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Abstract

We say that a set X ⊆ R
2 is Sierpiński-Zygmund (shortly SZ-set) if it

does not contain a partial continuous function of cardinality continuum c.
We observe that the family of all such sets is cf(c)-additive ideal. Some
examples of such sets are given. We also consider SZ-shiftable sets, that
is, sets X ⊆ R

2 for which there exists a function f : R → R such that
f + X is an SZ-set. Some results are proved about SZ-shiftable sets. In
particular, we show that the union of two SZ-shiftable sets does not have
to be SZ-shiftable.

The terminology is standard and follows [2]. The symbol R stands for the set
of all real numbers. The cardinality of a set X we denote by |X|. In particular,
|R| is denoted by c. Given a cardinal κ, we let cf(κ) denote the cofinality of κ.
We say that a cardinal κ is regular provided that cf(κ) = κ.

A set M ⊆ R
n is called Marczewski measurable if every perfect set P has a

perfect subset Q such that Q ⊆ M or Q ∩M = ∅. If every perfect set P has a
perfect subset Q such that Q ∩M = ∅, then M is called Marczewski null.

We consider only real-valued functions unless stated otherwise. No distinc-
tion is made between a function and its graph. For any planar set Y , we denote
its x-projection by dom(Y ). For any two partial real functions f, g we write
f + g, f − g for the sum and difference functions defined on dom(f) ∩ dom(g).
The class of all functions from a set X into a set Y is denoted by Y X . We
write f |A for the restriction of f ∈ Y X to the set A ⊆ X. For any function
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g ∈ R
X , any family of functions F ⊆ R

X , and any set A ⊆ X × R we define
g + F = {g + f : f ∈ F} and g + A = {〈x, g(x) + y〉: 〈x, y〉 ∈ A}. The image
and preimage of a set B under the function h are denoted by h[B] and h−1[B],
respectively.

Let us recall that a function f : R → R is Sierpiński-Zygmund (f ∈ SZ) if
for every set X ⊆ R of cardinality continuum c, f |X is discontinuous. This
definition is generalized onto subsets of R

2. (See [8].)

Definition 1 A set X ⊆ R
2 is called Sierpiński-Zygmund set (shortly SZ-set),

if for every partial real continuous function f we have |f ∩X| < c.

We denote the family of all SZ-sets by JSZ . Since every Sierpiński-Zygmund
function is also an SZ-set we have that the family JSZ is not empty.

The next fact follows directly from the definition.

Fact 2 JSZ is a cf(c)-additive ideal.

Proof. It is obvious that JSZ is closed under the operation of taking subsets.
We will show that JSZ is cf(c)-additive.

Take a κ < cf(c). Let {Xξ: ξ < κ} ⊆ JSZ and f ⊆
⋃

ξ<κ Xξ be a partial
continuous function. Since Xξ is SZ-set, we have that |f ∩ Xξ| < c for each
ξ < κ. Consequently, |f ∩

⋃
ξ<κ Xξ| = |

⋃
ξ<κ(f ∩Xξ)| < c.

The question that one could ask here is how “big” an SZ-set can be. An
example of the SZ-set that can be considered “big” in some sense is given in [8].

Lemma 3 [8, Lemma 19] There exists an SZ-set X ⊆ R
2 such that |R\Xx| < c

for every x ∈ R, where Xx = {y ∈ R: 〈x, y〉 ∈ X}.

Observe that the complement of every vertical section of the set X has size
less than c. In particular, if MA holds then every vertical section is residual
in R. Moreover, under CH, the complement of every vertical section of X is
countable. It turns out that the existence of such SZ-set (i.e., with co-countable
vertical sections) is equivalent to CH. We state

Proposition 4 CH is equivalent to the existence of an SZ-set X ⊆ R
2 with the

following property
|R \Xx| ≤ ω for every x ∈ R.

