The Minimum Barrier Distance Transform

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and
MIPG, Department of Radiology, University of Pennsylvania

MIPG Seminar, UPenn, November 16, 2012

Outline

(1) Minimum Barrier Distance, $\hat{\rho}$, in the discrete setting
(2) How to compute $\hat{\rho}$?
(3) Minimum Barrier Distance, ρ, in the continuous setting

4 Experiments: comparison with other distance measures
(5) Newest result: fast algorithm for computing $\hat{\rho}$

Outline

(1) Minimum Barrier Distance, $\hat{\rho}$, in the discrete setting
(2) How to compute $\hat{\rho}$?
(3) Minimum Barrier Distance, ρ, in the continuous setting
4. Experiments: comparison with other distance measures
(5) Newest result: fast algorithm for computing $\hat{\rho}$

Image, scene, and the associated graph

$\widehat{f}: \widehat{D} \rightarrow \mathbb{R}$ is a digital image, where
$\widehat{D}=\mathbb{Z}^{k} \cap \prod_{i=1}^{k}\left[a_{i}, b_{i}\right]\left(a_{i}, b_{i} \in \mathbb{R}\right)$ is a digital scene with $x, y \in \widehat{D}$ adjacent provided $\sum_{i}|x(i)-y(i)|=1$.

We will treat also this structure,
$G=\langle\widehat{D},\{\{x, y\}: x, y$ adjacent $\}, \widehat{f}\rangle$,
as a vertex weighted graph $G=\langle V(G), E(G), \widehat{w}\rangle$.

Image, scene, and the associated graph

$\widehat{f}: \widehat{D} \rightarrow \mathbb{R}$ is a digital image, where
$\widehat{D}=\mathbb{Z}^{k} \cap \prod_{i=1}^{k}\left[a_{i}, b_{i}\right]\left(a_{i}, b_{i} \in \mathbb{R}\right)$ is a digital scene
with $x, y \in \widehat{D}$ adjacent provided $\sum_{i}|x(i)-y(i)|=1$.

We will treat also this structure,
$G=\langle\widehat{D},\{\{x, y\}: x, y$ adjacent $\}, \widehat{f}\rangle$, as a vertex weighted graph $G=\langle V(G), E(G), \widehat{w}\rangle$.

Minimum Barrier Distance in discrete setting

For a path $p=\left\langle c_{1}, \ldots, c_{k}\right\rangle$ in $G=\langle\widehat{D}, E, \widehat{w}\rangle$

$$
c_{b}(p)=\max _{i} \widehat{w}\left(c_{i}\right)-\min _{i} \widehat{w}\left(c_{i}\right)
$$

is the barrier cost of p.

The barrier distance
between x and y in \widehat{D}

$\hat{\rho}(x, y)=\min \left\{c_{b}(p): p\right.$ is a path in G from x to $\left.y\right\}$

Minimum Barrier Distance in discrete setting

For a path $p=\left\langle c_{1}, \ldots, c_{k}\right\rangle$ in $G=\langle\widehat{D}, E, \widehat{w}\rangle$

$$
c_{b}(p)=\max _{i} \widehat{w}\left(c_{i}\right)-\min _{i} \widehat{w}\left(c_{i}\right)
$$

is the barrier cost of p.

The barrier distance
between x and y in \widehat{D}
is given by:

$$
\hat{\rho}(x, y)=\min \left\{c_{b}(p): p \text { is a path in } G \text { from } x \text { to } y\right\}
$$

MBD vs geodesic distance

$\hat{\rho}(x, y)=\min \left\{c_{b}(p): p\right.$ is a path in G from x to $\left.y\right\}$
$\hat{\rho}(x, y)$ is, in a way,
a vertical component of
the geodesic distance
between x and y.

Theorem
$\hat{\rho}$ is a pseud-metric:
it is symmetric and it satisfies the triangle inequality.
(However, $\hat{\rho}(x, y)$ can be equal 0 for $x \neq y$.)

MBD vs geodesic distance

$\hat{\rho}(x, y)=\min \left\{c_{b}(p): p\right.$ is a path in G from x to $\left.y\right\}$
$\hat{\rho}(x, y)$ is, in a way,
a vertical component of
the geodesic distance
between x and y.

Theorem

$\hat{\rho}$ is a pseudo-metric:
it is symmetric and it satisfies the triangle inequality. (However, $\hat{\rho}(x, y)$ can be equal 0 for $x \neq y$.)

MBD as a measure of connectivity

$\beta(x, s)$ is small when $|\widehat{w}(x)-m|$ is large.

$\hat{\rho}(x, y)$ can be used to define RFC-like object:

MBD as a measure of connectivity

$\hat{\rho}(x, y)=\min \left\{c_{b}(p): p\right.$ is a path in G from x to $\left.y\right\}$
$\beta(x, y)=\exp (-\hat{\rho}(x, y))$
has some similarity to the
FC connectivity measure for the object-feature base affinity with average intensity value $m=\widehat{w}(s)$:

$\hat{\rho}(x, y)$ can be used to define RFC-like object:
(Not studied yet.)

MBD as a measure of connectivity

$\hat{\rho}(x, y)=\min \left\{c_{b}(p): p\right.$ is a path in G from x to $\left.y\right\}$
$\beta(x, y)=\exp (-\hat{\rho}(x, y))$
has some similarity to the
FC connectivity measure for the object-feature base affinity with average intensity value $m=\widehat{w}(s)$:
 $\beta(x, s)$ is small when $|\widehat{w}(x)-m|$ is large.
$\hat{\rho}(x, y)$ can be used to define RFC-like object:
(Not studied yet.)

MBD as a measure of connectivity

$\hat{\rho}(x, y)=\min \left\{c_{b}(p): p\right.$ is a path in G from x to $\left.y\right\}$
$\beta(x, y)=\exp (-\hat{\rho}(x, y))$
has some similarity to the
FC connectivity measure for the object-feature base affinity with average intensity value $m=\widehat{w}(s)$:

$\beta(x, s)$ is small when $|\widehat{w}(x)-m|$ is large.
$\hat{\rho}(x, y)$ can be used to define RFC-like object:

$$
P(s, t)=\{c \in \widehat{D}: \hat{\rho}(c, s)<\hat{\rho}(c, t)\}
$$

(Not studied yet.)

MBD as a measure of connectivity

$\hat{\rho}(x, y)=\min \left\{c_{b}(p): p\right.$ is a path in G from x to $\left.y\right\}$
$\beta(x, y)=\exp (-\hat{\rho}(x, y))$
has some similarity to the
FC connectivity measure for the object-feature base affinity with average intensity value $m=\widehat{w}(s)$:

$\beta(x, s)$ is small when $|\widehat{w}(x)-m|$ is large.
$\hat{\rho}(x, y)$ can be used to define RFC-like object:

$$
P(s, t)=\{c \in \widehat{D}: \hat{\rho}(c, s)<\hat{\rho}(c, t)\}
$$

(Not studied yet.)

Outline

(1) Minimum Barrier Distance, $\hat{\rho}$, in the discrete setting
(2) How to compute $\hat{\rho}$?
(3) Minimum Barrier Distance, ρ, in the continuous setting

4 Experiments: comparison with other distance measures
(5) Newest result: fast algorithm for computing $\hat{\rho}$

Can Dijkstra-like algorithm find $\hat{\rho}(x, y)$?

Natural Algorithm:

Input: A seed x in the image/graph $G=\langle\widehat{D}, E, \widehat{w}\rangle$.
Output: $L(y), U(y) \in \mathbb{R}$, a path p_{y} from x to y with the range in
$[L(y), U(y)]$ s.t. (hopefully) $\hat{\rho}(x, y)=U(y)-L(y)$.
Initialization: Push x to queue Q ordered via $U(y)-L(y)$.
1: Put $L(y)=-\infty, U(y)=\infty$ for $y \neq x, L(x)=U(x)=\widehat{w}(x)$;
2: while Q is not empty do
3: \quad Pop z from Q;
4: for every y adjacent to z do
5: \quad Put $L=\min \{L(z), \widehat{w}(y)\}$ and $U=\max \{U(z), \widehat{w}(y)\}$;
if $U(y)-L(y)>U-L$ then Put $L(y)=L$ and $U(y)=U$; Push y to Q;
end if
end for
11: end while

Can Dijkstra-like algorithm find $\hat{\rho}(x, y)$?

