Ideals of compact sets associated with Borel functions

Francis Jordan, Department of Mathematics, Loyola University, New Orleans, La 70118
(fejord@hotmail.com)

Abstract

We investigate the connection between the Borel class of a function f and the Borel complexity of the set $\mathcal{C}(f)=\left\{C \in \mathrm{~J}(X):\left.f\right|_{C}\right.$ is continuous $\}$ where $\mathrm{J}(X)$ denotes the compact subsets of X with the Hausdorff metric. For example, we show that for a function $f: X \rightarrow Y$ between Polish spaces; if $\mathcal{C}(f)$ is $F_{\sigma \delta}$ in $\mathrm{J}(X)$, then f is Borel class one.

1 Introduction

Given a Polish space X let $\mathrm{J}(X)$ denote the collection of nonempty compact subsets of X with the Hausdorff metric. We investigate the connection between the Borel class a function f and the Borel complexity of the set $\mathcal{C}(f)=\{C \in$ $\mathrm{J}(X):\left.f\right|_{C}$ is continuous $\}$. Generally, the set $\mathcal{C}(f)$ is an ideal. One can see the subject of this paper from at least two directions. First, one can see the complexity of $\mathcal{C}(f)$ as a measure of how discontinuous f is, since for f continuous $\mathcal{C}(f)=\mathrm{J}(X)$ which is a very simple set. Secondly, descriptive set theorist have an interest in finding natural examples of objects such as ideals of compact sets which are complex.

2 Preliminaries

Let X be a set. We let $|X|$ denote the cardinality of X. Given a cardinal κ we let $[X]^{<\kappa},[X]^{\leq \kappa}$ and, $[X]^{\kappa}$ denote the subsets of X of cardinality strickly less than κ, less or equal to κ, and equal to κ, respectively. Given a function $f: X \rightarrow Y$ and $A \subseteq X$ we let $\left.f\right|_{A}$ denote the restriction of f to A. Given a product of two sets $X \times Y$ we let π_{X} and π_{Y} denote the usual projections onto X or Y, respectively.

[^0]Suppose X is a Polish space with metric d. For a set $A \subseteq X$ we write $\operatorname{cl}_{X}(A)$, $\operatorname{int}_{X}(A), \operatorname{bd}_{X}(A)$ for the closure, interior, and boundary of A in X, respectively. When it is understood what space we are referring to the subscript will be dropped. Given sets $A, B \subseteq X$ we define $\operatorname{dist}(A, B)=\inf (\{d(x, y): x \in A \& y \in$ $B\}$). Given sets $A, B \subseteq X$ we define the Hausdorff distance between A and B to be $H_{d}(A, B)=\max (\sup (\{\operatorname{dist}(\{x\}, B): x \in A\}), \sup (\{\operatorname{dist}(A,\{y\}): y \in B\}))$. When H_{d} is restricted to the compact subsets of X it is a metric known as the Hausdorff metric. The diameter of a nonempty set $A \subseteq X$ is defined by $\operatorname{diam}(A)=\sup \{d(x, y): x, y \in A\}$, if $A=\emptyset$ we let $\operatorname{diam}(A)=0$. It is known that if X is Polish, then $\mathrm{J}(X)$ is Polish as well [6, 4.25].

By a Cantor set we mean a compact totally disconnected metric space with no isolated points.

Let X be Polish. By $\mathcal{B}(X)$ we denote the Borel subsets of X as defined in [6,11 .A]. For $0<\alpha<\omega_{1}$ let $\Sigma_{\alpha}^{0}(X), \Pi_{\alpha}^{0}(X), \Delta_{\alpha}^{0}(X)$ stand for the subclasses of $\mathcal{B}(X)$ defined as in $[6,11 . \mathrm{B}]$ (e.g., Π_{2}^{0} is G_{δ} and Σ_{2}^{0} is F_{σ}). The analytic subsets of X and the coanalytic subsets of X as defined in [6] will be denoted by $\Sigma_{1}^{1}(X)$ and $\Pi_{1}^{1}(X)$, respectively. A set $A \subseteq X$ is said to be coanalytic hard provided that for any zero-dimensional Polish space Y and coanalytic $B \subseteq Y$ there is a continuous function $f: Y \rightarrow X$ such that $f^{-1}(A)=B$. To say that A is coanalytic hard is essentially saying that A is at least as complex as any coanalytic set. In particular, if A is coanalytic hard, then A is neither Borel nor analytic.

If a function $f: X \rightarrow Y$ has the property that for every open set $U \subseteq Y$ the set $f^{-1}(U) \in \Sigma_{2}^{0}(X)$, then we say f is a Borel class one function. Let \mathcal{B}_{1} denote the Borel class one functions. If a function $f: X \rightarrow Y$ has the property that for every open set $U \subseteq Y$ the set $f^{-1}(U) \in \mathcal{B}(X)$, then we say f is a Borel function. We let \mathcal{B} denote the Borel functions. For a function $f: X \rightarrow Y$ and $S \subseteq X$ we let $\operatorname{osc}(f, S)=\sup \{\operatorname{dist}(f(x), f(y)): x, y \in S\}$. For a function $f: X \rightarrow Y$ we let $D(f)$ denote the set of discontinuity points of f.

We say $f: X \rightarrow Y$ is a discrete limit of a sequence of functions $\left\{f_{n}\right\}_{n \in \omega}$ provided that for every $x \in X$ there is an $n_{x} \in \omega$ such that $f_{k}(x)=f(x)$ for all $k \geq n_{x}$. For more facts about discrete limits see [4].

3 Results

If a function $f: X \rightarrow Y$ has the property that for every $x \in X$ there exist open sets $U \subseteq X$ and $V \subseteq Y$ such that $x \in U, f(x) \in V$, and $\left.f\right|_{\operatorname{cl}\left(f^{-1}(V) \cap U\right)}$ is continuous then we say $f \in \mathrm{~T}_{0}$. If a function $f: X \rightarrow Y$ has the property that for every $x \in X$ there exist open sets $U \subseteq X$ and $V \subseteq Y$ such that $f(x) \in V$, $x \in U$, and $\left.f\right|_{f^{-1}(V) \cap U}$ is continuous, then we say $f \in \mathrm{~T}_{1}$.

We may now state our theorems.
Theorem 1 If X and Y are Polish spaces and $f: X \rightarrow Y$ is a function, then f is continuous if and only if $\mathcal{C}(f) \in \Pi_{2}^{0}(\mathrm{~J}(X))$.

Theorem 2 If X and Y are Polish spaces and $f: X \rightarrow Y$, then the following are equivalent:
(i) $f \in \mathrm{~T}_{0}$
(ii) $\mathcal{C}(f) \in \Sigma_{2}^{0}(\mathrm{~J}(X))$
(iii) there is $a \subseteq$-increasing sequence $\left\{T_{n}\right\}_{n \in \omega}$ of closed subsets of X such that $\mathcal{C}(f)=\bigcup_{n \in \omega} \mathrm{~J}\left(T_{n}\right)$
(iv) $\mathcal{C}(f) \in \Delta_{3}^{0}(\mathrm{~J}(X))$.

Moreover, if $Y=\mathbb{R}$ the conditions (i)-(iv) are equivalent to :
(v) f is open in $\operatorname{cl}(f)$
(vi) f is the discrete limit of continuous functions $\left\{f_{n}\right\}_{n \in \omega}$ such that $\mathcal{C}(f)=$ $\left\{C \in \mathrm{~J}(X):\left\{\left.f_{n}\right|_{C}\right\}_{n \in \omega}\right.$ is eventually constant $\}$.

Theorem 3 If X and Y are Polish spaces and $f: X \rightarrow Y$, then $(i) \Rightarrow(i i) \Rightarrow$ (iii) where :
(i) $\mathcal{C}(f) \in \Pi_{3}^{0}(\mathrm{~J}(X))$
(ii) $f \in \mathcal{B}_{1}$
(iii) $\mathcal{C}(f) \in \Pi_{4}^{0}(\mathrm{~J}(X))$
and none of the implications may be reversed. Moreover, there is a \mathcal{B}_{1} function f such that $\mathcal{C}(f) \notin \Sigma_{4}^{0}(\mathrm{~J}(X))$.

Theorem 4 If X and Y are Polish spaces, and $f: X \rightarrow Y$, then the following are equivalent:
(i) $\mathcal{C}(f) \in \Sigma_{3}^{0}(\mathrm{~J}(X))$
(ii) $f \in \mathrm{~T}_{1}$ and f has G_{δ}-graph.

The following theorem shows the importance of the assumption in Theorem 4 (ii) that f has G_{δ}-graph:

Theorem 5 If X and Y are Polish and $f: X \rightarrow Y$ is Borel, then the following are equivalent:
(i) $\mathcal{C}(f)$ is Borel,
(ii) f has G_{δ} graph, and
(iii) $\mathcal{C}\left(\left.f\right|_{A}\right)$ is coanalytic hard for no $A \in \mathrm{~J}(X)$.

In particular, let g be the characteristic function of the rationals. Clearly, $g \in \mathrm{~T}_{1}$ but does not have G_{δ}-graph, so $\mathcal{C}(g) \notin \Sigma_{3}^{0}(X)$.

