
ON FUNCTIONS WHOSE GRAPH IS A HAMEL BASIS

KRZYSZTOF P LOTKA

Abstract. We say that a function h : R→ R is a Hamel function (h ∈ HF) if

h, considered as a subset of R2, is a Hamel basis for R2. We prove that every
function from R into R can be represented as a pointwise sum of two Hamel

functions. The latter is equivalent to the statement: for all f1, f2 ∈ RR there

is a g ∈ RR such that g + f1, g + f2 ∈ HF. We show that this fails for infinitely
many functions.

1. Introduction

The terminology is standard and follows [2]. The symbols R and Q stand for
the sets of all real and all rational numbers, respectively. A basis of Rn as a linear
space over Q is called Hamel basis. For Y ⊂ Rn, the symbol LinQ(Y ) stands for
the smallest linear subspace of Rn over Q that contains Y . The zero element of
Rn is denoted by 0. The cardinality of a set X we denote by |X|. In particular, c
stands for |R|. Given a cardinal κ, we let cf(κ) denote the cofinality of κ. We say
that a cardinal κ is regular if cf(κ) = κ. For any set X, the symbol [X]<κ denotes
the set {Z ⊆ X : |Z| < κ}. For A,B ⊆ Rn, A + B stands for {a + b : a ∈ A, b ∈ B}.

We consider only real-valued functions. No distinction is made between a func-
tion and its graph. For any two partial real functions f, g we write f + g, f − g
for the sum and difference functions defined on dom(f) ∩ dom(g). The class of
all functions from a set X into a set Y is denoted by Y X . We write f |A for the
restriction of f ∈ Y X to the set A ⊆ X. For B ⊆ Rn its characteristic function is
denoted by χ

B . For any function g ∈ RX and any family of functions F ⊆ RX we
define g + F = {g + f : f ∈ F}. For any planar set P , we denote its x-projection
by dom(P ).

The cardinal function A(F), for F  RX , is defined as the smallest cardinality
of a family G ⊆ RX for which there is no g ∈ RX such that g + G ⊆ F. It was
investigated for many different classes of real functions, see e.g. [4, 5, 10]. Recall
here that A(F) ≥ 3 is equivalent to F− F = RX (see [12, Proposition 1].)

One of the very important concepts in Real Analysis is additivity . It dates back
to the early 19th century when the following functional equation was considered
for the first time

f(x + y) = f(x) + f(y) for all x, y ∈ R.

An obvious solution to this equation is a linear function, that is, a function defined
by f(x) = ax for all x ∈ R, where a is some constant. The fact that the linear
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functions are the only continuous solutions, was first proved by A. L. Cauchy [1].
Because of this, the above equation is known as Cauchy’s Functional Equation.
The problem of the existence of a discontinuous solutions of the Cauchy equation
was solved by G. Hamel in 1905 [6] who constructed a discontinuous function which
satisfies the desired equation. To construct an example of such a function observe
first that f ∈ RR satisfies the Cauchy equation if and only if it is linear over Q,
i.e., for all p, q ∈ Q and x, y ∈ R we have f(px + qy) = pf(x) + qf(y). So to define
an additive function it is enough to define it on a Hamel basis. Thus, if H ⊆ R
is a Hamel basis and f identically equals 1 on H then clearly f is not continuous.
The family of all solutions of Cauchy’s Functional Equation is called the family
of additive functions and we denote it by AD. For the class of additive functions
defined on Rn we use the symbol AD(Rn).

It is obvious that not all functions are additive. But one could wonder how
“badly” the additive condition can be violated. In particular, does there exist a
function f for which the condition f(x + y) = f(x) + f(y) fails for all x and y?
It turns out that the answer is positive. We give two examples of families of such
functions. In Section 2 we define and discuss a class of functions whose graph is
a linearly independent set over Q. Then, in Section 3, we investigate a proper
subfamily of this class: functions whose graph is a Hamel basis. In this section we
state and prove the main result of this paper (Theorem 3.4) which says that every
real function is the pointwise sum of two Hamel functions.

2. Functions with linearly independent graphs

Definition 2.1. We say that a function f : Rn → R is linearly independent over
Q (shortly: linearly independent) if f is linearly independent subset of the space
〈Rn+1;Q; +; ·〉.

The symbol LIF(Rn) stands for the family of all linearly independent functions.
In the case when n = 1, we simply write LIF. An easy example shows that the
family LIF(Rn) is non-empty for all n ≥ 1.

Example 2.2. Every injection from Rn into a linearly independent set H ⊆ R is
linearly independent over Q.