Natural Algorithm:

```
Input: A seed x in the image/graph G}=\langleD,E,\widehat{W}\rangle\mathrm{ .
Output: L(y),U(y)\in\mathbb{R}\mathrm{ , a path py from }x\mathrm{ to }y\mathrm{ with the range in}\
[L(y),U(y)] s.t. (hopefully) \hat{\rho}(x,y)=U(y)-L(y).
Initialization: Push }x\mathrm{ to queue Q ordered via U(y) -L(y).
    1: Put L(y)=-\infty,U(y)=\infty for }y\not=x,L(x)=U(x)=\widehat{w}(x)
    2: while Q is not empty do
    3: Pop z from Q;
    4: for every y adjacent to z do
    5: Put }L=\operatorname{min}{L(z),\widehat{w}(y)}\mathrm{ and }U=\operatorname{max}{U(z),\widehat{w}(y)}
    6:
7:
8:

\section*{Can Dijkstra-like algorithm find \(\hat{\rho}(x, y)\) ?}

Natural Algorithm:
Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: \(L(y), U(y) \in \mathbb{R}\), a path \(p_{y}\) from \(x\) to \(y\) with the range in \([L(y), U(y)]\) s.t. (hopefully) \(\hat{\rho}(x, y)=U(y)-L(y)\).
Initialization: Push \(x\) to queue \(Q\) ordered via \(U(y)-L(y)\).

for every \(y\) adjacent to \(z\) do


\section*{Can Dijkstra-like algorithm find \(\hat{\rho}(x, y)\) ?}

Natural Algorithm:
Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: \(L(y), U(y) \in \mathbb{R}\), a path \(p_{y}\) from \(x\) to \(y\) with the range in \([L(y), U(y)]\) s.t. (hopefully) \(\hat{\rho}(x, y)=U(y)-L(y)\).
Initialization: Push \(x\) to queue \(Q\) ordered via \(U(y)-L(y)\).
1: Put \(L(y)=-\infty, U(y)=\infty\) for \(y \neq x, L(x)=U(x)=\widehat{w}(x)\);


\section*{Can Dijkstra-like algorithm find \(\hat{\rho}(x, y)\) ?}

Natural Algorithm:
Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: \(L(y), U(y) \in \mathbb{R}\), a path \(p_{y}\) from \(x\) to \(y\) with the range in \([L(y), U(y)]\) s.t. (hopefully) \(\hat{\rho}(x, y)=U(y)-L(y)\).
Initialization: Push \(x\) to queue \(Q\) ordered via \(U(y)-L(y)\).
1: Put \(L(y)=-\infty, U(y)=\infty\) for \(y \neq x, L(x)=U(x)=\widehat{w}(x)\);
2: while \(Q\) is not empty do
3: \(\quad\) Pop \(z\) from \(Q\);
4: for every \(y\) adjacent to \(z\) do
5:
\[
\text { Put } L=\min \{L(z), \widehat{w}(y)\} \text { and } U=\max \{U(z), \widehat{w}(y)\} ;
\]

\section*{end for}

11: end while

\section*{Can Dijkstra-like algorithm find \(\hat{\rho}(x, y)\) ?}

Natural Algorithm:
Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: \(L(y), U(y) \in \mathbb{R}\), a path \(p_{y}\) from \(x\) to \(y\) with the range in \([L(y), U(y)]\) s.t. (hopefully) \(\hat{\rho}(x, y)=U(y)-L(y)\).
Initialization: Push \(x\) to queue \(Q\) ordered via \(U(y)-L(y)\).
1: Put \(L(y)=-\infty, U(y)=\infty\) for \(y \neq x, L(x)=U(x)=\widehat{w}(x)\);
2: while \(Q\) is not empty do
3: \(\quad\) Pop \(z\) from \(Q\);
4: for every \(y\) adjacent to \(z\) do
5: \(\quad \operatorname{Put} L=\min \{L(z), \widehat{w}(y)\}\) and \(U=\max \{U(z), \widehat{w}(y)\}\);
6: \(\quad\) if \(U(y)-L(y)>U-L\) then
7: \(\quad\) Put \(L(y)=L\) and \(U(y)=U\);
8: \(\quad\) Push \(y\) to \(Q\);
9: end if
10: end for
11: end while

\section*{Failure of Natural Algorithm!}


> Let \(x\) be the lower left spel, with \(\widehat{w}=0.5\).
> Let \(y\) be the upper right spel, with \(\widehat{w}=0.8\).
> The optimal path is \(p_{0}=\langle .5 ; .6 ; .5 ; .8\rangle\), giving \(\hat{\rho}(x, y)=.3\)

> However, the Natural Algorithm returns
> the path \(p=\langle .5 ; .41 ; .5 ; .8\rangle\)
> with \(c_{b}(p)=.39>\hat{\rho}(x, y)\).

\section*{Question (We do not know the answer)}

Do the numbers \(U(y)-L(y)\) returned by Natural Algorithm approximate \(\hat{\rho}(x, y)\) in any reasonable sense?

So, how do we effectively compute the numbers

\section*{Failure of Natural Algorithm!}


Let \(x\) be the lower left spel, with \(\widehat{w}=0.5\). Let \(y\) be the upper right spel, with \(\widehat{w}=0.8\).

giving \(\hat{\rho}(x, y)=.3\)
However, the Natural Algorithm returns
the path \(p=\langle .5 ; .41 ; .5 ; .8\rangle\)
with \(c_{b}(p)=.39\)
Question (We do not know the answer)
Do the numbers \(U(y)-L(y)\) returned by Natural Algorithm approximate \(\hat{\rho}(x, y)\) in any reasonable sense?

So, how do we effectively compute the numbers

\section*{Failure of Natural Algorithm!}


Let \(x\) be the lower left spel, with \(\widehat{w}=0.5\).
Let \(y\) be the upper right spel, with \(\widehat{w}=0.8\).
The optimal path is \(p_{o}=\langle .5 ; .6 ; .5 ; .8\rangle\), giving \(\hat{\rho}(x, y)=.3\)

However, the Natural Algorithm returns
the path \(p=\langle .5 ; .41 ; .5 ; .8\rangle\)
with \(c_{b}(p)=.39\)
Question (We do not know the answer)
Do the numbers \(U(v)-L(v)\) returned by Natural Algorithm
approximate \(\hat{\rho}(x, y)\) in any reasonable sense?

So, how do we effectively compute the numbers

\section*{Failure of Natural Algorithm!}
\begin{tabular}{|c|c|}
\hline 1 & 0.8 \\
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}

Let \(x\) be the lower left spel, with \(\widehat{w}=0.5\).
Let \(y\) be the upper right spel, with \(\widehat{w}=0.8\).
The optimal path is \(p_{o}=\langle .5 ; .6 ; .5 ; .8\rangle\), giving \(\hat{\rho}(x, y)=.3\)

However, the Natural Algorithm returns
the path \(p=\langle .5 ; .41 ; .5 ; .8\rangle\)
with \(c_{b}(p)=.39>\hat{\rho}(x, y)\).

\section*{Question (We do not know the answer)}

Do the numbers \(U(y)-L(y)\) returned by Natural Algorithm approximate \(\hat{\rho}(x, y)\) in any reasonable sense?

So, how do we effectively compute the numbers

\section*{Failure of}
\begin{tabular}{|c|c|}
\hline 1 & 0.8 \\
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}

Let \(x\) be the lower left spel, with \(\widehat{w}=0.5\).
Let \(y\) be the upper right spel, with \(\widehat{w}=0.8\).
The optimal path is \(p_{o}=\langle .5 ; .6 ; .5 ; .8\rangle\), giving \(\hat{\rho}(x, y)=.3\)

However, the Natural Algorithm returns
the path \(p=\langle .5 ; .41 ; .5 ; .8\rangle\)
with \(c_{b}(p)=.39>\hat{\rho}(x, y)\).
Question (We do not know the answer)
Do the numbers \(U(y)-L(y)\) returned by Natural Algorithm approximate \(\hat{\rho}(x, y)\) in any reasonable sense?

So, how do we effectively compute the numbers

\section*{Failure of}
\begin{tabular}{|c|c|}
\hline 1 & 0.8 \\
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}

Let \(x\) be the lower left spel, with \(\widehat{w}=0.5\).
Let \(y\) be the upper right spel, with \(\widehat{w}=0.8\).
The optimal path is \(p_{o}=\langle .5 ; .6 ; .5 ; .8\rangle\), giving \(\hat{\rho}(x, y)=.3\)

However, the Natural Algorithm returns
the path \(p=\langle .5 ; .41 ; .5 ; .8\rangle\)
with \(c_{b}(p)=.39>\hat{\rho}(x, y)\).
Question (We do not know the answer)
Do the numbers \(U(y)-L(y)\) returned by Natural Algorithm approximate \(\hat{\rho}(x, y)\) in any reasonable sense?

So, how do we effectively compute the numbers \(\hat{\rho}(x, y)\) ?

\section*{Better attempt to compute \(\hat{\rho}(x, y)\)}


Computing \(\hat{\rho}\)

\section*{Better attempt to compute \(\hat{\rho}(x, y)\)}

Let \(\hat{\Pi}_{x, y}=\{p: p\) is a path in \(G\) from \(x\) to \(y\}\) and, for \(p \in \hat{\Pi}_{x, y}\), let \(c_{\text {min }}(p)=\min _{t} \widehat{w}(p(t))\) and \(c_{\text {max }}(p)=\max _{t} \widehat{w}(p(t))\).


\section*{Better attempt to compute \(\hat{\rho}(x, y)\)}

Let \(\hat{\Pi}_{x, y}=\{p: p\) is a path in \(G\) from \(x\) to \(y\}\) and, for \(p \in \hat{\Pi}_{x, y}\), let \(c_{\text {min }}(p)=\min _{t} \widehat{w}(p(t))\) and \(c_{\text {max }}(p)=\max _{t} \widehat{w}(p(t))\).

Let \(\hat{\varphi}(x, y)=\min _{p \in \hat{\Pi}_{x, y}} c_{\max }(p)-\max _{p \in \hat{\Pi}_{x, y}} c_{\min }(p)\)



Computing \(\hat{\rho}\)

\section*{Better attempt to compute \(\hat{\rho}(x, y)\)}

Let \(\hat{\Pi}_{x, y}=\{p: p\) is a path in \(G\) from \(x\) to \(y\}\) and, for \(p \in \hat{\Pi}_{x, y}\), let \(c_{\text {min }}(p)=\min _{t} \widehat{w}(p(t))\) and \(c_{\text {max }}(p)=\max _{t} \widehat{w}(p(t))\).

Let \(\hat{\varphi}(x, y)=\min _{p \in \hat{\Pi}_{x, y}} c_{\max }(p)-\max _{p \in \hat{\Pi}_{x, y}} c_{\min }(p)\)

Clearly


\section*{Better attempt to compute \(\hat{\rho}(x, y)\)}

Let \(\hat{\Pi}_{x, y}=\{p: p\) is a path in \(G\) from \(x\) to \(y\}\) and, for \(p \in \hat{\Pi}_{x, y}\), let \(c_{\text {min }}(p)=\min _{t} \widehat{w}(p(t))\) and \(c_{\text {max }}(p)=\max _{t} \widehat{w}(p(t))\).

Let \(\hat{\varphi}(x, y)=\min _{p \in \hat{\Pi}_{x, y}} c_{\max }(p)-\max _{p \in \hat{\Pi}_{x, y}} c_{\min }(p)\)

Clearly

\(y\) - upper right
\begin{tabular}{|l|l|}
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}


\section*{\(x\) - lower left}

\section*{Nevertheless,}
- \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\), as we prove via continuous MBD.
- There is a very fast algorithm calculating \(\hat{\varphi}(x, y)\).
```