We note the following propositions which will be used repeatedly:

Proposition 6 ([6, 23.1]) The set

$$
\left\{\sigma \in 2^{\omega \times \omega}:(\forall m \in \omega)(\exists k \in \omega)(\forall n \geq k)(\sigma(\langle m, n\rangle))=0\right\}
$$

is in $\Pi_{3}^{0}\left(2^{\omega \times \omega}\right) \backslash \Sigma_{3}^{0}\left(2^{\omega \times \omega}\right)$.
We will let H denote the subset of $2^{\omega \times \omega}$ described in Proposition 6 .
Proposition 7 [6, 23.6] The set

$$
\left\{\sigma \in 2^{\omega \times \omega}:(\exists l \in \omega)(\forall m \geq l)(\exists k \in \omega)(\forall n \geq k)(\sigma(\langle m, n\rangle)=0)\right\}
$$

is in $\Sigma_{4}^{0}\left(2^{\omega \times \omega}\right) \backslash \Pi_{4}^{0}\left(2^{\omega \times \omega}\right)$.
We will let I denote the subset of $2^{\omega \times \omega}$ described in Proposition 7 .

4 Proof of Theorem 1

If $f: X \rightarrow Y$ is continuous, then $\mathcal{C}(f)=\mathrm{J}(X) \in \Pi_{2}^{0}(\mathrm{~J}(X))$. Suppose now that $f: X \rightarrow Y$ is not continuous. There exist $x \in X$ and $x_{n} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and no subsequence of $\left\{f\left(x_{n}\right)\right\}_{n \in \omega}$ converges to $f(x)$. Let $A=\left\{x_{n}: n \in \omega\right\} \cup\{x\}$. Notice that $B=\{Y \in \mathrm{~J}(A): x \in Y\}$ is compact in $\mathrm{J}(X)$ and has no isolated points. Clearly, a compact set $K \in \mathcal{C}(f) \cap B$ if and only if K is finite. Since the finite members of B form a countable dense subset of B, we have $B \cap \mathcal{C}(f) \in \Sigma_{2}^{0}(\mathrm{~J}(X)) \backslash \Pi_{2}^{0}(\mathrm{~J}(X))$. Thus, $\mathcal{C}(f) \notin \Pi_{2}^{0}(\mathrm{~J}(X))$.

5 Proof of Theorem 5

We begin with two lemmas the first being a version of the Blumberg Theorem [3] the proof of which is similar to the method used in [1].

Lemma 8 Let X and Y be separable metric spaces with $|X|>1$. If $f: X \rightarrow Y$ has no isolated points, then there is a nonempty set $D \subseteq X$ such that D has no isolated points and $\left.f\right|_{D}$ is continuous.

Proof. Let \mathcal{U} and \mathcal{V} be countable bases for X and Y, respectively. We may assume that both bases are closed under the operation $W_{1} \backslash \operatorname{cl}\left(W_{2}\right)$ where $W_{1}, W_{2} \in \mathcal{U}$ or $W_{1}, W_{2} \in \mathcal{V}$. Let \mathcal{R} denote the rational rectangles, i.e., sets of the form $U \times V$ where $U \in \mathcal{U}$ and $V \in \mathcal{V}$. Let $X_{1} \subseteq X$ be a countable set such that $\left.f\right|_{X_{1}}$ is dense in f. Notice that $\left.f\right|_{X_{1}}$ has no isolated points. Let $A \subseteq X_{1}$ and $|A|>1$. We define the mesh of A to be mesh $(A)=\sup \{\operatorname{dist}(x, A \backslash\{x\}): x \in A\}$. Let P be the collection of all pairs $(A, S) \in\left[X_{1}\right]^{<\omega} \times[\mathcal{R}]^{<\omega}$ such that
(0) $|A|>1$,
(1) $\pi_{X}\left[R_{1}\right] \cap \pi_{X}\left[R_{2}\right]=\emptyset$ for all distinct $R_{1}, R_{2} \in S$, and
(2) $\left.f\right|_{A} \subseteq \cup S$.

We say $\left(A_{1}, S_{1}\right) \leq\left(A_{2}, S_{2}\right)$ provided $A_{2} \subseteq A_{1}$, mesh $\left(A_{1}\right) \leq \operatorname{mesh}\left(A_{2}\right)$, and $\cup S_{1} \subseteq \cup S_{2}$. Now (P, \leq) is a reflexive and transitive ordering.

For each $x \in X_{1}$ and $n>0$, let

$$
E_{n}^{x}=\left\{(A, S) \in P: \text { if }\langle x, f(x)\rangle \in T \in S, \text { then } \operatorname{diam}\left(\pi_{Y}[T]\right)<1 / n\right\}
$$

We show E_{n}^{x} is dense in P. Let $(A, S) \in P$. If $\langle x, f(x)\rangle \notin \cup S$, then $(A, S) \in E_{n}^{x}$ by failure of hypothesis. So we may asume that $\langle x, f(x)\rangle \in T$ for some $T \in S$. Pick $V \in \mathcal{V}$ so that $\operatorname{diam}(V)<1 / n$ and $f(x) \in V$. If $x \in A$, then pick U open such that $\operatorname{cl}(U) \subseteq \pi_{X}(T)$ and $\{x\}=A \cap U=A \cap \operatorname{cl}(U)$. If $x \notin A$, then pick an open set U such that $\operatorname{cl}(U) \subseteq \pi_{X}[T]$ and $A \cap U=\emptyset$. Let $S^{*}=$ $(S \backslash\{T\}) \cup\left\{U \times V,\left(\pi_{X}[T] \backslash \operatorname{cl}(U)\right) \times\left(\pi_{Y}[T] \backslash \operatorname{cl}(V)\right)\right\}$. Now $\left(A, S^{*}\right) \leq(A, S)$ and $\left(A, S^{*}\right) \in E_{n}^{x}$. So, E_{n}^{x} is dense for all $x \in X_{1}$ and $n \in \omega$.

For each $n>0$, let

$$
F_{n}=\{(A, S): \operatorname{dist}(\{x\}, A \backslash\{x\})<1 / n \text { for all } x \in A\}
$$

We show F_{n} is dense in P. Let $(A, S) \in P$. Fix $x \in A$. Since $(A, S) \in P$, there is a $T \in S$ such that $\langle x, f(x)\rangle \in T$. Since T is open and $\left.f\right|_{X_{1}}$ has no isolated points we can find an $x^{*} \in X_{1} \backslash A$ such that $\left\langle x^{*}, f\left(x^{*}\right)\right\rangle \in T$ and $\operatorname{dist}\left(x, x^{*}\right)<$ $\min \{\operatorname{mesh}(A), 1 / n\}$. Let $A^{*}=A \cup\left\{x^{*}: x \in A\right\}$. Now $\left(A^{*}, S\right) \leq(A, S)$ and $\left(A^{*}, S\right) \in F_{n}$. So, F_{n} is dense in P for all $n>0$.

Since $\left|\left\{E_{n}^{x}: x \in X_{1} \& n>0\right\} \cup\left\{F_{n}: n>0\right\}\right| \leq \omega$ we may find a filter $G \subseteq P$ such that G has nonempty intersection with each of the dense sets defined. Let $D=\bigcup\{A:(A, S) \in G\}$. For every $(A, S) \in G$ we have $\left.f\right|_{D} \subseteq \cup S$. To see it let $x \in D$ and $(A, S) \in G$. By definition of D, there is an $\left(A_{1}, S_{1}\right) \in G$ such that $x \in A_{1}$. Pick $\left(A_{2}, S_{2}\right) \in G$ such that $\left(A_{2}, S_{2}\right) \leq(A, S)$ and $\left(A_{2}, S_{2}\right) \leq\left(A_{1}, S_{1}\right)$. Since $x \in A_{2}$ there is a $T \in S_{2}$ such that $\langle x, f(x)\rangle \in T$. Thus, $\langle x, f(x)\rangle \in T \subseteq$ $\cup S_{2} \subseteq \cup S$.

We show that $\left.f\right|_{D}$ is continuous. Let $x \in D$ and $\epsilon>0$. Pick $n>0$ such that $1 / n<\epsilon$ and pick $(A, S) \in G \cap E_{n}^{x}$. Since $x \in D$, there is an $\left(A_{1}, S_{1}\right) \in G$ such that $x \in A_{1}$. Pick $(B, M) \in G$ such that $(B, M) \leq\left(A_{1}, S_{1}\right)$ and $(B, M) \leq$ (A, S). Now $x \in B$ so there is a $N \in M$ such that $\langle x, f(x)\rangle \in N$. Since $(B, M) \leq(A, S)$, we have $N \subseteq \cup M \subseteq \cup S$. So, $\langle x, f(x)\rangle \in \cup S$. Hence, there is a $T \in S$ such that $\langle x, f(x)\rangle \in T$ and $\pi_{Y}[T]<1 / n$. Since $\left.f\right|_{D \cap \pi_{X}[T]} \subseteq T$, there is an open neighborhood U of x such that $\operatorname{dist}(f(x), f(w))<1 / n<\epsilon$ for all $w \in U \cap D$. Therefore, $\left.F\right|_{D}$ is continuous.

We now show that D has no isolated points. Let $x \in D$ and $\epsilon>0$. Pick $n>0$ such that $1 / n<\epsilon$. There is an $(A, S) \in G$ such that $x \in A$. Pick $\left(A_{1}, S_{1}\right) \in G \cap F_{n}$. Pick $\left(A_{2}, S_{2}\right) \in G$ such that $\left(A_{2}, S_{2}\right) \leq(A, S)$ and $\left(A_{2}, S_{2}\right) \leq$ $\left(A_{1}, S_{1}\right)$. Now $x \in A_{2}$. Since $\left(A_{2}, S_{2}\right) \leq\left(A_{1}, S_{1}\right)$ and $\operatorname{mesh}\left(A_{1}\right)<1 / n$, we have $\operatorname{mesh}\left(A_{2}\right)<1 / n$. Thus, there is a $w \in A_{2} \subseteq D \operatorname{such}$ that $\operatorname{dist}(x, w)<1 / n<\epsilon$. Thus, D has no isolated points.

