A crowded Q-point under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$

Andres Millán*

February 27, 2005

Abstract

In this note we prove that the version $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ of the Covering Property Axiom, which holds in the iterated Sacks model, implies that there exists an ω_{1}-generated crowded ultrafilter on \mathbb{Q} which is also a Q-point. Since no crowded ultrafilter can be a P-point this constitutes an interesting example of a Q-point which is not a P-point.

1 Introduction

We will use standard set theoretic notation as in [5]. Let \mathcal{U} be a non-principal ultrafilter on a countable set X. Then, \mathcal{U} is a P-point if for every partition \mathcal{P} of X either $\mathcal{U} \cap \mathcal{P} \neq \emptyset$ or there exists an $X \in \mathcal{U}$ such that $X \cap P$ is finite for each $P \in \mathcal{P} . \mathcal{U}$ is called a Q-point if for every partition \mathcal{P} of X into finite pieces there exists an $X \in \mathcal{U}$ such that $|X \cap P| \leq 1$ for each $P \in \mathcal{P}$. Given a non-principal ultrafilter \mathcal{U} on X we say that $\mathcal{B} \subset \mathcal{U}$ is a basis for \mathcal{U} if for every $U \in \mathcal{U}$ there exists a $B \in \mathcal{B}$ such that $B \subset U$. Then, we can define the character of \mathcal{U} as $\chi(\mathcal{U})=\min \{|\mathcal{B}|: \mathcal{B}$ is a basis for $\mathcal{U}\}$. We say that \mathcal{U} is κ-generated if $\chi(\mathcal{U})=\kappa$.

Consider \mathbb{Q} with the subspace topology induced by the usual topology on \mathbb{R} and denote by $\operatorname{Perf}(\mathbb{Q})$ the family of its perfect subsets. A non-principal

[^0]filter \mathcal{U} on \mathbb{Q} is crowded if the family $\operatorname{Perf}(\mathbb{Q}) \cap \mathcal{U}$ forms a basis for \mathcal{U}. The crowded ultrafilters have been studied in connection with the remainder of the Stone-Čech compactification of \mathbb{Q} and their existence follows from the Continuum Hypothesis, Martin's Axiom for countable posets [4], or from the equality $\mathfrak{b}=\mathfrak{c}[3]$.

In [1] Ciesielski and Pawlikowski showed that a version of their Covering Property Axiom called $\mathrm{CPA}_{\text {prism }}^{\text {game }}$, which holds in the iterated Sacks model, implies that there exists an ω_{1}-generated crowded ultrafilter on \mathbb{Q} and they noted that no crowded ultrafilter can be a P-point. This result is interesting because CPA implies $\mathfrak{b}<\mathfrak{c}$.

The main result of this paper is that $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies the existence of an ω_{1}-generated crowded ultrafilter on \mathbb{Q} which is also a Q-point ${ }^{1}$. Notice that this contradicts the remark by Ciesielski and Pawlikowski in [1, page 49] that crowded ultrafilters cannot be Q-points.

It is a result of A.Miller [7] that there are no Q-points in Laver's [6] model for Borel's Conjecture. Since the equality $\mathfrak{b}=\mathfrak{c}$ holds in Laver's model, it is consistent with ZFC that no crowded ultrafilter on \mathbb{Q} is a Q-point.

2 Preliminaries on $\mathrm{CPA}_{\text {cube }}^{\text {game }}$ and $\mathrm{CPA}_{\text {prism }}^{\text {game }}$

2.1 Cubes and Prisms.

The framework of CPA rests on the concepts of cube and prism. If \mathfrak{C} denotes the space 2^{ω} with its usual product topology and \mathfrak{X} is a Polish space then we define

$$
\operatorname{Perf}(\mathfrak{X})=\{C \subset \mathfrak{X}: C \text { is homeomorphic to } \mathfrak{C}\} .
$$

A perfect cube in \mathfrak{C}^{ω} is any set $C=\prod_{i<\omega} C_{i}$ where $C_{i} \in \operatorname{Perf}(\mathfrak{C})$ for every $i<\omega$. If \mathfrak{X} is a Polish space, then a cube in \mathfrak{X} is a pair $\langle f, P\rangle$ where $f: C \rightarrow \mathfrak{X}$ is a continuous injection and $P=f[C]$ for some perfect cube C. The following theorem is one of the principal tools for using CPA, and it is a refinement of a theorem proved independently by H.G. Eggleston and M.L. Brodskiĭ.

