ヘロト 人間 ト ヘヨト ヘヨト

æ

The Minimum Barrier Distance Transform

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Department of Radiology, University of Pennsylvania

MIPG Seminar, UPenn, November 16, 2012

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 0

Minimum Barrier Distance, $\hat{\rho}$, in the discrete setting 1

- 2 How to compute $\hat{\rho}$?
- 3 Minimum Barrier Distance, ρ , in the continuous setting

Experiments: comparison with other distance measures 4

(5) Newest result: fast algorithm for computing $\hat{\rho}$

2 How to compute $\hat{\rho}$?

3 Minimum Barrier Distance, ρ , in the continuous setting

Experiments: comparison with other distance measures

5 Newest result: fast algorithm for computing $\hat{
ho}$

ヘロト ヘワト ヘビト ヘビト

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Image, scene, and the associated graph

 $\widehat{f}: \widehat{D} \to \mathbb{R}$ is a digital image, where

 $\widehat{D} = \mathbb{Z}^k \cap \prod_{i=1}^k [a_i, b_i] \ (a_i, b_i \in \mathbb{R})$ is a digital scene

with $x, y \in \widehat{D}$ adjacent provided $\sum_i |x(i) - y(i)| = 1$.

We will treat also this structure,

 $G = \langle \widehat{D}, \{\{x, y\} : x, y \text{ adjacent}\}, \widehat{f} \rangle,$

as a vertex weighted graph $G = \langle V(G), E(G), \widehat{w} \rangle$.

ヘロン 不通 とくほ とくほ とう

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Image, scene, and the associated graph

 $\widehat{f}: \widehat{D} \to \mathbb{R}$ is a digital image, where

 $\widehat{D} = \mathbb{Z}^k \cap \prod_{i=1}^k [a_i, b_i]$ $(a_i, b_i \in \mathbb{R})$ is a digital scene

with $x, y \in \widehat{D}$ adjacent provided $\sum_i |x(i) - y(i)| = 1$.

We will treat also this structure,

$$G = \langle \widehat{D}, \{\{x, y\} : x, y \text{ adjacent}\}, \widehat{f} \rangle,$$

as a vertex weighted graph $G = \langle V(G), E(G), \widehat{w} \rangle$.

Computing $\hat{\rho}$

Continuous MBD

Experiments

Newest algorithm

Minimum Barrier Distance in discrete setting

For a path $p = \langle c_1, \ldots, c_k \rangle$ in $G = \langle \widehat{D}, E, \widehat{w} \rangle$

$$c_b(p) = \max_i \widehat{w}(c_i) - \min_i \widehat{w}(c_i)$$

is the barrier cost of p.

< < >> < <</>

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

Computing $\hat{\rho}$

Continuous MBD

Experiments

Newest algorithm

Minimum Barrier Distance in discrete setting

For a path $p = \langle c_1, \ldots, c_k \rangle$ in $G = \langle \widehat{D}, E, \widehat{w} \rangle$

$$c_b(p) = \max_i \widehat{w}(c_i) - \min_i \widehat{w}(c_i)$$

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

 $\hat{\rho}(x, y)$ is, in a way,

a vertical component of

the geodesic distance

between x and y.

イロト イポト イヨト イヨト

Theorem

 $\hat{\rho}$ is a pseudo-metric:

it is symmetric and it satisfies the triangle inequality. (However, $\hat{\rho}(x, y)$ can be equal 0 for $x \neq y$.)

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

 $\hat{\rho}(x, y)$ is, in a way,

a vertical component of

the geodesic distance

between x and y.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

 $\hat{\rho}$ is a pseudo-metric:

it is symmetric and it satisfies the triangle inequality. (However, $\hat{\rho}(x, y)$ can be equal 0 for $x \neq y$.)

Discrete MBD Computing $\hat{\rho}$ Continuous MBD MBD as a measure of connectivity

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

 $\beta(\mathbf{x},\mathbf{y}) = \exp(-\hat{\rho}(\mathbf{x},\mathbf{y}))$

has some similarity to the FC connectivity measure for the object-feature base affinity with average intensity value $m = \widehat{w}(s)$:

Experiments

Newest algorithm

 $\beta(x, s)$ is small when $|\widehat{w}(x) - m|$ is large.

