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EVERY ALMOST CONTINUOUS
FUNCTION IS POLYGONALLY ALMOST

CONTINUOUS

Abstract

We show that every almost continuous function f : I → R is also
polygonally almost continuous. This solves a problem posed by Agron-
ski, Ceder and Pearson (see [ACP]).

1 Preliminaries

By R we denote the set of all reals, by I we denote the interval [0, 1]. For every
set A, by cl(A) we will denote closure of A.

We will consider following classes of functions from the interval I to R:

AC Function f : I → R is almost continuous (AC) if whenever U ⊂ I × R is
an open set containing the graph of f , then U contains the graph of a
continuous function g : I → R.

PAC Function f : I → R is polygonally almost continuous (PAC) if whenever
U ⊂ I×R is an open set containing the graph of f , then U contains the
graph of a polygonal (piecewise linear continuous) function h : I → R

with all its vertices on f .

D Function f : I → R is Darboux (D) if the image of C ⊂ I is connected in R

whenever C is connected in I.
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For properties of these and other Darboux-like classes see e. g. the survey
[GN]. In particular, it is known that AC ⊂ D. Clearly every PAC function is
AC. Recently Agronsky, Ceder and Pearson asked whether the opposite im-
plication holds ([ACP]). In this note we answer this question in the positive.
(We would like to thank Professor Kenneth Kellum for drawing the autor’s
attention to this problem. In particular, Kellum proved that every extend-
able function as well as every AC function with dense graph is PAC (private
communication)).

2 The Result

Theorem 1. Every AC function f : I → R is PAC.

Proof. Let f : I → R be AC. Suppose, f is not PAC.

For every x ∈ I, define

Hx = {h : [0, x] → R | h is polygonally continuous with all its vertices on f}.

Let G ⊂ I × R be an open set such that f ⊂ G and there does not exist a
polygonal function h1 ∈ H1, h1 ⊂ G.

Define:

• E = {(x, y) ∈ f | (∃hx ∈ Hx) hx ⊂ G};

• N = {(x, y) ∈ f | (¬∃hx ∈ Hx) hx ⊂ G}.

Clearly E∪N = f , E∩N = ∅, (0, f(0)) ∈ E, and by the supposition (1, f(1)) ∈
N .

For S(x,y) being an open square with center (x, y) let 3 · S(x,y) denote the
open square with the center (x, y) and with the diagonal 3 times that of S(x,y).
For every (x, y) ∈ f let S(x,y) be an open square with the center (x, y) such
that:

• 3 · S(x,y) ⊂ G for x ∈ (0, 1),
3 · S(0,f(0)) ∩ [0,+∞) × R ⊂ G,
3 · S(1,f(1)) ∩ (−∞, 1] × R ⊂ G;

• either S(x,y) ∩ ([0, x) × R) ∩ f ⊂ E or S(x,y) ∩ ([0, x) × R) ∩ f ⊂ N , for
x > 0;

• either S(x,y) ∩ ((x, 1] × R) ∩ f ⊂ E or S(x,y) ∩ ((x, 1] × R) ∩ f ⊂ N , for
x < 1.
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Such a S(x,y) exists for every (x, y) ∈ f . Indeed, suppose for example, there
exists (x, y) ∈ f such that for every S(x,y) ⊂ G there exist x1 ∈ [0, x) and
x2 ∈ [0, x)) such that

(x1, f(x1)) ∈ E ∩ S(x,y) and (x2, f(x2)) ∈ N ∩ S(x,y).

Now we can find (x1, f(x1)) ∈ E∩S(x,y) and (x2, f(x2)) ∈ N ∩S(x,y), x1 < x2.
But (x1, f(x1)) → (x2, f(x2)) ⊂ S(x,y) ⊂ G, with α → β denoting the line
segment linking α and β for every α ∈ I × R, β ∈ I × R, α < β. So, we can
extend the polygonal function hx1 ∈ Hx1 , hx1 ⊂ G to a polygonal function
hx2 ∈ Hx2 , hx2 ⊂ G, contrary to x2 ∈ N .

For every (x, y) ∈ f let R(x,y) ⊂ S(x,y) be an open rectangular neighbour-
hood of (x, y) fulfilling the following conditions (with xl denoting inf{a | (a, b) ∈
R(x,y)}, xr denoting sup{a | (a, b) ∈ R(x,y)}, yl denoting inf{b | (a, b) ∈ R(x,y)},
yu denoting sup{b | (a, b) ∈ R(x,y)}):

(1) If x > 0 and S(x,y) ∩ ([0, x) × R) ∩ f ⊂ E, then f(xl) ∈ (yl, yu).

(2) If x < 1 and S(x,y) ∩ ((x, 1] × R) ∩ f ⊂ N , then f(xr) ∈ (yl, yu).

Such a R(x,y) always exists, because (x, y) is a left side limit point of f for
every x ∈ (0, 1] and (x, y) is a right side limit point of f for every x ∈ [0, 1) (f
is Darboux, so it satisfies the Young’s condition, see e. g. [GN]).