Proof. The existence of the desired set under the assumption of CH follows
from the previous discussion. So we need to prove the opposite implication.
Assume, by the way of contradiction, that the desired set X exists and CH does
not hold, e.g. c > ω1. Since X is an SZ-set we get

(∗) Xy = {x ∈ R: 〈x, y〉 ∈ X} has cardinality less than c for every y ∈ R.
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We claim that there exists an A ∈ [R]ω1 such that |
⋃

y∈A Xy| < c. The following
two cases are possible.
Case 1. There exists a κ < c such that Zκ = {y: |Xy| = κ} is uncountable.

Then we choose A ∈ [Zκ]ω1 . Obviously, |
⋃

y∈A Xy| = κω1 < c.
Case 2. |Zκ| ≤ ω for every cardinal κ < c.

Put Z = {|Xy|: y ∈ R} and observe that R =
⋃

κ∈Z Zκ. It follows from (∗)
that if κ ∈ Z then κ < c. Consequently, since the union of less than continuum
many countable sets has size less than continuum, we conclude that |Z| = c.
Let λ be the ω1-st element of Z. We define A = {y: |Xy| < λ}. Clearly,
|
⋃

y∈A Xy| = |
⋃

κ<λ Zκ| ≤ λω < c.
Now choose an x ∈ R \

⋃
y∈A Xy and notice that ({x} × A) ∩ X = ∅. So

A ⊆ R \Xx. This is in contradiction with the fact that every vertical section of
X is co-countable.

It is worth remarking here that SZ-sets with the Baire property or measur-
able are “small.” It means that every measurable SZ-set has measure zero and
every SZ-set with the Baire property is meager. This follows from Fubini Theo-
rem and Kuratowski-Ulam Theorem, respectively. But do such “small” SZ-sets
exist? The answer is positive. It is easy to construct a Sierpiński-Zygmund
function (so also an SZ-set) contained in R×C, whose domain is the whole real
line. C is the standard linear Cantor set. Observe also that there are “big”
SZ-sets in terms of outer measure. The set X from Lemma 3 is of full outer
measure. To see this, choose a closed set F ⊆ R

2 \X. Based on the properties
of X we conclude that every vertical section of F is countable. Hence F is of
measure zero. This proves that X is of full outer measure.

The above discussion states that “good” SZ-sets (in terms of measure or
Baire property) are “small”. However, we have the following

Remark 5 There exists an SZ-set which is Marczewski measurable but not
Marczewski null.

Proof. We claim that the set X from Lemma 3 is the desired set. Let us
see why X is Marczewski measurable but not Marczewski null. Fix a perfect
set P ⊆ R

2. There are two possible cases. Either some vertical section Pa of
P is perfect, or all vertical sections are countable. In the first case, there is
a Q ⊆ {a} × Pa completely contained in X, because the complement of every
vertical section of X has cardinality less than c. In the second case, we can
find a partial continuous function f ⊆ P defined on a perfect set. To see this
consider a function g: dom(P ) → R defined by g(x) = sup(Px ∩ (−∞, 0]). The
function g is upper semi-continuous so also of Baire class one. Thus, g contains
a continuous function defined on a perfect set. (See [6].)

Since |f ∩ X| < c, the restriction of f to some perfect subset R of dom(f)
is disjoint with X. Note that f |R is a perfect set. Thus P contains a perfect
subset disjoint with X.

It is obvious that X contains a perfect set (every vertical section contains
a perfect set). So X is not Marczewski null. This completes the proof of our
remark.
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Another interesting observation is that the property of being an SZ-set is not
preserved under the homeomorphic images. It is easy to see that any vertical
line is an SZ-set, but after a rotation, for example about π

4 , it is not an SZ-set
any more. However, if h: R2 → R

2 is a homeomorphism preserving vertical lines
then h[X] is an SZ-set for every X ∈ JSZ .

Fact 6 Let h: R2 → R
2 be an homeomorphism such that h[L] is a vertical line

for every vertical line L. Then h{JSZ} = {h[X]:X ∈ JSZ} = JSZ .

Proof. First we show the inclusion h{JSZ} ⊆ JSZ . It is easy to see that if
f :A → R is a partial continuous function then h−1[f ]:A → R is also continuous.
This implies that for every X ∈ JSZ , h[X] is also in JSZ since h[X] ∩ f =
h[X ∩ h−1[f ]].