\varphi}(x,y)\not=\hat{\rho}(x,y)\mathrm{ but }\hat{\varphi}(x,y)\approx\hat{\rho}(x,y

```
\(y\) - upper right
\begin{tabular}{|l|l|}
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}
\[
\min _{p \in \hat{\Pi}_{x, y}} c_{\max }(p)=c_{\max }(0.5,0.41,0.5)=0.5
\]
\(x\) - lower left

\section*{Nevertheless,}
- \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\), as we prove via continuous MBD.
- There is a very fast algorithm calculating \(\hat{\varphi}(x, y)\).
```

\hat{\varphi}(x,y)\not=\hat{\rho}(x,y) but \hat{\varphi}(x,y)\approx\hat{\rho}(x,y)

```
\(y\) - upper right
\begin{tabular}{|l|l|}
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}
\(\min _{p \in \hat{\Pi}_{x, y}} c_{\max }(p)=c_{\max }(0.5,0.41,0.5)=0.5\)
\(\max _{p \in \hat{\Pi}_{x, y}} c_{\text {min }}(p)=c_{\text {min }}(0.5,0.6,0.5)=0.5\)
\(x\) - lower left But \(\hat{\varphi}(x, y)=0 \neq 0.09=\hat{\rho}(x, y)\).

\section*{Nevertheless,}
- \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\), as we prove via continuous MBD.
- There is a very fast algorithm calculating \(\hat{\varphi}(x, y)\).

\section*{\(\hat{\varphi}(x, y) \neq \hat{\rho}(x, y)\) but \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\)}
\(y\) - upper right
\begin{tabular}{|l|l|}
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}
\(\min _{p \in \hat{\Pi}_{x, y}} c_{\max }(p)=c_{\max }(0.5,0.41,0.5)=0.5\)
\(\max _{p \in \hat{\Pi}_{x, y}} c_{\min }(p)=c_{\min }(0.5,0.6,0.5)=0.5\)
But \(\hat{\varphi}(x, y)=0 \neq 0.09=\hat{\rho}(x, y)\).
\(x\) - lower left

\section*{Nevertheless,}
- \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\), as we prove via continuous MBD.
- There is a very fast algorithm calculating \(\hat{\varphi}(x, y)\).

\section*{\(\hat{\varphi}(x, y) \neq \hat{\rho}(x, y)\) but \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\)}
\(y\) - upper right
\begin{tabular}{|c|c|}
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}
\(\min _{p \in \hat{\Pi}_{x, y}} c_{\max }(p)=c_{\max }(0.5,0.41,0.5)=0.5\)
\(\max _{p \in \hat{\Pi}_{x, y}} c_{\min }(p)=c_{\min }(0.5,0.6,0.5)=0.5\)
But \(\hat{\varphi}(x, y)=0 \neq 0.09=\hat{\rho}(x, y)\).
\(x\) - lower left

\section*{Nevertheless,}
- \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\), as we prove via continuous MBD.
- There is a very fast algorithm calculating \(\hat{\varphi}(x, y)\).

\section*{\(\hat{\varphi}(x, y) \neq \hat{\rho}(x, y)\) but \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\)}
\(y\) - upper right
\begin{tabular}{|l|l|}
\hline 0.41 & 0.5 \\
\hline 0.5 & 0.6 \\
\hline
\end{tabular}
\(\min _{p \in \hat{\Pi}_{x, y}} c_{\max }(p)=c_{\max }(0.5,0.41,0.5)=0.5\)
\(\max _{p \in \hat{\Pi}_{x, y}} c_{\min }(p)=c_{\text {min }}(0.5,0.6,0.5)=0.5\)
But \(\hat{\varphi}(x, y)=0 \neq 0.09=\hat{\rho}(x, y)\).
\(x\) - lower left

\section*{Nevertheless,}
- \(\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)\), as we prove via continuous MBD.
- There is a very fast algorithm calculating \(\hat{\varphi}(x, y)\).

\section*{Fast algorithm \(A_{\hat{\varphi}}\) calculating \(\hat{\varphi}(x, \cdot)\)}

\section*{Let \(D A(G, \widehat{w}, x)\) - Dijkstra algorithm returning \(p_{y}\) 's with}
\(\hat{\rho}_{\text {max }}(x, y)=c_{\text {max }}\left(p_{y}\right)\).
Then \(D A(G,-\widehat{w}, x)\) returns \(p_{y}\) 's with \(\hat{\rho}_{\text {min }}(x, y)=-c_{\text {max }}\left(p_{y}\right)\).
Algorithm A :
Input: \(A\) seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: A map \(\hat{\varphi}(x, \cdot)\).
1: Run \(D A(G, \widehat{w}, x)\) and record \(C^{+}(y)=c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\); 2: Run \(D A(G,-\widehat{w}, x)\) \& record \(C^{-}(y)=-c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\); 3: Return \(\hat{\varphi}(x, y)=C^{+}(y)-C^{-}(y)\) for every \(y \in \widehat{D}\);

Algorithm \(A_{\hat{\varphi}}\) requires \(O(n \ln n)\) operations, \(n\) - the size of \(\widehat{D}\).

\section*{Fast algorithm \(A_{\hat{\varphi}}\) calculating \(\hat{\varphi}(x, \cdot)\)}

> Let \(D A(G, \widehat{w}, x)\) - Dijkstra algorithm returning \(p_{y}\) 's with
> \(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).

Then \(D A(G,-\widehat{w}, x)\) returns \(p_{y}\) 's with \(\hat{\rho}_{\min }(x, y)=-c_{\max }\left(p_{y}\right)\).
Algorithm \(A_{\hat{\varphi}}\) :
Input: \(A\) seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: A map \(\hat{\varphi}(x, \cdot)\).
1: Run \(D A(G, \widehat{w}, x)\) and record \(C^{+}(y)=c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\); 2: Run \(D A(G,-\widehat{w}, x)\) \& record \(C^{-}(y)=-c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\); 3: Return \(\hat{\varphi}(x, y)=C^{+}(y)-C^{-}(y)\) for every \(y \in \widehat{D}\);

Algorithm \(A_{\hat{\varphi}}\) requires \(O(n \ln n)\) operations, \(n\) - the size of \(\widehat{D}\).

\section*{Fast algorithm \(A_{\hat{\varphi}}\) calculating \(\hat{\varphi}(x, \cdot)\)}

Let \(D A(G, \widehat{w}, x)\) - Dijkstra algorithm returning \(p_{y}\) 's with
\(\hat{\rho}_{\text {max }}(x, y)=c_{\text {max }}\left(p_{y}\right)\).
Then \(D A(G,-\widehat{w}, x)\) returns \(p_{y}\) 's with \(\hat{\rho}_{\text {min }}(x, y)=-c_{\text {max }}\left(p_{y}\right)\).
Algorithm \(A_{\hat{\varphi}}\) :
Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: A map \(\hat{\varphi}(x, \cdot)\).
1: Run \(D A(G, \widehat{w}, x)\) and record \(C^{+}(y)=c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\);
2: Run \(D A(G,-\widehat{w}, x)\) \& record \(C^{-}(y)=-C_{m a x}\left(p_{y}\right)\) for \(y \in \widehat{D}\);
3: Return \(\hat{\varphi}(x, y)=C^{+}(y)-C^{-}(y)\) for every \(y \in \widehat{D}\);
Algorithm \(A_{\hat{\varphi}}\) requires \(O(n \ln n)\) operations, \(n-\) the size of \(\widehat{D}\).

\section*{Fast algorithm \(A_{\hat{\varphi}}\) calculating \(\hat{\varphi}(x, \cdot)\)}

Let \(D A(G, \widehat{w}, x)\) - Dijkstra algorithm returning \(p_{y}\) 's with
\(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).

Then \(D A(G,-\widehat{w}, x)\) returns \(p_{y}\) 's with \(\hat{\rho}_{\min }(x, y)=-c_{\max }\left(p_{y}\right)\).
Algorithm \(A_{\hat{\varphi}}\) : Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\). Output: A map \(\hat{\varphi}(x, \cdot)\).
1: Run \(D A(G, \widehat{w}, x)\) and record \(C^{+}(y)=c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\);
2: Run \(D A(G,-\widehat{w}, x)\) \& record \(C^{-}(y)=-C_{\max }\left(p_{y}\right)\) for 3: Return \(\hat{\varphi}(x, y)=C^{+}(y)-C^{-}(y)\) for every \(y \in \widehat{D}\);
Algorithm \(A_{\hat{\varphi}}\) requires \(O(n \ln n)\) operations, \(n-\) the size of \(\widehat{D}\).

\section*{Fast algorithm \(A_{\hat{\varphi}}\) calculating \(\hat{\varphi}(x, \cdot)\)}

Let \(D A(G, \widehat{w}, x)\) - Dijkstra algorithm returning \(p_{y}\) 's with
\(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).

Then \(D A(G,-\widehat{w}, x)\) returns \(p_{y}\) 's with \(\hat{\rho}_{\min }(x, y)=-c_{\max }\left(p_{y}\right)\).
Algorithm \(A_{\hat{\varphi}}\) : Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: A map \(\hat{\varphi}(x, \cdot)\).
1: Run \(D A(G, \widehat{w}, x)\) and record \(C^{+}(y)=c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\);
2: Run \(D A(G,-\widehat{w}, x) \&\) record \(C^{-}(y)=-c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\);

Algorithm \(A_{\hat{\varphi}}\) requires \(O(n \ln n)\) operations, \(n-\) the size of \(\widehat{D}\).

\section*{Fast algorithm \(A_{\hat{\varphi}}\) calculating \(\hat{\varphi}(x, \cdot)\)}

Let \(D A(G, \widehat{w}, x)\) - Dijkstra algorithm returning \(p_{y}\) 's with
\(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).

Then \(D A(G,-\widehat{w}, x)\) returns \(p_{y}\) 's with \(\hat{\rho}_{\min }(x, y)=-c_{\max }\left(p_{y}\right)\).
Algorithm \(A_{\hat{\varphi}}\) : Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: A map \(\hat{\varphi}(x, \cdot)\).
1: Run \(D A(G, \widehat{w}, x)\) and record \(C^{+}(y)=c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\);
2: Run \(D A(G,-\widehat{w}, x) \&\) record \(C^{-}(y)=-c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\);
3: Return \(\hat{\varphi}(x, y)=C^{+}(y)-C^{-}(y)\) for every \(y \in \widehat{D}\);
Algorithm \(A_{\hat{\varphi}}\) requires \(O(n \ln n)\) operations, \(n-\) the size of \(\widehat{D}\).

\section*{Fast algorithm \(A_{\hat{\varphi}}\) calculating \(\hat{\varphi}(x, \cdot)\)}

Let \(D A(G, \widehat{w}, x)\) - Dijkstra algorithm returning \(p_{y}\) 's with