Lemma 9 Let C be a Cantor set and $D \subseteq C$ be countable and dense. If \mathcal{S} is the collection of all $K \in \mathrm{~J}(C)$ such that $K \cap D$ and $K \cap(C \backslash D)$ are both compact, then \mathcal{S} is coanalytic hard.

Proof. Let $N \subseteq 2^{\omega}$ be the set all binary sequences τ such that $\tau^{-1}(1)$ is finite. Notice that N is countable and dense in 2^{ω}. It is well known [6, 33.B] that $I=\left\{K \in \mathrm{~J}\left(2^{\omega}\right): K \subseteq N\right\}$ is a coanalytic hard set. For $K \subseteq 2^{\omega}$ and $n \in \omega$ let $\left.K\right|_{n}=\left\{\left.\sigma\right|_{n}: \sigma \in K\right\}$.

Define $\Theta: \mathrm{J}\left(2^{\omega}\right) \rightarrow \mathrm{J}\left(2^{\omega}\right)$ by

$$
\Theta(K)=\operatorname{cl}\left(\bigcup_{n \in \omega}\left\{\sigma \in 2^{\omega}:\left.\left.\sigma\right|_{n} \in K\right|_{n} \&(\forall k \geq n)(\sigma(k)=0)\right\}\right)
$$

for every $K \in \mathrm{~J}\left(2^{\omega}\right)$. It is easily seen that Θ is continuous. It should be clear that $\Theta(K) \subseteq N$ if $K \subseteq N$. On the other hand, suppose $K \backslash N \neq \emptyset$. Let $k \in K \backslash N$. Now $k \in \Theta(K)$ and there exist $\left\{n_{l} \in N\right\}_{l \in \omega}$ such that $\lim _{l \rightarrow \infty} n_{l}=k$. So, in this case $\Theta(K) \cap N$ is not compact. Thus, $\Theta^{-1}(\mathcal{S})=I$. Therefore, \mathcal{S} is coanalytic hard.

Lemma 10 Let X be Polish. If $G \in \Pi_{2}^{0}(X)$ is dense and D is a dense set disjoint from G, then there is a countable $E \subseteq D$ such that E is dense in X and $G \cup E \in \Pi_{2}^{0}(X)$.

Proof.

Let $X \backslash G=\bigcup_{n \in \omega} F_{n}$ where each F_{n} is closed. We may assume that $\lim _{n \rightarrow \infty} \operatorname{diam}\left(F_{n}\right)=0$ and that $F_{m} \backslash \bigcup_{n<m} F_{n} \neq \emptyset$ for every $m \in \omega$. Fix $m \in \omega$. If $\left(F_{m} \backslash \bigcup_{n<m} F_{n}\right) \cap D \neq \emptyset$, pick $e_{m} \in\left(F_{m} \backslash \bigcup_{n<m} F_{n}\right) \cap D$. Let $E=\left\{e_{m}: D \cap\left(F_{m} \backslash \bigcup_{n<m} F_{n}\right) \neq \emptyset\right\}$. Clearly, $E \in \Sigma_{2}^{0}(X)$ and $E \subseteq D$.

Let $U \subseteq X$ be a nonempty open set. Since F_{n} is nowhere dense for every $n \in \omega$ and D is dense, there is no $N \in \omega$ such that $D \cap U \subseteq \bigcup_{n \leq N} F_{n}$. Thus, there is a $d \in D$ and a $k \in \omega$ such that $\left(F_{k} \backslash \bigcup_{n<k} F_{n}\right) \cap D \neq \emptyset$ and $F_{k} \subseteq U$. Now $e_{k} \in U$. Thus, E is dense in X.

Since $E \cup G=X \backslash\left(\bigcup_{m \in \omega} F_{m} \backslash E\right)$ and $F_{m} \cap E$ is finite for every $m \in \omega$, we have $E \cup G \in \Pi_{2}^{0}(X)$.

Proof of Theorem 5 Clearly, (i) implies (iii).
We show that (ii) implies (i). First notice that the set $J(f)$ is a G_{δ}-subset of $\mathrm{J}(X \times Y)$ and that $\mathcal{C}(f)$ is an injective continuous image of $\mathrm{J}(f)$ by the function $\Theta: \mathrm{J}(f) \rightarrow \mathrm{J}(X)$ defined by $\Theta(K)=\pi_{X}[K]$. Since $\mathcal{C}(f)$ is an injective image of a Borel set, $\mathcal{C}(f)$ is Borel by $[6,15.1]$.

We now show that (iii) implies (ii). Suppose $f: X \rightarrow Y$ is Borel and f does not have G_{δ}-graph. Since f is Borel we have that f is a Π_{1}^{1}-subset of $X \times Y$. By a theorem of Hurewicz [6, 21.18], there is a relatively closed subset B of f such that B is homeomorphic to the rational numbers. Let $B_{1}=\pi_{X}(B)$. Since $\left.f\right|_{B_{1}}$ has no isolated points, by Lemma 8 , there is a $B_{2} \subseteq B_{1}$ such that $\left.f\right|_{B_{2}}$ is continuous and B_{2} has no isolated points. Let $C \subseteq X$ be a Cantor set such that B_{2} is dense in C. Since f is Borel, there is a dense G_{δ}-subset D of C such
that $\left.f\right|_{D}$ is continuous. By Lemma 10 there is a dense subset B_{3} of B_{2} such that $D \cup B_{3} \in \Pi_{2}^{0}(C)$. Notice B_{3} has no isolated points. Let $d \in D$. Since B is relatively closed in f, there exist $\epsilon, \delta>0$ such that for any $x \in \mathrm{~B}_{\delta}(d) \cap D$ and $w \in \mathrm{~B}_{\delta}(d) \cap B_{3}$ we have $|f(x)-f(w)|>\epsilon$. Let $C_{1} \subseteq \mathrm{~B}_{\delta}(d) \cap\left(D \cup B_{3}\right)$ be a Cantor set such that $B_{3} \cap C_{1}$ is countable and dense in C_{1}. It is clear that $\mathcal{C}\left(\left.f\right|_{C_{1}}\right)$ is exactly the compact subsets P of C_{1} with the property that both $B_{3} \cap P$ and $\left(C_{1} \backslash B_{3}\right) \cap P$ are both compact. By Lemma $9, \mathcal{C}\left(\left.f\right|_{C_{1}}\right)$ is coanalytic hard.

6 Proof of Theorem 4

Suppose X and Y are Polish spaces and $f: X \rightarrow Y$.
We show that (i) implies (ii).
Lemma 11 If $\mathcal{C}(f) \in \Sigma_{3}^{0}(\mathrm{~J}(X))$, then $f \in \mathrm{~T}_{1}$.
Proof. Suppose $f \notin \mathrm{~T}_{1}$. Let $x \in X$ be such that for every pair of open sets $U \subseteq X$ and $V \subseteq Y$ with $x \in U$ and $f(x) \in V$ we have $\left.f\right|_{f^{-1}(V) \cap U}$ not continuous. Let $\left\{V_{n}\right\}_{n \in \omega}$ be a decreasing sequence of open subsets of Y such that $H_{d}\left(V_{n}, f(x)\right)<1 / 2^{n}$ and $f(x) \in V_{n}$ for every $n \in \omega$. Let $\left\{U_{n}\right\}_{n \in \omega}$ be a decreasing sequence of open subsets of X such that $H_{d}\left(U_{n}, x\right)<1 / 2^{n}$ and $x \in U_{n}$ for every $n \in \omega$. For each $n \in \omega$ pick $x_{n} \in D\left(\left.f\right|_{f^{-1}\left(V_{n}\right) \cap U_{n}}\right)$. For each $n \in \omega$ we may find $\left\{w_{n, k} \in f^{-1}\left(V_{n}\right) \cap U_{n}\right\}_{k \in \omega}$ such that $\lim _{k \rightarrow \infty} w_{n, k}=x_{n}$ and no subsequence of $\left\{f\left(w_{n, k}\right)\right\}_{k \in \omega}$ converges to $f\left(x_{n}\right)$, we may also assume that $\operatorname{cl}\left(\left\{\left\langle w_{n, k}, f\left(w_{n, k}\right)\right\rangle: k \in \omega\right\}\right) \cap \operatorname{cl}\left(\left\{\left\langle w_{m, k}, f\left(w_{m, k}\right)\right\rangle: k \in \omega\right\}\right)=\emptyset$ for all $n, m \in \omega$ such that $n \neq m$. Let $C=\operatorname{cl}\left(\left\{w_{n, k}: n, k \in \omega\right\}\right)$. Define $h: 2^{\omega \times \omega} \rightarrow \mathrm{J}(C)$ by $h(\sigma)=\left\{w_{n, k}: \sigma(\langle n, k\rangle)=1\right\} \cup\left\{x_{n}: n \in \omega\right\} \cup\{x\}$. Notice that h is continuous. It is straight forward to check that $\left.f\right|_{h(\sigma)}$ is continuous if and only if

$$
(\forall m \in \omega)(\exists k \in \omega)(\forall n \geq k)(\sigma(\langle m, n\rangle))=0 .
$$

Thus, $h^{-1}(\mathcal{C}(f) \cap \mathrm{J}(C))=H$. By Proposition 6 and the continuity of h, we have $\mathcal{C}(f) \cap \mathrm{J}(C) \notin \Sigma_{3}^{0}(\mathrm{~J}(X))$. Since $\mathrm{J}(C)$ is closed, $\mathcal{C}(f) \notin \Sigma_{3}^{0}(\mathrm{~J}(X))$.

