$\mathrm{CPA}_{\text {prism }}^{\text {game }}$ and ultrafilters on \mathbb{Q} and ω

Andres Millán*
Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA; e-mail: amillan@math.wvu.edu

July 15, 2004

Abstract

In this paper we use the version $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ of the Covering Property Axiom, which has been formulated by Ciesielski and Pawlikowski and holds in the iterated perfect set model, to study the relations between different kinds of ultrafilters on ω and \mathbb{Q}. In particular, we will give a full account for the logical relations between the properties of being a selective ultrafilter, a P-point, a Q-point, and an ω_{1}-OK point.

1 Introduction

We use standard set theoretical notation and terminology as in [10]. In particular, if A is a set $|A|$ denotes its cardinality and $\mathcal{P}(A)$ the set of all its subsets. Lower case Greek letters denote ordinal numbers. The first infinite cardinal is ω and ω_{1} is the first uncountable cardinal. The cardinality of \mathbb{R} is denoted by \boldsymbol{c}. We also use the letter κ to denote any unespecified uncountable cardinal. If A and B are arbitrary sets, then we write $A \subseteq^{*} B$ provided that $|A \backslash B|<\omega$.

Let \mathcal{U} be a nonprincipal ultrafilter on an infinite countable set X. (We will use for X either ω or \mathbb{Q}.) We say that:

[^0]- \mathcal{U} is a P-point if for every partition \mathcal{P} of X either $\mathcal{U} \cap \mathcal{P} \neq \emptyset$ or there exists a $U \in \mathcal{U}$ such that $U \cap P$ is finite for each $P \in \mathcal{P}$.
- \mathcal{U} is a Q-point if for every partition \mathcal{P} of X into finite sets there exists a $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$.
- \mathcal{U} is selective if for every partition \mathcal{P} of X either $\mathcal{U} \cap \mathcal{P} \neq \emptyset$ or there exists a $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for each $P \in \mathcal{P}$.
- \mathcal{U} is a κ-OK point, where κ is an infinite cardinal number, provided for every $\left\langle V_{n} \in \mathcal{U}: n<\omega\right\rangle$ there exists a $\left\langle U_{\alpha} \in \mathcal{U}: \alpha<\kappa\right\rangle$ such that $\bigcap_{i=1}^{n} U_{\alpha_{i}} \subseteq^{*} V_{n}$ for every $n<\omega$ and $\alpha_{0}<\cdots<\alpha_{n}<\kappa$. Sequence $\left\langle U_{\alpha} \in \mathcal{U}: \alpha<\kappa\right\rangle$ will be referred to as OK for $\left\langle V_{n} \in \mathcal{U}: n<\omega\right\rangle$.

It is obvious from the definitions that
Fact 1.1 \mathcal{U} is a selective ultrafilter if and only if \mathcal{U} is simultaneously a P point and a Q-point.
P-points have been studied extensively by many people in connection with the remainder ω^{*} of the Čech-Stone compactification of the integers and the problem of its homogeneity. The existence of P-points cannot be proven or refuted in the usual framework of set theory ZFC (see, e.g., [15] or [2]) but they do exist under several additional set theoretical assumptions like the Continuum Hypothesis CH or Martin's Axiom MA.

Given a nonprincipal ultrafilter \mathcal{U} on X we say that $\mathcal{B} \subseteq \mathcal{U}$ is a basis for \mathcal{U} if for every $U \in \mathcal{U}$ there exists a $B \in \mathcal{B}$ such that $B \subseteq U$. We define the character of \mathcal{U} as $\chi(\mathcal{U})=\min \{|\mathcal{B}|: \mathcal{B}$ is a basis for $\mathcal{U}\}$. If $\kappa=\chi(\mathcal{U})$ then we say that the ultrafilter \mathcal{U} is κ-generated.

In [11], K. Kunen introduced κ-OK points to give a proof of the nonhomogeneity of ω^{*} without any extra assumption beyond ZFC. The following results are relevant to this paper.

Proposition 1.2 (Kunen [11]) Every P-point is κ-OK for every κ.
Proposition 1.3 (Kunen [11]) There are $2^{\mathfrak{c}}$ many distinct \mathfrak{c}-OK points on ω. Moreover, these ultrafilters can be made c-generated.

Consider \mathbb{Q} with the subspace topology induced by the usual topology on \mathbb{R} and denote by $\operatorname{Perf}(\mathbb{Q})$ the family of its perfect subsets (i.e., closed subsets with no isolated points).

- A nonprincipal filter \mathcal{U} on \mathbb{Q} is crowded if the family $\operatorname{Perf}(\mathbb{Q}) \cap \mathcal{U}$ forms a basis for \mathcal{U}.

The crowded ultrafilters have been studied in connection with the remainder of the Čech-Stone compactification of \mathbb{Q} and their existence follows from the Continuum Hypothesis, Martin's Axiom for countable posets [7], or from the equality $\mathfrak{b}=\mathfrak{c}[6]$.

In [4, thm. 4.8 and cor. 4.14] Ciesielski and Pawlikowski showed that CPA ${ }_{\text {prism }}^{\text {game }}$ implies that there exist ω_{1}-generated selective ultrafilters as well as ω_{1}-generated nonselective P-points. Since a nonselective P-point cannot be a Q-point (see Fact 1.1), this second result shows that $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there exists a P-point which is not a Q-point. In the same paper, [4, thm. 4.22], the authors also established the existence of an ω_{1}-generated crowded ultrafilter on \mathbb{Q} under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$. They also proved, [4, prop. 4.25], that a crowded ultrafilter cannot be a P-point.

In this paper we establish, under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$, the existence of a nonselective Q-point (i.e., a Q-point which is not a P-point) by constructing an ω_{1}-generated crowded Q-point which is also an ω_{1}-OK point (Corollary 6.15). This improves our construction from [13] of an ω_{1}-generated crowded Q-point on \mathbb{Q}. We also prove, under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$, that there exist crowded ω_{1}-generated Q-points that are not ω_{1}-OK points (Corollary 5.4), crowded ω_{1}-generated ω_{1}-OK points which are neither P-points nor Q-points (Theorem 6.13), and crowded ω_{1}-generated ultrafilters on ω that are neither Q-points nor ω_{1}-OK points (Theorem 4.3). These complete all the logical implications between being a P-point, a Q-point, or an ω_{1}-OK point as Table 1 shows.

Besides the properties explicitly listed in Table 1 we consider also two other properties: being ω_{1}-generated (with $\omega_{1}<\mathfrak{c}$) and being crowded.

As mentioned above, the first four examples from Table 1 are also crowded. On the other hand that no other example from Table 1 can be crowded, since a crowded ultrafilter cannot be a P-point [4, prop. 4.25]. It is also easy to see that we can destroy the property of being crowded without changing any of the remaining properties. To see this, note that if \mathcal{U} is an ultrafilter on \mathbb{Q} and f is a bijection between \mathbb{Q} and a scattered subset S of \mathbb{Q}, then $\mathcal{V}=\left\{A \subseteq \mathbb{Q}: f^{-1}(A) \in \mathcal{U}\right\}$ is a noncrowded ultrafilter that has the remaining properties identical to that of \mathcal{U}.

One of the key features of our examples is that they are all ω_{1}-generated with $\omega_{1}<\mathfrak{c}$. This cannot be achieved in ZFC, since in many models of ZFC, for example under MA, every nonprincipal ultrafilter on a countable

P-point	Q-point	ω_{1}-OK point	Existence	Reference
-	-	-	under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$	Theorem 4.3
-	-	+	under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$	Theorem 6.13
-	+	-	under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$	Corollary 5.4
-	+	+	under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$	Corollary 6.15
+	-	-	No, in ZFC	Proposition 1.2
$+$	-	+	under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$	[4] or [5]
+	+	-	No, in ZFC	Proposition 1.2
+	+	+	under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$	[4] or [5]

Table 1: Existence of different ultrafilters. All constructed ultrafilters are nonprincipal and ω_{1}-generated. Moreover, the first four examples can be made also crowded.
set has character \boldsymbol{c}. On the other hand, every example cited in Table 1 can be constructed under MA if we are willing to settle for \mathfrak{c}-generated filters. An interesting issue is whether under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ the examples from Table 1 must be ω_{1}-generated. The answer is positive for the last example from the table, since Ciesielski and Pawlikowski proved (see [4, cor. 2.7] or [5, cor. 1.5.4]) that under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ every selective ultrafilter is ω_{1}-generated. There is some indication suggesting that $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that every P point is ω_{1}-generated. This would take care of the bottom half of the table. Recently, the autor have constructed, under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$, a crowded Q-point of character \mathfrak{c}. This will appear in a forthcoming paper. This particular example is not a weak P-point so it cannot be an ω_{1}-OK point. (See [11, Lemma 1.3].) The existence of an example of character \mathfrak{c} as in the fourth row in the table is left open. The first two examples from Table 1 do not need to be ω_{1}-generated. By Proposition 4.1 the Fubini product $\mathcal{U} \otimes \mathcal{U}$, where \mathcal{U} is a Kunen's example from Proposition 1.3, is as the first ultrafilter from Table 1. The second of these is justified by a slight modification ${ }^{1}$ of Kunen's example from Proposition 1.3.

Finally, let us address a question, whether any of the examples from Table 1 can be constructed in ZFC. The answer is clearly no for all but the first two examples, since there are models of ZFC with no P-points (see [15])

[^1]as well as models of ZFC with no Q-points (see [14]). There are, however, a ZFC examples for the first two entries of Table 1 as mentioned above. These need not be ω_{1}-generated, as we already noted. Whether they can be crowded remains unclear, since it is an open problem if there exists a crowded ultrafilter in ZFC.

2 Axiom $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ and other preliminaries

The framework of CPA rests on the concept of a prism. If \mathfrak{C} denotes the space 2^{ω} with its usual product topology then we define for a Polish space \mathfrak{X}

$$
\operatorname{Perf}(\mathfrak{X})=\{C \subseteq \mathfrak{X}: C \text { is homeomorphic to } \mathfrak{C}\} .
$$

If $0<\alpha<\omega_{1}$ is an ordinal let $\Phi_{\text {prism }}(\alpha)$ be the set of all continuous injections $f: \mathfrak{C}^{\alpha} \rightarrow \mathfrak{C}^{\alpha}$ with the property that

$$
f(x) \upharpoonright \xi=f(y) \upharpoonright \xi \Longleftrightarrow x \upharpoonright \xi=y \upharpoonright \xi \quad \text { for all } \xi<\alpha \text { and } x, y \in \mathfrak{C}^{\alpha}
$$

Then we define $\mathbb{P}_{\alpha}=\left\{\operatorname{range}(f): f \in \Phi_{\text {prism }}(\alpha)\right\}$ and $\mathbb{P}_{\omega_{1}}=\bigcup_{0<\alpha<\omega_{1}} \mathbb{P}_{\alpha}$. The elements of $\mathbb{P}_{\omega_{1}}$ are called the iterated perfect sets. The simplest elements of \mathbb{P}_{α} are of the form $C=\prod_{\xi<\alpha} C_{\xi}$, where $C_{\xi} \in \operatorname{Perf}(\mathfrak{C})$ for every $\xi<\alpha$. We refer to them as perfect cubes.

If \mathfrak{X} is a Polish space, then a prism in \mathfrak{X} is a pair $\langle f, P\rangle$ where $f: E \rightarrow \mathfrak{X}$ is injective and continuous, $E \in \mathbb{P}_{\omega_{1}}$, and $P=f[E]$. Function f can be considered as a coordinate system imposed on P. We will usually abuse this terminology and refer to P itself as a prism. In this case function f, given only implicitly, will be referred to as a witness function for P. If the domain of the witness function of a prism P happens to be a perfect cube, we will sometimes refer also to P as a cube in \mathfrak{X}.

If $\langle f, P\rangle$ is a prism, then we say that Q is its subprism provided there exists an iterated perfect set $E \subseteq \operatorname{dom}(f)$ such that $Q=f[E]$. We will refer to Q as a subcube of P when E is a perfect cube. Notice that

Remark 2.1 If we need to prove that a prism P contains a subprism Q with some "nice property," we can always assume that the witness function f for P is defined on the entire set \mathfrak{C}^{α}.

Proof. Indeed, assume that we can find a desired subprism Q of a prism P as long as its witness function f is defined on the entire set \mathfrak{C}^{α}.

Next, take an arbitrary witness function g from $E \in \mathbb{P}_{\alpha}$ onto P and let $h \in \Phi_{\text {prism }}(\alpha)$ be onto E. Then $f=g \circ h$ is a continuous injection from \mathfrak{C}^{α} onto P, so by the above assumption we can find a subprism Q of $\langle f, P\rangle$ with the "nice property" we are after. To finish the argument it is enough to note that Q is also a subprism of $\langle g, P\rangle$. Indeed, since $Q=f\left[E_{0}\right]$ for some $E_{0} \in \mathbb{P}_{\alpha}$, there exists an $h_{0} \in \Phi_{\text {prism }}(\alpha)$ onto E_{0}. But then $h \circ h_{0} \in \Phi_{\text {prism }}(\alpha)$ and $Q=f\left[E_{0}\right]=(g \circ h)\left[h_{0}\left[\mathfrak{C}^{\alpha}\right]\right]=g\left[h \circ h_{0}\left[\mathfrak{C}^{\alpha}\right]\right]$ is a subprism of $\langle g, P\rangle$ as $h \circ h_{0}\left[\mathfrak{C}^{\alpha}\right] \in \mathbb{P}_{\alpha}$.

Since in the game defined below we will need to consider singletons in the same position as prisms as defined above, in what follows singletons will be considered as prisms. If P is a singleton in \mathfrak{X} then its only subprism is P itself.

The following theorem is one of the principal tools for finding subprism of a prism, so also for using CPA. This result is a refinement of a theorem proved independently by H.G. Eggleston [8] and M.L. Brodskiĭ [3].

Proposition 2.2 (K. Ciesielski and J. Pawlikowski, [5, claim 1.1.5]) Let $0<\alpha<\omega_{1}$ and consider \mathfrak{C}^{α} with its usual topology and its usual product measure. If G is a Borel subset of \mathfrak{C}^{α} which is either of second category or of positive measure, then G contains a perfect cube E. In particular $E \in \mathbb{P}_{\alpha}$.

Strictly speaking, in [5, claim 1.1.5] (see also [4, claim 2.3]) the result is proved only for $\alpha=\omega$. But this easily implies the above version.

We will need also the following fusion lemma, which is an easy compilation of Lammas 3.1.1 and 3.1.2 from [5]. The proof of the compilation is identical to that of [5, cor. 3.1.3].

Proposition 2.3 (K. Ciesielski and J. Pawlikowski [5]) Let $0<\alpha<\omega_{1}$ and for every $n<\omega$ let $\mathcal{D}_{n} \subseteq\left[\mathbb{P}_{\alpha}\right]^{<\omega}$ be a family of pairwise disjoint sets such that $\emptyset \in \mathcal{D}_{n}, \mathcal{D}_{n}$ is closed under refinements, and
(\dagger) for every $\mathcal{E} \in \mathcal{D}_{n}$ and $E \in \mathbb{P}_{\alpha}$ which is disjoint with $\bigcup \mathcal{E}$ there exists an $E^{\prime} \in \mathbb{P}_{\alpha} \cap \mathcal{P}(E)$ such that $\left\{E^{\prime}\right\} \cup \mathcal{E} \in \mathcal{D}_{n}$.

Then for every $n<\omega$ there is a family $\mathcal{E}_{n}=\left\{E_{k}: k<2^{n}\right\} \in \mathcal{D}_{n}$ of pairwise disjoint sets such that $E=\bigcap_{n<\omega} \cup \mathcal{E}_{n} \in \mathbb{P}_{\alpha}$.

For a Polish space \mathfrak{X} consider the following game GAME $_{\text {prism }}(\mathfrak{X})$ of length ω_{1} played by two players, Player I and Player II. At each stage $\xi<\omega_{1}$ of
the game Player I can play an arbitrary prism P_{ξ} in \mathfrak{X} (i.e., P_{ξ} either is a singleton in \mathfrak{X} or it belongs to $\operatorname{Perf}(\mathfrak{X})$ and comes with a witness function) and Player II must respond by playing a subprism Q_{ξ} of P_{ξ}. The game $\left\langle\left\langle P_{\xi}, Q_{\xi}\right\rangle: \xi<\omega_{1}\right\rangle$ is won by Player I provided

$$
\mathfrak{X}=\bigcup_{\xi<\omega_{1}} Q_{\xi}
$$

otherwise Player II wins. A strategy for Player II is any function S such that $S\left(\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle, P_{\xi}\right)$ is a subprism of P_{ξ} for every partial game $\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle$. We say that a game $\left\langle\left\langle P_{\xi}, Q_{\xi}\right\rangle: \xi<\omega_{1}\right\rangle$ is played according to a strategy S for Player II provided $Q_{\xi}=S\left(\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle, P_{\xi}\right)$ for every $\xi<\omega_{1}$. A strategy S for Player II is a winning strategy provided Player II wins any game played according the strategy S.