\(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).

Then \(D A(G,-\widehat{w}, x)\) returns \(p_{y}\) 's with \(\hat{\rho}_{\min }(x, y)=-c_{\max }\left(p_{y}\right)\).
Algorithm \(A_{\hat{\varphi}}\) : Input: A seed \(x\) in the image/graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\).
Output: A map \(\hat{\varphi}(x, \cdot)\).
1: Run \(D A(G, \widehat{w}, x)\) and record \(C^{+}(y)=c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\);
2: Run \(D A(G,-\widehat{w}, x) \&\) record \(C^{-}(y)=-c_{\max }\left(p_{y}\right)\) for \(y \in \widehat{D}\);
3: Return \(\hat{\varphi}(x, y)=C^{+}(y)-C^{-}(y)\) for every \(y \in \widehat{D}\);
Algorithm \(A_{\hat{\varphi}}\) requires \(O(n \ln n)\) operations, \(n-\) the size of \(\widehat{D}\).

\section*{Outline}
(1) Minimum Barrier Distance, \(\hat{\rho}\), in the discrete setting
(2) How to compute \(\hat{\rho}\) ?
(3) Minimum Barrier Distance, \(\rho\), in the continuous setting

4 Experiments: comparison with other distance measures
(5) Newest result: fast algorithm for computing \(\hat{\rho}\)

\section*{Image, barrier cost of a path, and barrier distance}

Input: Continuous function \(f: D \rightarrow \mathbb{R}\), considered as an image,
where \(D=\prod_{i=1}^{k}\left[a_{i}, b_{i}\right]\left(a_{i}, b_{i} \in \mathbb{R}\right)\).
For a (continuous) path \(p:[0,1] \rightarrow D\) its barrier cost is

(Note that max and min are attained, as \(w \circ p\) is continuous.)
The continuous barrier distance
between \(x, y \in D\) is given by:


\section*{Image, barrier cost of a path, and barrier distance}

Input: Continuous function \(f: D \rightarrow \mathbb{R}\), considered as an image,
where \(D=\prod_{i=1}^{k}\left[a_{i}, b_{i}\right]\left(a_{i}, b_{i} \in \mathbb{R}\right)\).
For a (continuous) path \(p:[0,1] \rightarrow D\) its barrier cost is
\[
c_{b}(p)=\max _{t} w(p(t))-\min _{t} w(p(t)), \quad \text { here } w=f
\]
(Note that max and min are attained, as \(w \circ p\) is continuous.)
The continuous barrier distance
between \(x, y \in D\) is given by:


\section*{Image, barrier cost of a path, and barrier distance}

Input: Continuous function \(f: D \rightarrow \mathbb{R}\), considered as an image,
where \(D=\prod_{i=1}^{k}\left[a_{i}, b_{i}\right]\left(a_{i}, b_{i} \in \mathbb{R}\right)\).
For a (continuous) path \(p:[0,1] \rightarrow D\) its barrier cost is
\[
c_{b}(p)=\max _{t} w(p(t))-\min _{t} w(p(t)), \quad \text { here } w=f .
\]
(Note that max and min are attained, as \(w \circ p\) is continuous.)
The continuous barrier distance
between \(x, y \in D\) is given by:


\section*{Image, barrier cost of a path, and barrier distance}

Input: Continuous function \(f: D \rightarrow \mathbb{R}\), considered as an image,
where \(D=\prod_{i=1}^{k}\left[a_{i}, b_{i}\right]\left(a_{i}, b_{i} \in \mathbb{R}\right)\).
For a (continuous) path \(p:[0,1] \rightarrow D\) its barrier cost is
\[
c_{b}(p)=\max _{t} w(p(t))-\min _{t} w(p(t)), \quad \text { here } w=f
\]
(Note that max and min are attained, as \(w \circ p\) is continuous.)
The continuous barrier distance
between \(x, y \in D\) is given by:
\[
\rho(x, y)=\inf \left\{c_{b}(p): p \text { from } x \text { to } y\right\}
\]


\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)



For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)

\(\square\)
R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\}
\]

\(\square\) and \(c_{\max }(p)=\max _{t} w(p(t))\)

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)
\(\qquad\) In \(\rho(x, y)\), operation inf cannot be replaced with min

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\begin{aligned}
& \rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\} \\
& \text { Put } c_{\min }(p)=\min _{t} w(p(t)) \\
& \text { and } c_{\max }(p)=\max _{t} w(p(t))
\end{aligned}
\]

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)
\(\square\) In \(\rho(x, y)\), operation inf cannot be replaced with min

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\begin{aligned}
& \rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\} \\
& \text { Put } c_{\min }(p)=\min _{t} w(p(t))
\end{aligned}
\]
\[
\text { and } c_{\max }(p)=\max _{t} w(p(t))
\]
\[
c_{\min }\left(p_{1}\right)=0<c_{\max }\left(p_{1}\right)
\]
\[
c_{\max }\left(p_{2}\right)=0>c_{\min }\left(p_{2}\right)
\]

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)
\(\square\) In \(\rho(x, y)\), operation inf cannot be replaced with min!

Computing \(\hat{\rho}\)

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\begin{aligned}
& \rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\} \\
& \text { Put } c_{\min }(p)=\min _{t} w(p(t)) \\
& \text { and } c_{\max }(p)=\max _{t} w(p(t)) \\
& c_{\min }\left(p_{1}\right)=0<c_{\max }\left(p_{1}\right) \\
& c_{\max }\left(p_{2}\right)=0>c_{\min }\left(p_{2}\right)
\end{aligned}
\]

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)

\title{
\(c_{\max }\left(p_{2}\right)-c_{\min }\left(p_{1}\right)=0=\varphi(x, y)=\rho(x, y)<c_{b}(p) . \quad\) for any \(p \in \Pi_{x, y}\)
}

In \(\rho(x, y)\), operation inf cannot be replaced with min!
R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha

Computing \(\hat{\rho}\)

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\begin{aligned}
& \rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\} \\
& \text { Put } c_{\min }(p)=\min _{t} w(p(t)) \\
& \text { and } c_{\max }(p)=\max _{t} w(p(t)) \\
& c_{\min }\left(p_{1}\right)=0<c_{\max }\left(p_{1}\right) \\
& c_{\max }\left(p_{2}\right)=0>c_{\min }\left(p_{2}\right)
\end{aligned}
\]

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)

\title{
\(c_{\max }\left(p_{2}\right)-c_{\min }\left(p_{1}\right)=0=\varphi(x, y)=\rho(x, y)<c_{b}(p)\)
}

Computing \(\hat{\rho}\)

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\begin{aligned}
& \rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\} \\
& \text { Put } c_{\min }(p)=\min _{t} w(p(t)) \\
& \text { and } c_{\max }(p)=\max _{t} w(p(t)) \\
& c_{\min }\left(p_{1}\right)=0<c_{\max }\left(p_{1}\right) \\
& c_{\max }\left(p_{2}\right)=0>c_{\min }\left(p_{2}\right)
\end{aligned}
\]

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)
\(c_{\text {max }}\left(p_{2}\right)-c_{\text {min }}\left(p_{1}\right)=0=\varphi(x, y)\)
In \(\rho(x, y)\), operation inf cannot be replaced with min !

Computing \(\hat{\rho}\)

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\begin{aligned}
& \rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\} \\
& \text { Put } c_{\min }(p)=\min _{t} w(p(t)) \\
& \text { and } c_{\max }(p)=\max _{t} w(p(t)) \\
& c_{\min }\left(p_{1}\right)=0<c_{\max }\left(p_{1}\right) \\
& c_{\max }\left(p_{2}\right)=0>c_{\min }\left(p_{2}\right)
\end{aligned}
\]

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)
\(c_{\text {max }}\left(p_{2}\right)-c_{\text {min }}\left(p_{1}\right)=0=\varphi(x, y)=\rho(x, y)\)
In \(p(x, y)\), operation inf cannot be replaced with min!

Computing \(\hat{\rho}\)

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\begin{aligned}
& \rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\} \\
& \text { Put } c_{\min }(p)=\min _{t} w(p(t)) \\
& \text { and } c_{\max }(p)=\max _{t} w(p(t)) \\
& c_{\min }\left(p_{1}\right)=0<c_{\max }\left(p_{1}\right) \\
& c_{\max }\left(p_{2}\right)=0>c_{\min }\left(p_{2}\right)
\end{aligned}
\]

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)
\[
c_{\max }\left(p_{2}\right)-c_{\min }\left(p_{1}\right)=0=\varphi(x, y)=\rho(x, y)<c_{b}(p)
\]
\[
\text { for any } p \in \Pi_{x, y}
\]

In \(\rho(x, y)\), operation inf cannot be replaced with min

\section*{Topologists sine curve example}
\(g(t)=\sin (1 / t)\) for \(t \neq 0, g(0)=0\)
\[
\begin{aligned}
& \rho(x, y)=\inf \left\{c_{b}(p): p \in \Pi_{x, y}\right\} \\
& \text { Put } c_{\min }(p)=\min _{t} w(p(t)) \\
& \text { and } c_{\max }(p)=\max _{t} w(p(t)) \\
& c_{\min }\left(p_{1}\right)=0<c_{\max }\left(p_{1}\right) \\
& c_{\max }\left(p_{2}\right)=0>c_{\min }\left(p_{2}\right)
\end{aligned}
\]

For \(\varphi(x, y)=\min _{p \in \Pi_{x, y}} c_{\max }(p)-\max _{p \in \Pi_{x, y}} c_{\text {min }}(p)\)
\[
c_{\max }\left(p_{2}\right)-c_{\min }\left(p_{1}\right)=0=\varphi(x, y)=\rho(x, y)<c_{b}(p)
\]
\[
\text { for any } p \in \Pi_{x, y}
\]

In \(\rho(x, y)\), operation inf cannot be replaced with min!

\section*{Continuous barrier distance to the rescue of \(A_{\hat{\varphi}}\)}

Theorem (Deep result on simple connected domains)
```

