ. This means that Qξ ⊆ Pω×X and that |z(k) ∩ Uξ+1| ≤ 1 for every
k < ω. Hence, U is also a Q-point.

Corollary 6.15 CPAgame
prism implies that there is an ω1-generated, crowded

ω1-OK point on ω ×X which is also a Q-point but not a P -point.

Proof. Apply Theorem 6.14 with X = Q, J = IS, and D = Perf(Q).
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[3] Brodskǐı, M.L. On some properties of sets of positive measure, Uspehi
Matem. Nauk (N.S.) 4, No. 3 (31) (1949), 136–138.

[4] Ciesielski, K. and Pawlikowski, J. Crowded and selective ultrafilters under
the Covering Property Axiom, J. Appl. Anal. 9(1) (2003) 19–55.

[5] Ciesielski, K. and Pawlikowski, J. Covering Property Axiom CPA, to ap-
pear in Cambridge Tracts in Mathematics, Cambridge University Press.

[6] Coplakova, E. and Hart, K.P. Crowded rational Ultrafilters, Topology
Appl. 97 (1999), 79–84.

[7] van Douwen, E.K. Better closed ultrafilters on Q, Topology Appl. 47
(1992), 173–177.

[8] Eggleston, H.G. Two measure properties of Cartesian product sets, Quart.
J. Math. Oxford (2) 5 (1954), 108–115.

[9] Hart, K.P. Ultrafilters of character ω1, J. Symbolic Logic 54(1) (1989),
1–15.

[10] Jech, T. Set Theory, Academic Press, New York, 1978.

[11] Kunen, K. Weak P -points in N∗, Colloquia Mathematica Societatis
János Bolyai 23. Topology, Budapest (Hungary) (1978), 741–749.

[12] Laver, R. On the consistency of Borel’s Conjecture, Acta Math. 137,
(1976), 151–169.

[13] Millán, A. A crowded Q-point under CPAgame
prism, preprint.

[14] Miller, A.W. There are no Q-points in Laver’s model for the Borel Con-
jecture, Proc. Amer. Math. Soc. 78(1) (1980), 103–106.



CPAgame
prism and ultrafilters on ω and Q July 15, 2004 35

[15] Wimmers, E.L. The Shelah P -point independence theorem Israel J.
Math. 43(1) (1982), 28–48.