The following principle captures a combinatorial core of the iterated Sacks model.
$\mathrm{CPA}_{\text {prism }}^{\text {game }}: \mathfrak{c}=\omega_{2}$ and for any Polish space \mathfrak{X} Player II has no winning strategy in the game $\operatorname{GAME}_{\text {prism }}(\mathfrak{X})$.

The axiom is consequence of a slightly more general principle, similar in spirit, called CPA, see [5]. Its importance comes from the following theorem.

Proposition 2.4 (K. Ciesielski and J. Pawlikowski [5, thm. 7.2.1]) CPA holds in the iterated perfect set model. In particular, CPA is consistent with ZFC set theory.

The proof of the consistency of $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ can be also found in [4, thm. 5.3].
A set $B \subseteq \mathbb{Q}$ is scattered if every nonempty subset of B has isolated points. It is easy to see that the scattered subsets of \mathbb{Q} form an ideal, which we will denote by \mathcal{I}_{S}. The following facts will be used in what follows. For the proofs see [4] or [5, Fact 5.5.1].

Fact 2.5 Every nonscattered set $B \subseteq \mathbb{Q}$ contains a subset from $\operatorname{Perf}(\mathbb{Q})$.
Let \mathcal{J} be an ideal on a countable set X. Then we define $\mathcal{J}^{+}=\mathcal{P}(X) \backslash \mathcal{J}$. We say that \mathcal{J} is weakly selective if for every $A \in \mathcal{J}^{+}$and $f: A \rightarrow X$ there exists a $B \in \mathcal{P}(A) \cap \mathcal{J}^{+}$such that $f \upharpoonright B$ is either one-to-one or constant.

Fact 2.6 The ideals $[\omega]^{<\omega}$ and \mathcal{I}_{S} are weakly selective.
The proof of the following result can be found in [4, lem. 4.9(b)] or in [5, lem. 5.3.4(b)], where $[X]^{\omega}$ comes with a subspace topology of $\mathcal{P}(X)$, with $\mathcal{P}(X)$ being identified with 2^{X} via characteristic function.

Proposition 2.7 (K. Ciesielski, J. Pawlikowski [4, 5]) Let X be countably infinite and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be a weakly selective ideal. For every prism $P \subseteq$ $[X]^{\omega}$ and every $A \in \mathcal{J}^{+}$there exist a subprism Q of P, a $B \in \mathcal{P}(A) \cap \mathcal{J}^{+}$, and an $i<2$ such that $g \upharpoonright B$ is constant equal to i for every $g \in Q$.

3 Some important lemmas.

Let X be a countably infinite set. If $\mathcal{F} \subseteq[X]^{\omega}$ is nonempty, we say that \mathcal{F} has the strong finite intersection property, SFIP, provided that $|\bigcap F|=\omega$ for every nonempty $F \in[\mathcal{F}]^{<\omega}$. The following is a very well known and easy fact.

Lemma 3.1 If $\mathcal{F} \subseteq[X]^{\omega}$ is nonempty, countable, and has the SFIP, then there exists a $C(\mathcal{F}) \in[X]^{\omega}$ such that $C(\mathcal{F}) \subseteq^{*} B$ for every $B \in \mathcal{F}$.

Proof. If \mathcal{F} is finite, we can put $C(\mathcal{F})=\bigcap \mathcal{F}$; otherwise $\mathcal{F}=\left\{B_{n}: n<\omega\right\}$ and we can pick inductively $b_{n} \in \bigcap_{k \leq n} B_{k}$ such that $b_{n} \notin\left\{b_{k}: k<n\right\}$. The set $C(\mathcal{F})=\left\{b_{n}: n<\omega\right\}$ works.

Let X be a countably infinite set. If the set $Z_{X}=[X]^{<\omega} \backslash\{\emptyset\}$ has the discrete topology then the product space $\mathcal{Z}_{X}=\left(Z_{X}\right)^{\omega}$ is a Polish space and the sets $U_{\langle n, a\rangle}=\{z \in \mathcal{Z}: z(n)=a\}$, where $a \in[\omega]^{<\omega}$ and $n<\omega$, constitute a subbasis for the product topology. Consider the set

$$
\mathcal{P}_{X}=\left\{z \in \mathcal{Z}_{X}:\{z(k): k<\omega\} \text { is a partition of } \omega\right\} .
$$

If $X=\omega$ we will drop the indexes, that is, $\mathcal{Z}=\mathcal{Z}_{\omega}$ and $\mathcal{P}=\mathcal{P}_{\omega}$.
Lemma $3.2 \mathcal{P}_{X}$ is a G_{δ} subset of \mathcal{Z}_{X}. Therefore \mathcal{P}_{X} is a Polish space with the relative topology inherited from \mathcal{Z}_{X}.

Proof. We can assume that $X=\omega$. If $A=\left\{z \in \mathcal{Z}: \bigcup_{n<\omega} z(n)=\omega\right\}$ and $B=\{z \in \mathcal{Z}:\{z(n): n<\omega\}$ is pairwise disjoint $\}$ then $\mathcal{P}=A \cap B$. The set A is G_{δ} because we have $A=\bigcap_{k \in \omega} \bigcup_{n<\omega} \bigcup\left\{U_{\langle n, a\rangle}: a \in[\omega]^{<\omega} \& k \in a\right\}$. The set B is G_{δ} since it can be written as $\bigcap_{m<n<\omega} \bigcup\left\{U_{\langle m, a\rangle} \cap U_{\langle n, b\rangle}: a \cap b=\emptyset\right\}$. Thus, \mathcal{P} is G_{δ} in \mathcal{Z}.

Definition 1 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X containing all the singletons. We say that \mathcal{J} is Q-like provided that for every $A \in \mathcal{J}^{+}$there exists a countable indexed family $\left\{A_{n} \in[A]^{\omega}: n<\omega\right\}$ such that no set $\left\{b_{n}: n<\omega\right\}$ belongs to \mathcal{J} provided $b_{n} \in A_{n}$ for every $n<\omega$.

Lemma 3.3 Let X be a countably infinite set, let \mathcal{J} be a Q-like ideal on X and let $A \in \mathcal{J}^{+}$be arbitrary. If P is a prism on \mathcal{P}_{X}, then there exist a subprism Q of P and a $B \in \mathcal{P}(A) \cap \mathcal{J}^{+}$such that $|z(k) \cap B| \leq 1$ for every $z \in Q$ and $k<\omega$. Moreover, if P is a cube than Q can be chosen as a subcube of P.

Proof. We can suppose that $X=\omega$. Let $\left\langle A_{n} \in[A]^{\omega}: n<\omega\right\rangle$ be the sequence associated to A in the definition of Q-like.

Case (a): If $P=\{z\}$ then, define a sequence $\left\langle b_{n} \in \omega: n<\omega\right\rangle$ inductively such that $b_{n} \in A_{n} \backslash \bigcup\left\{z(k): k<\omega \& z(k) \cap\left\{b_{0}, \ldots, b_{n-1}\right\} \neq \emptyset\right\}$ for every $n<\omega$. It is easy to see that $B=\left\{b_{n}: n<\omega\right\}$ works.

Case (b): If $P \in \operatorname{Perf}\left(\boldsymbol{P}_{\omega}\right)$, let f be a witness function for P. By Remark 2.1 we can assume that f acts from \mathfrak{C}^{α} onto P. Thus, P is a cube. It is enough to find its subcube with the desired properties.

Let μ be the standard product probability measure on \mathfrak{C}^{α}. We construct, by induction on $n<\omega$, a sequence $\left\langle K_{n}: n<\omega\right\rangle$ of open subsets of \mathfrak{C}^{α} and two sequences, $\left\langle b_{n} \in A_{n}: n<\omega\right\rangle$ and $\left\langle B_{n} \in[\omega]^{<\omega}: n<\omega\right\rangle$, such that for every $n<\omega$:
(i) $b_{n}>\max \left(\left\{b_{i}: i<n\right\} \cup \bigcup_{j<n} B_{j}\right)$,
(ii) $\mu\left(K_{n}\right) \geq 1-2^{-(n+2)}$, and
(iii) $f(h)(k) \subseteq B_{n}$ for every $h \in K_{n}$ and $k<\omega$ for which $b_{n} \in f(h)(k)$.

If this construction is possible, put $B=\left\{b_{n}: n<\omega\right\}$. Then, clearly $B \in \mathcal{P}(A) \cap \mathcal{J}^{+}$since that \mathcal{J} is Q-like and $b_{n} \in A_{n}$ for every $n<\omega$. Condition (ii) implies that $\mu\left(\bigcap_{n<\omega} K_{n}\right) \geq \frac{1}{2}$. Hence, by Proposition 2.2,
there exists a perfect cube $C \subseteq \bigcap_{n<\omega} K_{n}$. Then $Q=f[C]$ is a subcube of P and the pair $\langle Q, B\rangle$ is as required. To see this, it is enough to show that $|z(k) \cap B| \leq 1$ for every $z \in Q$ and $k<\omega$. Let $z=f(h)$ for some $h \in C$. By conditions (i) and (iii), for every $b_{j} \in z(k)=f(h)(k)$ and $n>j$ we have that $b_{n} \notin z(k)$. Therefore, no two elements of B are in the same $z(k)$ or, in other words, $|z(k) \cap B| \leq 1$ for every $k<\omega$.

Next, we show that the inductive construction is possible. Let $n<\omega$ be such that the appropriate b_{i}, K_{i}, and B_{i} are already constructed for every $i<n$. We will construct b_{n}, K_{n}, and B_{n} satisfying (i)-(iii). We pick an b_{n} as an arbitrary element of A_{n} satisfying condition (i). Next, we define $L=\left\{a \in[\omega]^{<\omega}: b_{n} \in a\right\}$ and note that $\left\{f^{-1}\left(U_{\langle m, a\rangle}\right):\langle m, a\rangle \in \omega \times L\right\}$ is a partition of \mathfrak{C}^{α} into clopen sets. Thus, we can find a finite set $S \subseteq \omega \times L$ such that $K_{n}=\bigcup\left\{f^{-1}\left(U_{\langle m, a\rangle}\right):\langle m, a\rangle \in S\right\}$ satisfies condition (ii). Let $B_{n}=\bigcup\{a:\langle m, a\rangle \in S$ for some $m<\omega\}$. Then clearly, B_{n} is finite. To see that it satisfies (iii), take an $h \in K_{n}$. Then $f(h) \in U_{\langle m, a\rangle}$ for some $\langle m, a\rangle \in S$. Let $k<\omega$ be such that $b_{n} \in f(h)(k)$. Since we have also $b_{n} \in a=f(h)(m)$, we conclude that $k=m$. So, $f(h)(k)=f(h)(m)=a \subseteq B_{n}$.

Definition 2 Let X be a countably infinite set. We say that an ideal \mathcal{J} on X is prism-friendly provided that it contains all singletons and
(•) given a prism P in 2^{X} and an $A \in \mathcal{J}^{+}$there exists a subprism Q of P, a $B \in \mathcal{P}(A) \cap \mathcal{J}^{+}$, and an $i<2$ such that $g \upharpoonright B$ is constant equal i for every $g \in Q$.

Definition 3 Let X be a countably infinite set. We say that an ideal \mathcal{J} on X is rich if it is prism-friendly and
(\#) given an $A \in \mathcal{J}^{+}$there exists a family $\mathcal{A} \subseteq \mathcal{P}(A) \cap \mathcal{J}^{+}$of cardinality \mathfrak{c} which is almost disjoint, that is, such that $|A \cap B|<\omega$ for every distinct $A, B \in \mathcal{A}$.

Also, notice that, in ZFC, condition (\bullet) does not imply condition (\#). Indeed, if \mathcal{U} is a selective ultrafilter, then its dual ideal $\mathcal{I}_{\mathcal{U}}$ is weakly selective. So, see [5], $\mathcal{I}_{\mathcal{U}}$ is prism-friendly. However, $\mathcal{I}_{\mathcal{U}}^{+}=\mathcal{U}$ and no two members in \mathcal{U} can be almost disjoint.

Lemma 3.4 The ideals $[\omega]^{<\omega}$ and \mathcal{I}_{S} are Q-like and rich.

Proof. It is easy to see that $[\omega]^{<\omega}$ is Q-like. To see that \mathcal{I}_{S} is also Q like pick any $A \in \mathcal{I}_{S}^{+}$. By Fact 2.6 we can assume that $A \in \operatorname{Perf}(\mathbb{Q})$. Let \mathcal{B} be a countable basis for the topology on \mathbb{Q} and let $\left\{A_{n}: n<\omega\right\}$ be an enumeration of the set $\{S \cap A: S \in \mathcal{B} \&|S \cap A|=\omega\}$. If $b_{n} \in A_{n}$ for every $n<\omega$ then $B=\left\{b_{n}: n<\omega\right\}$ is dense in A and in consequence, it is in \mathcal{I}_{S}^{+}.

By Fact 2.6, the ideals $[\omega]^{<\omega}$ and \mathcal{I}_{S} are weakly selective so, by Proposition 2.7, they are prism-friendly. Thus, we need only to check that each of these ideals satisfies the condition (\#) from the definition of rich ideal.

It is well known that (\#) holds for $[\omega]^{<\omega}$. To check that (\#) also holds for \mathcal{I}_{S}, fix a countable basis \mathcal{B} for the topology on \mathbb{Q} and pick an $A \in \mathcal{I}_{S}^{+}$. By Fact 2.5, we can assume that $A \in \operatorname{Perf}(\mathbb{Q})$. Let $\left\{B_{n}: n<\omega\right\}$ be an enumeration of $\mathcal{B}_{A}=\{B \in \mathcal{B}:|B \cap A|=\omega\}$ and construct $\left\{a_{s}: s \in 2^{<\omega}\right\}$ by induction on the length of s in such a way that $\left\{a_{s}: s \in 2^{n}\right\} \in\left[A \cap B_{n}\right]^{2^{n}}$ and that $\left\{a_{s}: s \in 2^{n}\right\} \cap \bigcup\left\{a_{t}: t \in 2^{<n}\right\}=\emptyset$ for every $n<\omega$. If for $x \in 2^{\omega}$ we put $A_{x}=\left\{a_{x \mid n}: n<\omega\right\}$, then $A_{x} \in \mathcal{I}_{S}^{+}$for every $x \in 2^{\omega}$, since A_{x} is dense in A. Then $\mathcal{A}=\left\{A_{x}: x \in 2^{\omega}\right\}$ is almost disjoint and satisfies (\#).

Definition 4 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X containing all singletons. The Fubini product of the ideals $[\omega]^{<\omega}$ and \mathcal{J} is the ideal \mathcal{K} on $\omega \times X$ denoted $[\omega]^{<\omega} \otimes \mathcal{J}$ and defined as the family of all subsets A of $\omega \times X$ such that

$$
\operatorname{supp}(A) \stackrel{\text { def }}{=}\left\{n<\omega:(A)_{n} \in \mathcal{J}^{+}\right\} \text {is finite },
$$

where $(A)_{n}=\{x \in X:\langle n, x\rangle \in A\}$.
Lemma 3.5 If \mathcal{J} is a Q-like ideal, then $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$ is also Q-like.
Proof. Let $A \in \mathcal{K}^{+}$. For each $n \in \operatorname{supp}(A)$ let $\left\{A_{n}^{m} \in\left[(A)_{n}\right]^{\omega}: m<\omega\right\}$ be a family from the definition of Q-like for $(A)_{n} \in \mathcal{J}^{+}$. Then the family $\left\{\{n\} \times A_{n}^{m}: n \in \operatorname{supp}(A) \& m<\omega\right\}$ satisfies the definition of Q-like for the set A.

Lemma 3.6 Let X be a countably infinite set, \mathcal{J} a prism-friendly ideal on X, P a prism in $2^{\omega \times X}, I \in[\omega]^{\omega}$, and let $\left\langle A_{n} \in \mathcal{J}^{+}: n \in I\right\rangle$ be arbitrary. Then, there exist a subprism Q of P, a set $J \in[I]^{\omega}$, a sequence $\left\langle B_{n} \in \mathcal{P}\left(A_{n}\right) \cap \mathcal{J}^{+}: n \in J\right\rangle$, and an $i<2$, such that $g \upharpoonright B$ is constant equal i for every $g \in Q$ provided that $B=\bigcup\left\{\{n\} \times B_{n}: n \in J\right\}$.

In particular, if \mathcal{J} is prism-friendly, then so is $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$.