 $\hat{\rho}(x, y)$ can be used to define RFC-like object:

 ${m P}({m s},t)=\{{m c}\in \widehat{{m D}}\colon \widehat{
ho}({m c},{m s})<\widehat{
ho}({m c},t)\}.$

MBD as a measure of connectivity

Computing $\hat{\rho}$

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

Continuous MBD

 $\beta(x, y) = \exp(-\hat{\rho}(x, y))$

Discrete MBD

has some similarity to the FC connectivity measure for the object-feature base affinity with average intensity value $m = \widehat{w}(s)$:

→ E > < E >

Experiments

Newest algorithm

eta(x,s) is small when $|\widehat{w}(x) - m|$ is large.

 $\hat{\rho}(x, y)$ can be used to define RFC-like object:

 ${m P}({m s},t)=\{{m c}\in \widehat{D}\colon \hat
ho({m c},{m s})<\hat
ho({m c},t)\}.$

MBD as a measure of connectivity

Computing $\hat{\rho}$

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

Continuous MBD

 $\beta(x, y) = \exp(-\hat{\rho}(x, y))$

Discrete MBD

has some similarity to the FC connectivity measure for the object-feature base affinity with average intensity value $m = \widehat{w}(s)$:

個人 くほん くほん

Experiments

Newest algorithm

 $\beta(x, s)$ is small when $|\widehat{w}(x) - m|$ is large.

 $\hat{\rho}(x, y)$ can be used to define RFC-like object:

 ${m P}({m s},t)=\{{m c}\in \widehat{{m D}}\colon \widehat{
ho}({m c},{m s})<\widehat{
ho}({m c},t)\}.$

MBD as a measure of connectivity

Computing $\hat{\rho}$

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

Continuous MBD

 $\beta(x, y) = \exp(-\hat{\rho}(x, y))$

Discrete MBD

has some similarity to the FC connectivity measure for the object-feature base affinity with average intensity value $m = \widehat{w}(s)$:

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Experiments

Newest algorithm

 $\beta(x, s)$ is small when $|\widehat{w}(x) - m|$ is large.

 $\hat{\rho}(x, y)$ can be used to define RFC-like object:

$$oldsymbol{P}(oldsymbol{s},t) = \{oldsymbol{c}\in\widehat{D}\colon \hat{
ho}(oldsymbol{c},oldsymbol{s}) < \hat{
ho}(oldsymbol{c},t)\}.$$

Computing $\hat{\rho}$ MBD as a measure of connectivity

 $\hat{\rho}(x, y) = \min\{c_b(p) : p \text{ is a path in } G \text{ from } x \text{ to } y\}$

Continuous MBD

 $\beta(\mathbf{x}, \mathbf{y}) = \exp(-\hat{\rho}(\mathbf{x}, \mathbf{y}))$

Discrete MBD

has some similarity to the FC connectivity measure for the object-feature base affinity with average intensity value $m = \widehat{w}(s)$:

 $\beta(x, s)$ is small when $|\widehat{w}(x) - m|$ is large.

 $\hat{\rho}(x, y)$ can be used to define RFC-like object:

$$oldsymbol{P}(oldsymbol{s},t) = \{oldsymbol{c}\in\widehat{D}\colon \hat{
ho}(oldsymbol{c},oldsymbol{s}) < \hat{
ho}(oldsymbol{c},t)\}.$$

(Not studied yet.)

★ Ξ → ★ Ξ → .

Experiments

Newest algorithm

ヘロト ヘワト ヘビト ヘビト

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 5

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha

The Minimum Barrier Distance Transform 5

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 5

Computing $\hat{\rho}$

Continuous MB

Failure of Natural Algorithm!

1 0.8		Let x be the lower left spel, with $\widehat{w} = 0.5$.
		Let y be the upper right spel, with $\widehat{w} = 0.8$.
		The optimal path is $p_o = \langle .5; .6; .5; .8 \rangle$,
0.41 0.5		giving $\hat{ ho}(x,y) = .3$
		However, the Natural Algorithm returns
0.5	0.6	the path $p=\langle .5;.41;.5;.8 angle$
		with $c_b(p) = .39 > \hat{\rho}(x, y)$.