If there are p}\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}\in\mp@subsup{\Pi}{x,y}{}\mathrm{ with a<cmin}(\mp@subsup{p}{1}{})\mathrm{ and }\mp@subsup{c}{\operatorname{max}}{}(\mp@subsup{p}{2}{})<b\mathrm{ , then there is a single $p \in \Pi_{x, y}$ with the range in (a, b).

```

Corolary (continuous case)
for a w on a simple connected domain \(D\).


\section*{Continuous barrier distance to the rescue of \(A_{\hat{\varphi}}\)}

Theorem (Deep result on simple connected domains)
If there are \(p_{1}, p_{2} \in \Pi_{x, y}\) with \(a<c_{\min }\left(p_{1}\right)\) and \(c_{\max }\left(p_{2}\right)<b\), then there is a single \(p \in \Pi_{x, y}\) with the range in \((a, b)\).

Corollary (continuous case)
\(\varphi(x, y)=\rho(x, y)\) for a w on a simple connected domain \(D\).


\section*{Continuous barrier distance to the rescue of \(A_{\hat{\varphi}}\)}

\section*{Theorem (Deep result on simple connected domains)}
```

If there are }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}\in\mp@subsup{\Pi}{x,y}{}\mathrm{ with a<cmenm (p then there is a single $p \in \Pi_{x, y}$ with the range in (a, b).

```

Corollary (continuous case)
\(\varphi(x, y)=\rho(x, y)\) for a \(w\) on a simple connected domain \(D\).
Theorem \((\hat{\varphi}(x, y) \rightarrow \varphi(x, y)=\rho(x, y)\) when \(\hat{w} \rightarrow w)\)
For every \(x, y \in \widehat{D}\) there is a \(p \in \hat{\Pi}_{x, y}\) with the range in the interval \(\left[\hat{\rho}_{\text {min }}(x, y)-\varepsilon, \hat{\rho}_{\text {max }}(x, y)+\varepsilon\right]\), where

\section*{Continuous barrier distance to the rescue of \(A_{\hat{\varphi}}\)}

\section*{Theorem (Deep result on simple connected domains)}
```

If there are }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}\in\mp@subsup{\Pi}{x,y}{}\mathrm{ with a<cmenm (p then there is a single $p \in \Pi_{x, y}$ with the range in (a, b).

```

Corollary (continuous case)
\(\varphi(x, y)=\rho(x, y)\) for a \(w\) on a simple connected domain \(D\).
Theorem \((\hat{\varphi}(x, y) \rightarrow \varphi(x, y)=\rho(x, y)\) when \(\hat{w} \rightarrow w)\)
For every \(x, y \in \widehat{D}\) there is a \(p \in \hat{\Pi}_{x, y}\) with the range in the interval \(\left[\hat{\rho}_{\text {min }}(x, y)-\varepsilon, \hat{\rho}_{\text {max }}(x, y)+\varepsilon\right]\), where
\(\varepsilon=\max \left\{|w(x)-w(y)|: x, y \in \widehat{D} \& \max _{i}|x(i)-y(i)| \leq 1\right\}\).
In particular,

Proof: (1) Extend \(\hat{w}\) to \(w\) via \(k\)-linear interpolation. (2) Find \(p\)
for \(w\) with \(c_{b}(p) \approx \varphi(x, y)=\rho(x, y)\). (3) Digjitize \(\rho_{B}\)

\section*{Continuous barrier distance to the rescue of \(A_{\hat{\varphi}}\)}

\section*{Theorem (Deep result on simple connected domains)}
```