Proof. We can suppose that $I=\omega$. If P is a singleton the lemma follows easily from the fact that \mathcal{J} is an ideal containing the singletons and the pigeon hole principle. So, suppose that $P \in \operatorname{Perf}\left(2^{\omega \times X}\right)$. Let f be a function witnessing that P is a prism. By Remark 2.1 we can assume that f is defined on \mathfrak{C}^{α} for some $0<\alpha<\omega_{1}$. We will construct a subprism Q_{0} of P and a sequence $\left\langle B_{n} \in\left[A_{n}\right]^{\omega} \cap \mathcal{J}^{+}: n<\omega\right\rangle$ such that for every $n<\omega$

$$
\begin{equation*}
g \upharpoonright\{n\} \times B_{n} \text { is constant for every } g \in Q_{0} . \tag{1}
\end{equation*}
$$

This will be done using Proposition 2.3.
For each $n<\omega$ let \mathcal{D}_{n} be the collection of all pairwise disjoint families $\mathcal{E} \in\left[\mathbb{P}_{\alpha}\right]^{<\omega}$ such that there exists an $A_{\langle\mathcal{E}, n\rangle} \in\left[A_{n}\right]^{\omega} \cap \mathcal{I}^{+}$with the property that for every $E \in \mathcal{E}$

$$
\begin{equation*}
f(h) \upharpoonright\{n\} \times A_{\langle\mathcal{E}, n\rangle}=f\left(h^{\prime}\right) \upharpoonright\{n\} \times A_{\langle\mathcal{E}, n\rangle} \text { for all } h, h^{\prime} \in E . \tag{2}
\end{equation*}
$$

Clearly, each \mathcal{D}_{n} is closed under refinaments. To see that \mathcal{D}_{n} satisfies the condition (\dagger) from Proposition 2.3 pick $\mathcal{E} \in \mathcal{D}_{n}$ and $E \in \mathbb{P}_{\alpha}$ such that $E \cap \bigcup \mathcal{E}=\emptyset$. Decreasing $A_{\langle\mathcal{E}, n\rangle}$, if necessary, we can assume that $X \backslash A_{\langle\mathcal{E}, n\rangle}$ is infinite. Let $b_{n}: \omega \times X \rightarrow X$ be any bijection such that $b_{n}(n, a)=a$ for every $a \in A_{\langle\mathcal{E}, n\rangle}$. This bijection induces a homeomorphism $f_{n}: 2^{\omega \times X} \rightarrow 2^{X}$ defined by $f_{n}(g)(x)=g\left(b_{n}^{-1}(x)\right)$ for every $g \in 2^{\omega \times X}$ and $x \in X$. Clearly, f_{n} is continuous and injective. Hence, $Q^{*}=\left(f_{n} \circ f\right)[E]$ is a prism in 2^{X}. Since \mathcal{J} is prism-friendly, we can find a subprism $Q^{* *}$ of Q^{*}, an $A^{\prime} \in\left[A_{\langle\mathcal{E}, n\rangle}\right]^{\omega} \cap \mathcal{J}^{+}$, and an $i<2$ such that $g\left[A^{\prime}\right]=\{i\}$ for every $g \in Q^{* *}$. But $Q^{* *}=f_{n}\left[E^{\prime}\right]$ for some $E^{\prime} \in \mathbb{P}_{\alpha} \cap \mathcal{P}(E)$. So, if we put $\mathcal{E}^{\prime}=\mathcal{E} \cup\left\{E^{\prime}\right\}$ and $A_{\left\langle\mathcal{E}^{\prime}, n\right\rangle}=A^{\prime}$ we get that $\mathcal{E}^{\prime} \in \mathcal{D}_{n}$ and the condition (\dagger) is satisfied. Thus, by Proposition 2.3, for every $n<\omega$ there exists a family $\mathcal{E}_{n}=\left\{E_{k}: k<2^{n}\right\} \in \mathcal{D}_{n}$ of pairwise disjoint sets with $E^{0}=\bigcap_{n<\omega} \cup \mathcal{E}_{n} \in \mathbb{P}_{\alpha}$. We will prove that $Q_{0}=f\left[E^{0}\right]$ satisfies (1) with some sequence $\left\langle B_{n}: n<\omega\right\rangle$.

To see this fix an $n<\omega$, for each $k<2^{n}$ pick an $h_{k} \in E_{k}$, and define $\varphi_{n}: A_{\left\langle\mathcal{E}_{n}, n\right\rangle} \rightarrow 2^{2^{n}}$ by $\varphi_{n}(p)(k)=f\left(h_{k}\right)(n, p)$. Since $A_{\left\langle\mathcal{E}_{n}, n\right\rangle} \in \mathcal{I}^{+}$and \mathcal{J} is an ideal, we can find an $s_{n} \in 2^{2^{n}}$ such that $B_{n}=\varphi_{n}^{-1}\left(s_{n}\right) \in \mathcal{J}^{+}$. To see that B_{n} satisfies (1), pick a $g \in Q_{0}$. Then there exists a $k<2^{n}$ and an $h \in E_{k}$ such that $g=f(h)$. Since $B_{n} \subseteq A_{\left\langle\mathcal{E}_{n}, n\right\rangle}$, by (2) we have that $g \upharpoonright\{n\} \times B_{n}=$ $f\left(h_{k}\right) \upharpoonright\{n\} \times B_{n}$. In particular, $g(p)=f\left(h_{k}\right)(n, p)=\varphi_{n}(p)(k)=s_{n}(k)$ for every $p \in B_{n}$. So, $g \upharpoonright\{n\} \times B_{n}$ is constant equal to $s_{n}(k)$ and (1) holds.

To finish the proof of the lemma pick a $b_{n} \in B_{n}$ for each $n<\omega$. Then, the set $S=\left\{\left\langle n, b_{n}\right\rangle \in\{n\} \times B_{n}: n<\omega\right\}$ is a selector for $\left\{\{n\} \times B_{n}: n<\omega\right\}$.

Let $\mathcal{I}=[\omega \times X]^{<\omega}$. Then \mathcal{I} is weakly selective and $S \in \mathcal{I}^{+}$. If we identify $2^{\omega \times X}$ with $\mathcal{P}(\omega \times X)$, then Q_{0} can be treated as a prism in $\mathcal{P}(\omega \times X)$. Since $\left.{ }^{\omega} \omega \times X\right]^{\omega}$ is residual in $\mathcal{P}(\omega \times X)$, by Proposition 2.2 we can assume that Q_{0} is a prism in $[\omega \times X]^{\omega}$. So, by Proposition 2.7, there exist a subprism Q of Q_{0}, a set $S_{0} \in[S]^{\omega}$, and an $i<2$ such that $g\left[S_{0}\right]=\{i\}$ for every $g \in Q$. Define $J=\left\{n<\omega:\left\langle n, b_{n}\right\rangle \in S_{0}\right\}$.

To see that the conclusion of the lemma holds take a $g \in Q$ and an $\langle n, b\rangle \in B$. Then $n \in J$ and $b \in B_{n}$. So, by (1), $g(n, b)=g\left(n, b_{n}\right)=i$, since $\left\langle n, b_{n}\right\rangle \in S_{0}$.

Lemma 3.7 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal containing all singletons and satisfying condition (\#) from the definition of a rich ideal. Then the ideal $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$ also satisfies $(\#)$.

In particular, if \mathcal{J} is rich, then so is \mathcal{K}.
Proof. Let $A \in \mathcal{K}^{+}$. Then $\operatorname{supp}(A)$ is infinite. Let $\mathcal{A}=\left\{A_{\xi}: \xi<\mathfrak{c}\right\} \subseteq$ $[\operatorname{supp}(A)]^{\omega}$ be an almost disjoint family. Since \mathcal{J} satisfies (\#), for every $n<\omega$ there exists an almost disjoint family $\mathcal{B}_{n}=\left\{B_{\xi}^{n}: \xi<\mathfrak{c}\right\} \subseteq \mathcal{P}\left((A)_{n}\right) \cap \mathcal{J}^{+}$. If for every $\xi<\mathfrak{c}$ we define

$$
U_{\xi}=\bigcup\left\{\{n\} \times B_{\xi}^{n}: n \in A_{\xi}\right\},
$$

then the family $\left\{U_{\xi}: \xi<\mathfrak{c}\right\} \subseteq \mathcal{P}(A) \cap \mathcal{K}^{+}$works. The other part of the lemma is consequence of this and of Lemma 3.6.

4 An ω_{1}-generated crowded bad point.

Definition 5 If \mathcal{U} and \mathcal{V} are ultrafilters then, the Fubini product of \mathcal{U} and \mathcal{V} is defined as

$$
\mathcal{U} \otimes \mathcal{V}=\left\{A \subseteq \omega \times \omega:\left\{n:(A)_{n} \in \mathcal{V}\right\} \in \mathcal{U}\right\}
$$

Proposition 4.1 (Folklore) If \mathcal{U} and \mathcal{V} are nonprincipal ultrafilters in ω then $\mathcal{U} \otimes \mathcal{V}$ is a nonprincipal ultrafilter which is not a P-point, a Q-point, or even an ω_{1}-OK point.

Proof. It is easy to see that $\mathcal{U} \otimes \mathcal{V}$ is a nonprincipal ultrafilter. To see that $\mathcal{U} \otimes \mathcal{V}$ cannot be a P-point observe that the set $\left\{L_{m}: m<\omega\right\}$ of all sections $L_{m}=\{\langle m, n\rangle: n \in \omega\}$ is a partition of $\omega \times \omega$ into infinite pieces not in $\mathcal{U} \otimes \mathcal{V}$ and that every $X \in \mathcal{U} \otimes \mathcal{V}$ intersects infiniteley many L_{m} 's on an infinite set.

To see that $\mathcal{U} \otimes \mathcal{V}$ cannot be a Q-point consider the partial partition $\left\{P_{n}: n<\omega\right\}$ of $\omega \times \omega$ where $P_{n}=\{\langle m, n\rangle: m \leq n\}$ for every $n<\omega$. Notice that $\bigcup_{n<\omega} P_{n} \in \mathcal{U} \otimes \mathcal{V}$. Let $\mathcal{P} \subseteq[\omega \times \omega]^{<\omega}$ be a partition of $\omega \times \omega$ such that $\left\{P_{n}: n<\omega\right\} \subseteq \mathcal{P}$. It is easy to see that there is no $X \in \mathcal{U} \otimes \mathcal{V}$ such that $|X \cap P| \leq 1$ for every $P \in \mathcal{P}$.

To see that $\mathcal{U} \otimes \mathcal{V}$ is not an ω_{1}-OK point consider $\left\{V_{n}: n<\omega\right\} \subseteq \mathcal{U} \otimes \mathcal{V}$, where $V_{\underline{n}}=\bigcup_{m>n} L_{m}$. By the way of contradiction, suppose that the sequence $\overline{\mathcal{U}}=\left\langle U_{\xi} \in \mathcal{U} \otimes \mathcal{V}: \xi<\omega_{1}\right\rangle$ is OK for $\left\{V_{n}: n<\omega\right\}$. Then, by the pigeon hole principle, there exist an $m<\omega$ and an $X \in\left[\omega_{1}\right]^{\omega_{1}}$ such that $\left(U_{\xi}\right)_{m} \in \mathcal{V}$ for every $\xi \in X$. Pick ordinals $\xi_{1}<\xi_{2}<\cdots<\xi_{m}$ in X. Since $\overline{\mathcal{U}}$ is OK for $\left\{V_{n}: n<\omega\right\}$ we have that $\bigcap_{i=1}^{m} U_{\xi_{i}} \subseteq^{*} V_{m} \subseteq \omega \times \omega \backslash L_{m}$. Therefore, $\left|\bigcap_{i=1}^{m} U_{\xi_{i}} \cap L_{m}\right|<\omega$. But also, $\left(\bigcap_{i=1}^{m} U_{\xi_{i}}\right)_{m}=\bigcap_{i=1}^{m}\left(U_{\xi_{i}}\right)_{m} \in \mathcal{V}$. This implies that $\left|\left(\bigcap_{i=1}^{m} U_{\xi_{i}}\right) \cap L_{m}\right|=\omega$, which is a contradiction.

Given $f, g \in \omega^{\omega}$ we write $g \leq^{*} f$ provided that $g(n) \leq f(n)$ for all but finitely many $n<\omega$. We say that an $F \subseteq \omega^{\omega}$ is dominating provided that for every $g \in \omega^{\omega}$ there exists an $f \in F$ such that $g \leq^{*} f$. The dominating number \mathfrak{d} is defined as the minimum cardinality of a dominating family in ω^{ω}. This and other cardinal invariants have been studied extensively in the literature. See for example [1] or [2]. It is easy to show that $\omega_{1} \leq \mathfrak{d} \leq \mathfrak{c}$ and that this is all that can be said in ZFC about the value of \mathfrak{d}. For instance, the continuum hipothesis implies that $\mathfrak{d}=\omega_{1}=\mathfrak{c}$, while Martin's Axiom + $\mathfrak{c}>\omega_{1}$ imply that $\mathfrak{d}=\mathfrak{c}>\omega_{1}$. See, for example [10].

In [5, sec. 1.3] Ciesielski and Pawlikowski proved that a weak version of $\mathrm{CPA}_{\text {prism }}^{\text {game }}$, called $\mathrm{CPA}_{\text {cube }}$, implies that $\operatorname{cof}(\mathcal{N})=\omega_{1}<\mathfrak{c} .{ }^{2}$ It is known that this fact implies that $\mathfrak{d}=\omega_{1}$.

It is not difficult to prove that $\mathfrak{d}=\omega_{1}$ implies that for every countable infinite set X there is an $F \subseteq\left(\left[\omega_{1}\right]^{<\omega}\right)^{X}$ of cardinality ω_{1} which is \subseteq-dominant, that is, such that

$$
\text { for every } g \in\left(\left[\omega_{1}\right]^{<\omega}\right)^{X} \text { there is an } f \in F \text { with } g(x) \subseteq f(x) \text { for all } x \in X \text {. }
$$

This follows from the fact that $\left(\left[\omega_{1}\right]^{<\omega}\right)^{X}=\bigcup_{\alpha<\omega_{1}}\left([\alpha]^{<\omega}\right)^{X}$. This is the form of $\mathfrak{d}=\omega_{1}$ which we will use in the next proposition.

[^2]Proposition 4.2 Assume $\mathfrak{d}=\omega_{1}$ and let X and Y be countably infinte sets. If \mathcal{U} and \mathcal{V} are ω_{1}-generated ultrafilters on X and Y, respectively, then their Fubini product $\mathcal{U} \otimes \mathcal{V}$ is also ω_{1}-generated.

Proof. Let $\left\{U_{\alpha}: \alpha<\omega_{1}\right\}$ and $\left\{V_{\beta}: \beta<\omega_{1}\right\}$ be the bases for \mathcal{U} and \mathcal{V}, respectively. Since $\mathfrak{d}=\omega_{1}$, there exists a \subseteq-dominant family $\left\langle f_{\gamma}: \gamma<\omega_{1}\right\rangle \subseteq$ $\left(\left[\omega_{1}\right]^{<\omega}\right)^{X}$. We claim that the family $\left\{W_{\alpha, \gamma}:\langle\alpha, \gamma\rangle \in \omega_{1} \times \omega_{1}\right\} \subseteq \mathcal{U} \otimes \mathcal{V}$, where $W_{\alpha, \gamma}=\bigcup\left\{\{x\} \times \bigcap_{\beta \in f_{\gamma}(x)} V_{\beta}: x \in U_{\alpha}\right\}$, is a basis for $\mathcal{U} \otimes \mathcal{V}$. To check this, pick an $A \in \mathcal{U} \otimes \mathcal{V}$. Then, $\{x \in X:\{y:\langle x, y\rangle \in A\} \in \mathcal{V}\} \in \mathcal{U}$. Pick an $\alpha<\omega_{1}$ such that $U_{\alpha} \subseteq\{x \in X:\{y:\langle x, y\rangle \in A\} \in \mathcal{V}\}$. Then, given an $x \in U_{\alpha}$ there exists a $\beta_{x}<\omega_{1}$ such that $V_{\beta_{x}} \subseteq\{y \in Y:\langle x, y\rangle \in A\}$. This implies that $\{x\} \times V_{\beta_{x}} \subseteq A$ for every $x \in U_{\alpha}$.

Consider the function $g: X \rightarrow\left[\omega_{1}\right]^{<\omega}$ defined as

$$
g(x)= \begin{cases}\left\{\beta_{x}\right\} & \text { if } x \in U_{\alpha} \\ \emptyset & \text { otherwise }\end{cases}
$$

Since $\left\langle f_{\gamma}: \gamma<\omega_{1}\right\rangle$ is a \subseteq-dominant family, there exists a $\gamma<\omega_{1}$ such that $g(x) \subseteq f_{\gamma}(x)$ for every $x \in U_{\alpha}$. This implies that $\beta_{x} \in f_{\gamma}(x)$ and that $\{x\} \times \bigcap_{\beta \in f_{\gamma}(x)} V_{\beta} \subseteq A$ for every $x \in U_{\alpha}$. Hence, $W_{\alpha, \gamma} \subseteq A$.