Proposition 1 (K.Ciesielski, J.Pawlikowski [2, claim 1.1.5]) Consider \mathfrak{C}^{ω} with its usual topology and its usual product measure. If G is a Borel subset

[^1]of \mathfrak{C}^{ω} which is either of second category or of positive measure then G contains a perfect cube.

The notion of prism is a generalization of that of a cube. If $\alpha<\omega_{1}$ is a non-zero countable ordinal let $\Phi_{\text {prism }}(\alpha)$ be the set of all functions $f: \mathfrak{C}^{\alpha} \rightarrow \mathfrak{C}^{\alpha}$ with the property that

$$
f(x) \upharpoonright \xi=f(y) \upharpoonright \xi \Leftrightarrow x \upharpoonright \xi=y \upharpoonright \xi \quad \text { for all } \xi<\alpha \text { and } x, y \in \mathfrak{C}^{\alpha} .
$$

Then we define $\mathbb{P}_{\alpha}=\left\{\operatorname{range}(f): f \in \Phi_{\text {prism }}(\alpha)\right\}$ and $\mathbb{P}_{\omega_{1}}=\bigcup_{0<\alpha<\omega_{1}} \mathbb{P}_{\alpha}$. The elements of $\mathbb{P}_{\omega_{1}}$ are called the iterated perfect sets. If \mathfrak{X} is a Polish space, then a prism on X is a pair $\langle f, P\rangle$ where $f: E \rightarrow \mathfrak{X}$ is injective and continuous, $E \in \mathbb{P}_{\omega_{1}}$, and $P=f[E]$.

It is also inmediate to observe that if the pair $\langle f, P\rangle$ and $f: E \rightarrow P$ and $E \in \mathbb{P}_{\alpha}$ then, we can assume that f is defined on the entire \mathfrak{C}^{α}.

It is important to note that the previous definitions imply that perfect cubes are, in particular, iterated perfect sets and therefore, that cubes are prisms. On the other hand, if $\langle g, P\rangle$ is a prism, where $g: E \rightarrow P$ and $E \in \mathbb{P}_{\alpha}$, then there exists an $f \in \Phi_{\text {prism }}(\alpha)$ with $E=$ range (f). In particular, $h=g \circ f: \mathfrak{C}^{\alpha} \rightarrow P$ is a continuous injection and the pair $\langle h, P\rangle$ is a cube. Thus, any prism can be thought as a cube with a different coordinate system imposed on it.

2.2 Subcubes and Subprisms.

If $\langle f, P\rangle$ is a cube, then we say that Q is its subcube provided there exists a perfect cube $C \subset \operatorname{dom}(f)$ such that $Q=f[C]$. Subprisms are defined similarly but replacing the perfect cube C by an iterated perfect set E. Since in the games defined below we will need to consider singletons in the same position as cubes (or prism) as defined above, in what follows singletons will be considered as cubes and prisms. If P is a singleton in \mathfrak{X} then its only subcube is P itself.

2.3 Games and Strategies.

For a Polish space \mathfrak{X} consider the following game $\operatorname{GAME}_{\text {cube }}(\mathfrak{X})$ of length ω_{1} played by two players, Player I and Player II. At each stage $\xi<\omega_{1}$ of the game Player I can play an arbitrary cube P_{ξ} in \mathfrak{X} (i.e., P_{ξ} either belongs
to $\operatorname{Perf}(\mathfrak{X})$ or is a singleton in $\mathfrak{X})$ and Player II must respond by playing a subcube Q_{ξ} of P_{ξ}. The game $\left\langle\left\langle P_{\xi}, Q_{\xi}\right\rangle: \xi<\omega_{1}\right\rangle$ is won by Player I provided

$$
\mathfrak{X}=\bigcup_{\xi<\omega_{1}} Q_{\xi} ;
$$

otherwise Player II wins.
A strategy for Player II is any function S such that $S\left(\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle, P_{\xi}\right)$ is a subcube of P_{ξ} for every partial game $\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle$. We say that a game $\left\langle\left\langle P_{\xi}, Q_{\xi}\right\rangle: \xi<\omega_{1}\right\rangle$ is played according to a strategy S for Player II provided $Q_{\xi}=S\left(\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle, P_{\xi}\right)$ for every $\xi<\omega_{1}$. A strategy S for Player II is a winning strategy provided Player II wins any game played according the strategy S. The corresponding notions of games, strategies etc. for prisms are defined in a similar way.