If there are }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}\in\mp@subsup{\Pi}{x,y}{}\mathrm{ with a<cmenm (p then there is a single $p \in \Pi_{x, y}$ with the range in (a, b).

```

Corollary (continuous case)
\(\varphi(x, y)=\rho(x, y)\) for a \(w\) on a simple connected domain \(D\).

\section*{Theorem \((\hat{\varphi}(x, y) \rightarrow \varphi(x, y)=\rho(x, y)\) when \(\hat{w} \rightarrow w)\)}

For every \(x, y \in \widehat{D}\) there is a \(p \in \hat{\Pi}_{x, y}\) with the range in the interval \(\left[\hat{\rho}_{\text {min }}(x, y)-\varepsilon, \hat{\rho}_{\text {max }}(x, y)+\varepsilon\right]\), where
\(\varepsilon=\max \left\{|w(x)-w(y)|: x, y \in \widehat{D} \& \max _{i}|x(i)-y(i)| \leq 1\right\}\). In particular, \(|\hat{\varphi}(x, y)-\hat{\rho}(x, y)| \leq 2 \varepsilon, \hat{\varphi}(x, \cdot)\) returned by \(A_{\hat{\varphi}}\).

Proof: (1) Extend \(\hat{w}\) to \(w\) via \(k\)-linear interpolation. (2) Find \(p\) for \(w\) with \(c_{b}(p) \approx \varphi(x, y)=\rho(x, y)\). (3) Dig.tize . . .

\section*{Continuous barrier distance to the rescue of \(A_{\hat{\varphi}}\)}

\section*{Theorem (Deep result on simple connected domains)}
```

If there are }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}\in\mp@subsup{\Pi}{x,y}{}\mathrm{ with }a<\mp@subsup{c}{\mathrm{ min }}{}(\mp@subsup{p}{1}{})\mathrm{ and }\mp@subsup{c}{\mathrm{ max }}{}(\mp@subsup{p}{2}{})<b\mathrm{ , then there is a single $p \in \Pi_{x, y}$ with the range in (a, b).

```

Corollary (continuous case)
\(\varphi(x, y)=\rho(x, y)\) for a \(w\) on a simple connected domain \(D\).
\[
\begin{aligned}
& \text { Theorem }(\hat{\varphi}(x, y) \rightarrow \varphi(x, y)=\rho(x, y) \text { when } \hat{w} \rightarrow w) \\
& \text { For every } x, y \in \hat{D} \text { there is a } p \in \hat{\Pi}_{x, y} \text { with the range in the } \\
& \text { interval }\left[\hat{\rho}_{\min }(x, y)-\varepsilon, \hat{\rho}_{\max }(x, y)+\varepsilon\right] \text {, where } \\
& \varepsilon=\max \left\{|w(x)-w(y)|: x, y \in \hat{D} \& \max _{i}|x(i)-y(i)| \leq 1\right\} \text {. } \\
& \text { In particular, }|\hat{\varphi}(x, y)-\hat{\rho}(x, y)| \leq 2 \varepsilon, \hat{\varphi}(x, \cdot) \text { returned by } A_{\hat{\varphi}} \text {. }
\end{aligned}
\]

Proof: (1) Extend \(\hat{w}\) to \(w\) via \(k\)-linear interpolation.

\section*{Continuous barrier distance to the rescue of \(A_{\hat{\varphi}}\)}

\section*{Theorem (Deep result on simple connected domains)}
```

If there are }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}\in\mp@subsup{\Pi}{x,y}{}\mathrm{ with }a<\mp@subsup{c}{\mathrm{ min }}{}(\mp@subsup{p}{1}{})\mathrm{ and }\mp@subsup{c}{\mathrm{ max }}{}(\mp@subsup{p}{2}{})<b\mathrm{ , then there is a single $p \in \Pi_{x, y}$ with the range in (a, b).

```

Corollary (continuous case)
\(\varphi(x, y)=\rho(x, y)\) for a \(w\) on a simple connected domain \(D\).

\section*{Theorem \((\hat{\varphi}(x, y) \rightarrow \varphi(x, y)=\rho(x, y)\) when \(\hat{w} \rightarrow w)\)}

For every \(x, y \in \hat{D}\) there is a \(p \in \hat{\Pi}_{x, y}\) with the range in the interval \(\left[\hat{\rho}_{\text {min }}(x, y)-\varepsilon, \hat{\rho}_{\text {max }}(x, y)+\varepsilon\right]\), where
\(\varepsilon=\max \left\{|w(x)-w(y)|: x, y \in \widehat{D} \& \max _{i}|x(i)-y(i)| \leq 1\right\}\). In particular, \(|\hat{\varphi}(x, y)-\hat{\rho}(x, y)| \leq 2 \varepsilon, \hat{\varphi}(x, \cdot)\) returned by \(A_{\hat{\varphi}}\).

Proof: (1) Extend \(\hat{w}\) to \(w\) via \(k\)-linear interpolation. (2) Find \(p\) for \(w\) with \(c_{b}(p) \approx \varphi(x, y)=\rho(x, y)\).

\section*{Continuous barrier distance to the rescue of \(A_{\hat{\varphi}}\)}

\section*{Theorem (Deep result on simple connected domains)}
```