Theorem $4.3 \mathrm{CPA}_{\mathrm{prism}}^{\text {game }}$ implies that there exists an ω_{1}-generated crowded ultrafilter which is not a P-point, a Q-point, or even an $\omega_{1}-O K$ point.

Proof. $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies the existence of an ω_{1}-generated crowded ultrafilter \mathcal{U} on \mathbb{Q}, see [4, prop. 4.25]. We will show that $\mathcal{U} \otimes \mathcal{U}$ is as desired.

By Proposition 4.1, it is not a P-point, a Q-point, or an ω_{1}-OK point. Also, since $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies $\mathfrak{d}=\omega_{1}$, by Proposition 4.2 the ultrafilter $\mathcal{U} \otimes \mathcal{U}$ is ω_{1}-generated by some family \mathcal{B}.

To see that $\mathcal{U} \otimes \mathcal{U}$ can be treated as crowded, consider $\mathbb{Q} \times \mathbb{Q}$ as the product of $\left\langle\mathbb{Q}, \tau_{d}\right\rangle$ and $\left\langle\mathbb{Q}, \tau_{s}\right\rangle$, where τ_{d} is the discrete topology and τ_{s} is the standard topology. Then $\mathbb{Q} \times \mathbb{Q}$ is homemorphic to \mathbb{Q}.

For $B \in \mathcal{B}$ let $\left.\bar{B}=\left\{x:(B)_{x} \in B\right\} \in \mathcal{U}\right\}$. Using Fact 2.5, for every $x \in \bar{B}$ we can choose a subset $B^{x} \in \operatorname{Perf}(\mathbb{Q})$ of $(B)_{x}$. Let $B^{*}=\bigcup\left\{\{x\} \times B^{x}: x \in \bar{B}\right\}$. Then B^{*} is a perfect subset of $\mathbb{Q} \times \mathbb{Q}$. Thus, $\left\{B^{*}: B \in \mathcal{B}\right\}$ is a basis of $\mathcal{U} \otimes \mathcal{U}$ of cardinality ω_{1} formed with perfect subsets of $\mathbb{Q} \times \mathbb{Q}$.

5 A crowded Q-point which is not an ω_{1}-OK point.

Definition 6 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X. If $A, B \in \mathcal{J}^{+}$we write $A \preceq \mathcal{J} B$ if and only if $A \backslash B \in \mathcal{J}$.

Definition 7 Let X be a countably infinite set and let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X. We say that \mathcal{J} has the extension property provided that for every $\preceq^{\mathcal{J}}$-decreasing sequence $\left\langle A_{n} \in \mathcal{J}^{+}: n\langle\omega\rangle\right.$ there exists an $A \in \mathcal{J}^{+}$ such that $A \preceq \preceq^{\mathcal{J}} A_{n}$ for every $n<\omega$.

Let X and \mathcal{J} be as above and let $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$. We will consider a relation \sqsubseteq defined on \mathcal{K}^{+}as
$A \sqsubseteq B \Leftrightarrow \operatorname{supp}(A) \subseteq^{*} \operatorname{supp}(B) \&(A)_{n} \preceq^{\mathcal{J}}(B)_{n} \forall n \in \operatorname{supp}(A) \cap \operatorname{supp}(B)$.
Note that for $A, B \in \mathcal{K}^{+}$

$$
A \subseteq B \Longrightarrow A \sqsubseteq B \Longrightarrow A \preceq^{\mathcal{K}} B
$$

but none of these implications can be reversed. Also, it is not difficult to see that the relation \sqsubseteq is not transitive. Nevertheless, we say that for $\xi<\omega_{1}$ a sequence $\left\langle U_{\eta} \in \mathcal{K}^{+}: \eta<\xi\right\rangle$ is \sqsubseteq-decreasing provided $U_{\eta} \sqsubseteq U_{\zeta}$ for every $\zeta<\eta<\xi$.

Lemma 5.1 Let X be a countably infinite set, let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal on X with the extension property, and let $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$. Then, for every $\xi<\omega_{1}$ and every \sqsubseteq-decreasing sequence $\left\langle U_{\eta} \in \mathcal{K}^{+}: \eta<\xi\right\rangle$ there exists a $C \in \mathcal{K}^{+}$ such that $C \sqsubseteq U_{\eta}$ for every $\eta<\xi$. Moreover, the sequence $\left\langle U_{\eta}: \eta \leq \xi\right\rangle$ is \sqsubseteq-decreasing for every $U_{\xi} \in \mathcal{P}(C) \cap \mathcal{K}^{+}$.

Proof. sequence. Since the sequence $\left\langle\operatorname{supp}\left(U_{\eta}\right): \eta<\xi\right\rangle$ is \subseteq^{*}-decreasing, we can find an $S \in[\omega]^{\omega}$ such that $S \subseteq^{*} U_{\eta}$ for every $\eta<\xi$. For each $m \in S$ consider the set $I_{m}=\left\{\eta<\xi: m \in \operatorname{supp}\left(U_{\eta}\right)\right\}$. Then, since \mathcal{J} has the extension property, we can find a $C_{m} \in \mathcal{J}^{+}$such that $C_{m} \preceq \mathcal{J}\left(U_{\eta}\right)_{m}$ for every $\eta \in I_{m}$. Put $C=\bigcup\left\{\{m\} \times C_{m}: m \in S\right\}$. Then clearly $C \sqsubseteq U_{\eta}$ for every $\eta<\xi$. The additional part follows from the fact that $U \subset C \sqsubseteq V$ implies $U \sqsubseteq V$.

Lemma 5.2 Let X, \mathcal{J}, and \mathcal{K} be as above. Let $\left\langle U_{\xi} \in \mathcal{K}^{+}: \xi\left\langle\omega_{1}\right\rangle\right.$ be a \sqsubseteq-decreasing sequence in \mathcal{K}^{+}such that for every $g \in \omega \times X$ there exists a $\xi<\omega_{1}$ such that $g \upharpoonright U_{\xi}$ is constant. Then, the family $\left\{U_{\xi}: \xi<\omega_{1}\right\}$ forms a base for a nonprincipal ultrafilter on $\omega \times X$ which is not an ω_{1}-OK point.

Proof. We check first that the family $\left\{U_{\xi}: \xi<\omega_{1}\right\}$ has SFIP. So, choose $\xi_{0}<\cdots<\xi_{n}<\omega_{1}$. Since $U_{\xi_{n}} \sqsubseteq \cdots \sqsubseteq U_{\xi_{1}} \sqsubseteq U_{\xi_{0}}$ we can pick an $m \in$ $\bigcap_{i \leq n} \operatorname{supp}\left(U_{\xi_{i}}\right)$. If $I_{m}=\left\{\xi<\omega_{1}: m \in \operatorname{supp}\left(A_{\xi}\right)\right\}$, then $\left\{\xi_{i}: i \leq n\right\} \subseteq I_{m}$. Therefore, $\left(U_{\xi_{n}}\right)_{m} \preceq \mathcal{J} \cdots \preceq \mathcal{J}\left(U_{\xi_{0}}\right)_{m}$. This implies that $\left(\bigcap_{i \leq n} U_{\xi_{i}}\right)_{m} \in \mathcal{J}^{+}$. In particular, $\left(\bigcap_{i \leq n} U_{\xi_{i}}\right)_{m}$ is infinite and so is $\bigcap_{i \leq n} U_{\xi_{i}}$. Let \mathcal{U} be a filter generated $\left\{U_{\xi}: \xi<\omega_{1}\right\}$.

To see that \mathcal{U} is actually an ultrafilter, pick any $A \subseteq \omega \times X$. Then, there exists a $\xi<\omega_{1}$ and an $i<2$ such that $\chi_{A} \upharpoonright U_{\xi}$ is constant equal i. If $i=0$ then $U_{\xi} \subseteq(\omega \times X) \backslash A$ and $(\omega \times X) \backslash A \in \mathcal{U}$. If $i=1$ then $U_{\xi} \subseteq A$ and $A \in \mathcal{U}$. Therefore, \mathcal{U} is an ultrafilter and $\left\{U_{\xi}: \xi<\omega_{1}\right\}$ is a base for \mathcal{U}. Observe that \mathcal{U} is nonprincipal because each set in \mathcal{U} contains an infinite set U_{ξ}.

To see that \mathcal{U} is not an ω_{1}-OK point consider a sequence $\left\langle V_{n} \in \mathcal{U}: n<\omega\right\rangle$, where $V_{n}=\bigcup_{i>n}(\{i\} \times X)$. Suppose that there exists a $\left\langle W_{\xi} \in \mathcal{U}: \xi<\omega_{1}\right\rangle$ which is OK for $\left\langle V_{n} \in \mathcal{U}: n<\omega\right\rangle$. Since $\left\{U_{\xi}: \xi<\omega_{1}\right\}$ is a basis for \mathcal{U}, for every for every $\xi<\omega_{1}$ there exists a $U_{\alpha_{\xi}} \subseteq W_{\xi}$. This implies that

$$
\left\langle U_{\alpha_{\xi}}: \xi<\omega_{1}\right\rangle \text { is OK for }\left\langle V_{n} \in \mathcal{U}: n<\omega\right\rangle .
$$

By the pigeon hole principle, there exist a $T \in\left[\omega_{1}\right]^{\omega_{1}}$ and an $m<\omega$ such that $m=\min \left(\operatorname{supp}\left(U_{\alpha_{\xi}}\right)\right)$ for every $\xi \in T$. Hence, $T \subseteq I_{m}$. Pick any ordinals $\alpha_{\xi_{0}}<\cdots<\alpha_{\xi_{m}}$ in T. Since $\left\langle U_{\alpha_{\xi}}: \xi<\omega_{1}\right\rangle$ is OK for $\left\langle V_{n} \in \mathcal{U}:<\omega\right\rangle$ we have that $\bigcap_{i \leq m} U_{\alpha_{\xi_{i}}} \subseteq^{*} V_{m}$. Hence, $\left|\left(\bigcap_{i \leq m} U_{\alpha_{\xi_{i}}}\right) \cap(\{m\} \times X)\right|<\omega$ by the definition of V_{m}. On the other hand, $\left\{\alpha_{\xi_{i}}: i \leq m\right\} \subseteq I_{m}$. Therefore, $\left(U_{\alpha_{\xi_{0}}}\right)_{m} \preceq \mathcal{J} \ldots \preceq \mathcal{J}\left(U_{\alpha_{\xi_{m}}}\right)_{m}$. This implies that $\left|\left(\bigcap_{i \leq m} U_{\alpha_{\xi_{i}}}\right)_{m}\right|=\omega$. So, $\left|\left(\bigcap_{i \leq m} U_{\alpha_{\xi_{i}}}\right) \cap(\{m\} \times X)\right|=\omega$. This contradiction indicates that \mathcal{U} cannot be an ω_{1}-OK point.

Let X, \mathcal{J}, and \mathcal{K} be as before and let $\mathcal{D} \subseteq \mathcal{J}^{+}$be dense in the sense that for every $A \in \mathcal{J}^{+}$there exists a $D \in \mathcal{D}$ such that $D \subseteq A$. Then, the family $\mathcal{D}^{*} \subseteq \mathcal{K}^{+}$consisting of the sets of the form $\bigcup\left\{\{n\} \times D_{n}: n \in I\right\}$ is dense in \mathcal{K}^{+}, where $I \in[\omega]^{\omega}$ and $D_{n} \in \mathcal{D}$ for every $n \in I$. Recall also that $\mathcal{P}_{\omega \times X}$ is the space of all partitions of $\omega \times X$ into finite pieces, as defined in Section 3.

Theorem 5.3 Let X be a countably infinite set, let $\mathcal{J} \subseteq \mathcal{P}(X)$ be an ideal with the extension property, and let $\mathcal{D} \subseteq \mathcal{J}^{+}$be dense. If \mathcal{J} is prism-friendly
and Q-like and $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$, then $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there exists an ω_{1}-generated Q-point \mathcal{U} on $\omega \times X$ which is not an ω_{1}-OK point and such that $\mathcal{U} \cap \mathcal{D}^{*}$ is a basis for \mathcal{U}.

Proof. We construct a \sqsubseteq-decreasing sequence $\left\langle U_{\xi} \in \mathcal{K}^{+} \cap \mathcal{D}^{*}: \xi<\omega_{1}\right\rangle$ such that:
(i) For every $g \in 2^{\omega \times X}$ there exists a $\xi<\omega_{1}$ such that $g \upharpoonright U_{\xi}$ is constant.
(ii) For every $z \in \mathcal{P}_{\omega \times X}$ there exists a $\xi<\omega_{1}$ such that $\left|z(k) \cap U_{\xi}\right| \leq 1$ for every $k \in \omega$.

If this construction is possible, then, by Lemma 5.1, $\left\{U_{\xi} \in \mathcal{D}^{*}: \xi<\omega_{1}\right\}$ is a basis for a nonprincipal ultrafilter \mathcal{U} on $\omega \times X$ which is not an ω_{1}-OK point. To see that \mathcal{U} is a Q-point pick an arbitrary $z \in \mathcal{P}_{\omega \times X}$. Then, by condition (ii), there exists a $\xi<\omega_{1}$ such that $\left|z(k) \cap U_{\xi}\right| \leq 1$ for every $k<\omega$. Therefore, \mathcal{U} is an ω_{1}-generated Q-point.

Let $\mathcal{Y}=2^{\omega \times X} \cup \mathcal{P}_{\omega \times X}$ and consider it with the topology τ formed with all sets $A \subseteq \mathcal{Y}$ such that $A \cap 2^{\omega \times X}$ and $A \cap \mathcal{P}_{\omega \times X}$ are open in $2^{\omega \times X}$ and $\mathcal{P}_{\omega \times X}$, respectively. Then $\langle\mathcal{Y}, \tau\rangle$ is a Polish space. Note that, by Lemmas 3.5 and 3.6, the ideal \mathcal{K} is Q-like and prism-friendly. For a prism P in \mathcal{Y} and $U \in \mathcal{K}^{+}$we choose a subprism $Q(U, P)$ of P and $B(U, P) \in \mathcal{P}(U) \cap \mathcal{D}^{*}$ as follows.

- If $U \cap 2^{\omega \times X} \neq \emptyset$, then we can choose a subprism $P_{0} \subseteq 2^{\omega \times X}$ of P. The choice of P_{0} is obvious if P is a singleton; otherwise it follows from Proposition 2.2. Then $Q(U, P)$ is a subprism of P_{0} such that $Q(U, P)$ and $B(U, P) \in \mathcal{P}(U) \cap \mathcal{K}^{+}$satisfy condition (\bullet) from the definition of the prism-friendly ideal.
- If $U \cap 2^{\omega \times X}=\emptyset$, then P is a prism in $\mathcal{P}_{\omega \times X}$. Then, by Lemma 3.3, there exist a subprism $Q(U, P)$ of P and a $B(U, P) \in \mathcal{P}(U) \cap \mathcal{K}^{+}$such that $|z(k) \cap B(U, P)| \leq 1$ for every $z \in Q(U, P)$ and $k<\omega$.

We can also assume that $B(U, P) \in \mathcal{D}^{*}$, since \mathcal{D}^{*} is dense in \mathcal{K}^{+}.
Also, for $\xi<\omega_{1}$ and a \sqsubseteq-decreasing sequence $\left\langle U_{\eta} \in \mathcal{K}^{+}: \eta<\xi\right\rangle$ let $C_{\xi}=$ $C\left(\left\langle U_{\eta}: \eta<\xi\right\rangle\right)$ be such that $C_{\xi} \sqsubseteq U_{\eta}$ for every $\eta<\xi$. Its existence follows from Lemma 5.1. Consider the following strategy S for Player II:

$$
S\left(\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle, P_{\xi}\right)=Q\left(C\left(\left\langle U_{\eta}: \eta<\xi\right\rangle\right), P_{\xi}\right)
$$

where the U_{η} 's are defined inductively by $U_{\eta}=B\left(C\left(\left\langle U_{\zeta}: \zeta<\eta\right\rangle\right), P_{\eta}\right)$.
By $\mathrm{CPA}_{\text {prism }}^{\text {game }}$, the strategy S is not a winning strategy for Player II. So, there exists a game $\left\langle\left\langle P_{\xi}, Q_{\xi}\right\rangle: \xi<\omega_{1}\right\rangle$ played according to S in which Player II loses. Thus, $\mathcal{Y}=\bigcup_{\xi<\omega_{1}} Q_{\xi}$. Let $\left\langle U_{\xi} \in \mathcal{D}^{*}: \xi<\omega_{1}\right\rangle \subseteq \mathcal{K}^{+}$be the sequence created in this game. This sequence is \sqsubseteq-decreasing by construction and Lemma 5.1. By the observations made before we only need to check that $\left\langle U_{\xi}: \xi<\omega_{1}\right\rangle$ satisfy conditions (i) and (ii).