Note also that (xl, f(xl)) is a right side limit point of f , so if R(x,y) ∩
([0, x)×R)∩ f ⊂ E then (from (1)) for every a ∈ (xl, x)∩ I there exists b < a
such that (b, f(b)) ∈ E ∩ R(x,y).

Because (xr, f(xr)) is a left side limit point of f , if R(x,y)∩((x, 1]×R)∩f ⊂
N then (from (2)) for every a ∈ (xl, xr) ∩ I there exists c > a such that
(c, f(c)) ∈ N ∩ R(x,y), so R(x,y) ∩ ((a, xr) × R) ∩ f �⊂ E.

Now for every R(x,y) we have:

(A) If R(x,y)∩((a, x)×R)∩f ⊂ E for some a ∈ (xl, x)∩I then R(x,y)∩([0, x)×
R) ∩ f ⊂ E, and there exists b < a such that (b, f(b)) ∈ E ∩ R(x,y).

(B) If R(x,y) ∩ ((a, xr) × R) ∩ f ⊂ E for some a ∈ (xl, xr) ∩ I then R(x,y) ∩
((x, 1]×R)∩f ⊂ E, and there exists b < a such that (b, f(b)) ∈ E∩R(x,y).

Let H =
⋃

(x,y)∈f R(x,y). H is open, H ⊂ G and f ⊂ H. So, there exists
a continuous function g : I → R, g ⊂ H. Because the graph of g is compact,
there exists a finite family of sets R ⊂ {R(x,y) | (x, y) ∈ f} such that g ⊂

⋃
R.

R(0,f(0)) ∈ R and R(1,f(1)) ∈ R. Indeed, for every 0 < x < 1 we have
3 ·S(x,y) ⊂ G, so only the square S(0,f(0)) contains points with abscissa 0, and
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only the square S(1,f(1)) contains points with abscissa 1. Moreover, since R is
finite,

sup{x ∈ I | (x, y) ∈
⋃

(R\{R(1,f(1))})} < 1.

Let

C = {x ∈ I | (∃R ∈ R) ((x, g(x)) ∈ R and (∃x1 ≤ x) (x1, f(x1)) ∈ E ∩ R)},

let s = supC. Because R(0,f(0)) ∩ f ⊂ E and (0, g(0)) ∈ R(0,f(0)), C �= ∅ and
s is well defined. Since R(1,f(1)) ∩ f ⊂ N , 0 < s < 1.

R is finite and g is continuous, so there exists R(a,b) ∈ R such that
(s, g(s)) ∈ cl(R(a,b)) and there exists x1 ≤ s such that (x1, f(x1)) ∈ E∩R(a,b).

There exists also an open set R(c,d) ∈ R such that (s, g(s)) ∈ R(c,d).
Then (s, g(s)) ∈ cl(R(a,b))∩R(c,d), so R(a,b)∩R(c,d) �= ∅. Note that R(a,b)∪

R(c,d) ⊂ 3 · S(p,q), for S(p,q) being this square from S(a,b) and S(c,d) which
has greater diameter. Therefore we can connect every two points α, β of
R(a,b) ∪ R(c,d) by the line segment α → β whole contained in 3 · S(p,q) ⊂ G.

In R(c,d) we can find x2 > s such that (x2, f(x2)) ∈ N . Indeed, suppose

R(c,d) ∩ ((s, 1] × R) ∩ f ⊂ E. (�)

R(c,d) is open and g is continuous, so there exists t > s such that (t, g(t)) ∈
R(c,d). We have two cases:

1. If t ≤ c, then s < c, and from (�) we have R(c,d) ∩ ((s, c) × R) ∩ f ⊂ E.
From (A) we have R(c,d) ∩ ([0, c)×R)∩ f ⊂ E and (∃w ≤ t) (w, f(w)) ∈
E ∩ R(c,d). But now t ∈ C, supC ≥ t > s, a contradiction.

2. If t > c, then from (�) and (B) we have R(c,d) ∩ ((c, 1] × R) ∩ f ⊂ E
and (∃w ≤ t) (w, f(w)) ∈ E ∩ R(c,d). Now t ∈ C, supC ≥ t > s, a
contradiction.

Now we have x1 < x2, (x1, f(x1)) ∈ E ∩R(a,b), (x2, f(x2)) ∈ N ∩R(c,d), so
we can extend the polygonal function hx1 ∈ Hx1 , hx1 ⊂ G via the line segment
(x1, f(x1)) → (x2, f(x2)) contained in 3 · S(p,q) ⊂ G to a polygonal function
hx2 ∈ Hx2 , hx2 ⊂ G. Thus we have (x2, f(x2)) belongs to E rather than N .
This is a contradiction.

The following corollary gives a full answer to the question from [ACP].

Corollary 1. Given any ε > 0 and any open neighbourhood G of an almost
continuous function f , there exists a polygonal function h with the length of
the longest line segment less than ε, such that h ⊂ G and all vertices of h
belong to f .
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Proof. It is easy to modify previous proof, such that the length of every line
segment of polygonal function h ⊂ G will be less than ε.
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