We now show that (ii) implies (i). We first define an operation M on collections of subsets of product spaces. Given a collection \mathcal{A} of subsets of $X \times Y$. Define

$$
M(\mathcal{A})=\bigcup_{x \in X}\left(\pi_{X}^{-1}(\{x\}) \cap \bigcap\left\{A \in \mathcal{A}: x \in \pi_{X}[A]\right\}\right)
$$

Lemma 12 If $f: X \rightarrow Y$ is a function and \mathcal{A} is a finite collection of subsets of $X \times Y$ such that $\pi_{X}[A]$ is closed for every $A \in \mathcal{A}$ and $\left.f\right|_{\pi_{X}[A \cap f]}$ is continuous for each $A \in \mathcal{A}$, then $\left.f\right|_{\pi_{X}[M(\mathcal{A}) \cap f]}$ is continuous.

Proof. Let $\left\{x_{n}\right\}_{n \in \omega}$ be a sequence of points in $\pi_{X}[M(\mathcal{A}) \cap f]$ which converges to some $x \in \pi_{X}[M(\mathcal{A}) \cap f]$. Since \mathcal{A} is finite, we may assume that there is an $A \in \mathcal{A}$
such that $x_{n} \in \pi_{X}[A \cap f]$ for every $n \in \omega$. Since A has closed X-projection, $x \in \pi_{X}[A]$. Since $x \in \pi_{X}[M(\mathcal{A}) \cap f]$ and $x \in \pi_{X}[A]$, we have $\langle x, f(x)\rangle \in A$. In particular, $\left\{x_{n}: n \in \omega\right\} \cup\{x\} \subseteq \pi_{X}[A \cap f]$. Thus, $\lim _{n \in \omega} f\left(x_{n}\right)=f(x)$. Therefore, $\left.f\right|_{\pi_{X}[M(\mathcal{A}) \cap f]}$ is continuous.

Lemma 13 If \mathcal{A} is a finite collection of closed subsets of $X \times Y$ such that $\pi_{X}[A]$ is closed for every $A \in \mathcal{A}$, then $M(\mathcal{A}) \in \Pi_{2}^{0}(X \times Y)$.

Proof. Notice that for every $A \in \mathcal{A}$ we have

$$
A \cup\left(\left(\pi_{X}[\cup \mathcal{A}] \backslash \pi_{X}[A]\right) \times Y\right) \in \Pi_{2}^{0}(X \times Y)
$$

It is easily checked that

$$
M(\mathcal{A})=\bigcap_{A \in \mathcal{A}}\left(A \cup\left(\left(\pi_{X}[\cup \mathcal{A}] \backslash \pi_{X}[A]\right) \times Y\right)\right)
$$

Thus, $M(\mathcal{A}) \in \Pi_{2}^{0}(X \times Y)$.

Lemma 14 Let $f \in \mathrm{~T}_{1}$ and \mathcal{B}_{1} and \mathcal{B}_{2} be countable bases for X and Y, respectively. If $x \in A \subseteq X$ and $\left.f\right|_{A}$ is continuous, then there exist $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ such that $\left.f\right|_{f^{-1}\left(\operatorname{cl}\left(B_{2}\right)\right) \cap \operatorname{cl}\left(B_{1}\right)}$ is continuous and $f\left[A \cap \operatorname{cl}\left(B_{1}\right)\right] \subseteq \operatorname{cl}\left(B_{2}\right)$.

Proof. Since $f \in \mathrm{~T}_{1}$, there exist open sets $U \subseteq X$ and, $V \subseteq Y$ such that $x \in U, f(x) \in V$, and $\left.f\right|_{f^{-1}(V) \cap U}$ is continuous. Pick $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ so that $\operatorname{cl}\left(B_{1}\right) \subseteq U, \operatorname{cl}\left(B_{2}\right) \subseteq V, x \in B_{1}$, and $f(x) \in B_{2}$. Since $f^{-1}\left(\operatorname{cl}\left(B_{2}\right)\right) \cap$ $\operatorname{cl}\left(B_{1}\right) \subseteq f^{-1}(V) \cap U$, we have that $\left.f\right|_{f^{-1}\left(\operatorname{cl}\left(B_{2}\right)\right) \cap \operatorname{cl}\left(B_{1}\right)}$ is continuous. Since $\left.f\right|_{A}$ is continuous we may assume B_{1} is small enough that $f\left[A \cap \operatorname{cl}\left(B_{1}\right)\right] \subseteq \operatorname{cl}\left(B_{2}\right)$.

Lemma 15 If $f \in \mathrm{~T}_{1}$ and f has G_{δ}-graph, then $\mathcal{C}(f) \in \Sigma_{3}^{0}(X)$.
Proof. Let \mathcal{B}_{1} and \mathcal{B}_{2} be countable bases for X and Y respectively. Let \mathcal{W} be the collection of all finite collections $Z=\left\{W_{0}, \ldots W_{n}\right\}$ of sets of the form $W_{i}=\operatorname{cl}\left(B_{1}\right) \times \operatorname{cl}\left(B_{2}\right)$ (where $B_{1} \in \mathcal{B}_{1}$ and $\left.B_{2} \in \mathcal{B}_{2}\right)$ such that $\left.f\right|_{\pi_{X}[M(Z) \cap f]}$ is continuous. Let $Z \in \mathcal{W}$. By Lemma 13 and the assumption that f has $G_{\delta^{-}}$ graph, $M(Z) \cap f \in \Pi_{2}^{0}(X \times Y)$. Since $\left.f\right|_{\pi_{X}[M(Z) \cap f]}$ is continuous, $\pi_{X}[M(Z) \cap f] \in$ $\Pi_{2}^{0}(X)$. Thus, $\mathcal{T}=\bigcup\left\{\mathrm{J}\left(\pi_{X}[M(Z) \cap f]\right): Z \in \mathcal{W}\right\} \in \Sigma_{3}^{0}(X)$.

The proof will be complete if we show that $\mathcal{C}(f)=\mathcal{T}$. The containment $\mathcal{T} \subseteq \mathcal{C}(f)$ is obvious. We work for the opposite containment. Let $C \in \mathcal{C}(f)$. We will construct a finite collection $W=\left\{W_{1}, W_{2}, \ldots W_{n}\right\}$ of sets of the form $W_{i}=\operatorname{cl}\left(B_{1}\right) \times \operatorname{cl}\left(B_{2}\right)$ where $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ such that
(a) $\left.f\right|_{C} \subseteq \bigcup W$,
(b) $\left.f\right|_{\pi_{X}\left[f \cap W_{i}\right]}$ is continuous for every $1 \leq i \leq n$, and
(c) $\left.f\right|_{C \cap \pi_{X}\left(W_{i}\right)} \subseteq W_{i}$ for every $1 \leq i \leq n$.

By Lemma 14, for every $x \in C$ there exist $B_{1}^{x} \in \mathcal{B}_{1}$ and $B_{2}^{x} \in \mathcal{B}_{2}$ such that $x \in$ $B_{1}^{x}, f(x) \in B_{2}^{x},\left.f\right|_{f-1\left(\operatorname{cl}\left(B_{2}^{x}\right)\right) \cap \operatorname{cl}\left(B_{2}^{x}\right)}$ is continuous, and $f\left[\operatorname{cl}\left(B_{1}^{x}\right) \cap C\right] \subseteq \operatorname{cl}\left(B_{2}^{x}\right)$. Since $\left.f\right|_{C}$ is compact, we we may find a finite subcover $W^{*}=\left\{W_{1}^{*}, \ldots W_{n}^{*}\right\}$ of $\left\{B_{1}^{x} \times B_{2}^{x}: x \in C\right\}$. For each $1 \leq i \leq n$ let $W_{i}=\operatorname{cl}\left(W_{i}^{*}\right)$. The collection $W=\left\{W_{1} \ldots W_{n}\right\}$ clearly satisfies conditions (a), (b), and (c).

By (b), and Lemma 12, $\left.f\right|_{\pi_{X}[f \cap M(W)]}$ is continuous. So $W \in \mathcal{W}$. We will be done if we show that $C \subseteq \pi_{X}[M(W) \cap f]$. Let $x \in C$. By (a), there is some $W_{i} \in W$ such that $\langle x, f(x)\rangle \in W_{i}$. By (c), for any $W_{k} \in W$ if $x \in \pi_{X}\left(W_{k}\right)$, then $\langle x, f(x)\rangle \in W_{k}$. Thus, $\langle x, f(x)\rangle \in M(W) \cap f$. So, $x \in \pi_{X}[M(W) \cap f]$. Therefore, $C \subseteq \pi_{X}[M(W) \cap f]$.