If $g \in 2^{\omega \times X}$, then there exists a $\xi<\omega_{1}$ such that $g \in Q_{\xi}$. So, $Q_{\xi} \subseteq 2^{\omega \times X}$ and, by the construction, $g \upharpoonright U_{\xi}$ is constant. This proves (i). Similarly, if $z \in \mathcal{P}_{\omega \times X}$, then there exists a $\xi<\omega_{1}$ such that $z \in Q_{\xi}$. Hence, $Q_{\xi} \subseteq \mathcal{P}_{\omega \times X}$ and, by the construction, $\left|z(k) \cap U_{\xi}\right| \leq 1$ for every $k<\omega$. This proves (ii).

Corollary 5.4 $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there exists an ω_{1}-generated crowded Q-point which is not an ω_{1}-OK point.

Proof. Consider $X=\omega \times \mathbb{Q}$ with the product topology, where ω has the discrete topology and \mathbb{Q} has the subspace topology inherited from \mathbb{R}. Then X is homeomorphic to \mathbb{Q}. We will find an ideal $\mathcal{J} \subseteq \mathcal{P}(X)$ to which we will apply Theorem 5.3.

Let $\mathcal{J}=[\omega]^{<\omega} \otimes \mathcal{I}_{S}$. It is clear that \mathcal{J} contains all singletons. Also, \mathcal{J} is prism-friendly by Lemmas 3.4 and 3.6 and Q-like by Lemmas 3.4 and 3.5. To see that \mathcal{J} has the extension property pick a $\preceq \mathcal{J}$-decreasing sequence $\left\langle A_{n} \in \mathcal{J}^{+}: n\langle\omega\rangle\right.$. By induction construct an increasing sequence $\left\langle n_{k}: k<\omega\right\rangle$ such that $n_{k} \in \operatorname{supp}\left(A_{k}\right) \backslash \operatorname{supp}\left(\bigcup_{i<k}\left(A_{k} \backslash A_{i}\right)\right)$. The choice can be made, since the set supp $\left(\bigcup_{i<k}\left(A_{k} \backslash A_{i}\right)\right)$ is finite, as $\bigcup_{i<k}\left(A_{k} \backslash A_{i}\right) \in \mathcal{J}$. The choice of n_{k} gives also $\left(\bigcup_{i<k}\left(A_{k} \backslash A_{i}\right)\right)_{n_{k}} \in \mathcal{I}_{S}$. Thus, $\left(\bigcap_{i \leq k} A_{i}\right)_{n_{k}} \notin \mathcal{I}_{S}$. Put $B=\bigcup\left\{\left\{n_{k}\right\} \times\left(\bigcap_{i \leq k} A_{i}\right)_{n_{k}}: k<\omega\right\}$. Then $B \in \mathcal{J}^{+}$and $B \preceq \mathcal{J} A_{n}$ for every $n<\omega$.

Since $\overline{\mathcal{D}}=\operatorname{Perf}(\mathbb{Q})$ is dense in $\left(\mathcal{I}_{S}\right)^{+}$, the family $\mathcal{D}=\overline{\mathcal{D}}^{*}$ is dense in \mathcal{J}^{+}. Applying Theorem 5.3 to \mathcal{J} and \mathcal{D}, we can find an ω_{1}-generated Q-point \mathcal{U} on $\omega \times X$ which is not an ω_{1}-OK point and such that $\mathcal{U} \cap \mathcal{D}^{*}$ contains a basis for \mathcal{U}. Since $\omega \times X$ is homeomorphic to \mathbb{Q} and \mathcal{D}^{*} consists of perfect set in $\omega \times X$, it follows that \mathcal{U} is crowded.

6 Crowded ω_{1}-generated ω_{1}-OK points which are not P-points.

In this section we prove that the axiom $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies the existence of an ω_{1}-OK point which is not a P-point. For this, we follow the schema used in [9] for the construction of such an ultrafilter in the model of ZFC obtained by adding Sacks reals side-by-side. Since that proof uses CH in the ground model, we have to modify things a bit to make it work in the context of $\mathrm{CPA}_{\text {prism }}^{\text {game }}$. One possiblity for avoiding the use of CH is to replace it with some weaker principle consistent with $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ like, for instance, $\mathfrak{d}=\omega_{1}$. Let Γ denote the set of all nonzero limit ordinals below ω_{1}. The following fact is a simple generalization of the remark above Proposition 4.2.

Fact $6.1\left(\mathfrak{d}=\omega_{1}\right)$ There exist a sequence $\left\langle g_{\delta}: \delta<\omega_{1}\right\rangle$ of functions from ω into $\left[\omega_{1}\right]^{<\omega}$ and a partition $\left\{S_{\delta} \in\left[\omega_{1}\right]^{\omega_{1}}: \delta<\omega_{1}\right\}$ of Γ such that:

- For every $h: \omega \rightarrow \omega_{1}$ there is a $\delta<\omega_{1}$ such that $h(n) \in g_{\delta}(n)$ for every $n<\omega$.
- $\bigcup \operatorname{rang}\left(g_{\delta}\right)=\min \left(S_{\delta}\right)$ for every $\delta<\omega_{1}$.

Fix a countably infinite set X and put $\mathcal{P}=\{\{m\} \times X: m<\omega\}$. Then, \mathcal{P} is a partition of $\omega \times X$ into infinitely many infinite pieces. The idea of the proof is to find a sequence $\left\langle U_{\alpha}: \alpha<\omega_{1}\right\rangle$ that forms a base for a nonprincipal ultrafilter \mathcal{U} on $\omega \times X$ such that every U_{α} has infinite intersection with infinitely many members of \mathcal{P} and, for each $\delta<\omega_{1}$,

$$
\left\langle U_{\alpha}: \alpha \in S_{\delta}\right\rangle \text { is OK for }\left\{\bigcap_{\eta \in g_{\delta}(n)} U_{\eta}: n<\omega\right\}
$$

To see that such an \mathcal{U} is an ω_{1}-OK point pick $\left\langle V_{n}: n\langle\omega\rangle \in(\mathcal{U})^{\omega}\right.$. Since the sequence $\left\langle U_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a basis for \mathcal{U}, for every $n<\omega$ there is a $\xi_{n}<\omega_{1}$ such that $U_{\xi_{n}} \subseteq V_{n}$. Therefore, there exists a $\delta<\omega_{1}$ such that $\xi_{n} \in g_{\delta}(n)$ for every $n<\omega$. Then $\left\langle U_{\alpha}: \alpha \in S_{\delta}\right\rangle$ is OK for $\left\langle V_{n}: n<\omega\right\rangle$ since for any sequence $\alpha_{0}<\cdots<\alpha_{n}$ of elements in S_{δ} we have:

$$
\bigcap_{i \leq n} U_{\alpha_{i}} \subseteq^{*} \bigcap_{\eta \in g_{\delta}(n)} U_{\eta} \subseteq U_{\xi_{n}} \subseteq V_{n}
$$

Observe that \mathcal{U} cannot be a P-point because each U_{α} intersects infinitely many members of \mathcal{P} on an infinite set.

Let us start with fixing a rich ideal $\mathcal{J} \subseteq \mathcal{P}(X)$ and a dense $\mathcal{D} \subseteq \mathcal{J}^{+}$. We will consider the ideal $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$ on $\omega \times X$ and the set $\mathcal{D}^{*} \subseteq \mathcal{K}^{+}$as defined in Section 5. We also fix, for each $\xi \in \Gamma$, an enumeration $\left\{\xi_{i}: i<\omega\right\}$ of ξ.

Let \mathcal{T} be the set of triples $\langle I, f, B\rangle$ satisfying the following requirements:

- I is an infinite subset of ω,
- $f \in \prod_{m<\omega}(\mathcal{P}(X) \cap \mathcal{D})$, and
- $B \in \prod_{m \in \omega}(\mathcal{P}(f(m)) \cap \mathcal{D})^{\omega_{1}}$ such that every $B(m)$ is a sequence of almost disjoint sets.

If $\xi \leq \omega_{1}$ and $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta<\xi\right\rangle$, the
sequence $\left\langle U_{\eta}: \eta<\xi\right\rangle$ associated with it is defined by

$$
U_{\eta}=\bigcup\left\{\{m\} \times f_{\eta}(m): m \in I_{\eta}\right\} .
$$

Note that each U_{η} is in \mathcal{D}^{*}.
To prove that the resulting ultrafilter \mathcal{U} in our construction is in fact an ω_{1}-OK point we will consider for every $\delta<\omega_{1}, \eta<\xi$, and $m<\omega$ the sets $K(\eta, m)=\left\{\zeta<\eta: f_{\eta}(m) \subseteq f_{\zeta}(m)\right\}$, the numbers $k_{\delta}(\eta, m)=\left|K(\eta, m) \cap S_{\delta}\right|$, and the functions l_{δ} defined by:
$l_{\delta}(\eta, m)=\left\{\begin{array}{lc}\infty & \text { if } \bigcup \operatorname{rang}\left(g_{\delta}\right) \subseteq K(\eta, m) \\ -1 & \text { if } g_{\delta}(0) \nsubseteq K(\eta, m) \\ \max \left\{l<\omega: \bigcup g_{\delta}[l+1] \subseteq K(\eta, m)\right\} & \text { otherwise } .\end{array}\right.$
Definition 8 For $\xi \leq \omega_{1}$ a sequence $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta<\xi\right\rangle$ is good if:
(a) For every $\zeta<\eta<\xi$ and $m<\omega$, either $f_{\zeta}(m) \cap f_{\eta}(m)$ is finite, or there exists a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_{\zeta}(m)(\gamma) \subset f_{\zeta}(m)$.
(b) For every $0<\eta<\xi$ and $m<\omega$ there exists a $\zeta<\eta$ such that $f_{\eta}(m) \subseteq B_{\zeta}(m)(\eta)$.
$\mathrm{CPA}_{\text {prism }}^{\text {game }}$ and ultrafilters on ω and $\mathbb{Q} \quad$ July 15, 2004
(c) If $\eta<\xi$ is limit and $\left\{m_{i}: i<\omega\right\}$ is the increasing enumeration of I_{η}, then

$$
m_{i} \in \bigcap_{j \leq i} I_{\eta_{j}} \quad \text { and } \quad f_{\eta}\left(m_{i}\right) \subseteq \bigcap_{j \leq i} f_{\eta_{j}}\left(m_{i}\right)
$$

where $\left\{\eta_{j}: j<\omega\right\}$ is our fixed enumeration of η.
(d) $f_{\eta}(m)=B_{0}(m)(\eta)$ for every $m \in \omega \backslash I_{\eta}$.
(e) If $\eta+1<\xi$, then $I_{\eta+1} \subseteq I_{\eta}$ and $f_{\eta+1}(m) \subseteq B_{\eta}(m)(\eta+1) \subseteq f_{\eta}(m)$ for every $m \in I_{\eta+1}$.
(f) If $\delta<\omega_{1}, \eta<\xi$, and $\eta \in S_{\delta}$, then $l_{\delta}(\eta, m)>k_{\delta}(\eta, m)$ for every $m \in I_{\eta}$.
(g) If $\delta<\omega_{1}, \eta<\xi$, and $\bigcup \operatorname{rang}\left(g_{\delta}\right) \subseteq \eta$, then

$$
\lim _{\substack{m \in I_{\eta} \\ m \rightarrow \infty}}\left(l_{\delta}(\eta, m)-k_{\delta}(\eta, m)\right)=\infty
$$

Remark 6.2 It follows from (c) and (e) that if $\zeta<\eta<\xi$, then $I_{\eta} \subseteq^{*} I_{\zeta}$.
Remark 6.3 It is also easy to check that if $\xi \leq \omega_{1}$ is a limit ordinal, then the sequence $\left\langle\left\langle I_{\zeta}, f_{\zeta}, B_{\zeta}\right\rangle \in \mathcal{T}: \zeta<\xi\right\rangle$ is good if and only if the sequence $\left\langle\left\langle I_{\zeta}, f_{\zeta}, B_{\zeta}\right\rangle \in \mathcal{T}: \zeta<\eta\right\rangle$ is good for every $\eta<\xi$.

Remark 6.4 It is not difficult to see that
if $\alpha<\beta<\xi$, then $f_{\beta}(m) \subseteq f_{\alpha}(m)$ for all but finitely many $m \in I_{\beta}$.
If $\beta \in \Gamma$ this follows from (c). If $\Gamma \cap(\alpha, \beta]=\emptyset$, then it follows from (e). If $\Gamma \cap(\alpha, \beta] \neq \emptyset$ then there exist a maximal $\gamma \in \Gamma \cap(\alpha, \beta]$ and, by the above two cases, $f_{\beta}(m) \subseteq f_{\gamma}(m) \subseteq f_{\alpha}(m)$ for all but finitely many $m \in I_{\beta}$.

Remark 6.5 For every $0<\eta<\xi$ and $m<\omega$ there exists a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_{0}(m)(\gamma)$. This follows from condition (b), since every strictly decreasing sequence of ordinals is finite.

The dual filter of an ideal \mathcal{K} on a set $\omega \times X$ is the family $\mathcal{F}_{\mathcal{K}}$ defined as $\mathcal{F}_{\mathcal{K}}=\{(\omega \times X) \backslash A: A \in \mathcal{K}\}$. The importance of the definition of a good sequence derives from the following lemma.
$\mathrm{CPA}_{\text {prism }}^{\text {game }}$ and ultrafilters on ω and $\mathbb{Q} \quad$ July 15, 2004

Lemma 6.6 Let X be a countably infinite set, $\mathcal{J} \subseteq \mathcal{P}(X)$ a rich ideal in X, $\mathcal{D} \subseteq \mathcal{J}^{+}$a dense family, and let $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$. If $\left\langle\left\langle I_{\xi}, f_{\xi}, B_{\xi}\right\rangle \in \mathcal{T}: \xi<\omega_{1}\right\rangle$ is a good sequence such that for every $g \in 2^{\omega \times X}$ there exists a $\xi<\omega_{1}$ such that $g \upharpoonright U_{\xi}$ is constant, then $\left\langle U_{\xi} \in \mathcal{D}^{*}: \xi<\omega_{1}\right\rangle$ forms a base for a nonprincipal ultrafilter on $\omega \times X$ extending $\mathcal{F}_{\mathcal{K}}$ which is an $\omega_{1}-O K$ point but not a P-point.

Proof. The fact that $\left\{U_{\xi}: \xi<\omega_{1}\right\} \subseteq \mathcal{D}^{*}$ follows immediately from the definition of U_{η} and \mathcal{D}^{*}.

Next we prove that $\left\{U_{\xi}: \xi<\omega_{1}\right\}$ forms a base for a nonprincipal ultrafilter \mathcal{U} on $\omega \times X$ extending the filter $\mathcal{F}_{\mathcal{K}}$. Given $\xi_{0}<\cdots<\xi_{n}$ pick a $\gamma \in \Gamma$ with $\gamma>\xi_{n}$. By (c), we have that almost every $m \in I_{\gamma}$ is in $\bigcap_{i \leq n} I_{\xi_{i}}$ and that $f_{\gamma}(m) \subseteq \bigcap_{i \leq n} f_{\xi_{i}}(m)$. Therefore, $\bigcap_{i \leq n} U_{\xi_{i}} \in \mathcal{K}^{+}$and $\left\{U_{\xi}: \xi^{-n}<\omega_{1}\right\}$ can be extended to a proper filter \mathcal{U} on $\omega \times X$. If $A \subseteq \omega \times X$, then $\chi_{A} \in 2^{\omega \times X}$ and there exist a $\xi<\omega_{1}$ and an $i<2$ such that $\chi_{A} \upharpoonright U_{\xi}$ is constant equal i. If $i=1$ then $U_{\xi} \subseteq A$ and $A \in \mathcal{U}$. If $i=0$ then $U_{\xi} \subseteq(\omega \times X) \backslash A$ so $(\omega \times X) \backslash A \in \mathcal{U}$. This proves that \mathcal{U} is an ultrafilter and that $\left\{U_{\xi}: \xi<\omega_{1}\right\}$ is a base for \mathcal{U}. Since no $A \in \mathcal{K}$ contains any U_{ξ}, it follows that \mathcal{U} extends $\mathcal{F}_{\mathcal{K}}$. In particular, \mathcal{U} is nonprincipal.

To see that \mathcal{U} is not a P-point notice that every U_{ξ} intersects infinitely many pieces of the partition $\mathcal{P}=\{\{m\} \times X: m<\omega\}$ on an infinite set and so does every $V \in \mathcal{U}$.