Proof. Let f : Rn → H be an injection. Assume that for some p1, . . . , pn ∈
Q and pairwise different x1, . . . , xn ∈ Rn we have

∑n
1 pi〈xi, f(xi)〉 = 0. Since

f(x1), . . . , f(xn) ∈ H are all different and H is linearly independent over Q, we
conclude that p1 = · · · = pn = 0.

As mentioned in the introductory part of this paper, the linearly independent
functions lack the additive property. Thus, AD(Rn) ∩ LIF(Rn) = ∅.

Below we give some basic properties of the class LIF(Rn). Note that Fact 2.3 (i)
has its counterpart in the case of continuous and Sierpiński-Zygmund functions (for
the definition see [12].)

Fact 2.3.
(i): LIF(Rn) + AD(Rn) = LIF(Rn).
(ii): If f ∈ LIF(Rn) then |f [Rn]| = c.
(iii): If f : Rn → R is continuous on a non-empty open set then f /∈ LIF(Rn).
(iv): There exists an f ∈ LIF(Rn) which is the union of countably many

partial continuous functions.



ON FUNCTIONS WHOSE GRAPH IS A HAMEL BASIS 3

(v): A(LIF(Rn)) = c.

Proof. (i) Let f ∈ LIF(Rn) and g ∈ AD(Rn). Fix x1, . . . , xk ∈ Rn and q1, . . . qk ∈
Q. Now suppose that

∑k
1 qi〈xi, f(xi)+g(xi)〉 = 0. Thus, in particular,

∑k
1 qixi = 0.

Since g is additive we have
∑k

1 qig(xi) = 0. Consequently,
∑k

1 qi〈xi, f(xi)〉 = 0.
The linear independence of f implies that q1 = · · · = qk = 0. So f + g ∈ LIF(Rn).

(ii) Notice that it suffices to prove part (ii) for n = 1. Assume, by the way
of contradiction, that f ∈ LIF and |f [R]| = κ < c. We claim that there exist
x1, x2 ∈ R with the following properties:

x1 6= x2, f(x1) = f(x2), and f(−x1) = f(−x2).

To see the claim choose y0 ∈ R such that |f−1(y0)∩ (0,∞)| ≥ κ+. Such an element
exists because (0,∞) ⊆

⋃
y∈R f−1(y) and |f [R]| = κ < c. Since y0 satisfies the

condition |f [−f−1(y0)]| ≤ κ < κ+ ≤ | − f−1(y0)|, there exist different x1, x2 ∈
f−1(y0)∩ (0,∞) satisfying the equality f(−x1) = f(−x2). Note that x1 and x2 are
the required points. Next observe that

〈x1, f(x1)〉+ 〈 − x1, f(−x1)〉 = 〈x2, f(x2)〉+ 〈 − x2, f(−x2)〉.

This leads to a contradiction with f ∈ LIF.
(iii) Like in part (ii), it is enough to prove the case n = 1. Let (a−h, a+h) ⊆ R

be a non-empty open interval such that f |(a − h, a + h) is continuous. Consider
a function g : [0, h) → R defined by g(x) = f(a − x) + f(a + x). Obviously, g is
also continuous. If g(x) = g(0) = 2f(a) for all x ∈ [0, h) then f is not linearly
independent. Hence we may suppose that there exist two different x1, x2 ∈ (0, h)
such that g(x1) = 2f(a) + p1 and g(x2) = 2f(a) + p2 for some non-zero rationals
p1, p2. Then we have

(2.1) p2〈2a, g(x1)〉 − p1〈2a, g(x2)〉 ∈ LinQ(〈2a, 2f(a)〉) = LinQ(〈a, f(a)〉).
Now, recall the definition of g and note 〈a−xi, f(a−xi)〉+ 〈a+xi, f(a+xi)〉 =

〈2a, g(xi)〉 for i = 1, 2. Based on (2.1), we see that f is not linearly independent.
(iv) Let us first recall that Rn can be decomposed into (n + 1) 0-dimensional

spaces E0, . . . , En. For every perfect set Q ⊆ R and 0-dimensional space E there
exists an embedding hE

Q : E → Q. (See e.g., [7].) It is also known that there exists
a perfect set P ⊆ R which is linearly independent over Q. (See e.g., [8].) Now,
if P = P0 ∪ P1 ∪ · · · ∪ Pn is a partition of P into (n + 1) perfect sets then, by
Example 2.2, hEi

Pi
: Ei → Pi (i = 0, . . . , n) is a linearly independent subset of Rn+1.

It is easy to see that h =
⋃n

0 hEi

Pi
: Rn → P is one-to-one. So, again by Example 2.2,

h is linearly independent. Obviously, h is the union of countably many partial
continuous functions.