7 Proof of Theorem 2

Suppose X and Y are Polish spaces and $f: X \rightarrow Y$.
Lemma 16 If $\mathcal{C}(f) \in \Delta_{3}^{0}(\mathrm{~J}(X))$, then $f \in \mathrm{~T}_{0}$.
Proof. By way of contradiction assume $f \notin \mathrm{~T}_{0}$. Let $x \in X$ be such that for every pair of open sets $U \subseteq X$ and $V \subseteq Y$ with $x \in U$ and $f(x) \in V$ we have $\left.f\right|_{\operatorname{cl}\left(f^{-1}(V) \cap U\right)}$ not continuous. Let $\left\{V_{n}\right\}_{n \in \omega}$ be a decreasing sequence of open subsets of Y such that $H_{d}\left(V_{n}, f(x)\right)<1 / 2^{n}$ and $f(x) \in V_{n}$ for every $n \in \omega$. Let $\left\{U_{n}\right\}_{n \in \omega}$ be a decreasing sequence of open subsets of X such that $H_{d}\left(U_{n}, x\right)<1 / 2^{n}$ and $x \in U_{n}$ for every $n \in \omega$. By Lemma 11, we may assume that $\left.f\right|_{f-1}\left(V_{0}\right) \cap U_{0}$ is continuous.

Fix $n>0$. Since $\left.f\right|_{\mathrm{cl}\left(f^{-1}\left(V_{n}\right) \cap U_{n}\right)}$ is not continuous and $\left.f\right|_{f^{-1}\left(V_{0}\right) \cap U_{0}}$ is continuous, we may find an $x_{n} \in \operatorname{cl}\left(f^{-1}\left(V_{n}\right) \cap U_{n}\right) \backslash\left(f^{-1}\left(V_{0}\right) \cap U_{0}\right)$. There exist $\left\{w_{n, m} \in f^{-1}\left(V_{n}\right) \cap U_{n}\right\}_{m \in \omega}$ such that $\lim _{m \rightarrow \infty} w_{n, m}=x_{n}$. Since $x_{n} \notin f^{-1}\left(V_{0}\right)$, $\lim _{m \rightarrow \infty} f\left(w_{n, m}\right) \neq f\left(x_{n}\right)$.

Since $x_{n} \neq x$ for all $n \in \omega$, we may assume that $\operatorname{cl}\left(\left\{w_{n+1, m}: m \in \omega\right\}\right) \cap$ $\operatorname{cl}\left(\left\{w_{l+1, m}: m \in \omega\right\}\right)=\emptyset$ for distinct $n, l \in \omega$. Let $C=\operatorname{cl}\left(\left\{w_{n+1, m}: n, m \in \omega\right\}\right)$. We will have a contradiction if we show that $\mathcal{C}(f) \cap \mathrm{J}(C) \notin \Delta_{3}^{0}(\mathrm{~J}(C))$. Define $h: 2^{\omega \times \omega} \rightarrow \mathrm{J}(C)$ by the formula $h(\sigma)=\{x\} \cup\left(\bigcup_{n \in \omega} L_{n}\right)$ where

$$
L_{n}= \begin{cases}\emptyset & \text { if }\{m: \sigma(\langle n+1, m\rangle)=1\}=\emptyset \\ \left\{x_{n+1}\right\} & \text { if }\{m: \sigma(\langle n+1, m\rangle)=1\} \text { is infinite } \\ \left\{w_{n+1, \max \{m: \sigma(\langle n, m\rangle)=1\}}\right\} & \text { otherwise }\end{cases}
$$

We claim that $h \in \mathcal{B}_{1}$. For each $l \in \omega$ define $h_{l}: 2^{\omega \times \omega} \rightarrow \mathrm{J}$ by the formula $h_{l}(\sigma)=\{x\} \cup\left(\bigcup_{n \in \omega} L_{n, l}\right)$ where

$$
L_{n, l}= \begin{cases}\left\{w_{n+1, \max \{m \leq l: \sigma(\langle n, m\rangle)=1\}}\right\} & \text { if }\{m \leq l: \sigma(\langle n+1, m\rangle)=1\} \neq \emptyset \\ \emptyset & \text { if }\{m \leq l: \sigma(\langle n+1, m\rangle)=1\}=\emptyset\end{cases}
$$

Notice that h_{l} is continuous for all $l \in \omega$ and that $h_{l}(\sigma) \rightarrow h(\sigma)$ for every $\sigma \in 2^{\omega \times \omega}$. So $h \in \mathcal{B}_{1}$. Notice that $h(\sigma) \in \mathcal{C}(f)$ if and only if $\sigma \in I$ where I is
the set from Proposition 7. In particular, $h^{-1}(\mathcal{C}(f)) \notin \Pi_{4}^{0}\left(2^{\omega \times \omega}\right)$. Since $h \in \mathcal{B}_{1}$, we must have $\mathcal{C}(f) \notin \Pi_{3}^{0}(\mathrm{~J}(C))$. Hence, $\mathcal{C}(f) \notin \Delta_{3}^{0}(\mathrm{~J}(C))$. Thus, we have the desired contradiction.

Lemma 17 If $f \in \mathrm{~T}_{0}$, then there exist $\left\{\left\langle U_{n}, V_{n}\right\rangle\right\}_{n \in \omega}$ such that for every $n \in \omega$ we have: $\left\langle U_{n}, V_{n}\right\rangle \in \Sigma_{1}^{0}(X) \times \Sigma_{1}^{0}(Y),\left.f\right|_{\operatorname{cl}\left(f^{-1}\left(\operatorname{cl}\left(V_{n}\right)\right) \cap \operatorname{cl}\left(U_{n}\right)\right)}$ is continuous, and $f \subseteq \bigcup_{n \in \omega} U_{n} \times V_{n}$.

Proof. Let $x \in X$. Let $U_{x}^{*} \in \Sigma_{1}^{0}(X)$ and $V_{x}^{*} \in \Sigma_{1}^{0}(Y)$ be such that $x \in U_{x}^{*}$, $f(x) \in V_{x}^{*}$, and $\left.f\right|_{\mathrm{cl}\left(f^{-1}\left(V_{x}^{*}\right) \cap U_{x}^{*}\right)}$ is continuous. Pick $U_{x} \in \Sigma_{1}^{0}(X)$ and $V_{x} \in$ $\Sigma_{1}^{0}(Y)$ such that $\operatorname{cl}\left(U_{x}\right) \subseteq U_{x}^{*}$ and $\operatorname{cl}\left(V_{x}\right) \subseteq V_{x}^{*}$ and $x \in U_{x}$ and $f(x) \in V_{x}$. Since $\operatorname{cl}\left(f^{-1}\left(\operatorname{cl}\left(V_{x}\right)\right) \cap \operatorname{cl}\left(U_{x}\right)\right) \subseteq \operatorname{cl}\left(f^{-1}\left(V_{x}^{*}\right) \cap U_{x}^{*}\right)$, we have that $\left.f\right|_{\operatorname{cl}\left(f^{-1}\left(\operatorname{cl}\left(V_{x}\right) \cap \operatorname{cl}\left(U_{x}\right)\right)\right.}$ is continuous. Since the graph of f is second countable and $f \subseteq \bigcup_{x \in X} U_{x} \times V_{x}$, we may find the desired countable collection.

Lemma 18 If $f \in \mathrm{~T}_{0}$, then there exists a \subseteq-increasing sequence $\left\{W_{n}\right\}_{n \in \omega}$ of closed subsets of X such that $\mathcal{C}(f)=\bigcup_{n \in \omega} \mathrm{~J}\left(W_{n}\right)$. In particular, $\mathcal{C}(f) \in$ $\Sigma_{2}^{0}(\mathrm{~J}(X))$.

Proof. Let $\mathcal{U}=\left\{U_{n} \times V_{n}\right\}_{n \in \omega}$ be as in Lemma 17. For each $n \in \omega$ let $W_{n}=\bigcup_{k \leq n} \operatorname{cl}\left(f^{-1}\left(\operatorname{cl}\left(V_{k}\right)\right) \cap \operatorname{cl}\left(U_{k}\right)\right)$. We show that $\mathcal{C}(f)=\bigcup_{n \in \omega} \mathrm{~J}\left(W_{n}\right)$. Fix $n \in \omega$. Since $\left.f\right|_{\operatorname{cl}\left(f^{-1}\left(\operatorname{cl}\left(V_{k}\right)\right) \cap \operatorname{cl}\left(U_{k}\right)\right)}$ is continuous for every $k \leq n$, we have that $\left.f\right|_{W_{n}}$ is continuous. Thus, $\bigcup_{n \in \omega} \mathrm{~J}\left(W_{n}\right) \subseteq \mathcal{C}(f)$. We now show the reverse inequality. Suppose C is compact and $\left.f\right|_{C}$ is continuous. Since $\left.f\right|_{C}$ is compact, $\left.f\right|_{C}$ is contained in a finite number of members of \mathcal{U}. So $C \subseteq W_{n}$ for some $n \in \omega$. Thus, $\mathcal{C}(f) \subseteq \bigcup_{n \in \omega} \mathrm{~J}\left(W_{n}\right)$.

Lemma 16 and Lemma 18 show that (i) (ii) (iii), and (iv) of Theorem 2 are equivalent when X and Y are Polish spaces.