Now to show the other inclusion, let us fix a Y ∈ JSZ . Note that h−1

also preserves all vertical lines. Thus, from the first part of the proof, X =
h−1[Y ] ∈ JSZ . Hence Y = h[X] ∈ h{JSZ}.

As we mentioned at the beginning of this paper, the concept of Sierpiński-
Zygmund sets is a generalization of the concept of Sierpiński-Zygmund functions.
One of the questions related to the family SZ of Sierpiński-Zygmund functions
is for how “big” families F ⊆ R

R we can find a function g ∈ R
R such that

g + F ⊆ SZ. (See e.g. [3].) Similar question can be asked in the case of
Sierpiński-Zygmund sets. This leads to the following definition.

Definition 7 A set X ⊆ R
2 is called SZ-shiftable, if there exists a function

f : R → R such that f + X is SZ-set.

We denote the family of all SZ-shiftable sets by SZshift. Obviously JSZ ⊆
SZshift, so SZshift is not empty.

Lemma 8 Let X ⊆ R
2. If for all x ∈ R and A ∈ [R]<c there exists an a ∈ R

such that (a + A) ∩Xx = ∅, then A is SZ-shiftable.

Proof. Let 〈xα : α < c〉 and 〈fα : α < c〉 be the sequences of all real numbers
and all continuous functions defined on a Gδ subset of R, respectively. We will
define a function f : R → R which shifts X into JSZ , using transfinite induction.
For every α < c we choose f(xα) ∈ R with the property that (f(xα) + Xxα) ∩
{fξ(xα): ξ < α} = ∅. Such a choice is possible because of the assumptions on
X. It is easy to see that dom ((f + X) ∩ fβ) ⊆ {xξ: ξ < β} for each β < c. Thus
f + X ∈ JSZ .

Recall that under Martin’s Axiom (MA) the union of less than c meager
sets is meager. Suppose that A ∈ [R]<c and B ⊆ R is meager. Then the set
B −A =

⋃
x∈A(B − x) is meager as a union of less than c meager sets. Now, if

we choose an a /∈ B −A then (a + A) ∩B = ∅. Notice that the same argument
can be repeated for the sets of measure zero.

The above discussion and Lemma 8 immediately imply
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Corollary 9 (MA) If each vertical section of a set X ⊆ R
2 is meager or of

measure zero, then X ∈ SZshift.

It may also be of interest to determine whether SZshift is closed under the
union operation. Fact 2 states, in particular, that the union of two SZ-sets is
also an SZ-set. Thus, the natural question that appears here is whether the
same is true for SZ-shiftable sets. It turns out not to be the case.

Example 10 There exist A1, A2 ∈ SZshift such that A1 ∪A2 = R
2 �∈ SZshift.

Proof. Put A1 to be the set X from Lemma 3 and A2 to be its complement.
Based on Lemma 8 A2 is SZ-shiftable. Next, notice that A1 ∈ JSZ ⊆ SZshift.
Finally, A1 ∪A2 = R

2 and obviously R
2 is not in SZshift.

Before we finish let us make a comment about [8, Theorem 2 (1)] which says:
MA implies that for every finite family F of real functions there exists an almost
continuous function g (each open subset of R

2 containing the graph of g contains
also the graph of a continuous function) such that g + f is Sierpiński-Zygmund
for every f ∈ F . Note that this result can be expressed using the notion of
SZ-sets. Under MA the following holds:

If, for some fixed n ∈ ω, every vertical section of the set X ⊆ R
2 has at

most n elements then there exists an almost continuous function f : R → R

such that f + X ∈ JSZ .

We generalize the above result.

Theorem 11. (MA) If every vertical section of the set X ⊆ R
2 is finite then

there exists an almost continuous function f : R → R such that f + X ∈ JSZ .