(v) We start with showing that A(LIF(Rn)) ≥ c. Let Rn = {xξ : ξ < c}. Fix
an F ⊆ RRn

of cardinality less than continuum. We will define, by induction, a
function h : Rn → R such that for every f ∈ F , h + f is one-to-one and (h + f)[Rn]
is linearly independent. Then, by Example 2.2, h + F ⊆ LIF(Rn).

Let α < c. Assume that h is defined on {xξ : ξ < α}, for all f ∈ F the function
h+f is one-to-one, and (h+f)[{xξ : ξ < α}] is linearly independent. We will define
h(xα). Choose

h(xα) ∈ R \ LinQ

 ⋃
f∈F

((h + f)[{xξ : ξ < α}] ∪ {f(xα)})

 .
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This choice is possible since∣∣∣⋃f∈F ((h + f)[{xξ : ξ < α}] ∪ {f(xα)})
∣∣∣ ≤ (α + 1)|F | < c.

It is easy to see that all the required properties of h are preserved. This ends the
proof of A(LIF(Rn)) ≥ c.

To see the opposite inequality consider F consisting of all constant functions.
Then for any function h : Rn → R there is an f ∈ F such that h(0) + f(0) = 0.
Therefore h + f /∈ LIF(Rn).

3. Hamel functions

In this section we confine ourselves to a proper subclass of linearly independent
functions. More precisely, we consider the class of Hamel functions. We say that
a function f : Rn → R is a Hamel function (f ∈ HF(Rn) or f ∈ HF for n = 1) if
f , considered as a subset of Rn+1, is a Hamel basis for Rn+1. Clearly, HF(Rn) ⊆
LIF(Rn). A little more challenging argument, comparing with the case of linearly
independent functions, proves the existence of a Hamel function. We do not present
it here since this observation is a corollary of Theorem 3.4.

Fact 2.3 states some basic properties of the class LIF(Rn). It is interesting
whether the same statements are true for HF(Rn). Since HF(Rn) ⊆ LIF(Rn), the
properties (ii) and (iii) hold trivially. A short additional argument shows that (i)
is also true. So we can state

Fact 3.1.
(i): HF(Rn) + AD(Rn) = HF(Rn).
(ii): If f ∈ HF(Rn) then |f [Rn]| = c.
(iii): If f : Rn → R is continuous on a non-empty open set then f /∈ HF(Rn).

However, it remains an open problem whether Fact 2.3 (iv) still holds when
LIF(Rn) is replaced by HF(Rn).

Problem 3.2. Does there exist an h ∈ HF(Rn) which is the union of countably
many partial continuous functions?

But it turns out that the statement of the last part of Fact 2.3 is false for the
class HF(Rn).

Fact 3.3. A(HF(Rn)) ≤ ω for every n ≥ 1.

Proof. For each q ∈ Q and each open ball B with rational center and radius
(rational ball), let us define a function fB

q : Rn → R by fB
q = qχB . We claim that

for every function f : Rn → R there exist a q ∈ Q and a rational ball B such that
f + fB

q /∈ HF(Rn). To see this, first note that we may assume that f = f + fB
0 ∈

HF(Rn). Thus, 〈0, 1〉 ∈ LinQ(f). Consequently, there exist x1, . . . , xk ∈ Rn and
p1, . . . , pk ∈ Q satisfying

∑k
i=1 pi〈xi, f(xi)〉 = 〈0, 1〉.

Without loss of generality we may assume that p1 6= 0. Now let q = −1
p1

and B

be a rational ball containing x1 but not x2, . . . , xk. It follows easily that f + fB
q is

not linearly independent over Q. Indeed,
k∑

i=1

pi〈xi, f(xi)+fB
q (xi)〉 =

k∑
i=1

pi〈xi, f(xi)〉+
k∑

i=1

pi〈0, fB
q (xi)〉 = 〈0, 1〉+p1〈0, q〉 = 0.
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Notice here that A(LIF) = c (Fact 2.3 (v)) implies, in particular, that every
function from RR can be written as the algebraic sum of two linearly independent
functions. In other words LIF + LIF = RR. Since we only found the upper bound
for A(HF), it would be very interesting to determine whether HF + HF = RR. The
answer to the latter is given in the main result of this paper - Theorem 3.4.

Theorem 3.4.. Every real function f : Rn → R can be represented as a sum of
two Hamel functions. In other words, RRn

= HF(Rn) + HF(Rn).

Theorem 3.4 and Fact 3.3 give us the bounds for A(HF(Rn)). Namely, 3 ≤
A(HF(Rn)) ≤ ω. It is not known whether the techniques used in the proofs of
these two results could also be used to determine A(HF(Rn)) exactly. We state the
next open problem.