If there are }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}\in\mp@subsup{\Pi}{x,y}{}\mathrm{ with }a<\mp@subsup{c}{\mathrm{ min }}{}(\mp@subsup{p}{1}{})\mathrm{ and }\mp@subsup{c}{\mathrm{ max }}{}(\mp@subsup{p}{2}{})<b\mathrm{ , then there is a single $p \in \Pi_{x, y}$ with the range in (a, b).

```

Corollary (continuous case)
\(\varphi(x, y)=\rho(x, y)\) for a \(w\) on a simple connected domain \(D\).

\section*{Theorem \((\hat{\varphi}(x, y) \rightarrow \varphi(x, y)=\rho(x, y)\) when \(\hat{w} \rightarrow w)\)}

For every \(x, y \in \widehat{D}\) there is a \(p \in \hat{\Pi}_{x, y}\) with the range in the interval \(\left[\hat{\rho}_{\text {min }}(x, y)-\varepsilon, \hat{\rho}_{\text {max }}(x, y)+\varepsilon\right]\), where
\(\varepsilon=\max \left\{|w(x)-w(y)|: x, y \in \widehat{D} \& \max _{i}|x(i)-y(i)| \leq 1\right\}\). In particular, \(|\hat{\varphi}(x, y)-\hat{\rho}(x, y)| \leq 2 \varepsilon, \hat{\varphi}(x, \cdot)\) returned by \(A_{\hat{\varphi}}\).

Proof: (1) Extend \(\hat{w}\) to \(w\) via \(k\)-linear interpolation. (2) Find \(p\) for \(w\) with \(c_{b}(p) \approx \varphi(x, y)=\rho(x, y)\). (3) Digitize \(p\).

\section*{Outline}

\section*{(1) Minimum Barrier Distance, \(\hat{\rho}\), in the discrete setting}
(2) How to compute \(\hat{\rho}\) ?
(3) Minimum Barrier Distance, \(\rho\), in the continuous setting
4. Experiments: comparison with other distance measures
(5) Newest result: fast algorithm for computing \(\hat{\rho}\)

\section*{Experiments}

We compared the output \(\hat{\varphi}(x, y)\) of \(A_{\hat{\varphi}}\) (approximating \(\hat{\rho}(x, y)\) ) with the distances minimizing costs \(c(p), p=\left\langle p_{1}, p_{2}, \ldots, p_{m}\right\rangle\) :


FC: max-arc \(d_{\text {max }} ; c(p)=\max _{i=1, \ldots, m-1}\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|\);

We compared the distances with respect to:
(A) the ratios between inter-object and intra-object distances \& the influence by the seed points position: should be low;
(B) influence by introduction of noise \& smoothing (blur): should be small.

\section*{Experiments}

We compared the output \(\hat{\varphi}(x, y)\) of \(A_{\hat{\varphi}}\) (approximating \(\hat{\rho}(x, y)\) ) with the distances minimizing costs \(c(p), p=\left\langle p_{1}, p_{2}, \ldots, p_{m}\right\rangle\) :
- fuzzy \(d_{F} ; c(p)=\sum_{i=1}^{m-1} \frac{f_{A}\left(p_{i}\right)+f_{A}\left(p_{i+1}\right)}{2} \cdot\left\|p_{i}-p_{i+1}\right\|\);

FC: max-arc \(d_{\text {max }} ; c(p)=\max _{i=1, \ldots, m-1}\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|\);

We compared the distances with respect to:
(A) the ratios between inter-object and intra-object distances \& the influence by the seed points position: should be low;
(B) influence by introduction of noise \& smoothing (blur): should be small.

\section*{Experiments}

We compared the output \(\hat{\varphi}(x, y)\) of \(A_{\hat{\varphi}}\) (approximating \(\hat{\rho}(x, y)\) ) with the distances minimizing costs \(c(p), p=\left\langle p_{1}, p_{2}, \ldots, p_{m}\right\rangle\) :
- fuzzy \(d_{F} ; c(p)=\sum_{i=1}^{m-1} \frac{f_{A}\left(p_{i}\right)+f_{A}\left(p_{i+1}\right)}{2} \cdot\left\|p_{i}-p_{i+1}\right\|\);
- geodesic \(d_{G} ; c(p)=\sum_{i} \omega\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|+\left\|p_{i}-p_{i+1}\right\| ;\)


We compared the distances with respect to:
(A) the ratios between inter-object and intra-object distances \& the influence by the seed points position: should be low;
(B) influence by introduction of noise \& smoothing (blur): should be small.

\section*{Experiments}

We compared the output \(\hat{\varphi}(x, y)\) of \(A_{\hat{\varphi}}\) (approximating \(\hat{\rho}(x, y)\) ) with the distances minimizing costs \(c(p), p=\left\langle p_{1}, p_{2}, \ldots, p_{m}\right\rangle\) :
- fuzzy \(d_{F} ; c(p)=\sum_{i=1}^{m-1} \frac{f_{A}\left(p_{i}\right)+f_{A}\left(p_{i+1}\right)}{2} \cdot\left\|p_{i}-p_{i+1}\right\|\);
- geodesic \(d_{G} ; c(p)=\sum_{i} \omega\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|+\left\|p_{i}-p_{i+1}\right\| ;\)

FC: max-arc \(d_{\text {max }} ; c(p)=\max _{i=1, \ldots, m-1}\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|\);

We compared the distances with respect to:
(A) the ratios between inter-object and intra-object distances \& the influence by the seed points position: should be low;
(B) influence by introduction of noise \& smoothing (blur): should be small.

\section*{Experiments}

We compared the output \(\hat{\varphi}(x, y)\) of \(A_{\hat{\varphi}}\) (approximating \(\hat{\rho}(x, y)\) ) with the distances minimizing costs \(c(p), p=\left\langle p_{1}, p_{2}, \ldots, p_{m}\right\rangle\) :
- fuzzy \(d_{F} ; c(p)=\sum_{i=1}^{m-1} \frac{f_{A}\left(p_{i}\right)+f_{A}\left(p_{i+1}\right)}{2} \cdot\left\|p_{i}-p_{i+1}\right\|\);
- geodesic \(d_{G} ; c(p)=\sum_{i} \omega\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|+\left\|p_{i}-p_{i+1}\right\| ;\)

FC: max-arc \(d_{\text {max }} ; c(p)=\max _{i=1, \ldots, m-1}\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|\);

We compared the distances with respect to:
(A) the ratios between inter-object and intra-object distances \& the influence by the seed points position: should be low;
(B) influence by introduction of noise \& smoothing (blur): should be small.

\section*{Experiments}

We compared the output \(\hat{\varphi}(x, y)\) of \(A_{\hat{\varphi}}\) (approximating \(\hat{\rho}(x, y)\) ) with the distances minimizing costs \(c(p), p=\left\langle p_{1}, p_{2}, \ldots, p_{m}\right\rangle\) :
- fuzzy \(d_{F} ; c(p)=\sum_{i=1}^{m-1} \frac{f_{A}\left(p_{i}\right)+f_{A}\left(p_{i+1}\right)}{2} \cdot\left\|p_{i}-p_{i+1}\right\|\);
- geodesic \(d_{G} ; c(p)=\sum_{i} \omega\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|+\left\|p_{i}-p_{i+1}\right\| ;\)

FC: max-arc \(d_{\text {max }} ; c(p)=\max _{i=1, \ldots, m-1}\left|f_{A}\left(p_{i}\right)-f_{A}\left(p_{i+1}\right)\right|\);

We compared the distances with respect to:
(A) the ratios between inter-object and intra-object distances \& the influence by the seed points position: should be low;
(B) influence by introduction of noise \& smoothing (blur): should be small.

\section*{Stability w.r.t. seed position}

\(\cdot p_{2}\)
\(p_{1}\)
\(p_{2}\) fixed; \(p_{1}\) is chosen randomly 1000 times


Boxes: 25th to the 75th percentile; central mark: the median.

\section*{Stability w.r.t. seed position}

\(p_{2}\) fixed;
\(p_{1}\) is chosen randomly 1000 times


Boxes: 25th to the 75 th percentile; central mark: the median.

\section*{Stability w.r.t. seed position: interpretation}
- max-arc (Fuzzy Connectedness) distance is the most robust;
- MBD is just slightly worst than max-arc and only for the image with a low boundary gradient;
- MBD is at least as good than the other distances;

\section*{Stability w.r.t. seed position: interpretation}
- max-arc (Fuzzy Connectedness) distance is the most robust;
- MBD is just slightly worst than max-arc and only for the image with a low boundary gradient;
- MBD is at least as good than the other distances;

\section*{Stability w.r.t. seed position: interpretation}
- max-arc (Fuzzy Connectedness) distance is the most robust;
- MBD is just slightly worst than max-arc and only for the image with a low boundary gradient;
- MBD is at least as good than the other distances;

\section*{Stability w.r.t. Gaussian noise and smoothing}

Test image

\(p_{2}\) and \(p_{3}\) are fixed
\(p_{1}\) is randomly chosen 1000 times.

Gaussian noise - Distance values as function of sigma


Intra-object distance \(\left(d\left(p_{1}, p_{2}\right)\right)\)


Inter-object distance \(\left(d\left(p_{1}, p_{3}\right)\right)\)
Gaussian smoothing - Distance values as function of sigma


Intra-object distance \(\left(d\left(p_{1}, p_{2}\right)\right)\)


Inter-object distance \(\left(d\left(p_{1}, p_{3}\right)\right)\)

\section*{Stability w.r.t. Gaussian noise and smoothing}

Test image


\section*{\(p_{2}\) and \(p_{3}\) are fixed}
\(p_{1}\) is randomly chosen 1000 times.

Gaussian noise - Distance values as function of sigma


Intra-object distance \(\left(d\left(p_{1}, p_{2}\right)\right)\)


Inter-object distance \(\left(d\left(p_{1}, p_{3}\right)\right)\)

Gaussian smoothing - Distance values as function of sigma


Intra-object distance \(\left(d\left(p_{1}, p_{2}\right)\right)\)


Inter-object distance \(\left(d\left(p_{1}, p_{3}\right)\right)\)

\section*{Interpretation:}

\section*{Sensitivity to noise and blur:}
- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

\section*{Separation of the object from the background (ratio): \\ - all considered distances perform reasonably well; \\ - the performance of max-are (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;}