Before we prove the theorem we need to cite some lemmas and recall some
properties. First let us observe that a function f : R → R is almost continuous if
and only if it intersects every blocking set , i.e., a closed set K ⊆ R

2 which meets
every continuous function from R to R and is disjoint with at least one function
from R

R. Next we give some definitions needed to state the lemmas. (See [8].)
For X ⊆ R by C<c(X) we denote the family of all functions f :X → R which can
be represented as a union of less than c-many partial continuous functions. The
symbol SZ(X) denotes the family of all partial Sierpiński-Zygmund functions
defined on X.

Let A ⊆ R be everywhere of second category, that is A ∩ I is of second
category for every nontrivial interval I. We define FA as a family of all F ⊆ R

R

whose union
⋃

F contains no function from C<c(A ∩B) for any Borel set B of
second category.

Lemma 12 [8, Lemma 12] (MA) Let F ∈ FA be a family such that |F | ≤ c.
There exists a g ∈ SZ(A) such that every extension ḡ: R → R of g is almost
continuous and g + F ⊆ SZ(A).

A slight modification of the proof of the above lemma gives a little stronger
result. (See [7, Lemma 2.2.1].)
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Lemma 13 (MA) Let F ∈ FA be a family such that |F | ≤ c. There exists a
g ∈ SZ(A) such that g + F ⊆ SZ(A) and for every blocking set B ⊆ R

2 there is
a non-empty open interval IB ⊆ dom(B) with the property that dom(B ∩ g) is
dense in IB .

Lemma 14 [8, Lemma 13] (MA) Let {fi}n
1 ⊆ R

R, n = 1, 2, . . .. There exists
{f ′

i}n
1 ∈ FA such that fi|Ai ∈ C<c(Ai), where Ai = {x: fi(x) �= f ′

i(x)}.

Note that Lemmas 13 and 14 imply the following.

(!) (MA) Assume that F ⊆ R
R is finite and A ⊆ R is everywhere of second

category. Then there exists a function g:A → R such that g +F ⊆ SZ(A)
and dom(g ∩ B) is dense in some non-empty open interval IB for every
blocking set B.

Proof. Let us consider the partition {Hn:n ∈ ω} of R, where Hn is defined
by Hn = {x ∈ R: |Xx| = n}. Let Gn ⊆ R be a maximal open set such that Hn

is everywhere of second category in Gn. Such a set can be easily constructed.
Simply define Gn as the interior of the set R \

⋃
I∈In

I, where In is the set of
all open intervals in which Hn is meager.

We claim that for every n < ω, there exists a function gn: (Gn ∩ Hn) → R

such that gn + X = {〈x, gn(x) + y〉:x ∈ (Gn ∩ Hn), 〈x, y〉 ∈ X} ∈ JSZ and⋃
n<ω gn intersects every blocking set B.

First observe that this claim implies the conclusion of the theorem. Put
g: R → R to be an extension of

⋃
n<ω gn such that [g|(R \

⋃
n<ω Gn ∩Hn)] + X

is an SZ-set. This extension exists based on Corollary 9. Thus, g + X is the
union of countable many SZ-sets. Consequently, g + X ∈ JSZ . Clearly, g
intersects every blocking set, so g is almost continuous.

To complete the proof we need to show the above claim. Fix an n < ω and
put An = (Gn ∩ Hn) ∪

⋃
I∈In

I. The set An is everywhere of second category.
Notice also that the part of X contained in (Gn ∩ Hn) × R can be covered
by n functions f1, . . . , fn from R to R. So, by (!), there exists a function
g′n:An → R such that g′n + {f1, . . . , fn} ⊆ SZ(An) and dom(g′n ∩B) is dense in
some non-empty open interval IB for every blocking set B. Thus, if we define
gn = g′n|(Gn ∩Hn) then gn + X ∈ JSZ .

What remains to prove is that
⋃

n<ω gn intersects every blocking set B.
Notice that IB ∩ Gn �= ∅ for some n. Thus, gn ∩ B �= ∅. Consequently, ∅ �=
B ∩

⋃
n<ω gn ⊆ B ∩ g. This finishes the proof.
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