Problem 3.5. A(HF(Rn)) = ω?

Before proving the theorem we introduce some definitions and show auxiliary
results. For f : Rn → R, x ∈ Rn, and 1 ≤ k < ω let

LC(f, k, x) =

{
k∑
1

pif(xi) : pj ∈ Q, xj ∈ Rn (j = 1, . . . , k),
k∑
1

pixi = x

}
.

When x = 0 we write LC(f, k). We also use LC(f) to denote
⋃

1≤k<ω LC(f, k).
Observe that LC(f) is a linear subspace of R over Q, i.e., LC(f) = LinQ(LC(f)).
This is so because LC(f) is linearly isomorphic to LinQ(f) ∩ ({0} × R).

The sets LC(f) will play an important role in the proof of Theorem 3.4. Hence,
we will investigate properties of these sets.

Property 3.6. LC(f, k) ⊆ LC(f, 3)+LC(f, k−1) for every f ∈ RRn

and 3 ≤ k < ω.

Proof. Let y ∈ LC(f, k). So y =
∑k

1 pif(xi) for some x1, . . . , xk ∈ Rn and
p1, . . . , pk ∈ Q satisfying

∑k
1 pixi = 0. Define x′ = p1x1 + p2x2, q = 1, and r = −1.

Observe that

p1x1 + p2x2 + rx′ = qx′ + p3x3 + · · ·+ pnxk = 0.

Hence, p1f(x1) + p2f(x2) + rf(x′) ∈ LC(f, 3) and qf(x′) + p3f(x3) + · · · +
pnf(xk) ∈ LC(f, k− 1). Since y = p1f(x1) + p2f(x2) + rf(x′) + qf(x′) + p3f(x3) +
· · ·+ pnf(xk) we conclude that y ∈ LC(f, 3) + LC(f, k − 1).

Notice that Property 3.6 implies that

(3.1) if |LC(f)| = c then m0 = min{k ≥ 1: |LC(f, k)| = c} ≤ 3.

Next we show another property which is important for the proof of Theorem 3.4.
Note that if c is regular (i.e., cf(c) = c), then the set Z from part (a) can be taken
as a singleton.

Property 3.7. Assume that |LC(f)| = c. Then at least one of the following two
cases hold.

(a): There exists a set Z ∈ [Rn]<c such that
∣∣⋃

z∈Z LC(f, 2, z)
∣∣ = c.

(b): For all X ∈ [Rn]<c, Y ∈ [R]<c there exist q1, q2, q3 ∈ Q\{0} and pairwise
linearly independent x1, x2, x3 ∈ Rn such that

∑3
1 qif(xi) /∈ Y ,

∑3
1 qixi =

0, and LinQ(x1, x2, x3) ∩ LinQ(X) = {0}.
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Proof. Notice first that if |LC(f, 2)| = c then case (a) holds with Z = {0}. Hence,
using (3.1), we may assume that

(3.2) |LC(f, 2)| < c and |LC(f, 3)| = c.

Based on the above assumption and the definition of the set LC(f, 3), we conclude
that there exist continuum many triples 〈x1, x2, x3〉 ∈ (Rn)3 and 〈p1, p2, p3〉 ∈
(Q \ {0})3 such that

∑3
1 pixi = 0 and

∑3
1 pif(xi) are all different. Thus, an easy

cardinal argument implies the existence of a sequence 〈〈xξ
1, x

ξ
2, x

ξ
3〉 ∈ (Rn)3 : ξ < c〉

and some non-zero rationals q1, q2, q3 with the property that q1x
ξ
1 +q2x

ξ
2 +q3x

ξ
3 = 0

for every ξ < c, and all q1f(xξ
1) + q2f(xξ

2) + q3f(xξ
3) are different.

Notice that, if dim(LinQ(xξ
1, x

ξ
2, x

ξ
3)) = 1 for some ξ then LinQ(xξ

1, x
ξ
2, x

ξ
3) =

LinQ(xξ
i ) for some i ∈ {1, 2, 3}. Say i=1. So there is an s ∈ Q such that sq1x

ξ
1 +

q2x
ξ
2 = 0. Combining this with the equality q1x

ξ
1 + q2x

ξ
2 + q3x

ξ
3 = 0 we obtain that

sq1x
ξ
1 + q2x

ξ
2 = (1− s)q1x

ξ
1 + q3x

ξ
3 = 0. Consequently,

[sq1f(xξ
1) + q2f(xξ

2)], [(1− s)q1f(xξ
1) + q3f(xξ

3)] ∈ LC(f, 2)
and

q1f(xξ
1) + q2f(xξ

2) + q3f(xξ
3) =

sq1f(xξ
1) + q2f(xξ

2) + (1− s)q1f(xξ
1) + q3f(xξ

3) ∈ LC(f, 2) + LC(f, 2).