To prove that \mathcal{U} is an ω_{1}-OK point it is enough to prove that for every $\delta<\omega_{1}$

$$
\begin{equation*}
\left\langle U_{\alpha}: \alpha \in S_{\delta}\right\rangle \text { is OK for }\left\{\bigcap_{\eta \in g_{\delta}(n)} U_{\eta}: n<\omega\right\} . \tag{4}
\end{equation*}
$$

Pick $\delta<\omega_{1}$ and $\xi_{0}<\cdots<\xi_{n}$ in S_{δ}. First, we prove that for every $m \in I_{\xi_{n}}$

$$
\begin{equation*}
\text { either } \bigcap_{i \leq n} f_{\xi_{i}}(m) \text { is finite, or } \bigcap_{i \leq n} f_{\xi_{i}}(m) \subseteq \bigcap_{\eta \in g_{\delta}(n)} f_{\eta}(m) \tag{5}
\end{equation*}
$$

Indeed, assume that $\bigcap_{i \leq n} f_{\xi_{i}}(m)$ is infinite. Then, by part (a) of Definition $8, \xi_{i} \in K\left(\xi_{n}, m\right) \cap \bar{S}_{\delta}$ for each $i \leq n-1$. Therefore, $k_{\delta}\left(\xi_{n}, m\right) \geq n$ and $l_{\delta}\left(\xi_{n}, m\right) \geq n+1$ by Definition $8(\mathrm{f})$. In particular, $g_{\delta}(n) \subseteq K\left(\xi_{n}, m\right)$. Hence, by the definition of $K(\eta, m)$,

$$
\bigcap_{i \leq n} f_{\xi_{i}}(m) \subseteq f_{\xi_{n}}(m) \subseteq \bigcap_{\eta \in K\left(\xi_{n}, m\right)} f_{\eta}(m) \subseteq \bigcap_{\eta \in g_{\delta}(n)} f_{\eta}(m)
$$

Also, Definition $8(\mathrm{c})$ implies that $f_{\xi_{n}}(m) \subseteq \bigcap_{\eta \in g_{\delta}(n)} f_{\eta}(m)$ for all but finitely many $m \in I_{\xi_{n}}$. Thus, the set $s=\left\{m \in I_{\xi_{n}}: \bigcap_{i \leq n} f_{\xi_{i}}(m) \nsubseteq \bigcap_{\eta \in g_{\delta}(n)} f_{\eta}(m)\right\}$ is finite. Moreover, by $(5), \bigcap_{i \leq n} f_{\xi_{i}}(m)$ is finite for every $m \in s$. So,

$$
\begin{aligned}
\bigcap_{i \leq n} U_{\xi_{i}} & =\bigcup_{m \in \bigcap_{i \leq n} I_{\xi_{i}}}\left(\{m\} \times \bigcap_{i \leq q n} f_{\xi_{i}}(m)\right) \\
& \subseteq \bigcup_{m \in I_{\xi_{n}}}\left(\{m\} \times \bigcap_{i \leq n} f_{\xi_{i}}(m)\right) \\
& =\bigcup_{m \in s}\left(\{m\} \times \bigcap_{i \leq n} f_{\xi_{i}}(m)\right) \cup \bigcup_{m \in I_{\xi_{n}} \backslash s}\left(\{m\} \times \bigcap_{i \leq n} f_{\xi_{i}}(m)\right) \\
& \subseteq^{*} \bigcup_{m \in I_{\xi_{n}} \backslash s}\left(\{m\} \times \bigcap_{\eta \in g_{\delta}(n)} f_{\xi_{i}}(m)\right) \\
& \subseteq \bigcup_{m \in I_{\xi_{n}}}\left(\{m\} \times \bigcap_{\eta \in g_{\delta}(n)} f_{\xi_{i}}(m)\right)=\bigcup_{\eta \in g_{\delta}(n)} U_{\eta},
\end{aligned}
$$

which proves (4). So \mathcal{U} is an ω_{1}-OK point.

Lemma 6.7 Let $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta<\xi\right\rangle$ be a sequence satisfying condition (a) from Definition 8 and let $\alpha<\beta<\xi$ and $m<\omega$ be such that $f_{\beta}(m) \subseteq$ $B_{\alpha}(m)(\beta)$. Then $K(\beta, m)=K(\alpha, m) \cup\{\alpha\}$. In particular, if the sequence satisfies conditions (a) and (b) from Definition 8, then the set $K(\eta, m)$ is finite for every $\eta<\xi$ and $m<\omega$.

Proof. If $\eta \in K(\beta, m)$, then $\eta<\beta$ and $f_{\beta}(m) \subseteq f_{\eta}(m)$. Also, since $f_{\beta}(m) \subseteq B_{\alpha}(m)(\beta) \subseteq f_{\alpha}(m)$ we have that $\left|f_{\eta}(m) \cap f_{\alpha}(m)\right|=\omega$. If $\alpha<\eta$, then, by condition (a), there exists a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_{\alpha}(m)(\gamma)$; therefore $f_{\eta}(m) \subseteq B_{\alpha}(m)(\gamma) \cap B_{\alpha}(m)(\beta)$, which is impossible. Thus, $\eta \leq \alpha$. If $\eta<\alpha$, then, again by (a), there is a $\gamma \leq \alpha$ such that $f_{\alpha}(m) \subseteq B_{\eta}(m)(\gamma)$. Since $B_{\eta}(m)(\gamma) \subseteq f_{\eta}(m)$, we conclude that $f_{\alpha}(m) \subseteq f_{\eta}(m)$. Therefore, $\eta \in K(\alpha, m)$ and this proves that $K(\beta, m) \subseteq K(\alpha, m) \cup\{\alpha\}$.

Since $f_{\beta}(m) \subseteq B_{\alpha}(m)(\beta) \subseteq f_{\alpha}(m)$ we have that $\alpha \in K(\beta, m)$. If $\eta \in$ $K(\alpha, m)$, then $f_{\alpha}(m) \subseteq f_{\eta}(m)$. But since $f_{\beta}(m) \subseteq B_{\alpha}(m)(\beta) \subseteq f_{\alpha}(m)$ we
have that $f_{\beta}(m) \subseteq f_{\eta}(m)$. Therefore, $\eta \in K(\beta, m)$ and this proves that $K(\alpha, m) \cup\{\alpha\} \subseteq K(\beta, m)$. Thus, $K(\beta, m)=K(\alpha, m) \cup\{\alpha\}$.

Since condition (b) implies that for every $0<\eta<\xi$ and $m<\omega$ there exists a $\zeta<\eta$ such that $f_{\eta}(m) \subseteq B_{\zeta}(m)(\eta)$, we have that for every $0<\eta<\xi$ there exists a $\zeta<\eta$ such that $K(\eta, m)=K(\zeta, m) \cup\{\zeta\}$. Since $K(0, m)=\emptyset$ for every $m<\omega$, we can prove, by induction on η, that $K(\eta, m)$ is finite for every $\eta<\xi$ and $m<\omega$.

Lemma 6.8 If $\xi \in \Gamma$ and $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta<\xi\right\rangle$ is good, then there exists an $\left\langle I_{\xi}, f_{\xi}, B_{\xi}\right\rangle \in \mathcal{T}$ such that the sequence $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta \leq \xi\right\rangle$ is good.

Proof. Let $\left\{\xi_{j}: j<\omega\right\}$ be the fixed enumeration of ξ. Since S_{δ} 's are pairwise disjoint, the set $\left\{\delta<\omega_{1}: \min \left(S_{\delta}\right)<\xi\right\}$ is countable and it can be enumerated as $\left\{\delta_{i}: i<\omega\right\}$. Let $\delta^{*}<\omega_{1}$ be such that $\xi \in S_{\delta^{*}}$. We define $I_{\xi}=\left\{m_{i}: i<\omega\right\}$ inductively. Suppose that m_{j} has already been defined for every $j<i$. Put

$$
\varepsilon_{i}=\max \left(g_{\delta^{*}}(0) \cup g_{\delta^{*}}(0) \cup\left\{\xi_{j}: j \leq i\right\} \cup\left\{\min \left(S_{\delta_{j}}\right): j \leq i\right\}\right)+1<\xi
$$

Note that $\varepsilon_{i}<\xi$ since Remark 6.2 implies that $I_{\varepsilon_{i}} \subseteq^{*} \bigcap_{j \leq i} I_{\xi_{j}}$. Thus, we can pick an $m_{i} \in I_{\varepsilon_{i}} \cap \bigcap_{j \leq i} I_{\xi_{j}}$ so that:
(i) $m_{i}>m_{j}$ for every $j<i$,
(ii) $l_{\delta_{j}}\left(\varepsilon_{i}, m_{i}\right)-k_{\delta_{j}}\left(\varepsilon_{i}, m_{i}\right)>i$ for every $j \leq i$, and
(iii) $f_{\varepsilon_{i}}\left(m_{i}\right) \subseteq \bigcap_{j \leq i} f_{\xi_{j}}\left(m_{i}\right) \cap \bigcap\left\{f_{\eta}\left(m_{i}\right): \eta \in g_{\delta^{*}}(0) \cup g_{\delta^{*}}(1)\right\}$.

Condition (ii) can be achieved since $\bigcup \operatorname{rang}\left(g_{\delta_{j}}\right) \subseteq \min \left(S_{\delta_{j}}\right)<\varepsilon_{i}<\xi$ and $\left\{\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta<\xi\right\}$ is good, so, by (g),

$$
\lim _{\substack{m \in I_{\varepsilon_{i}} \\ m \rightarrow \infty}}\left(l_{\delta_{j}}\left(\varepsilon_{i}, m\right)-k_{\delta_{j}}\left(\varepsilon_{i}, m\right)\right)=\infty
$$

for every $j \leq i$. Condition (iii) can be ensured by Remark 6.4, since $\xi_{j}<\varepsilon_{i}$ for $j \leq i$ and $\eta<\varepsilon_{i}$ forall $\eta \in g_{\delta^{*}}(0) \cup g_{\delta^{*}}(1)$. This completes the inductive definition of I_{ξ}. Define $f_{\xi}: \omega \rightarrow \mathcal{D}$ as

$$
f_{\xi}(m)= \begin{cases}B_{\varepsilon_{i}}\left(m_{i}\right)(\xi) & \text { if } m=m_{i} \in I_{\xi} \\ B_{0}(m)(\xi) & \text { otherwise }\end{cases}
$$

The B_{ξ} can be defined by taking for each $m<\omega$ an arbitrary ω_{1}-sequence of almost disjoint sets in $\mathcal{P}\left(f_{\xi}(m)\right) \cap \mathcal{D}$. This completes the definition of $\left\langle I_{\xi}, f_{\xi}, B_{\xi}\right\rangle$.

To make sure that (a) holds it is enough to check it only for the pair $\langle\eta, \xi\rangle$ in place of $\langle\zeta, \eta\rangle$. So, choose an $\eta<\xi$ and $m<\omega$. We need to show that either $f_{\xi}(m) \cap f_{\eta}(m)$ is finite, or there exists a $\gamma \leq \xi$ such that $f_{\xi}(m) \subseteq B_{\eta}(m)(\gamma)$. We will consider several cases.
$m \notin I_{\xi}$: We will consider here two subcases.
$\eta=0$: Then $f_{\xi}(m)=B_{0}(m)(\xi)=B_{\eta}(m)(\gamma)$ for $\gamma=\xi$.
$\eta>0$: Apply Remark 6.5 to find $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_{0}(m)(\gamma)$. Since $f_{\xi}(m)=B_{0}(m)(\xi)$, we have that $\left|f_{\xi}(m) \cap f_{\eta}(m)\right|<\omega$.
$m=m_{i} \in I_{\xi}$: We will consider here three subcases.
$\varepsilon_{i}<\eta$: We will show that $\left|f_{\xi}(m) \cap f_{\eta}(m)\right|<\omega$. So, by way of contradiction, assume that $\left|f_{\xi}(m) \cap f_{\eta}(m)\right|=\omega$. Therefore, the sets
$f_{\xi}(m) \cap f_{\eta}(m)=B_{\varepsilon_{i}}(m)(\xi) \cap f_{\eta}(m) \subseteq f_{\varepsilon_{i}}(m) \cap f_{\eta}(m)$ are infinite. So, by (a), there exists a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq B_{\varepsilon_{i}}(m)(\gamma)$. Thus, $B_{\varepsilon_{i}}(m)(\xi) \cap B_{\varepsilon_{i}}(m)(\gamma)=f_{\xi}(m) \cap B_{\varepsilon_{i}}(m)(\gamma) \supseteq f_{\xi}(m) \cap f_{\eta}(m)$ is infinite, which is impossible, as $\gamma \leq \eta<\xi$. This implies that $\left|f_{\xi}(m) \cap f_{\eta}(m)\right|<\omega$.
$\varepsilon_{i}>\eta$: If $f_{\varepsilon_{i}}(m) \cap f_{\eta}(m)$ is finite then so is $f_{\xi}(m) \cap f_{\eta}(m) \subseteq f_{\varepsilon_{i}}(m) \cap f_{\eta}(m)$. Otherwise, by (a), there is a $\gamma \leq \varepsilon_{i}$ such that $f_{\varepsilon_{i}}(m) \subseteq B_{\eta}(m)(\gamma)$. So, $f_{\xi}(m)=B_{\varepsilon_{i}}(m)(\xi) \subseteq f_{\varepsilon_{i}}(m) \subseteq B_{\eta}(m)(\gamma)$.
$\varepsilon_{i}=\eta$: Clearly $f_{\xi}(m)=B_{\varepsilon_{i}}(m)(\xi)=B_{\eta}(m)(\gamma)$ for $\gamma=\xi$.
Conditions (b), (c), and (d) are immediate from the definition of f_{ξ}. Condition (e) holds because $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta<\xi\right\rangle$ is good and ξ is a limit ordinal.

To prove (f) and (g) first observe that, by Lemma 6.7, for every $i<\omega$ we have $K\left(\xi, m_{i}\right)=K\left(\varepsilon_{i}, m_{i}\right) \cup\left\{\varepsilon_{i}\right\}$. This implies that $l_{\delta_{j}}\left(\varepsilon_{i}, m_{i}\right) \leq l_{\delta_{j}}\left(\xi, m_{i}\right)$ and $k_{\delta_{j}}\left(\xi, m_{i}\right)=k_{\delta_{j}}\left(\varepsilon_{i}, m_{i}\right)$ for every $j \leq i$, because ε_{i} is a succesor ordinal. In particular, for every $j \leq i$ we have

$$
\begin{equation*}
l_{\delta_{j}}\left(\xi, m_{i}\right)-k_{\delta_{j}}\left(\xi, m_{i}\right) \geq l_{\delta_{j}}\left(\varepsilon_{i}, m_{i}\right)-k_{\delta_{j}}\left(\varepsilon_{i}, m_{i}\right) . \tag{6}
\end{equation*}
$$

To see (f) fix an $m=m_{i} \in I_{\xi}$. We need to show that $l_{\delta^{*}}(\xi, m)>k_{\delta^{*}}(\xi, m)$. First assume that $\xi=\min \left(S_{\delta^{*}}\right)$. Then, $K(\xi, m) \subseteq \xi$ is disjoint with $S_{\delta^{*}}$, so $k_{\delta^{*}}(\xi, m)=\left|K(\xi, m) \cap S_{\delta^{*}}\right|=0$. On the other hand, condition (iii) implies that $\bigcup g_{\delta^{*}}[2] \subseteq K(\xi, m)$. So, $l_{\delta^{*}}(\xi, m) \geq 1>0=k_{\delta^{*}}(\xi, m)$. Next, consider the case when $\xi>\min \left(S_{\delta^{*}}\right)$. Then, $\delta^{*}=\delta_{i}$ for some $i<\omega$. Therefore, (ii) and (6) imply that

$$
l_{\delta^{*}}\left(\xi, m_{i}\right)-k_{\delta^{*}}\left(\xi, m_{i}\right) \geq l_{\delta_{i}}\left(\varepsilon_{i}, m_{i}\right)-k_{\delta_{i}}\left(\varepsilon_{i}, m_{i}\right)>i \geq 0
$$

Thus (f) holds.
To see (g) fix a $\delta<\omega_{1}$ such that $\bigcup \operatorname{rang}\left(g_{\delta}\right) \subseteq \xi$. We need to show that $\lim _{i \rightarrow \infty}\left(l_{\delta}\left(\xi, m_{i}\right)-k_{\delta}\left(\xi, m_{i}\right)\right)=\infty$. First assume that $\xi>\min \left(S_{\delta}\right)$. Then $\delta=\delta_{j}$ for some $j<\omega$. So, by (ii) and (6), we have that for all $i \geq j$

$$
l_{\delta}\left(\xi, m_{i}\right)-k_{\delta}\left(\xi, m_{i}\right)=l_{\delta_{j}}\left(\xi, m_{i}\right)-k_{\delta_{j}}\left(\xi, m_{i}\right) \geq l_{\delta_{j}}\left(\varepsilon_{i}, m_{i}\right)-k_{\delta_{j}}\left(\varepsilon_{i}, m_{i}\right) \geq i .
$$

This ensures that (g) holds. Finally, assume that $\xi \leq \min \left(S_{\delta}\right)$. Then, for every $m<\omega$, we have $K(\xi, m) \cap S_{\delta}=\emptyset$ and so, $k_{\delta}(\xi, m)=0$. Thus, in this case it is enough to show that $\lim _{i \rightarrow \infty} l_{\delta}\left(\xi, m_{i}\right)=\infty$. But for every $l<\omega$ we have $\bigcup g_{\delta}[l+1] \subseteq \xi=\left\{\xi_{j}: j<\omega\right\}$. Thus, there exists an $i_{0}<\omega$ such that $\bigcup g_{\delta}[l+1] \subseteq \xi=\left\{\xi_{j}: j \leq i_{0}\right\}$. Since, by (iii), for every $i \geq i_{0}$ we have $\left\{\xi_{j}: j \leq i\right\} \subseteq K\left(\xi, m_{i}\right)$ we conclude that $\bigcup g_{\delta}[l+1] \subseteq K\left(\xi, m_{i}\right)$ for every $i \geq i_{0}$. Thus, $l_{\delta}\left(\xi, m_{i}\right) \geq l$ for every $i \geq i_{0}$ and so $\lim _{i \rightarrow \infty} l_{\delta}\left(\xi, m_{i}\right)=\infty$.