2.4 The Axioms.

The following principles capture the combinatorial core of the iterated Sacks model.
$\mathrm{CPA}_{\text {cube }}^{\text {game }}: \mathfrak{c}=\omega_{2}$ and for any Polish space \mathfrak{X} Player II has no winning strategy in the game GAME $_{\text {cube }}(\mathfrak{X})$.
$\mathrm{CPA}_{\text {prism }}^{\text {game }}: \mathfrak{c}=\omega_{2}$ and for any Polish space \mathfrak{X} Player II has no winning strategy in the game GAME prism (\mathfrak{X}).

These axioms are consequences of a more general principle, similar in spirit, called CPA [2]. Their importance comes from the following theorem.

Proposition 2 (K.Ciesielski, J.Pawlikowski [1, 2]) CPA holds in the iterated perfect set model. In particular, CPA is consistent with ZFC set theory.

3 An ω_{1}-generated crowded Q-point on \mathbb{Q}

If the set $X=[\omega]^{<\omega} \backslash\{\emptyset\}$ has the discrete topology then the product space $\mathfrak{X}=X^{\omega}$ is a Polish space and the sets $U_{\langle n, a\rangle}=\{x \in \mathfrak{X}: x(n)=a\}$, where $a \in$ $[\omega]^{<\omega}$ and $n<\omega$, constitutes a subbasis for the product topology. Consider the set

$$
\mathcal{P}=\{x \in \mathfrak{X}:\{x(k): k<\omega\} \text { is a partition of } \omega\} .
$$

It is important to know that

- \mathcal{P} is a G_{δ} subset of \mathfrak{X}. Therefore, \mathcal{P} is a Polish space with the relative topology inherited from \mathfrak{X}.

Lemma 1 Let P be a prism in \mathcal{P} and let $\left\{A_{n}: n<\omega\right\} \subset[\mathbb{Q}]^{\omega}$ be arbitrary. Then, there exist a subprism Q of P and $B \in[\mathbb{Q}]^{\omega}$ such that $\left|B \cap A_{n}\right|=\omega$ for every $n<\omega$ and $|x(k) \cap B| \leq 1$ for every $x \in Q$ and $k<\omega$. Moreover, if P is a cube then, Q is a cube as well.

Proof. Since $|\mathbb{Q}|=\omega$ we can suppose that $\left\{A_{n}: n<\omega\right\} \subset[\omega]^{\omega}$. Let $\left\langle R_{n}: n<\omega\right\rangle$ be an enumeration of $\left\{A_{n}: n<\omega\right\}$ where each set appears infinitely often.

Case (a): If $P=\{z\}$ then, define a sequence $\left\langle b_{n} \in \omega: n<\omega\right\rangle$ inductively such that $b_{n} \in R_{n} \backslash \bigcup\left\{z(k): k<\omega \& z(k) \cap\left\{b_{0}, \ldots, b_{n-1}\right\} \neq \emptyset\right\}$ for every $n<\omega$. It is easy to see that $B=\left\{b_{n}: n<\omega\right\}$ works.

Case (b): If $P \in \operatorname{Perf}(\mathcal{P})$, let f be a witness function for P. By our remarks in section 2 , we can assume that f acts from \mathfrak{C}^{α} onto P. Thus, P is a cube. It is enough to find its subcube with the desired properties.

Let μ be the standard product probability measure on \mathfrak{C}^{α}.
We construct, by induction on $n<\omega$, a sequence $\left\langle K_{n}: n<\omega\right\rangle$ of open subsets of \mathfrak{C}^{α} and two sequences, $\left\langle b_{n} \in R_{n}: n<\omega\right\rangle$ and $\left\langle B_{n} \in[\omega]^{<\omega}: n<\omega\right\rangle$, such that for every $n<\omega$:
(i) $b_{n}>\max \left(\left\{b_{i}: i<n\right\} \cup \bigcup_{j<n} B_{j}\right)$,
(ii) $\mu\left(K_{n}\right) \geq 1-2^{-(n+2)}$, and
(iii) $f(h)(k) \subseteq B_{n}$ for every $h \in K_{n}$ and $k<\omega$ for which $b_{n} \in f(h)(k)$.