So, if dim(LinQ(xξ
1, x

ξ
2, x

ξ
3)) = 1 for continuum many ξ then |LC(f, 2)| = c. This

contradicts (3.2). Thus, we may assume that dim(LinQ(xξ
1, x

ξ
2, x

ξ
3)) = 2 for all ξ < c.

Now choose X ∈ [Rn]<c and Y ∈ [R]<c. Notice that

(•) if LinQ(xξ
1, x

ξ
2, x

ξ
3) ∩ LinQ(X) 6= {0} and Z = LinQ(X) then

q1f(xξ
1) + q2f(xξ

2) + q3f(xξ
3) ∈

⋃
z∈Z

LC(f, 2, z) +
⋃
z∈Z

LC(f, 2, z).

Indeed, if LinQ(xξ
1, x

ξ
2, x

ξ
3) ∩LinQ(X) 6= {0} then there exist a, b, c ∈ Q such

that axξ
1 + bxξ

2 + cxξ
3 ∈ LinQ(X) \ {0}. At least one of the numbers a, b, c is not

equal to zero because axξ
1 + bxξ

2 + cxξ
3 6= 0. Without loss of generality we may

suppose that c 6= 0 and consequently c = q3 (multiply the above equation by q3
c .)

Then, by subtracting axξ
1 + bxξ

2 + q3x
ξ
3 from q1x

ξ
1 + q2x

ξ
2 + q3x

ξ
3 = 0, we obtain

that (q1 − a)xξ
1 + (q2 − b)xξ

2 ∈ LinQ(X) \ {0}. So at least one of (q1 − a), (q2 − b)
is not 0. We may assume that (q2 − b) 6= 0. (If (q1 − b) 6= 0 then the following
argument works analogously.) Now multiply (q1 − a)xξ

1 + (q2 − b)xξ
2 by q2

q2−b . We

get that rq1x
ξ
1 + q2x

ξ
2 ∈ LinQ(X) and consequently (1 − r)q1x

ξ
1 + q3x

ξ
3 = [q1x

ξ
1 +

q2x
ξ
2 + q3x

ξ
3]− [rq1x

ξ
1 + q2x

ξ
2] = −[rq1x

ξ
1 + q2x

ξ
2] ∈ LinQ(X), for some r ∈ Q. Hence

[rq1f(xξ
1) + q2f(xξ

2)], [(1− r)q1f(xξ
1) + q3f(xξ

3)] ∈
⋃
z∈Z

LC(f, 2, z).

Now the claim (•) follows from

q1f(xξ
1) + q2f(xξ

2) + q3f(xξ
3) = rq1f(xξ

1) + q2f(xξ
2) + (1− r)q1f(xξ

1) + q3f(xξ
3)

∈
⋃
z∈Z

LC(f, 2, z) +
⋃
z∈Z

LC(f, 2, z).
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From (•) we see that if LinQ(xξ
1, x

ξ
2, x

ξ
3) ∩ LinQ(X) 6= {0} holds for c-many ξ then

the set Z satisfies the condition |
⋃

z∈Z LC(f, 2, z)| = c. Obviously Z ∈ [Rn]<c.
Thus, case (a) holds.

Summarizing the above discussion, we just need to consider a situation when
dim(LinQ(xξ

1, x
ξ
2, x

ξ
3)) = 2 and LinQ(xξ

1, x
ξ
2, x

ξ
3) ∩ LinQ(X) = {0} for all ξ. Recall

that q1x
ξ
1 + q2x

ξ
2 + q3x

ξ
3 = 0, where q1, q2, q3 ∈ Q \ {0}. If two of xξ

1, x
ξ
2, x

ξ
3 were

dependent over Q then we would have dim(LinQ(xξ
1, x

ξ
2, x

ξ
3)) ≤ 1. Thus, xξ

1, x
ξ
2, x

ξ
3

are pairwise independent. Now it is easy to see that case (b) holds.

Lemma 3.8. Let X ∈ [Rn]<c, x /∈ X, and y ∈ R. Suppose also that h, g : X → R
are functions linearly independent over Q. Then there exist extensions h′, g′ of
h and g onto X ∪ {x} such that h′ and g′ are linearly independent over Q and
h′(x) + g′(x) = y.