Lemma 6.9 Let $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta \leq \xi\right\rangle$ be a good sequence, $I \in\left[I_{\xi}\right]^{\omega}$, and let $\left\langle D_{m} \in \mathcal{P}\left(B_{\xi}(m)(\xi+1)\right) \cap \mathcal{D}: m \in I\right\rangle$ be arbitrary. Then, the sequence $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta \leq \xi+1\right\rangle$ is good, where $\left\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1}\right\rangle \in \mathcal{T}$ is defined as
(i) $I_{\xi+1}=I$,
(ii) $f_{\xi+1}(m)= \begin{cases}D_{m} & \text { if } m \in I_{\xi+1} \\ B_{0}(m)(\xi+1) & \text { otherwise, }\end{cases}$
(iii) $B_{\xi+1}(m) \in\left(\mathcal{P}\left(f_{\xi+1}(m)\right) \cap \mathcal{D}\right)^{\omega_{1}}$ is any almost disjoint sequence for ev ery $m<\omega$.
Proof. To show that (a) holds it is enough to check it only for the pair $\langle\eta, \xi+1\rangle$ in place of $\langle\zeta, \eta\rangle$. So, choose an $\eta<\xi+1$ and $m<\omega$. We need to show that either $f_{\xi+1}(m) \cap f_{\eta}(m)$ is finite, or there exists a $\gamma \leq \xi+1$ such that $f_{\xi+1}(m) \subseteq B_{\eta}(m)(\gamma)$. We consider several cases.
$m \notin I_{\xi+1}$: We will consider two subcases.
$\eta=0$: Then $f_{\xi+1}(m)=B_{0}(m)(\xi+1)=B_{\eta}(m)(\gamma)$ for $\gamma=\xi+1$.
$\eta>0$: Apply Remark 6.5 to find a $\gamma \leq \eta$ such that $f_{\eta}(m) \subseteq^{*} B_{0}(m)(\gamma)$. Since $f_{\xi+1}(m)=B_{0}(m)(\xi+1)$, we have that $\left|f_{\xi+1}(m) \cap f_{\eta}(m)\right|<\omega$.
$m \in I_{\xi+1}:$ We compare η with ξ.
$\eta<\xi$: By (a) either $\left|f_{\xi}(m) \cap f_{\eta}(m)\right|<\omega$ or there exists a $\gamma \leq \xi$ such that $f_{\xi}(m) \subseteq^{*} B_{\eta}(m)(\gamma)$. Since $f_{\xi+1}(m) \subseteq B_{\xi}(m)(\xi+1) \subseteq f_{\xi}(m)$ we have that $\left|f_{\xi+1}(m) \cap f_{\eta}(m)\right|<$ ω or $f_{\xi+1}(m) \subseteq B_{\eta}(m)(\gamma)$.
$\eta=\xi:$ Clearly $f_{\xi+1}(m)=D_{m} \subseteq B_{\xi}(m)(\xi+1)=B_{\eta}(m)(\gamma)$ for $\gamma=\xi+1$.
This proves that (a) holds.
Conditions (b), (d), and (e) are obvious by the definition of $f_{\xi+1}$. Conditions (c) and (f) hold, since there are no new limit ordinals $\eta<\xi+1$.

To see that (g) holds take a $\delta<\omega_{1}$ such that $\bigcup \operatorname{rang}\left(g_{\delta}\right) \subseteq \xi+1$. Then also $\bigcup \operatorname{rang}\left(g_{\delta}\right) \subseteq \xi$ since, by Fact $6.1, \bigcup \operatorname{rang}\left(g_{\delta}\right)=\min \left(S_{\delta}\right)$ is a limit ordinal. Thus, $\lim _{\substack{m \in I_{\xi} \\ m \rightarrow \infty}}\left(l_{\delta}(\xi, m)-k_{\delta}(\xi, m)\right)=\infty$. Also, by Lemma 6.7 and the definition of $f_{\xi+1}(m)$ we have $K(\xi+1, m)=K(\xi, m) \cup\{\xi\}$ for every $m \in$ $I_{\xi+1}$. This implies that $k_{\delta}(\xi+1, m) \leq k_{\delta}(\xi, m)+1$ and $l_{\delta}(\xi, m) \leq l_{\delta}(\xi+1, m)$ for every $m \in I_{\xi+1}$. So, $l_{\delta}(\xi+1, m)-k_{\delta}(\xi+1, m) \geq l_{\delta}(\xi, m)-k_{\delta}(\xi, m)-1$. Since $I_{\xi+1} \subseteq I_{\xi}$ is infinite, we have

$$
\lim _{\substack{m \in I_{++1}+\\ m \rightarrow \infty}}\left(l_{\delta}(\xi+1, m)-k_{\delta}(\xi+1, m)\right) \geq \lim _{\substack{m \in I_{\xi} \\ m \rightarrow \infty}}\left(l_{\delta}(\xi, m)-k_{\delta}(x i, m)-1\right)=\infty
$$

So, (h) holds.

Corollary 6.10 Let $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta \leq \xi\right\rangle$ be good. If P is a prism in $2^{\omega \times X}$, then there exists an $\left\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1}\right\rangle \in \mathcal{T}$, a suprism Q of P, and an $i<2$ such that
(i) $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi+1\right\rangle$ is good and
(ii) $g \upharpoonright U_{\xi+1}$ is constant equal to i for every $g \in Q$.

Proof. Apply Lemma 3.6 to the prism P, the set I_{ξ}, and the family $\left\{B_{\xi}(m)(\xi+1): m \in I_{\xi}\right\}$ to find a subprism Q of P, a set $I_{\xi+1} \in\left[I_{\xi}\right]^{\omega}$, a sequence $\left\langle B_{m} \in \mathcal{P}(B(m)(\xi+1)) \cap \mathcal{J}^{+}: m \in I_{\xi+1}\right\rangle$, and an $i<2$ such that $g \upharpoonright B$ is constant equal to i, where $B=\bigcup\left\{\{m\} \times B_{m}: m \in I_{\xi+1}\right\}$. For every $m \in I_{\xi+1}$ choose $D_{m} \in \mathcal{P}\left(B_{m}\right) \cap \mathcal{D}$. Then, if we define $f_{\xi+1}$ and $B_{\xi+1}$ as in Lemma 6.9, $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi+1\right\rangle$ is good and $g \upharpoonright U_{\xi+1}$ is constant equal to i.

Corollary 6.11 Let X be a countably infinite set, $\mathcal{J} \subseteq \mathcal{P}(X)$ a Q-like ideal on $X,\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle \in \mathcal{T}: \eta \leq \xi\right\rangle$ be good, and P be a prism on $\mathcal{P}_{\omega \times X}$. Then, there exists a $\left\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1}\right\rangle \in \mathcal{T}$ and a subprism Q of P such that
(i) $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi+1\right\rangle$ is good and
(ii) $\left|z(k) \cap U_{\xi+1}\right| \leq 1$ for every $z \in Q$ and $k<\omega$.

Proof. Let $A=\bigcup\left\{\{m\} \times B_{\xi}(m)(\xi+1): m \in I_{\xi}\right\}$. Then $A \in \mathcal{K}^{+}$and, by Lemma 3.5, \mathcal{K} is Q-like. So, by Lemma 3.3, there is a subprism Q of P and a $B \in \mathcal{P}(A) \cap \mathcal{K}^{+}$such that $|z(k) \cap B| \leq 1$ for every $z \in Q$ and $k<\omega$. Let $I_{\xi+1}=\operatorname{supp}(B) \subseteq I_{\xi}$ and for every $m \in I_{\xi+1}$ choose $D_{m} \in \mathcal{P}\left((B)_{m}\right) \cap \mathcal{D}$. Then, if we define $f_{\xi+1}$ and $B_{\xi+1}$ as in Lemma 6.9, $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi+1\right\rangle$ is good and $\left|z(k) \cap U_{\xi+1}\right| \leq 1$ for every $z \in Q$ and $k<\omega$.

Theorem 6.12 Let X be a countably infinite set, $\mathcal{J} \subseteq \mathcal{P}(X)$ be a rich ideal, let $\mathcal{D} \subseteq \mathcal{J}^{+}$be a dense family, and put $\mathcal{K}=[\omega]^{<\omega} \otimes \mathcal{J}$. Then, $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there exists an ω_{1}-generated ω_{1}-OK point extending $\mathcal{F}_{\mathcal{K}}$ with a basis $\left\{U_{\xi}: \xi<\omega_{1}\right\} \subseteq \mathcal{D}^{*}$ which is not a P-point.

Proof. To define a triple $\left\langle I_{0}, f_{0}, B_{0}\right\rangle$ put $I_{0}=\omega$, for every $m<\omega$ define $f_{0}(m)=X$, and let $B_{0}(m)=\left\langle B_{0}(m)(\gamma): \gamma<\omega_{1}\right\rangle$ be an arbitrary $\omega_{1}-$ sequence of almost disjoint sets in $\mathcal{P}\left(f_{0}(m)\right) \cap \mathcal{D}$.

For a good sequence $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi\right\rangle$ and a prism P in $2^{\omega \times X}$ let us define a subprism $Q\left(\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi\right\rangle, P\right)=Q$ of P and the triple $T\left(\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi\right\rangle, P\right)=\left\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1}\right\rangle \in \mathcal{T}$ as in Corollary 6.10. We define a strategy S for Player II in the game $\operatorname{GAME}_{\text {prism }}\left(2^{\omega \times X}\right)$ as:

$$
S\left(\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle, P_{\xi}\right)=Q\left(\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi\right\rangle, P_{\xi}\right),
$$

where $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi\right\rangle$ is a good sequence defined by induction on $\eta \leq \xi$ as follows. Assume that $\left\langle\left\langle I_{\zeta}, f_{\zeta}, B_{\zeta}\right\rangle: \zeta<\eta\right\rangle$ is already defined.

If $\eta=0$, then $\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle=\left\langle I_{0}, f_{0}, B_{0}\right\rangle$ is defined as above.
If $\eta=\zeta+1$, then we put $\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle=T\left(\left\langle\left\langle I_{\delta}, f_{\delta}, B_{\delta}\right\rangle: \delta \leq \zeta\right\rangle, P_{\zeta}\right)$.
If $\eta \in \Gamma$, then $\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle$ is found using Lemma 6.8.
Notice that the sequence $\left\langle\left\langle I_{\zeta}, f_{\zeta}, B_{\zeta}\right\rangle: \zeta<\eta\right\rangle$ is good by the inductive hypothesis and Remark 6.3.

By $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ strategy S is not a winning strategy for Player II. So, there exists a game $\left\langle\left\langle P_{\xi}, Q_{\xi}\right\rangle: \xi<\omega_{1}\right\rangle$ played according to S for which Player II loses, this is, $2^{\omega \times X}=\bigcup_{\xi<\omega_{1}} Q_{\xi}$. If $\left\langle\left\langle I_{\xi}, f_{\xi}, B_{\xi}\right\rangle \in \mathcal{T}: \xi<\omega_{1}\right\rangle$ is the sequence created when Player II uses strategy S, then this sequence is good by construction. Application of Lemma 6.6 to this sequence finishes the proof.

Theorem 6.13 $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there exists an ω_{1}-generated, crowded $\omega_{1}-O K$ point on \mathbb{Q} which is neither a P-point nor a Q-point.

Proof. The idea is to apply Theorem 6.12 to an apropriate ideal to get a crowded ultrafilter which is not a Q-point. Consider $X=\mathbb{Q} \times \omega$ with a natural product topology. Then, X is homeomorphic to \mathbb{Q}. For every $m<\omega$ put $P_{m}=\left\{n<\omega: 2^{m}-1 \leq n<2^{m+1}-1\right\}$. Then $\left\{P_{m}: m<\omega\right\}$ is a partition of ω and $\left|P_{m}\right|=2^{m}$. For $A \subset \mathbb{Q} \times \omega$ put

$$
N_{A}(m)=\max \left\{k<\omega: \exists U \in \mathcal{I}_{S}^{+} \exists P \in\left[P_{m}\right]^{k} U \times P \subseteq A\right\}
$$

and define $\mathcal{J} \subseteq \mathcal{P}(\mathbb{Q} \times \omega)$ as

$$
\mathcal{J}=\left\{A \subseteq \mathbb{Q} \times \omega: \varlimsup_{m \rightarrow \infty} N_{A}(m)<\infty\right\}
$$

To see that \mathcal{J} is closed under finite unions notice first that

$$
N_{A \cup B}(m) \leq N_{A}(m)+N_{B}(m) \quad \text { for every } m<\omega \text { and } A, B \subseteq \mathbb{Q} \times \omega
$$

Indeed, take a $P \subseteq P_{m}$ of cardinality $N_{A \cup B}(m)$ and $U \in \mathcal{I}_{S}^{+}$such that $U \times P \subseteq A \cup B$. Let $h: U \times P \rightarrow 2$ be a characteristic function of $A \cap(U \times P)$ and let $\varphi: U \rightarrow 2^{P}$ be defined by $\varphi(u)(p)=h(u, p)$. Since 2^{P} is finite, there exists a $g \in 2^{P}$ such that $V=\varphi^{-1}(g)$ belongs to \mathcal{I}_{S}^{+}. Let $P_{A}=g^{-1}(1)$ and $P_{B}=g^{-1}(0)$. Then $V \times P_{A} \subseteq A$ and $V \times P_{B} \subseteq B$. Therefore, $N_{A}(m) \geq\left|P_{A}\right|$ and $N_{B}(m) \geq\left|P_{B}\right|$. So, $N_{A \cup B}(m)=|P|=\left|P_{A}\right|+\left|P_{B}\right| \leq N_{A}(m)+N_{B}(m)$.

The above proved inequality easily implies that

$$
\varlimsup_{m \rightarrow \infty} N_{A \cup B}(m) \leq \varlimsup_{m \rightarrow \infty} N_{A}(m)+\varlimsup_{m \rightarrow \infty} N_{B}(m)
$$

for every and $A, B \subseteq \mathbb{Q} \times \omega$. Thus, \mathcal{J} is closed under finite unions. Since it clearly is closed also under subsets, we can conclude that \mathcal{J} is an ideal on $\mathbb{Q} \times \omega$ containing all the singletons. We will prove that

$$
\begin{equation*}
\text { the ideal } \mathcal{J} \text { is rich. } \tag{7}
\end{equation*}
$$

First notice how (7) implies the theorem. Since $\operatorname{Perf}(\mathbb{Q})$ is dense in \mathcal{I}_{S}^{+}, it is easy to see that $\mathcal{D}=\operatorname{Perf}(\mathbb{Q} \times \omega)$ is dense in \mathcal{J}^{+}. Let \mathcal{U} be an ultrafilter on $\omega \times X$ from Theorem 6.12 applied to \mathcal{J} and \mathcal{D}. Since $X=\mathbb{Q} \times \omega$ is homeomorphic to \mathbb{Q}, so is $\omega \times X$ and \mathcal{D}^{*} contains only its perfect subsets. Therefore, \mathcal{U} can be considered as crowded. Moreover, a partition $\mathcal{P}=$ $\left\{\{n\} \times\left(\{q\} \times P_{m}\right): q \in \mathbb{Q} \& n, m<\omega\right\}$ of $\omega \times X$ into finite sets does not admit partial selector in \mathcal{U}, since each such partial selector belongs to $\mathcal{K}=[\omega]^{<\omega} \times \mathcal{J}$. Thus, \mathcal{U} is not a Q-point.