If this construction is possible put $B=\left\{b_{n}: n<\omega\right\}$. Then, clearly $\left|B \cap A_{n}\right|=\omega$. Condition (ii) implies that $\mu\left(\bigcap_{n<\omega} K_{n}\right) \geq \frac{1}{2}$. Hence, by Proposition 1, there exists a perfect cube $C \subseteq \bigcap_{n<\omega} K_{n}$. Then $Q=f[C]$ is a subcube of P and the pair $\langle Q, B\rangle$ is as required. To see this, it is enough to show that $|z(k) \cap B| \leq 1$ for every $z \in Q$ and $k<\omega$. Let $z=f(h)$ for some $h \in C$. By conditions (i) and (iii), for every $b_{j} \in z(k)=f(h)(k)$ and $n>j$ we have that $b_{n} \notin z(k)$. Therefore, no two elements of B are in the same $z(k)$ or, in other words, $|z(k) \cap B| \leq 1$ for every $k<\omega$.

Next, we show that the inductive construction is possible. Let $n<\omega$ be such that the appropriate b_{i}, K_{i}, and B_{i} are already constructed for every $i<n$. We will construct b_{n}, K_{n}, and B_{n} satisfying (i)-(iii). We pick an b_{n} as
an arbitrary element of R_{n} satisfying (i). If $L=\left\{a \in[\omega]^{<\omega}: b_{n} \in a\right\}$ then, $\left\{f^{-1}\left(U_{\langle m, a\rangle}\right):\langle m, a\rangle \in \omega \times L\right\}$ is a partition of \mathfrak{C}^{α} into clopen sets. Thus, we can find a finite set $S \subseteq \omega \times L$ such that $K_{n}=\bigcup\left\{f^{-1}\left(U_{\langle m, a\rangle}\right):\langle m, a\rangle \in S\right\}$ satisfies condition (ii). Let $B_{n}=\bigcup\{a:\langle m, a\rangle \in S$ for some $m<\omega\}$. Then clearly, B_{n} is finite. To see that it satisfies (iii) take an $h \in K_{n}$. Then $f(h) \in U_{\langle m, a\rangle}$ for some $\langle m, a\rangle \in S$. Let $k<\omega$ be such that $b_{n} \in f(h)(k)$. Since we have also $b_{n} \in a=f(h)(m)$ we conclude that $k=m$. So, $f(h)(k)=$ $f(h)(m)=a \subseteq B_{n}$.

Fix a $p \in \mathbb{R} \backslash \mathbb{Q}$. For $\mathcal{D} \subset[\mathbb{Q}]^{\omega}$ let $F(\mathcal{D})=F(p, \mathcal{D})$ be the filter generated by the family $\mathcal{D} \cup\left\{I_{n}: n<\omega\right\}$, where $I_{n}=\left[p-2^{-n}, p+2^{-n}\right] \cap \mathbb{Q}$.

Lemma 2 (K.Ciesielski, J.Pawlikowski [1, lemma 4.23]) Let $\mathcal{D} \subset \operatorname{Perf}(\mathbb{Q})$ be a countable family such that $F(\mathcal{D})$ is crowded. Then, for every prism P in $[\mathbb{Q}]^{\omega}$ there exists a subprism Q of P and a $Z \in \operatorname{Perf}(\mathbb{Q})$ such that $F(\mathcal{D} \cup\{Z\})$ is crowded and either
(i) $Z \cap x=\emptyset$ for every $x \in Q$, or else
(ii) $Z \subset x$ for every $x \in Q$.

We will need also the following easy fact.
Lemma 3 (K.Ciesielski, J.Pawlikowski [1, Fact 4.21]) Every non-scattered set $B \subset \mathbb{Q}$ contains a subset from $\operatorname{Perf}(\mathbb{Q})$.

Lemma 4 Let $\mathcal{D} \subset \operatorname{Perf}(\mathbb{Q})$ be a countable family such that $F(\mathcal{D})$ is crowded and let P be prism in \mathcal{P} then there exists a subprism Q of P and $Z \in \operatorname{Perf}(\mathbb{Q})$ such that $F(\mathcal{D} \cup\{Z\})$ is crowded and $|Z \cap x(k)| \leq 1$ for every $x \in Q$.

Proof. Observe that since $F(\mathcal{D})$ is crowded it is possible to find a sequence $\left\langle D_{n} \in \operatorname{Perf}(\mathbb{Q}): n<\omega\right\rangle$ coinitial in $F(\mathcal{D})$ such that $D_{n+1} \subset D_{n} \subset I_{n}$ for every $n<\omega$. Note that

- there are sequences $\left\langle J_{k}: k<\omega\right\rangle$ of pairwise disjoint intervals in \mathbb{Q} and $\left\langle S_{k} \subset J_{k}: k<\omega\right\rangle$ of perfect subsets of \mathbb{Q} such that if $S=\bigcup_{k<\omega} S_{k}$ then for every $D \in F(\mathcal{D})$ there exists an $n<\omega$ such that $S \cap I_{n} \subset D$.