\section*{Interpretation:}

Sensitivity to noise and blur:
- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

\section*{Separation of the object from the background (ratio): \\ - all considered distances perform reasonably well; \\ - the performance of max-are (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;}

\section*{Interpretation:}

Sensitivity to noise and blur:
- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

> Separation of the object from the background (ratio):
> - all considered distances perform reasonably well;
> - the performance of max-arc (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;

\section*{Interpretation:}

Sensitivity to noise and blur:
- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

Separation of the object from the background (ratio):
- all considered distances perform reasonably well;
- the performance of max-arc (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;

\section*{Interpretation:}

Sensitivity to noise and blur:
- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

Separation of the object from the background (ratio):
- all considered distances perform reasonably well;
- the performance of max-arc (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;

\section*{Outline}
(1) Minimum Barrier Distance, \(\hat{\rho}\), in the discrete setting
(2) How to compute \(\hat{\rho}\) ?
(3) Minimum Barrier Distance, \(\rho\), in the continuous setting

4 Experiments: comparison with other distance measures
(5) Newest result: fast algorithm for computing \(\hat{\rho}\)

\section*{Newest fast algorithm for computing \(\hat{\rho}\)}
\(D A(G, \widehat{w}, x)\) - returns \(p_{y}\) 's with \(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).
Define \(w_{a}(x)=w(x)\) for \(w(x) \geq a\) and \(w_{a}(x)=\infty\) otherwise.
Algorithm \(A_{\hat{\rho}}\) :
Input: Graph \(G=\langle D, E, \widehat{W}\rangle\) and the vertex \(x\) in \(G\).
Output: A path \(\hat{p}_{y}\) in \(G\) from \(x\) to \(y\) with \(c_{b}\left(\hat{p}_{y}\right)=\hat{\rho}(x, y)\).
Auxiliary: Current value \(C_{b}\) of \(C_{b}\left(\hat{p}_{y}\right)\);
1: List \(R=\{w(c) \leq w(x): c \in \hat{D}\}\) with no repetition; 2: for every \(a \in R\) do 3: \(\quad\) Run \(D A\left(G, w_{a}, x\right)\);
4: if \(c_{b}\left(p_{y}\right)<C_{b}\) then
5: \(\quad\) Put \(C_{b}=C_{b}\left(p_{y}\right)\) and \(\hat{p}_{y}=p_{y}\);
6: end if
7: end for
8: Return \(\hat{D}_{y}\);

\section*{Newest fast algorithm for computing \(\hat{\rho}\)}
\(D A(G, \widehat{w}, x)\) - returns \(p_{y}\) 's with \(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).
Define \(w_{a}(x)=w(x)\) for \(w(x) \geq a\) and \(w_{a}(x)=\infty\) otherwise.

\section*{Algorithm \(A\)}

Input: Graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\) and the vertex \(x\) in \(G\).
Output: A path \(\hat{p}_{y}\) in \(G\) from \(x\) to \(y\) with \(c_{b}\left(\hat{p}_{y}\right)=\hat{\rho}(x, y)\).
Auxiliary: Current value \(C_{b}\) of \(C_{b}\left(\hat{D}_{y}\right)\);


2: for every \(a \in R\) do


4: if \(c_{b}\left(P_{y}\right)<C_{b}\) then


6: end if
7: end for
8: Return \(\hat{p}_{y}\);

\section*{Newest fast algorithm for computing \(\hat{\rho}\)}
\(D A(G, \widehat{w}, x)\) - returns \(p_{y}\) 's with \(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).
Define \(w_{a}(x)=w(x)\) for \(w(x) \geq a\) and \(w_{a}(x)=\infty\) otherwise.
Algorithm \(A_{\hat{\rho}}\) :
Input: Graph \(G=\langle D, E, \widehat{w}\rangle\) and the vertex \(x\) in \(G\).
Output: A path \(\hat{p}_{y}\) in \(G\) from \(x\) to \(y\) with \(c_{b}\left(\hat{p}_{y}\right)=\hat{\rho}(x, y)\).
Auxiliary: Current value \(C_{b}\) of \(C_{b}\left(\hat{p}_{y}\right)\);


\section*{Newest fast algorithm for computing \(\hat{\rho}\)}
\(D A(G, \widehat{w}, x)\) - returns \(p_{y}\) 's with \(\hat{\rho}_{\max }(x, y)=c_{\max }\left(p_{y}\right)\).
Define \(w_{a}(x)=w(x)\) for \(w(x) \geq a\) and \(w_{a}(x)=\infty\) otherwise.
Algorithm \(A_{\hat{\rho}}\) :
Input: Graph \(G=\langle\widehat{D}, E, \widehat{w}\rangle\) and the vertex \(x\) in \(G\).
Output: A path \(\hat{p}_{y}\) in \(G\) from \(x\) to \(y\) with \(c_{b}\left(\hat{p}_{y}\right)=\hat{\rho}(x, y)\).
Auxiliary: Current value \(C_{b}\) of \(c_{b}\left(\hat{p}_{y}\right)\);
1: List \(R=\{w(c) \leq w(x): c \in \hat{D}\}\) with no repetition;
2: for every \(a \in R\) do
3: \(\quad\) Run \(D A\left(G, w_{a}, x\right)\);
4: if \(c_{b}\left(p_{y}\right)<C_{b}\) then
5: \(\quad\) Put \(C_{b}=c_{b}\left(p_{y}\right)\) and \(\hat{p}_{y}=p_{y}\);
6: end if
7: end for
8: Return \(\hat{p}_{y}\);

\section*{On the algorithm \(A_{\hat{p}}\)}

\section*{Theorem (KC: Proved about two weeks ago) \\ \(A_{\hat{\rho}}\) returns paths \(\hat{p}_{y}\) with the exact values \(c_{b}\left(\hat{p}_{y}\right)=\hat{\rho}(x, y)\). \\ \(A_{\hat{\rho}}\) requires \(O(k(n+k))\) operations \\ \(n\) - the size of \(\widehat{D}\), and \(k\) - the size of \(\{w(c) \leq w(x): c \in \hat{D}\}\).}

This estimate reduces to \(O(n)\), when \(k \ll n\),
usually true in the image processing.

\section*{On the algorithm \(A_{\hat{\rho}}\)}

\section*{Theorem (KC: Proved about two weeks ago)}
\(A_{\hat{\rho}}\) returns paths \(\hat{p}_{y}\) with the exact values \(c_{b}\left(\hat{p}_{y}\right)=\hat{\rho}(x, y)\).
\(A_{\hat{\rho}}\) requires \(O(k(n+k))\) operations
\(n\) - the size of \(\widehat{D}\), and \(k\) - the size of \(\{w(c) \leq w(x): c \in \hat{D}\}\).

This estimate reduces to \(O(n)\), when \(k \ll n\),
usually true in the image processing.

\section*{On the algorithm \(A_{\hat{p}}\)}

\section*{Theorem (KC: Proved about two weeks ago)}
\(A_{\hat{\rho}}\) returns paths \(\hat{p}_{y}\) with the exact values \(c_{b}\left(\hat{p}_{y}\right)=\hat{\rho}(x, y)\).
\(A_{\hat{\rho}}\) requires \(O(k(n+k))\) operations
\(n\) - the size of \(\widehat{D}\), and \(k\) - the size of \(\{w(c) \leq w(x): c \in \hat{D}\}\).

This estimate reduces to \(O(n)\), when \(k \ll n\),
usually true in the image processing.

\section*{Summary}

\section*{Minimum Barrier Distance \(\hat{\rho}\) — novel quasi distance function:}
- Can be effectively computed.
- Is quite stable with respect to: change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- \(\hat{\rho}(x, y)\) measures:
- homogeneity, for \(\mid \hat{w}(x)\) - \(\hat{w}(y) \mid\) small;
- \(\approx|\hat{w}(x)-\hat{w}(y)|\) (c.a. object feature) for \(|\hat{w}(x)-\hat{w}(y)|\) large.

More experimental evaluation of \(\hat{\rho}\) is still needed.
R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha

\section*{Summary}

Minimum Barrier Distance \(\hat{\rho}\) — novel quasi distance function:
- Can be effectively computed.
- Is quite stable with respect to:
change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- \(\hat{\rho}(x, y)\) measures:
- homogeneity. for \(|\hat{W}(x)-\hat{W}(y)|\) small;
- \(\approx|\hat{W}(x)-\hat{W}(y)|\) (c.a. object feature) for \(|\hat{W}(x)-\hat{W}(y)|\) large.

More experimental evaluation of \(\hat{\rho}\) is still needed.
R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha

\section*{Summary}

Minimum Barrier Distance \(\hat{\rho}\) — novel quasi distance function:
- Can be effectively computed.
- Is quite stable with respect to:
change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- \(\hat{\rho}(x, y)\) measures:


More experimental evaluation of \(\hat{\rho}\) is still needed.

\section*{Summary}

Minimum Barrier Distance \(\hat{\rho}\) — novel quasi distance function:
- Can be effectively computed.
- Is quite stable with respect to:
change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- \(\hat{\rho}(x, y)\) measures:
- homogeneity, for \(|\hat{w}(x)-\hat{w}(y)|\) small;

More experimental evaluation of \(\hat{\rho}\) is still needed.

\section*{Summary}

Minimum Barrier Distance \(\hat{\rho}\) — novel quasi distance function:
- Can be effectively computed.
- Is quite stable with respect to:
change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- \(\hat{\rho}(x, y)\) measures:
- homogeneity, for \(|\hat{w}(x)-\hat{w}(y)|\) small;
- \(\approx|\hat{w}(x)-\hat{w}(y)|\) (c.a. object feature) for \(|\hat{w}(x)-\hat{w}(y)|\) large.

More experimental evaluation of \(\hat{\rho}\) is still needed.

\section*{Summary}

Minimum Barrier Distance \(\hat{\rho}\) — novel quasi distance function:
- Can be effectively computed.
- Is quite stable with respect to:
change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- \(\hat{\rho}(x, y)\) measures:
- homogeneity, for \(|\hat{w}(x)-\hat{w}(y)|\) small;
- \(\approx|\hat{w}(x)-\hat{w}(y)|\) (c.a. object feature) for \(|\hat{w}(x)-\hat{w}(y)|\) large.

More experimental evaluation of \(\hat{\rho}\) is still needed.

\section*{Thank you for your attention!}```