Proof. Choose h′(x) ∈ R \ LinQ(h[X] ∪ g[X] ∪ {y}). This choice is possible since
|LinQ(h[X] ∪ g[X] ∪ {y})| < c. Then define g′(x) = y − h′(x). It is easy to see that
h′ = h ∪ {〈x, h′(x)〉} and g′ = g ∪ {〈x, g′(x)〉} are the desired extensions.

Proof of Theorem 3.4. Let us start with fixing a function f : Rn → R and
enumerations {xξ : ξ < c}, {vξ : ξ < c} of Rn and {0}×R ⊆ Rn+1, respectively. We
will construct functions h, g : Rn → R which are linearly independent over Q and
satisfy the property that h + g = f and {0} × R ⊆ LinQ(h) ∩ LinQ(g).

First, let us argue that this is enough to prove the theorem. What we have to
show is that LinQ(h) = LinQ(g) = Rn+1. To see LinQ(h) = Rn+1 note that

∀x ∈ Rn ∀z ∈ R 〈x, z〉 = 〈x, h(x)〉+ 〈0, z − h(x)〉 ∈ LinQ(h) + LinQ(h) = LinQ(h).

By the same argument LinQ(g) = Rn+1.
To construct the desired functions h and g, we consider three cases. In the first

case we assume that |LC(f)| < c. If the latter fails, that is |LC(f)| = c, then either
part (a) (Case 2) or part (b) (Case 3) of Property 3.7 holds.

Case 1: |LC(f)| < c.
Let κ < c denote the cardinality of the basis of LC(f) over Q. There exist

c ∈ LC(f) and a linearly independent set A ⊆ Rn such that |A| = κ and f(−a) +
f(a) ≡ c = const for all a ∈ A. Such a set can be found since |LC(f)| < c and
f(x) + f(−x) ∈ LC(f) for every x ∈ Rn. Put B = (−A) ∪A.

First, we will construct functions h, g : B → R linearly independent over Q for
which h + g ⊆ f and

(3.3) {0} × LC(f) ⊆ LinQ(h) ∩ ({0} × R) = LinQ(g) ∩ ({0} × R).

To accomplish this let us fix enumerations {aξ : ξ < κ} of A and {mξ : ξ < κ}
of a linear basis of LC(f) over Q. We may assume that m0 = c if c 6= 0. The
construction of h and g is by induction. At every step α < κ we will define h and
g on {−aα, aα}, assuring that

(a): h|Aα, g|Aα are linearly independent and (h + g)|Aα ⊆ f ,
(b): 〈0,mα〉 ∈ LinQ(h|Aα) ∩ ({0} × R) = LinQ(g|Aα) ∩ ({0} × R),

where Aα = {iaξ : ξ ≤ α, i = −1, 1}.
For α = 0 and x = ±a0 put h(x) = 1

4m0 and g(x) = f(x) − h(x). Observe
that g(−a0) + g(a0) = [f(−a0) + f(a0)]− [h(−a0) + h(a0)] ∈ {− 1

2m0,
1
2m0}. This
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holds because f(−a0) + f(a0) = c and m0 = c if c 6= 0. Thus 〈0, c〉, 〈0,m0〉 ∈
LinQ(h|A0) ∩ LinQ(g|A0). It is easily seen that h|A0 and g|A0 satisfy (a) and (b).

Now suppose that h and g are defined on A<α =
⋃

ξ<α Aξ, α < κ, and they
satisfy the conditions (a) and (b) for all ξ < α. We will extend h and g onto Aα

preserving the desired properties.
We may assume that 〈0,mα〉 6∈ LinQ(h|A<α)∪LinQ(g|A<α). (Otherwise we could

extend h and g using Lemma 3.8 preserving the condition (a).) Put h(x) = 1
2mα

and g(x) = f(x)− h(x) for x ∈ {−aα, aα}. We claim that (a) and (b) are satisfied.
Obviously, (h + g)|Aα ⊆ f . To see the linear independence of h|Aα and g|Aα

first note that, based on the inductive assumption, h|A<α and g|A<α are linearly
independent. Next suppose that

p〈 − aα, h(−aα)〉+ q〈aα, h(aα)〉 = v for some p, q ∈ Q and v ∈ LinQ(h|A<α).

Since aα /∈ LinQ(A<α) we conclude that p = q. Therefore we have

p〈 − aα, h(−aα)〉+ q〈aα, h(aα)〉 = p〈0, h(−aα) + h(aα)〉 = p〈0,mα〉 = v.