To see it, define two sequences $\left\langle n_{k}: k<\omega\right\rangle$ and $\left\langle S_{k} \in \operatorname{Perf}(\mathbb{Q}): k<\omega\right\rangle$ such that $S_{k} \subset D_{k} \cap I_{n_{k}} \cap J_{k}$ where J_{k} is a clopen interval such that $p \notin \mathrm{cl}_{\mathbb{R}}\left(J_{k}\right)$. If n_{k} and S_{k} are already defined pick $n_{k+1}>n_{k}$ with $J_{k} \cap I_{n_{k+1}}=\emptyset$. Since $D_{k+1} \cap I_{n_{k+1}} \in F(\mathcal{D})$ and $F(\mathcal{D})$ is crowded we can find a clopen interval J_{k+1} such that $p \notin \operatorname{cl}_{\mathbb{R}}\left(J_{k+1}\right)$ and $J_{k+1} \cap D_{k+1} \cap I_{n_{k+1}} \neq \emptyset$. Define $S_{k+1}=J_{k+1} \cap D_{k+1} \cap I_{n_{k+1}}$. Then, $S_{k+1} \in \operatorname{Perf}(\mathbb{Q})$ and $S_{k+1} \subset D_{k+1} \cap I_{n_{k+1}}$. Now, put $S=\bigcup_{k<\omega} S_{k}$. Then, $S \in \operatorname{Perf}(\mathbb{Q})$ and $S \cap I_{n_{k}}=\bigcup_{i \geq k} S_{i} \cap I_{n_{k}}=$ $\bigcup_{i \geq k} S_{i} \subset D_{k}$. This proves our claim.

Let \mathcal{B} be a countable basis for the topology on \mathbb{Q} consisting of clopen sets and consider the family $\mathcal{B}_{0}=\{B \in \mathcal{B}:|B \cap S|=\omega\}$.

If $P \in \operatorname{Perf}(\mathcal{P})$ apply Lemma 1 to P and the family $\left\{B \cap S: B \in \mathcal{B}_{0}\right\}$ to find a set $T \in[S]^{\omega}$ and a subprism Q of P such that
(a) $|T \cap(B \cap S)|=\omega$ for every $B \in \mathcal{B}_{0}$ and
(b) $|T \cap x(k)| \leq 1$ for every $x \in Q$ and $k \in \omega$.

If $P=\{x\}$ is a singleton we put $Q=P$ and apply Lemma 1 to the family $\left\{B \cap S: B \in \mathcal{B}_{0}\right\}$ and to x to obtain a T satisfying (a) and (b).

In both cases we obtain from (a) that T is dense in S. Since $S_{k} \in \operatorname{Perf}(\mathbb{Q})$ for every $n<\omega$ we conclude that $T \cap S_{k}$ is non-scattered and contains a subset Z_{k} from $\operatorname{Perf}(\mathbb{Q})$ for every $k<\omega$. Hence, if we put $Z=\bigcup_{k<\omega} Z_{k}$ then, $Z \in \operatorname{Perf}(\mathbb{Q}), Z \cap I_{k} \subset D_{k}$ for every $k<\omega$ and $|Z \cap x(k)| \leq 1$ for every $x \in Q$ and every $k<\omega$. To see that $F(\mathcal{D} \cup\{Z\})$ is crowded note that $Z \cap D_{n_{k}} \subset S \cap I_{n_{k}} \subset D_{k}$ for every $k<\omega$.

Theorem $3 \mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there exists an ω_{1}-generated crowded Q-point on \mathbb{Q}.