We now assume that $Y=\mathbb{R}$ and X is Polish.
Lemma 19 If for a function $f: X \rightarrow \mathbb{R}$ there exists $a \subseteq$-increasing sequence $\left\{W_{n}\right\}_{n \in \omega}$ of closed subsets of X such that $\mathcal{C}(f)=\bigcup_{n \in \omega} \mathrm{~J}\left(W_{n}\right)$, then f is a discrete limit of continuous functions $\left\{f_{n}\right\}_{n \in \omega}$ such that

$$
\mathcal{C}(f)=\left\{C \in \mathrm{~J}(X):\left\{\left.f_{n}\right|_{C}\right\}_{n \in \omega} \text { is eventually constant }\right\}
$$

Proof. Fix $n \in \omega$. Since $J\left(W_{n}\right) \subseteq \mathcal{C}(f)$, we have that $\left.f\right|_{W_{n}}$ is continuous. By the Tietze Extension Theorem there is a continuous $f_{n}: X \rightarrow \mathbb{R}$ such that $\left.f_{n}\right|_{W_{n}}=\left.f\right|_{W_{n}}$. Clearly, $\left\{f_{n}\right\}_{n \in \omega}$ converges discretely to f. We show $\left\{f_{n}\right\}_{n \in \omega}$ is as desired.

Suppose $C \in \mathcal{C}(f)$. By assumption $C \subseteq W_{n}$ for some $n \in \omega$. In particular, $\left.\left.f_{m}\right|_{C} \subseteq f_{n}\right|_{W_{n}}$ for all $m \geq n$. Thus, $\left\{\left.f_{n}\right|_{C}\right\}_{n \in \omega}$ is eventually constant.

Suppose $C \in \mathrm{~J}(X)$ and $\left\{\left.f_{n}\right|_{C}\right\}_{n \in \omega}$ is eventually constant. There is an $n \in \omega$ such that $\left.f\right|_{C}=\left.f_{n}\right|_{C}$. Thus, $C \in \mathcal{C}(f)$.

Lemma 20 If $f: X \rightarrow \mathbb{R}$ is a discrete limit of continuous functions $\left\{f_{n}\right\}_{n \in \omega}$ such that $\mathcal{C}(f)=\left\{C \in \mathrm{~J}(X):\left\{\left.f_{n}\right|_{C}\right\}_{n \in \omega}\right.$ is eventually constant $\}$, then $\mathcal{C}(f) \in$ $\Sigma_{2}^{0}(\mathrm{~J}(X))$.

Proof. For each $n \in \omega$ let $Z_{n}=\left\{x \in X:(\forall m \geq n)\left(f_{n}(x)=f_{m}(x)\right)\right\}$. It is easily checked that Z_{n} is closed for every $n \in \omega$. Now for every $n \in \omega$ we have that $\mathrm{J}\left(Z_{n}\right)=\left\{C \in \mathrm{~J}(X):(\forall m \geq n)\left(\left.f_{n}\right|_{C}=\left.f_{m}\right|_{C}\right)\right\}$ is closed in $\mathrm{J}(X)$. Therefore, $\mathcal{C}(f)=\left\{C \in 2^{X}:\left\{\left.f_{n}\right|_{C}\right\}_{n \in \omega}\right.$ is eventually constant $\} \in \Sigma_{2}^{0}(\mathrm{~J}(X)$.

Lemma 19 and Lemma 20 show that (v) is equivalent to (i), (ii), and (iii) when $Y=\mathbb{R}$.

Lemma 21 Let $f: X \rightarrow Y$. If $\mathcal{C}(f) \in \Sigma_{2}^{0}(\mathrm{~J}(X))$, then f is open in $\operatorname{cl}(f)$.
Proof. Suppose f is not open in $\operatorname{cl}(f)$. There exists an $x \in X$ and $\left\{\left\langle x_{n}, y_{n}\right\rangle\right\}_{n \in \omega}$ such that $\left\langle x_{n}, y_{n}\right\rangle \in \operatorname{cl}(f) \backslash f$ for every $n \in \omega$ and $\lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle=\langle x, f(x)\rangle$. For each $n \in \omega$ we may find a sequence $\left\{w_{n, k}\right\}_{k \in \omega}$ of points in X such that $\lim _{n \rightarrow \infty}\left\langle w_{n, k}, f\left(w_{n, k}\right)\right\rangle=\left\langle x_{n}, y_{n}\right\rangle$. Notice that $\left\langle x_{n}, y_{n}\right\rangle \neq\left\langle x_{n}, f\left(x_{n}\right)\right\rangle$. We may assume that $\operatorname{cl}\left(\left\{\left\langle w_{n, k}, f\left(w_{n, k}\right)\right\rangle: k \in \omega\right\}\right) \cap \operatorname{cl}\left(\left\{\left\langle w_{m, k}, f\left(w_{m, k}\right)\right\rangle: k \in \omega\right\}\right)=\emptyset$ for all distinct $n, m \in \omega$. Let $C=\operatorname{cl}\left(\left\{w_{n, k}: n, k \in \omega\right\}\right)$. We will have a contradiction if we show that $\mathcal{C}(f) \cap \mathrm{J}(C) \notin \Sigma_{2}^{0}(\mathrm{~J}(C))$. Define $g: 2^{\omega \times \omega} \rightarrow \mathrm{J}(C)$ by $h(\sigma)=\operatorname{cl}\left(\left\{w_{n, k}: \sigma(n, k)=1\right\}\right) \cup\{x\}$. We claim that $h \in \mathcal{B}_{1}$. For each $m \in \omega$ define $h_{m}: 2^{\omega \times \omega} \rightarrow \mathrm{J}(C)$ by $h_{m}(\sigma)=\left\{w_{n, k}: \sigma(n, k)=1\right.$ and $\left.k \leq m\right\} \cup\{x\}$. Notice that h_{m} is continuous for all $m \in \omega$ and that $h_{m}(\sigma) \rightarrow h(\sigma)$ for every $\sigma \in 2^{\omega \times \omega}$. So $h \in \mathcal{B}_{1}$. It is also easy to see that $h(\sigma) \in \mathcal{C}(f)$ if and only if $\sigma \in X_{0}$. In particular, $h^{-1}(\mathcal{C}(f)) \notin \Sigma_{3}^{0}\left(2^{\omega \times \omega}\right)$. Since $h \in \mathcal{B}_{1}$, we must have $\mathcal{C}(f) \notin \Sigma_{2}^{0}(\mathrm{~J}(C))$. Thus, we have the desired contradiction.

Lemma 22 Let $f: X \rightarrow \mathbb{R}$. If f is open in $\operatorname{cl}(f)$, then $f \in \mathrm{~T}_{0}$.
Proof. Let $x \in X$. Since f is open in $\operatorname{cl}(f)$, we may find an open set $U \subseteq X$ and a bounded open interval $V \subseteq \mathbb{R}$ such that $x \in U$ and $f(x) \in V$ and $\operatorname{cl}(f) \cap(U \times V)=f \cap(U \times V)$. Pick open sets $U_{1} \subseteq U$ and $V_{1} \subseteq V$ contianing x and $f(x)$, respectively such that $\operatorname{cl}\left(U_{1}\right) \subseteq U_{1}$ and $\operatorname{cl}\left(V_{1}\right) \subseteq V_{1}$. Now $f \cap$ $\left(\operatorname{cl}\left(U_{1}\right) \times \operatorname{cl}\left(V_{1}\right)\right)=\operatorname{cl}(f) \cap\left(\operatorname{cl}\left(U_{1}\right) \times \operatorname{cl}\left(V_{1}\right)\right)$. By way of contradiction, assume that $\left.f\right|_{\operatorname{cl}\left(f-1\left(V_{1}\right) \cap U_{1}\right)}$ is not continuous. Let $\left\{w_{n}\right\}_{n_{\in \omega}}$ be a sequence of points in $\operatorname{cl}\left(f^{-1}\left(V_{1}\right) \cap U_{1}\right)$ and $w \in \operatorname{cl}\left(f^{-1}\left(V_{1}\right) \cap U_{1}\right)$ be such that $\lim _{n \in \omega} w_{n}=w$ and $\lim _{n \in \omega} f\left(w_{n}\right) \neq f(w)$. Without loss of generality, we may assume that no subsequence $\left\{f\left(w_{n}\right)\right\}_{n \in \omega}$ converges to $f(w)$. Since $\operatorname{cl}\left(V_{1}\right)$ is compact, there is a $r \in \operatorname{cl}\left(V_{1}\right)$ such that $\lim _{n \in \omega} f\left(w_{n}\right)=r$. However, $f \cap\left(\operatorname{cl}\left(U_{1}\right) \times \operatorname{cl}\left(V_{1}\right)\right)$ is closed so $f(w)=r$ which contradicts our choice of $\left\{w_{n}\right\}_{n \in \omega}$.

Lemma 21 and Lemma 22 show that (vi) is equivalent to (i), (ii), and (iii) when $Y=\mathbb{R}$. Which completes the proof of Theorem 2.

8 Proof of Theorem 3

We show that (i) implies (ii).
Lemma 23 Let K be a Cantor set with a countable dense subset D. If $\mathcal{S} \subseteq$ $\mathrm{J}(K)$ is the collection of compact sets C with the property that $C \cap D$ is finite and $C \backslash D$ is compact, then $\mathcal{S} \in \Sigma_{3}^{0}(\mathrm{~J}(K)) \backslash \Pi_{3}^{0}(\mathrm{~J}(K))$.

Proof. First we show that $\mathcal{S} \in \Sigma_{3}^{0}(J(K))$. Let $D=\left\{d_{n}: n \in \omega\right\}$ be an enumeration of D. Define $f: K \rightarrow \mathbb{R}$ so that $f\left(d_{n}\right)=n+1$ for every $n \in \omega$ and $f(x)=0$ for $x \in K \backslash D$. Notice that $\mathcal{C}(f)=\mathcal{S}$. Since f has G_{δ}-graph and $f \in \mathrm{~T}_{1}$, Theorem 4 guarantees that $\mathcal{S}=\mathcal{C}(f) \in \Sigma_{3}^{0}(\mathrm{~J}(K))$.