But we assumed that 〈0,mα〉 6∈ LinQ(h|A<α) ∪ LinQ(g|A<α), so p = 0 and v = 0.
This shows linear independence of h|Aα. Very similar argument works for g|Aα:
just notice that g(−aα) + g(aα) = [f(−aα) + f(aα)]− [h(−aα) + h(aα)] = c−mα

and recall that 〈0, c〉 ∈ LinQ(g|A0) ⊆ LinQ(g|A<α).
Now we show that (b) is also satisfied. From what has already been proved, we

conclude that 〈0,mα〉 ∈ LinQ(h|Aα) ∪ LinQ(g|Aα).
Thus, what remains to prove is the equality part of (b). (The following argument

is also needed in the case when Lemma 3.8 was used to define h and g on {−aα, aα}.)
It follows from the fact that 〈0, y〉 ∈ LinQ(h|Aα) provided there exist pi ∈ Q and
ai ∈ Aα, i ≤ n such that

〈0, y〉 =
m∑
1

pi[〈 − ai, h(−ai)〉+ 〈ai, h(ai)〉]

=
m∑
1

pi〈0, h(−ai) + h(ai)〉

=
m∑
1

pi〈0, f(−ai) + f(ai)〉 − pi〈0, g(−ai) + g(ai)〉

=
m∑
1

pi〈0, c〉 −
m∑
1

pi[〈 − ai, g(−ai)〉+ 〈ai, g(ai)〉]

∈ LinQ(g|Aα).

This completes the inductive definition of h and g. Note that (3.3) implies that
any extensions h′, g′ of h and g, with h′ + g′ ⊆ f , satisfy also

(3.4) {0} × LC(f) ⊆ LinQ(h′) ∩ ({0} × R) = LinQ(g′) ∩ ({0} × R).

To see this choose 〈0, y〉 ∈ LinQ(h′) ∩ ({0} × R). So for some pi ∈ Q and xi ∈
Rn we have 〈0, y〉 =

∑m
1 pi〈xi, h

′(xi)〉 =
∑m

1 pi〈xi, f(xi)〉 −
∑m

1 pi〈xi, g
′(xi)〉 ∈

LinQ(g′) ∩ ({0} × R). The latter holds because
∑m

1 pixi = 0 and consequently∑m
1 pif(xi) ∈ LC(f). This ends the proof of (3.4).
Next we extend h and g onto Rn = {xξ : ξ < c}, preserving the linear indepen-

dence and the property that at a step ξ of the inductive definition we assure that
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xξ ∈ dom(hξ) = dom(gξ) and vξ ∈ LinQ(hξ) ∩ LinQ(gξ), where hξ and gξ denote
the extensions obtained in the step ξ.

Let β < c. Assume that vβ /∈ LinQ(
⋃

ξ<β hξ) ∪ LinQ(
⋃

ξ<β gξ). Choose an
a ∈ R \ LinQ(dom(

⋃
ξ<β hξ)) and define h(x) by 〈0, h(x)〉 = 1

2vβ for x ∈ {−a, a}.
Put also g(x) = f(x) − h(x). Since f(−a) + f(a) ∈ LC(f), (3.3) implies that
vβ ∈ LinQ(h) ∩ LinQ(g). What remains to show is that h and g are still linearly
independent. But this follows from (3.4) and almost the same argument which is
used to show linear independence of h|Aα and g|Aα in the previous part of the
proof. (Replace aα, h|A<α, and g|A<α by a,

⋃
ξ<β hξ, and

⋃
ξ<β gξ, respectively.)

To finish the step β of the inductive definition we need to make sure that h and
g are defined at xβ . If xβ /∈ dom(h) = dom(g) then we can use Lemma 3.8 to
define these functions at xβ , preserving all the required properties. This ends the
construction in Case 1.
Case 2: Property 3.7 (a) holds.

Let Z ∈ [Rn]<c be a set satisfying
∣∣⋃

z∈Z LC(f, 2, z)
∣∣ = c. We start with defining

functions h, g : Z → R which are linearly independent over Q and whose sum is
contained in f (i.e., h + g ⊆ f .) It can be easily done by using Lemma 3.8.

We will extend h and g onto Rn by induction. Let β < c. Assume that h and
g are linearly independent, h + g ⊆ f , {xξ : ξ < β} ⊆ Dβ = dom(h) = dom(g),
{vξ : ξ < β} ⊆ LinQ(h) ∩ LinQ(g), and vβ /∈ LinQ(h). The property of the set Z
implies the existence of a z ∈ Z satisfying |LC(f, 2, z)| > max(|h|, ω) = max(|g|, ω).
Thus, an easy cardinal argument shows that we can find z1, z2 ∈ Rn \ LinQ(Dβ)
and p1, p2 ∈ Q \ {0} which satisfy

(3.5) p1z1 + p2z2 = z and 〈z, p1f(z1) + p2f(z2)〉 /∈ LinQ(g ∪ {〈0, h(z)〉, vβ}).
Define the values of h at z1 and z2 so that

p1〈z1, h(z1)〉+ p2〈z2, h(z2)〉 = 〈z, p1h(z1) + p2h(z2)〉 = vβ + 〈z, h(z)〉.
Observe that vβ = [vβ + 〈z, h(z)〉]− 〈z, h(z)〉 ∈ LinQ(h).