To prove property (7) fix an $A \in \mathcal{J}^{+}$. Then there exist $\left\langle m_{k} \in \omega: k\langle\omega\rangle\right.$, $\left\{U_{k} \in \mathcal{I}_{S}^{+}: k<\omega\right\}$, and $\left\langle Q_{k} \subseteq P_{m_{k}}: k<\omega\right\rangle$ such that $U_{k} \times Q_{k} \subseteq A$ and $\left|Q_{k}\right|>k \cdot 2^{2^{k}}$ for every $k<\omega$.

First we prove condition (\#) from Definition 3. Since, by Lemma 3.4, the ideal \mathcal{I}_{S} on \mathbb{Q} is rich, for every $k<\omega$ there exists an almost disjoint family $\left\{U_{f}^{k}: f \in 2^{\omega}\right\} \subseteq \mathcal{P}\left(U_{k}\right) \cap \mathcal{I}_{S}^{+}$. Also, for every $k<\omega$ there exists a pairwise disjoint family $\left\{A_{s}: s \in 2^{k}\right\} \subseteq\left[Q_{k}\right]^{k}$. For $f \in 2^{\omega}$ define $A_{f}=$ $\bigcup\left\{U_{f}^{k} \times A_{f \upharpoonright k}: k<\omega\right\}$. Then, $\left\{A_{f}: f \in 2^{\omega}\right\} \subseteq \mathcal{P}(A) \cap \mathcal{J}^{+}$is almost disjoint, proving (\#).

To prove that \mathcal{J} is prism-friendly let P be a prism in 2^{X}. If P is singleton then condition (\bullet) is clearly satisfied. So, assume that $P \in \operatorname{Perf}\left(2^{X}\right)$ and let f be a witness function for it. By Remark 2.1 we can assume that f is defined on \mathfrak{C}^{α} for some $0<\alpha<\omega_{1}$. Our first goal is to find a subprism Q^{\prime} of P and two sequences $\left\{V_{k} \subseteq U_{k}: k<\omega\right\} \subseteq \mathcal{I}_{S}^{+}$and $\left\{A_{k} \in\left[P_{m_{k}}\right]^{k}: k<\omega\right\}$ such that

$$
\begin{equation*}
g \upharpoonright V_{k} \times A_{k} \text { is constant for every } g \in Q^{\prime} \tag{8}
\end{equation*}
$$

For every $k<\omega$ define \mathcal{D}_{k} as the set of all disjoint collections $\mathcal{E} \in\left[\mathbb{P}_{\alpha}\right]^{<\omega}$ such that there exists a $V_{\langle\mathcal{E}, k\rangle} \in \mathcal{P}\left(U_{k}\right) \cap \mathcal{I}_{S}^{+}$such that for every $q \in Q_{k}, E \in \mathcal{E}$, and $h, h^{\prime} \in E$, each $f(h)$ is constant on $V_{\langle\mathcal{E}, k\rangle} \times\{q\}$ and

$$
\begin{equation*}
f(h) \upharpoonright V_{\langle\mathcal{E}, k\rangle} \times\{q\}=f\left(h^{\prime}\right) \upharpoonright V_{\langle\mathcal{E}, k\rangle} \times\{q\} . \tag{9}
\end{equation*}
$$

It is immediate that \mathcal{D}_{k} is closed under refinaments. To prove that \mathcal{D}_{k} satisfies the condition (\dagger) from Proposition 2.3 let $\mathcal{E} \in \mathcal{D}_{k}$ and $E \in \mathbb{P}_{\alpha}$ be such
that $E \cap \bigcup \mathcal{E}=\emptyset$. Let $\left\{q_{i}: i \leq r\right\}$ be an enumeration of Q_{k}. Using Proposition 2.7 , construct inductively decreasing sequences $\left\langle E_{i} \in \mathbb{P}_{\alpha} \cap \mathcal{P}(E): i \leq r\right\rangle$, $\left\langle V_{i} \in \mathcal{P}\left(V_{\langle\mathcal{E}, k\rangle}\right) \cap \mathcal{I}_{S}^{+}: i \leq r\right\rangle$, and a sequence $\left\langle j_{i}<2: i \leq r\right\rangle$ such that for every $i \leq r$

$$
\begin{equation*}
f(h) \upharpoonright V_{i} \times\left\{q_{i}\right\} \text { is constant equal to } j_{i} \text { for every } h \in E_{i} \text {. } \tag{10}
\end{equation*}
$$

Therefore, if we put $E^{\prime}=E_{r}$ and $V_{\left\langle\mathcal{E} \cup\left\{E^{\prime}\right\}, k\right\rangle}=V_{r}$, then $\mathcal{E} \cup\left\{E^{\prime}\right\} \in \mathcal{D}_{k}$ and condition (\dagger) is satisfied. Thus, by Proposition 2.3, for every $k<\omega$ there exists a family $\mathcal{E}_{k}=\left\{E_{i}: i<2^{k}\right\} \in \mathcal{D}_{k}$ of pairwise disjoint sets with $E^{0}=\bigcap_{k<\omega} \bigcup \mathcal{E}_{k} \in \mathbb{P}_{\alpha}$. We will prove that $Q^{\prime}=f\left[E^{0}\right]$ satisfies (8) with $V_{k}=V_{\left\langle\mathcal{E}_{k}, k\right\rangle}$ and some sequence $\left\langle A_{k} \in\left[Q_{k}\right]^{k}: k<\omega\right\rangle$.

To see this fix $k<\omega$ and $v_{0} \in V_{k}=V_{\left\langle\mathcal{E}_{k}, k\right\rangle}$, and for each $i<2^{k}$ pick an $h_{i} \in E_{i} \in \mathcal{E}_{k}$. Define $\varphi_{k}: Q_{k} \rightarrow 2^{2^{k}}$ by $\varphi_{k}(p)(i)=f\left(h_{i}\right)\left(v_{0}, p\right)$. Since $\left|Q_{k}\right|>k \cdot 2^{2^{k}}$, there exists an $s_{k} \in 2^{2^{k}}$ such that $\left|\varphi_{k}^{-1}\left\{s_{k}\right\}\right| \geq k$. Pick an $A_{k} \in\left[\varphi_{k}^{-1}\left\{s_{k}\right\}\right]^{k}$. To see that the pair $\left\langle V_{k}, A_{k}\right\rangle$ satisfies (8), pick a $g \in Q^{\prime}$. Then there exists an $i<2^{k}$ and an $h \in E_{i} \in \mathcal{E}_{k}$ such that $g=f(h)$. We will show that $g\left[V_{k} \times A_{k}\right]=\left\{s_{k}(i)\right\}$.

Let $\langle v, q\rangle \in V_{k} \times A_{k}$. Since, by (9), $f(h)$ is constant on $V_{k} \times\{q\}$, we have $f(h)(v, q)=f(h)\left(v_{0}, h\right)$. Also, (9) gives $f(h)\left(v_{0}, q\right)=f\left(h_{i}\right)\left(v_{0}, q\right)$. Hence, $g(v, q)=f\left(h_{i}\right)\left(v_{0}, q\right)=\varphi_{k}(q)(i)=s_{k}(i) . \mathrm{So}, g \upharpoonright V_{k} \times A_{k}$ is constant equal to $s_{k}(i)$ and (8) holds.

To finish the proof for every $k<\omega$ pick $\left\langle v_{k}, a_{k}\right\rangle \in V_{k} \times A_{k}$ and put $S=\left\{\left\langle v_{k}, a_{k}\right\rangle: k<\omega\right\}$. Let $\mathcal{I}=[X]^{<\omega}$. Then \mathcal{I} is weakly selective and $S \in \mathcal{I}^{+}$. If we identify 2^{X} with $\mathcal{P}(X)$, then Q^{\prime} can be treated as a prism in $\mathcal{P}(X)$. Since $[X]^{\omega}$ is residual in $\mathcal{P}(X)$, by Proposition 2.2 we can assume that Q^{\prime} is a prism in $[X]^{\omega}$. So, by Proposition 2.7, there exist a subprism Q of Q^{\prime}, a set $S_{0} \in[S]^{\omega}$, and an $i<2$ such that $g\left[S_{0}\right]=\{i\}$ for every $g \in Q$. Put $B=\bigcup\left\{V_{k} \times A_{k}:\left\langle v_{k}, a_{k}\right\rangle \in S_{0}\right\}$. Then, $g \upharpoonright B$ is constant equal i for every $g \in Q$. It is clear that $B \subseteq A$. Since $V_{k} \times A_{k} \subseteq B$ and $A_{k} \in\left[P_{m_{k}}\right]^{k}$ we have $N_{B}\left(m_{k}\right) \geq k$. This implies that $\varlimsup_{m \rightarrow \infty} N_{B}(m)=\infty$ and that $B \in \mathcal{J}^{+}$. So, Q and B satisfy ((\bullet).

Theorem 6.14 Let X be a countably infinite set, $\mathcal{J} \subseteq \mathcal{P}(X)$ a rich and Q-like ideal on X, and let $\mathcal{D} \subseteq \mathcal{J}^{+}$be dense. Then, $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there exists an ω_{1}-generated, crowded ω_{1}-OK point on $\omega \times X$ which is also a Q-point but not a P-point.

Proof. This proof combines the elements of the proofs of Theorems 5.3 and 6.12. Let $\mathcal{Y}=\mathcal{P}_{\omega \times X} \cup 2^{\omega \times X}$ be as in Theorem 5.3.

For a good sequence $\bar{G}=\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi\right\rangle$ and a prism P in \mathcal{Y} let us define a subprism $Q(\bar{G}, P)$ of P and a triple $T(\bar{G}, P) \in \mathcal{T}$ as follows.

- If $U \cap 2^{\omega \times X} \neq \emptyset$, then we can choose a subprism $P_{0} \subseteq 2^{\omega \times X}$ of P. The choice of P_{0} is obvious if P is a singleton, and it follows from Proposition 2.2, otherwise. Then we apply Corollary 6.10 to \bar{G} and P_{0} to find appropriate subprism $Q(\bar{G}, P)$ of P_{0} and $\left\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1}\right\rangle \in \mathcal{T}$. We put $T(\bar{G}, P)=\left\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1}\right\rangle$.
- If $U \cap 2^{\omega \times X}=\emptyset$, then P is a prism in $\mathcal{P}_{\omega \times X}$. Then, we can use Corollary 6.11 to find appropriate $\left\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1}\right\rangle \in \mathcal{T}$ and a subprism $Q(\bar{G}, P)$ of P_{0}. We put $T(\bar{G}, P)=\left\langle I_{\xi+1}, f_{\xi+1}, B_{\xi+1}\right\rangle$.

We define a strategy S for Player II in the game $\operatorname{GAME}_{\text {prism }}(\mathcal{Y})$ as:

$$
S\left(\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle, P_{\xi}\right)=Q\left(\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi\right\rangle, P_{\xi}\right),
$$

where the sequence $\left\langle\left\langle I_{\eta}, f_{\eta}, B_{\eta}\right\rangle: \eta \leq \xi\right\rangle$ is defined as in Theorem 6.12.
By $\mathrm{CPA}_{\mathrm{prism}}^{\text {game }}$ strategy S is not a winning strategy for Player II. So, there exists a game $\left\langle\left\langle P_{\xi}, Q_{\xi}\right\rangle: \xi<\omega_{1}\right\rangle$ played according to S for which Player II loses, this is, $\mathcal{Y}=\bigcup_{\xi<\omega_{1}} Q_{\xi}$. If $\left\langle\left\langle I_{\xi}, f_{\xi}, B_{\xi}\right\rangle \in \mathcal{T}: \xi<\omega_{1}\right\rangle$ is the sequence created when Player II uses strategy S, then, by Remark 6.3, this sequence is good.

If $g \in 2^{\omega \times X}$, then there exists a $\xi<\omega_{1}$ such that $g \in Q_{\xi}$. Therefore, $Q_{\xi} \subseteq 2^{\omega \times X}$ and $g \upharpoonright U_{\xi+1}$ is constant. Thus, by Lemma 6.6, the family $\left\{U_{\xi}: \xi<\omega_{1}\right\}$ forms a base for a nonprincipal ultrafilter \mathcal{U} on $\omega \times X$ which is an ω_{1}-OK point but not a P-point. Note that $\left\{U_{\xi}: \xi<\omega_{1}\right\} \subseteq \mathcal{D}^{*}$. To see that \mathcal{U} is a Q-point, take a $z \in \mathcal{P}_{\omega \times X}$. Then, there exists a $\xi<\omega_{1}$ such that $z \in Q_{\xi}$. This means that $Q_{\xi} \subseteq \mathcal{P}_{\omega \times X}$ and that $\left|z(k) \cap U_{\xi+1}\right| \leq 1$ for every $k<\omega$. Hence, \mathcal{U} is also a Q-point.

Corollary $6.15 \mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there is an ω_{1}-generated, crowded ω_{1}-OK point on $\omega \times X$ which is also a Q-point but not a P-point.

Proof. Apply Theorem 6.14 with $X=\mathbb{Q}, \mathcal{J}=\mathcal{I}_{S}$, and $\mathcal{D}=\operatorname{Perf}(\mathbb{Q})$.

CPA ${ }_{\text {prism }}^{\text {game }}$ and ultrafilters on ω and $\mathbb{Q} \quad$ July 15, 2004

References

[1] Blass, A. Combinatorial Characteristics of the Continuum, to appear in the Handbook of Set Theory.
[2] Bartoszyński, T. and Judah, H. Set Theory. On the structure of the Real Line, A.K. Peters Ltd, Wellesley, MA, 1995.
[3] Brodskiǐ, M.L. On some properties of sets of positive measure, Uspehi Matem. Nauk (N.S.) 4, No. 3 (31) (1949), 136-138.
[4] Ciesielski, K. and Pawlikowski, J. Crowded and selective ultrafilters under the Covering Property Axiom, J. Appl. Anal. 9(1) (2003) 19-55.
[5] Ciesielski, K. and Pawlikowski, J. Covering Property Axiom CPA, to appear in Cambridge Tracts in Mathematics, Cambridge University Press.
[6] Coplakova, E. and Hart, K.P. Crowded rational Ultrafilters, Topology Appl. 97 (1999), 79-84.
[7] van Douwen, E.K. Better closed ultrafilters on \mathbb{Q}, Topology Appl. 47 (1992), 173-177.
[8] Eggleston, H.G. Two measure properties of Cartesian product sets, Quart. J. Math. Oxford (2) 5 (1954), 108-115.
[9] Hart, K.P. Ultrafilters of character ω_{1}, J. Symbolic Logic 54(1) (1989), 1-15.
[10] Jech, T. Set Theory, Academic Press, New York, 1978.
[11] Kunen, K. Weak P-points in N^{*}, Colloquia Mathematica Societatis János Bolyai 23. Topology, Budapest (Hungary) (1978), 741-749.
[12] Laver, R. On the consistency of Borel's Conjecture, Acta Math. 137, (1976), 151-169.
[13] Millán, A. A crowded Q-point under $\mathrm{CPA}_{\text {prism }}^{\mathrm{game}}$, preprint.
[14] Miller, A.W. There are no Q-points in Laver's model for the Borel Conjecture, Proc. Amer. Math. Soc. 78(1) (1980), 103-106.
$\mathrm{CPA}_{\text {prism }}^{\text {game }}$ and ultrafilters on ω and $\mathbb{Q} \quad$ July 15, 2004
[15] Wimmers, E.L. The Shelah P-point independence theorem Israel J. Math. 43(1) (1982), 28-48.

[^0]: *This work is a part of author's Ph.D. thesis written at West Virginia University under the supervision of Professor Krzysztof Ciesielski. The author wishes to thank Professor Ciesielski for his guidance, patience, and encouragement.

[^1]: ${ }^{1}$ Let \mathcal{F}_{0} be the dual filter of the ideal $\mathcal{I}_{0}=\left\{A \subseteq \omega: \varlimsup_{\lim }^{n \rightarrow \infty}\right.$ $\left.\left|A \cap P_{n}\right|<+\infty\right\}$, where $\left\{P_{n}: n<\omega\right\}$ is the partition of ω such that $P_{n}=\left\{m<\omega: 2^{n}-1 \leq m<2^{n+1}-1\right\}$. Construct a \mathfrak{c} by \mathfrak{c} independent linked family w.r.t \mathcal{F}_{0} and follow the argument from [11].

[^2]: ${ }^{2} \operatorname{cof}(\mathcal{N})=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{N} \forall \mathrm{X} \in \mathcal{N} \exists \mathrm{Y} \in \mathcal{A}(\mathrm{X} \subseteq \mathrm{Y})\}$, where \mathcal{N} is the null ideal on \mathfrak{C}.