Question (We do not know the answer

Do the numbers U(y) - L(y) returned by Natural Algorithm approximate $\hat{\rho}(x, y)$ in any reasonable sense?

So, how do we effectively compute the numbers $\hat{\rho}(x, \underline{y})^{\prime}$

Computing $\hat{\rho}$

Continuous MBI

Experiments

Newest algorithm

Failure of Natural Algorithm!

		Let x be the lower left spel, with $\widehat{w} = 0.5$.
1	0.8	Let y be the upper right spel, with $\widehat{w} = 0.8$.
		The optimal path is $p_o = \langle .5; .6; .5; .8 \rangle$,
0.41 0.5		giving $\hat{\rho}(x,y) = .3$
		However, the Natural Algorithm returns
0.5	0.6	the path $p = \langle .5; .41; .5; .8 \rangle$
		with $c_b(\rho) = .39 > \hat{ ho}(x, y)$.

Question (We do not know the answer

Do the numbers U(y) - L(y) returned by Natural Algorithm approximate $\hat{\rho}(x, y)$ in any reasonable sense?

So, how do we effectively compute the numbers $\hat{\rho}(x, y)$

Computing $\hat{\rho}$

Continuous MBI

Experiments

Newest algorithm

Failure of Natural Algorithm!

1 0.8 0.41 0.5		Let x be the lower left spel, with $\widehat{w} = 0.5$.
		Let y be the upper right spel, with $\widehat{w} = 0.8$.
		The optimal path is $p_o = \langle .5; .6; .5; .8 \rangle$,
		giving $\hat{\rho}(x, y) = .3$
_		However, the Natural Algorithm returns
0.5	0.6	the path $p=\langle .5;.41;.5;.8 angle$
		with $c_b(p) = .39 > \hat{ ho}(x, y)$.

Question (We do not know the answer

Do the numbers U(y) - L(y) returned by Natural Algorithm approximate $\hat{\rho}(x, y)$ in any reasonable sense?

So, how do we effectively compute the numbers $\hat{\rho}(x, \underline{y})$

Computing $\hat{\rho}$

Continuous MBI

Experiments

Newest algorithm

Failure of Natural Algorithm!

		Let x be the lower left spel, with $\widehat{w} = 0.5$.	
1	0.8	Let y be the upper right spel, with $\widehat{w} = 0.8$.	
		The optimal path is $p_o = \langle .5; .6; .5; .8 \rangle$,	
0.41 0.5		giving $\hat{\rho}(x, y) = .3$	
_		However, the Natural Algorithm returns	
0.5	0.6	the path ${m ho}=\langle .5;.41;.5;.8 angle$	
		with $c_b(p) = .39 > \hat{ ho}(x, y)$.	

Question (We do not know the answer

Do the numbers U(y) - L(y) returned by Natural Algorithm approximate $\hat{\rho}(x, y)$ in any reasonable sense?

So, how do we effectively compute the numbers $\hat{\rho}(x, \underline{y})$

Computing $\hat{\rho}$

Continuous MB

Experiments

Newest algorithm

Failure of Natural Algorithm!

		Let x be the lower left spel, with $\widehat{w} = 0.5$.	
1	0.8	Let y be the upper right spel, with $\widehat{w} = 0.8$.	
		The optimal path is $p_o = \langle .5; .6; .5; .8 \rangle$,	
0.41 0.5 0.5 0.6	0.5	giving $\hat{\rho}(x, y) = .3$	
		However, the Natural Algorithm returns	
	0.6	the path $p=\langle .5;.41;.5;.8 angle$	
		with $c_b(p) = .39 > \hat{ ho}(x, y)$.	

Question (We do not know the answer)

Do the numbers U(y) - L(y) returned by Natural Algorithm approximate $\hat{\rho}(x, y)$ in any reasonable sense?

So, how do we effectively compute the numbers $\hat{\rho}(x, \underline{y})$

Computing $\hat{\rho}$

Continuous MBD

Experiments

Newest algorithm

Failure of Natural Algorithm!