Proof. For $\mathcal{Y}=[\mathbb{Q}]^{\omega} \cup \mathcal{P}$ consider the topology τ on \mathcal{Y} whose open sets are those $U \subset \mathcal{Y}$ such that $U \cap[\mathbb{Q}]^{\omega}$ and $U \cap \mathcal{P}$ are open in $[\mathbb{Q}]^{\omega}$ and \mathcal{P} respectively. Then $\langle\mathcal{Y}, \tau\rangle$ is a Polish space. Note that $[\mathbb{Q}]^{\omega}$ and \mathcal{P} are clopen in \mathcal{Y} with this topology. Every prism $P \in \operatorname{Perf}(\mathcal{Y})$ must intersect either $[\mathbb{Q}]^{\omega}$ or \mathcal{P}. Since every non-empty clopen set in a prism is its subprism (see [2], or use Proposition 1) we can suppose without any loss of generality that either $P \in \operatorname{Perf}\left([\mathbb{Q}]^{\omega}\right)$ or $P \in \operatorname{Perf}(\mathcal{P})$. Of course, every singleton is in either $[\mathbb{Q}]^{\omega}$ or \mathcal{P}. Therefore, given a prism P in \mathcal{Y} and a countable family $\mathcal{D} \subset \operatorname{Perf}(\mathbb{Q})$ such that $F(\mathcal{D})$ is crowded we denote by $Z(\mathcal{D}, P) \in \operatorname{Perf}(\mathbb{Q})$ and a subprism
$Q(\mathcal{D}, P)$ of P as in Lemma 4 provided $P \subset[\mathbb{Q}]^{\omega}$ and as in Lemma 2 for $P \subset \mathcal{P}$ respectively.

Consider the following strategy S for Player II:

$$
S\left(\left\langle\left\langle P_{\eta}, Q_{\eta}\right\rangle: \eta<\xi\right\rangle, P_{\xi}\right)=Q\left(Z\left(\left\{Z_{\eta}: \eta<\xi\right\}\right), P_{\xi}\right),
$$

where sets Z_{η} are defined inductively by $Z_{\eta}=Z\left(\left\{Z_{\zeta}: \zeta<\eta\right\}, P_{\eta}\right)$.
By $\mathrm{CPA}_{\mathrm{prism}}^{\text {game }}$ strategy S is not a winning strategy for Player II. Hence, there is a game $\left\langle\left\langle P_{\xi}, Q_{\xi}\right\rangle: \xi<\omega_{1}\right\rangle$ played according to S for which Player II loses so, $\mathcal{Y}=\bigcup_{\xi<\omega_{1}} Q_{\xi}$.

Let $\mathcal{U}=F\left(\left\{Z_{\xi}: \xi<\omega_{1}\right\}\right)$. To see it is an ultrafilter note that if $x \in[\mathbb{Q}]^{\omega}$ then there exists a $\xi<\omega_{1}$ such that $x \in Q_{\xi}$. But then, either $Z_{\xi} \subset x$ or $Z_{\xi} \cap x=\emptyset$. Therefore either x or its complement is in \mathcal{U}. This proves that \mathcal{U} is an ultrafilter and that $\left\langle Z_{\xi}: \xi<\omega_{1}\right\rangle \subset \operatorname{Perf}(\mathbb{Q})$ is basis for \mathcal{U}. So, \mathcal{U} is crowded. Since, no crowded ultrafilter can be principal it follows that \mathcal{U} is also non-principal. To see that \mathcal{U} is a Q-point, pick an $x \in \mathcal{P}$. Then, there exists a $\xi<\omega_{1}$ such that $x \in Q_{\xi}$. Thus, $Z_{\xi} \in \mathcal{U}$ and $\left|Z_{\xi} \cap x(k)\right| \leq 1$ for every $k<\omega$.

References

[1] Ciesielski, K. and Pawlikowski, J. Crowded and selective ultrafilters under the Covering Property Axiom, J. Appl. Anal. 9(1), 2003, 19-55.
[2] Ciesielski, K. and Pawlikowski, J. Covering Property Axiom CPA, to appear in Cambridge Tracts in Mathematics, Cambridge University Press.
[3] Coplakova, E. and Hart, K.P.
Crowded rational ultrafilters, Topology Appl. 97 1999, 74-84.
[4] van Douwen, E.K. Better closed ultrafilters on \mathbb{Q}, Topology Appl. 47 1992, 173-177.
[5] Jech, T. Set Theory, Academic Press, New York, 1978.
[6] Laver, R. On the consistency of Borel's Conjecture, Acta Math. 137, 1976, 151-169.
[7] Miller, A.W. There are no Q-points in Laver's model for the Borel Conjecture, Proc. Amer. Math. Soc. 78(1), 1980, 103-106.

[^0]: *AMS subject classification numbers: Primary 54D80; Secondary 03E35. Keywords and phrases: ultrafilter, crowded, Q-point, Covering Property Axiom CPA. This work is a part of author's Ph.D. thesis written at the West Virginia University under the supervision of Krzysztof Ciesielski. The author wishes to thank professor Ciesielski for his guidance, patience and encouragement.

[^1]: ${ }^{1}$ Recently the author has proven that $\mathrm{CPA}_{\text {prism }}^{\text {game }}$ implies that there is also a crowded Q-point of character \mathfrak{c}.