We now work to show that $\mathcal{S} \notin \Pi_{3}^{0}(\mathrm{~J}(K))$. In what follows we let $\omega+1$ denote $\omega \cup\{\omega\}$ topologized to be a convergent sequence of isolated points with limit point ω. Let $L=\left\{\tau \in(\mathrm{J}(\omega+1))^{\omega}:(\forall n \in \omega)(\omega \in \tau(n))\right\}$ and $E \subseteq L$ be the collection of all $\tau \in L$ such that for some $n \in \omega$ we have $|\tau(k)|<\omega$ for all $k<n$ and $\tau(k)=\omega+1$ for all $k \geq n$. Since L is a Cantor set and E is countable and dense in L, we may assume that $K=L$ and $D=E$.

Define $\Theta: 2^{\omega \times \omega} \rightarrow L$ by setting $\Theta(\sigma)(n)=\{k \in \omega: \sigma(\langle n, k\rangle)=1\} \cup\{\omega\}$ for every $\sigma \in 2^{\omega \times \omega}$ and $n \in \omega$. Notice that Θ is continuous.

Define $\Psi: L \rightarrow \mathrm{~J}(L)$ by letting $\Psi(\tau)$ be the closure of the collection of all $\rho \in L$ such that for some $n \in \omega$ we have $\left.\rho\right|_{n}=\left.\tau\right|_{n}$ and $\rho(k)=\omega+1$ for all $k \geq n$. If for infinitely many $n \in \omega$ we have $\tau(n) \neq \omega+1$, then $\Psi(\tau)$ is a convergent of sequence points in L with limit point τ. If there is an $n \in \omega$ such that for all $k \geq n$ we have $\tau(k)=\omega+1$, then $\Psi(\tau)$ is a finite subset of L containing τ.

We claim that Ψ is continuous. Suppose $\left\{\tau_{k}\right\}_{n \in \omega}$ is a sequence points in L converging to some $\tau \in L$. We show that $\lim _{k \in \omega} \Psi\left(\tau_{k}\right)=\Psi(\tau)$.

Suppose there exist an infinite $A \subseteq \omega$ such that $\rho_{k} \in \Psi\left(\tau_{k}\right)$ for every $k \in A$ and $\lim _{k \in A} \rho_{k}=\rho$. We claim that $\rho \in \Psi(\tau)$. We will consider two exhaustive cases. First, suppose that there is an $N \in \omega$ such that for infinitely many $k \in A$ we have $\rho_{k}(l)=\omega+1$ for all $l \geq N$. We may assume that N is minimal with respect to this property. Let A^{*} be the set of all $k \in A$ such that $\rho_{k}(l)=\omega+1$ for all $l \geq N$. By minimality, there are only finitely many $k \in A^{*}$ such that $\rho_{k}(N-1)=\omega+1$. So, for almost all $k \in A^{*}$ we have $\left.\rho_{k}\right|_{N}=\left.\tau_{k}\right|_{N}$. Thus, we have $\left.\rho\right|_{N}=\left.\tau\right|_{N}$ and $\rho(l)=\omega+1$ for all $l \geq N$, so $\rho \in \Psi(\tau)$. For the second case, suppose that for every $N \in \omega$ there are only finitely many $k \in A$ such that $\rho_{k}(l)=\omega+1$ for all $l \geq N$. In this case we have $\lim _{k \in A} \rho_{k}(j)=\lim _{k \in A} \tau_{k}(j)=\tau(j)$ for every $j \in \omega$. Thus, $\rho=\tau \in \Psi(\tau)$. By cases, we have the claim.

We show that for every $\rho \in \Psi(\tau)$ there is a sequence $\left\{\rho_{k}\right\}_{k \in \omega}$ such that $\rho_{k} \in \Psi\left(\tau_{k}\right)$ and $\lim _{k \rightarrow \infty} \rho_{k}=\rho$. If $\rho=\tau$, then we can let $\rho_{k}=\tau_{k}$ for every $k \in \omega$ and have $\lim _{k \rightarrow \infty} \rho_{k}=\rho$. If there is an $n \in \omega$ such that $\left.\rho\right|_{n}=\left.\tau\right|_{n}$ and $\rho(l)=\omega+1$ for all $l \geq n$, then we pick $\rho_{k} \in \Psi\left(\tau_{k}\right)$ such that $\left.\rho_{k}\right|_{n}=\left.\tau_{k}\right|_{n}$ and $\rho_{k}(l)=\omega+1$ for all $l \geq n$ to get $\lim _{k \rightarrow \infty} \rho_{k}=\rho$.

By the proceeding two paragraphs, $\lim _{n \in \omega} \Psi\left(\tau_{k}\right)=\Psi(\tau)$. Thus, Ψ is continuous.

Let $\Gamma: 2^{\omega \times \omega} \rightarrow \mathrm{J}(L)$ be defined by $\Gamma(\sigma)=\Psi(\Theta(\sigma))$. Clearly, Γ is continuous. We claim $\Gamma^{-1}(\mathcal{S})=2^{\omega \times \omega} \backslash H$ where H is the set from Proposition 6. Suppose $\sigma \in 2^{\omega \times \omega} \backslash H$. By definition of H there is a smallest $n \in \omega$ such that $|\Theta(\sigma)(n)|=$ ω. It follows that at most n elements of $\Psi(\Theta(\sigma))$ are in E. We will show that $\Psi(\Theta(\sigma)) \backslash E$ is compact. If $\Theta(\sigma) \notin E$, then either $\Psi(\Theta(\sigma))$ is finite or $\Psi(\Theta(\sigma))$ is a convergent sequence with limit point not in E. If $\Theta(\sigma) \in E$, then $\Psi(\Theta(\sigma))$ is finite. In any of the three cases above $\Psi(\Theta(\sigma)) \backslash E$ is compact. Thus, $2^{\omega \times \omega} \backslash H \subseteq \Gamma^{-1}(\mathcal{S})$. Suppose $\sigma \in H$. By definition of $H,|\Theta(\sigma)(n)|<\omega$ for every $n \in \omega$. Thus, $\Psi(\Theta(\sigma))$ is a convergent sequence of elements of E with limit point $\Theta(\sigma) \notin E$. So, $\Psi(\Theta(\sigma)) \notin \mathcal{S}$. Hence, $\Gamma^{-1}(\mathcal{S}) \subseteq 2^{\omega \times \omega} \backslash H$. Since $\Gamma^{-1}(\mathcal{S})=2^{\omega \times \omega} \backslash H$ and $H \notin \Sigma_{3}^{0}\left(2^{\omega \times \omega}\right)$, we have $\mathcal{S} \notin \Pi_{3}^{0}(\mathrm{~J}(K))$.

Lemma 24 If X is Polish and $G \in \Pi_{2}^{0}(X)$ is countable, the the set I of isolated points of G is a dense open subset of G.

Proof. Clearly, G is a countable dense G_{δ}-subset of $\operatorname{cl}(G)$. Since $\operatorname{cl}(G)$ is countable and closed, the set J of isolated points of $\operatorname{cl}(G)$ form a dense open subset of $\operatorname{cl}(G)$. Clearly, $I=J$. So, $I=G \cap J$ is dense and open in G.

Proof that $\mathcal{C}(f) \in \Pi_{3}^{0}(\mathrm{~J}(X))$ implies $f \in \mathcal{B}_{1}$. Let $f \notin \mathcal{B}_{1}$. If f does not have G_{δ}-graph, then, by Theorem $5, \mathcal{C}(f)$ is not Borel and so $\mathcal{C}(f) \notin \Pi_{3}^{0}(\mathrm{~J}(X))$. So, we may assume that f has G_{δ}-graph.

Since $f \notin \mathcal{B}_{1}$, there is a Cantor set C such that $\left.f\right|_{C}$ is nowhere continuous. We may assume that there is a $K>0$ such that

$$
\begin{equation*}
\operatorname{osc}\left(\left.f\right|_{C}, x\right)>3 K \tag{1}
\end{equation*}
$$

for every $x \in C$. Since f is Borel, there is a G_{δ}-set G such that G is a dense subset of C and $\left.f\right|_{G}$ is continuous.

Let U be a nonempty open subset of C. Let $x \in G \cap U$. There is an open set $V \subseteq U$ such that $x \in V$ and $\operatorname{diam}(f[V \cap G])<K$. By (1) there is a $d \in V$ such that $H_{d}(f(d), f[V \cap G])>K$. Since U was arbitrary we may find a countable dense subset D of C such that for every $d \in D$ there is an open set V_{d} such that $d \in V_{d}$ and $H_{d}\left(f(d), f\left[V_{d} \cap G\right]\right)>K$. By Lemma 10, there is a countable dense subset E of D such that $G_{1}=G \cup E$ is a G_{δ}-subset of C. Since $\left.f\right|_{G}$ and $\left.f\right|_{E}$ are disjoint open subsets of $\left.f\right|_{G_{1}}$ which is a G_{δ}-subset of $X \times Y$, we have that $\left.f\right|_{E}$ is a countable G_{δ}-set. By Lemma 24, the collection J of isolated points of $\left.f\right|_{E}$ is dense in $\left.f\right|_{E}$. So, we may find a countable dense $E_{1} \subseteq E$ such that $\left.f\right|_{E_{1}}=J$ is the collection of isolated points in $\left.f\right|_{G_{1}}$. Find a compact perfect set $K \subseteq G \cup E_{1}$ such that $E_{1} \cap K$ is dense in K. Letting $Q=E_{1} \cap K$ and $H=K \backslash Q$ it should be clear that $\mathcal{C}\left(\left.f\right|_{K}\right)$ is the collection of compact sets $L \in \mathrm{~J}(K)$ with the property that $L \cap Q$ is finite and $L \cap H$ is compact. By Lemma 23, $\mathcal{C}\left(\left.f\right|_{K}\right) \notin \Pi_{3}^{0}(\mathrm{~J}(K))$. Since $\mathcal{C}(f) \cap \mathrm{J}(K)=\mathcal{C}\left(\left.f\right|_{K}\right)$, we have that $\mathcal{C}(f) \notin \Pi_{3}^{0}(J(X))$.