1 0.8 0.41 0.5		Let x be the lower left spel, with $\widehat{w} = 0.5$.	
		Let y be the upper right spel, with $\hat{w} = 0.8$.	
		The optimal path is $p_o = \langle .5; .6; .5; .8 \rangle$,	
		giving $\hat{\rho}(x, y) = .3$	
		However, the Natural Algorithm returns	
0.5	0.6	the path $p=\langle .5;.41;.5;.8 angle$	
		with $c_b(p) = .39 > \hat{ ho}(x, y)$.	

Question (We do not know the answer)

Do the numbers U(y) - L(y) returned by Natural Algorithm approximate $\hat{\rho}(x, y)$ in any reasonable sense?

So, how do we effectively compute the numbers $\hat{\rho}(x, y)$?

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Better attempt to compute $\hat{\rho}(x, y)$ Let $\hat{\Pi}_{x,y} = \{p : p \text{ is a path in } G \text{ from } x \text{ to } y\}$ and, for $p \in \hat{\Pi}_{x,y}$, let $c \mapsto (p) = \min_{x} \hat{w}(p(t))$ and $c \mapsto (p) = \max_{x} \hat{w}(p(t))$

Let $\hat{\varphi}(x, y) = \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) - \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p)$

Clearly

 $\hat{\varphi}(x, y) \leq \hat{\rho}(x, y)$ Is $\hat{\varphi}(x, y) = \hat{\rho}(x, y)$?

・ロット (雪) () () () ()

Let $\hat{\varphi}(x, y) = \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) - \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p)$

Clearly

 $\hat{\varphi}(x, y) \leq \hat{\rho}(x, y)$ Is $\hat{\varphi}(x, y) = \hat{\rho}(x, y)$?

・ロット (雪) () () () ()

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Better attempt to compute $\hat{\rho}(x, y)$

Let $\hat{\Pi}_{x,y} = \{p : p \text{ is a path in } G \text{ from } x \text{ to } y\}$ and, for $p \in \hat{\Pi}_{x,y}$,

let $c_{\min}(p) = \min_t \widehat{w}(p(t))$ and $c_{\max}(p) = \max_t \widehat{w}(p(t))$.

Let $\hat{\varphi}(x, y) = \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) - \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p)$

Clearly

 $\hat{\varphi}(x, y) \leq \hat{\rho}(x, y)$ Is $\hat{\varphi}(x, y) = \hat{\rho}(x, y)$?

ヘロア 人間 アメヨア 人口 ア

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Better attempt to compute $\hat{\rho}(x, y)$

Let $\hat{\Pi}_{x,y} = \{p : p \text{ is a path in } G \text{ from } x \text{ to } y\}$ and, for $p \in \hat{\Pi}_{x,y}$, let $c_{\min}(p) = \min_t \widehat{w}(p(t))$ and $c_{\max}(p) = \max_t \widehat{w}(p(t))$.

Let $\hat{\varphi}(x, y) = \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) - \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p)$

Clearly

 $\hat{\varphi}(x,y) \leq \hat{
ho}(x,y)$ Is $\hat{\varphi}(x,y) = \hat{
ho}(x,y)$?

ヘロン ヘアン ヘビン ヘビン

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Better attempt to compute $\hat{\rho}(x, y)$

Let $\hat{\Pi}_{x,y} = \{p : p \text{ is a path in } G \text{ from } x \text{ to } y\}$ and, for $p \in \hat{\Pi}_{x,y}$, let $c_{\min}(p) = \min_t \widehat{w}(p(t))$ and $c_{\max}(p) = \max_t \widehat{w}(p(t))$. Let $\hat{\varphi}(x, y) = \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) - \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p)$

Clearly

 $\hat{\varphi}(x,y) \leq \hat{
ho}(x,y)$ Is $\hat{\varphi}(x,y) = \hat{
ho}(x,y)$?

・ロト ・ 理 ト ・ ヨ ト ・

Discrete MBD Computing $\hat{ ho}$ Continuous MBD Experiments $\hat{arphi}(x,y) eq \hat{ ho}(x,y)$ but $\hat{arphi}(x,y) pprox \hat{ ho}(x,y)$

<u>у</u> – up	per rig	ght
0.41	0.5	
0.5	0.6	

$$\begin{split} \min_{\rho \in \hat{\Pi}_{x,y}} c_{\max}(\rho) &= c_{\max}(0.5, 0.41, 0.5) = 0.5\\ \max_{\rho \in \hat{\Pi}_{x,y}} c_{\min}(\rho) &= c_{\min}(0.5, 0.6, 0.5) = 0.5\\ \text{But } \hat{\varphi}(x, y) &= 0 \neq 0.09 = \hat{\rho}(x, y). \end{split}$$

ヘロン ヘアン ヘビン ヘビン

Newest algorithm

x – lower left

• $\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)$, as we prove via continuous MBD.