Now we argue that h and g are linearly independent. To see linear independence
of h suppose that for some q, r ∈ Q (not both equal 0) we have

q〈z1, h(z1)〉+ r〈z2, h(z2)〉 = 〈qz1 + rz2, qh(z1) + rh(z2)〉 ∈ LinQ(h|Dβ).

Since z1, z2 /∈ LinQ(Dβ) and p1z1 + p2z2 = z ∈ Z ⊆ LinQ(Dβ) we conclude that
〈q, r〉 and 〈p1, p2〉 are linearly dependent. So we may assume that 〈q, r〉 = 〈p1, p2〉.
Consequently, vβ+〈z, h(z)〉 = 〈z, p1h(z1)+p2h(z2)〉 ∈ LinQ(h|Dβ). This contradicts
the assumption vβ /∈ LinQ(h|Dβ). Hence, h is linearly independent.

Based on the above argument, we see that linear independence of g will follow
from 〈z, p1g(z1) + p2g(z2)〉 /∈ LinQ(g|Dβ). But this holds since (3.5) implies

〈z, p1g(z1) + p2g(z2)〉 =
〈z, p1f(z1) + p2f(z2)− [p1h(z1) + p2h(z2)]〉 =

〈z, p1f(z1) + p2f(z2)〉 − 〈0, h(z)〉 − vβ /∈ LinQ(g|Dβ).

To assure that vβ ∈ LinQ(g) we repeat the same procedure as above for the function
g. Finally, if xβ /∈ dom(h) = dom(g) then we use Lemma 3.8 to define the functions
at xβ . This ends the construction in Case 2.
Case 3: Property 3.7 (b) holds.
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The inductive construction of functions h and g is somewhat similar to the one
from the previous case. So assume that β < c and the construction has been
carried out for all ξ < β. If vβ /∈ LinQ(h) then let X = dom(h) = dom(g) and
Y ∈ [R]<c be such a set that LinQ(g ∪ {vβ}) ⊆ Rn × Y . By Property 3.7 (b),
there exist p1, p2, p3 ∈ Q \ {0} and pairwise independent x1, x2, x3 ∈ Rn such that∑3

1 pixi = 0, LinQ(x1, x2, x3) ∩ LinQ(X) = {0}, and
∑3

1 pif(xi) /∈ Y .
We extend h and g onto {x1, x2, x3}. Choose h(x1), h(x2), h(x3) ∈ R in such a

way that
3∑
1

pi〈xi, h(xi)〉 =

〈
0,

3∑
1

pih(xi)

〉
= vβ .

Then put g(xi) = f(xi)− h(xi) for i ≤ 3. Obviously vβ ∈ LinQ(h) and h + g ⊆ f .
We claim that the linear independence of h and g is also preserved.

To show this claim note first that, if
∑3

1 p′ixi ∈ LinQ(X) for some p′1, p
′
2, p

′
3 ∈ Q

then
∑3

1 p′ixi = 0. Pairwise independence of x1, x2, x3 implies that
∑3

1 p′ixi = 0
holds only for triples 〈p′1, p′2, p′3〉 ∈ LinQ(〈p1, p2, p3〉). Thus, our claim holds if∑3

1 pi〈xi, h(xi)〉 /∈ LinQ(h|X) and
∑3

1 pi〈xi, g(xi)〉 /∈ LinQ(g|X). But these two
conditions follow from

•
∑3

1 pi〈xi, h(xi)〉 = vβ /∈ LinQ(h|X) and

•
∑3

1 pi〈xi, g(xi)〉 =
∑3

1 pi〈xi, f(xi)− h(xi)〉 = 〈0,
∑3

1 pif(xi)〉 − vβ /∈ LinQ(g|X)

(“/∈” part holds because LinQ((g|X) ∪ {vβ}) ⊆ Rn × Y and
∑3

1 pif(xi) /∈ Y .)

To assure that vβ ∈ LinQ(g) we repeat the same steps as above for the function
g and then, if necessary, define h and g at xβ using Lemma 3.8. This ends the
construction in Case 3.
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E-mail address: plotkak2@scranton.edu


	1. Introduction
	2. Functions with linearly independent graphs
	3. Hamel functions
	References