Proof that $f \in \mathcal{B}_{1}$ implies $\mathcal{C}(f) \in \Pi_{4}^{0}(\mathrm{~J}(X))$. Since Y is Polish, we can consider Y as subset of $[0,1]^{\omega}$ with the usual product topology and f to be a
function from X into $[0,1]^{\omega}$. Since every \mathcal{B}_{1} function into $[0,1]$ is a pointwise limit of continuous functions, we have that $f: X \rightarrow[0,1]^{\omega}$ is a pointwise limit of continuous functions $f_{i}: X \rightarrow[0,1]^{\omega}$.

For each $n, k, l \in \omega$ let
$A_{k, l, n}=\left\{P \in \mathrm{~J}(X):(\exists x, w \in P)(\forall i \geq n)\left(d(x, w) \leq \frac{1}{2^{l}}\right)\left(d\left(f_{i}(x), f_{i}(w)\right) \geq \frac{1}{2^{k}}\right)\right\}$.
We show that $A_{k, l, n}$ is closed. Let $P_{j} \in A_{k, l, n}$ and $P_{j} \rightarrow P$. For each $j \in \omega$ there are $x_{j}, w_{j} \in P_{j}$ such that $d\left(x_{j}, w_{j}\right) \leq 1 / 2^{l}$ and for all $i \geq n$ we have $d\left(f_{i}\left(x_{j}\right), f_{i}\left(w_{j}\right)\right) \geq 1 / 2^{k}$. Taking a subsequence if necessary we may assume that there exist $x, w \in P$ such that $\lim _{j \in \omega}\left\{x_{j}, w_{j}\right\}=\{x, w\}$ in $\mathrm{J}(X)$. Clearly, $d(x, w) \leq 1 / 2^{l}$. For $i \geq n$ fixed the continuity of f_{i} implies that $d\left(f_{i}(x), f_{i}(w)\right) \geq 1 / 2^{k}$. Hence, $P \in A_{k, l, n}$. So, $A_{k, l, n}$ is closed.

Let $E=\bigcup_{k \in \omega} \bigcap_{l \in \omega} \bigcup_{n \in \omega} A_{k, l, n}$. Clearly, $E \in \Sigma_{4}^{0}(\mathrm{~J}(X))$. We will be done if we show that $\mathcal{C}(f)=\mathrm{J}(X) \backslash E$.

Suppose $P \in E$. There is a $k \in \omega$ such that $P \in \bigcap_{l \in \omega} \bigcup_{n \in \omega} A_{k, l, n}$. So for every $l \in \omega$ there exist $x_{l}, w_{l} \in P$ such that $d\left(x_{l}, w_{l}\right) \leq 1 / 2^{l}$ and $d\left(f_{i}\left(x_{l}\right), f_{i}\left(w_{l}\right)\right) \geq$ $1 / 2^{k}$ for all sufficently large $i \in \omega$. It follows that $d\left(f\left(x_{l}\right), f\left(w_{l}\right)\right) \geq 1 / 2^{k}$. Since P is compact, there is a $p \in P$ such that $\lim _{l \in \omega}\left\{x_{l}, w_{l}\right\}=\{p\}$ in $\mathrm{J}(X)$. Clearly, the oscillation of $\left.f\right|_{P}$ at x is at least $1 / 2^{k}$. Hence, $P \notin \mathcal{C}(f)$.

Suppose $P \notin \mathcal{C}(f)$. There is a $p \in P$ and a $k \in \omega$ and a sequence $\left(p_{l}\right)_{l \in \omega}$ of elements of P such that $d\left(p_{l}, p\right) \leq 1 / 2^{l}$ for every $l \in \omega$ and

$$
\begin{equation*}
d\left(f\left(p_{l}\right), f(p)\right)>1 / 2^{k} \tag{2}
\end{equation*}
$$

Since $\left(f_{i}\right)_{i \in \omega}$ converges to f pointwise, (2) implies we may find for each $l \in \omega$ a $n_{l} \in \omega$ such that for all $i \geq n_{l}$ we have $d\left(f_{i}\left(p_{l}\right), f_{i}(p)\right) \geq 1 / 2^{k}$. Thus, $P \in E$.

We now show that none the implications of Theorem 3 may be reversed.
Let $\left\{q_{n}: n \in \omega\right\}$ be an enumeration of the rational numbers in \mathbb{R}. Define $f: \mathbb{R} \rightarrow \omega$ by

$$
f(x)= \begin{cases}n+1 & \text { if } x=q_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Now $f \notin \mathcal{B}_{1}$ since it has no point of continuity. However, $\mathcal{C}(f) \in \Sigma_{3}^{0}(\mathrm{~J}(X)) \subseteq$ $\Pi_{4}^{0}(\mathrm{~J}(X))$ since f is T_{1} and has G_{δ}-graph. So, the implication (ii) \Rightarrow (iii) may not be reversed.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the characteristic function of a convergent sequence without its limit point. Clearly, $f \in \mathcal{B}_{1}$. However, f is not T_{0} so $\mathcal{C}(f) \notin \Delta_{3}^{0}(J(X))$. Since f is T_{1} and has G_{δ}-graph, we have $\mathcal{C}(f) \in \Sigma_{3}^{0}(\mathrm{~J}(X))$. Thus, $\mathcal{C}(f) \notin \Pi_{3}^{0}(\mathrm{~J}(X))$. So, the implication $(i) \Rightarrow(i i)$ may not be reversed.

We construct a \mathcal{B}_{1} function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathcal{C}(f) \in \Pi_{4}^{0}(\mathrm{~J}(X)) \backslash \Sigma_{4}^{0}(\mathrm{~J}(X))$. For each $n \in \omega$ pick an increasing sequence $\left(w_{n, m}\right)_{m \in \omega}$ in $\left(1-1 / 2^{n}, 1-1 / 2^{n+1}\right]$ which converges to $1-1 / 2^{n+1}$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}\frac{1}{2^{n}} & \text { if } x=w_{n, m} \\ 0 & \text { otherwise }\end{cases}
$$

It is easily seen that $f \in \mathcal{B}_{1}$. For each $n, m \in \omega$ let $\left(z_{n, m, l}\right)_{l \in \omega}$ be an increasing sequence in $\left(1-1 / 2^{n}, w_{n, 0}\right.$] if $m=0$ or $\left(w_{n, m-1}, w_{n, m}\right]$ if $m \neq 0$, in either case let $\lim _{l \in \omega} z_{n, m, l}=w_{n, m}$. Let I be the set from Proposition 7 . Define $J=\Pi_{i \in \omega} I$. By $[6,23.3]$, $J \in \Pi_{5}^{0}\left(\left(2^{\omega \times \omega}\right)^{\omega}\right) \backslash \Sigma_{5}^{0}\left(\left(2^{\omega \times \omega}\right)^{\omega}\right)$. Define $h:\left(2^{\omega \times \omega}\right)^{\omega} \rightarrow \mathrm{J}(\mathbb{R})$ by

$$
h(\sigma)=\{1\} \cup\left\{1-\frac{1}{2^{n+1}}: n \in \omega\right\} \bigcup_{n, m \in \omega} L_{n, m}
$$

where $L_{n, m}$ is defined by

$$
L_{n, m}= \begin{cases}\emptyset & \text { if }\{l: \sigma(n)(m, l)=1\}=\emptyset \\ \left\{w_{m, n}\right\} & \text { if }\{l: \sigma(n)(m, l)=1\} \text { is infinite } \\ \left\{z_{n, m, \max \{l: \sigma(n)(m, l)=1\}}\right\} & \text { otherwise }\end{cases}
$$

By an argument similar to the one used in the proof of Lemma 11, one can show that h is in \mathcal{B}_{1}. It is easy to verify that $h^{-1}(\mathcal{C}(f))=J$. Since $h \in \mathcal{B}_{1}$, we have $\mathcal{C}(f) \notin \Sigma_{4}^{0}(\mathrm{~J}(X))$.

References

[1] S. Baldwin, Martin's Axiom implies a stronger version of Blumberg's Theorem, Real Anal. Exchange 16(1990-1991), 67-73.
[2] T. Bartoszyński and H. Judah, Set theory on the structure of the real line, A K Peters, 1995.
[3] H. Blumberg, New properties of all real functions, Transactions A.M.S. 24(1922), 113-128.
[4] Á. Császár and M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hungar. 10(1975), 463-472.
[5] F. Jordan, Generalizing the Blumberg theorem , Real Analysis Exchange, to appear.
[6] A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, New York Berlin Heidelberg 1995.

[^0]: *AMS classification numbers: Primary 26A15, 26A21
 Key words and phrases: Descriptive set theory, Borel functions, compact sets.