Discrete MBD Computing $\hat{ ho}$ Continuous MBD Experiments Newest algorithm $\hat{arphi}(x,y) eq \hat{ ho}(x,y)$ but $\hat{arphi}(x,y) pprox \hat{ ho}(x,y)$

<u>у</u> – up	per rig	ght
0.41	0.5	
0.5	0.6	

$$\begin{split} \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) &= c_{\max}(0.5, 0.41, 0.5) = 0.5\\ \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p) &= c_{\min}(0.5, 0.6, 0.5) = 0.5\\ \text{But } \hat{\varphi}(x, y) &= 0 \neq 0.09 = \hat{\rho}(x, y). \end{split}$$

・ロト ・ 理 ト ・ ヨ ト ・

1

x – lower left

Nevertheless,

• $\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)$, as we prove via continuous MBD.

Discrete MBD Computing $\hat{ ho}$ Continuous MBD Experiments Newest algorithm $\hat{arphi}(x,y) eq \hat{ ho}(x,y)$ but $\hat{arphi}(x,y) pprox \hat{ ho}(x,y)$

<u>y</u> – up	per rig	ght
0.41	0.5	
0.5	0.6	

$$\begin{split} \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) &= c_{\max}(0.5, 0.41, 0.5) = 0.5\\ \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p) &= c_{\min}(0.5, 0.6, 0.5) = 0.5\\ \text{But } \hat{\varphi}(x, y) &= 0 \neq 0.09 = \hat{\rho}(x, y). \end{split}$$

ヘロト ヘアト ヘビト ヘビト

x – lower left

• $\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)$, as we prove via continuous MBD.

Discrete MBD Computing $\hat{ ho}$ Continuous MBD Experiments Newest algorithm $\hat{arphi}(x,y) eq \hat{ ho}(x,y)$ but $\hat{arphi}(x,y) pprox \hat{ ho}(x,y)$

<u>у</u> – up	per rig	ght
0.41	0.5	
0.5	0.6	

$$\begin{split} \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) &= c_{\max}(0.5, 0.41, 0.5) = 0.5\\ \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p) &= c_{\min}(0.5, 0.6, 0.5) = 0.5\\ \text{But } \hat{\varphi}(x, y) &= 0 \neq 0.09 = \hat{\rho}(x, y). \end{split}$$

ヘロト ヘアト ヘビト ヘビト

x - lower left

Nevertheless,

• $\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)$, as we prove via continuous MBD.
Discrete MBD Computing $\hat{ ho}$ Continuous MBD Experiments Newest algorithm $\hat{arphi}(x,y) eq \hat{ ho}(x,y)$ but $\hat{arphi}(x,y) pprox \hat{ ho}(x,y)$

<u>y</u> – upper right			
0.41	0.5		
0.5	0.6		

$$\begin{split} \min_{p \in \hat{\Pi}_{x,y}} c_{\max}(p) &= c_{\max}(0.5, 0.41, 0.5) = 0.5\\ \max_{p \in \hat{\Pi}_{x,y}} c_{\min}(p) &= c_{\min}(0.5, 0.6, 0.5) = 0.5\\ \text{But } \hat{\varphi}(x, y) &= 0 \neq 0.09 = \hat{\rho}(x, y). \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

x - lower left

Nevertheless,

• $\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)$, as we prove via continuous MBD.

• There is a very fast algorithm calculating $\hat{\varphi}(x, y)$.

Discrete MBD Computing $\hat{ ho}$ Continuous MBD Experiments Newest algorithm $\hat{arphi}(x,y) eq \hat{ ho}(x,y)$ but $\hat{arphi}(x,y) pprox \hat{ ho}(x,y)$

<u>y – upper rig</u> ht			
0.41	0.5		
0.5	0.6		

$$\begin{split} \min_{\rho \in \hat{\Pi}_{x,y}} c_{\max}(\rho) &= c_{\max}(0.5, 0.41, 0.5) = 0.5\\ \max_{\rho \in \hat{\Pi}_{x,y}} c_{\min}(\rho) &= c_{\min}(0.5, 0.6, 0.5) = 0.5\\ \text{But } \hat{\varphi}(x, y) &= 0 \neq 0.09 = \hat{\rho}(x, y). \end{split}$$

通 とくほ とくほ とう

x - lower left

Nevertheless,

• $\hat{\varphi}(x, y) \approx \hat{\rho}(x, y)$, as we prove via continuous MBD.

• There is a very fast algorithm calculating $\hat{\varphi}(x, y)$.

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Fast algorithm $A_{\hat{\sigma}}$ calculating $\hat{\varphi}(x, \cdot)$

Let $DA(G, \hat{w}, x)$ – Dijkstra algorithm returning p_y 's with $\hat{\rho}_{\max}(x, y) = c_{\max}(p_y)$.

Then $DA(G, -\widehat{w}, x)$ returns p_y 's with $\hat{\rho}_{\min}(x, y) = -c_{\max}(p_y)$.

Algorithm $A_{\hat{\varphi}}$:

Input: A seed *x* in the image/graph $G = \langle \widehat{D}, E, \widehat{w} \rangle$. **Output:** A map $\hat{\varphi}(x, \cdot)$.

- 1: Run $DA(G, \widehat{w}, x)$ and record $C^+(y) = c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 2: Run $DA(G, -\widehat{w}, x)$ & record $C^{-}(y) = -c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 3: Return $\hat{\varphi}(x, y) = C^+(y) C^-(y)$ for every $y \in \widehat{D}$;

Algorithm $A_{\widehat{arphi}}$ requires $O(n \ln n)$ operations, n- the size of \widehat{D} .

ヘロン ヘアン ヘビン ヘビン

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Fast algorithm $A_{\hat{\phi}}$ calculating $\hat{\phi}(x, \cdot)$

Let $DA(G, \hat{w}, x)$ – Dijkstra algorithm returning p_y 's with

 $\hat{\rho}_{\max}(x, y) = c_{\max}(p_y).$

Then $DA(G, -\widehat{w}, x)$ returns p_y 's with $\hat{\rho}_{\min}(x, y) = -c_{\max}(p_y)$.

Algorithm $A_{\hat{\varphi}}$:

Input: A seed *x* in the image/graph $G = \langle \widehat{D}, E, \widehat{w} \rangle$. **Output:** A map $\hat{\varphi}(x, \cdot)$.

- 1: Run $DA(G, \widehat{w}, x)$ and record $C^+(y) = c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 2: Run $DA(G, -\widehat{w}, x)$ & record $C^{-}(y) = -c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 3: Return $\hat{\varphi}(x, y) = C^+(y) C^-(y)$ for every $y \in \widehat{D}$;

Algorithm $A_{\widehat{arphi}}$ requires $O(n \ln n)$ operations, n- the size of \widehat{D} .

・ロト ・ 理 ト ・ ヨ ト ・

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Fast algorithm $A_{\hat{\phi}}$ calculating $\hat{\phi}(x, \cdot)$

Let $DA(G, \widehat{w}, x)$ – Dijkstra algorithm returning p_y 's with

 $\hat{\rho}_{\max}(x, y) = c_{\max}(p_y).$

Then $DA(G, -\widehat{w}, x)$ returns p_y 's with $\hat{\rho}_{\min}(x, y) = -c_{\max}(p_y)$.

Algorithm $A_{\hat{\varphi}}$:

Input: A seed *x* in the image/graph $G = \langle \widehat{D}, E, \widehat{w} \rangle$. **Output:** A map $\hat{\varphi}(x, \cdot)$.

1: Run $DA(G, \widehat{w}, x)$ and record $C^+(y) = c_{\max}(p_y)$ for $y \in \widehat{D}$;

- 2: Run $DA(G, -\widehat{w}, x)$ & record $C^{-}(y) = -c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 3: Return $\hat{\varphi}(x, y) = C^+(y) C^-(y)$ for every $y \in \widehat{D}$;

Algorithm $A_{\widehat{arphi}}$ requires $O(n \ln n)$ operations, n- the size of \widehat{D} .

・ロト ・ 理 ト ・ ヨ ト ・

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Fast algorithm $A_{\hat{\omega}}$ calculating $\hat{\varphi}(x,\cdot)$

Let $DA(G, \hat{w}, x)$ – Dijkstra algorithm returning p_y 's with

 $\hat{\rho}_{\max}(x, y) = c_{\max}(p_y).$

Then $DA(G, -\widehat{w}, x)$ returns p_y 's with $\hat{\rho}_{\min}(x, y) = -c_{\max}(p_y)$.

Algorithm $A_{\hat{\varphi}}$:

Input: A seed *x* in the image/graph $G = \langle \widehat{D}, E, \widehat{w} \rangle$. **Output:** A map $\hat{\varphi}(x, \cdot)$.

- 1: Run $DA(G, \widehat{w}, x)$ and record $C^+(y) = c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 2: Run $DA(G, -\widehat{w}, x)$ & record $C^{-}(y) = -c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 3: Return $\hat{\varphi}(x, y) = C^+(y) C^-(y)$ for every $y \in \widehat{D}$;

Algorithm $A_{\widehat{arphi}}$ requires $O(n \ln n)$ operations, n- the size of \widehat{D} .

イロト 不得 とくほ とくほ とうほ

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Fast algorithm $A_{\hat{\omega}}$ calculating $\hat{\varphi}(x, \cdot)$

Let $DA(G, \hat{w}, x)$ – Dijkstra algorithm returning p_y 's with

 $\hat{\rho}_{\max}(x, y) = c_{\max}(p_y).$

Then $DA(G, -\widehat{w}, x)$ returns p_y 's with $\hat{\rho}_{\min}(x, y) = -c_{\max}(p_y)$.

Algorithm $A_{\hat{\varphi}}$:

Input: A seed *x* in the image/graph $G = \langle \widehat{D}, E, \widehat{w} \rangle$. **Output:** A map $\hat{\varphi}(x, \cdot)$.

- 1: Run $DA(G, \widehat{w}, x)$ and record $C^+(y) = c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 2: Run $DA(G, -\widehat{w}, x)$ & record $C^{-}(y) = -c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 3: Return $\hat{\varphi}(x, y) = C^+(y) C^-(y)$ for every $y \in \widehat{D}$;

Algorithm $A_{\widehat{arphi}}$ requires $O(n \ln n)$ operations, n- the size of \widehat{D} .

イロト 不得 とくほ とくほ とうほ

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Fast algorithm $A_{\hat{\sigma}}$ calculating $\hat{\varphi}(x, \cdot)$

Let $DA(G, \hat{w}, x)$ – Dijkstra algorithm returning p_y 's with

 $\hat{\rho}_{\max}(x, y) = c_{\max}(p_y).$

Then $DA(G, -\widehat{w}, x)$ returns p_y 's with $\hat{\rho}_{\min}(x, y) = -c_{\max}(p_y)$.

Algorithm $A_{\hat{\varphi}}$:

Input: A seed *x* in the image/graph $G = \langle \widehat{D}, E, \widehat{w} \rangle$. **Output:** A map $\hat{\varphi}(x, \cdot)$.

- 1: Run $DA(G, \widehat{w}, x)$ and record $C^+(y) = c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 2: Run $DA(G, -\widehat{w}, x)$ & record $C^{-}(y) = -c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 3: Return $\hat{\varphi}(x, y) = C^+(y) C^-(y)$ for every $y \in \widehat{D}$;

Algorithm $A_{\hat{arphi}}$ requires $O(n \ln n)$ operations, n- the size of \widehat{D} .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Fast algorithm $A_{\hat{\sigma}}$ calculating $\hat{\varphi}(x, \cdot)$

Let $DA(G, \hat{w}, x)$ – Dijkstra algorithm returning p_y 's with

 $\hat{\rho}_{\max}(x, y) = c_{\max}(p_y).$

Then $DA(G, -\widehat{w}, x)$ returns p_y 's with $\hat{\rho}_{\min}(x, y) = -c_{\max}(p_y)$.

Algorithm $A_{\hat{\varphi}}$:

Input: A seed *x* in the image/graph $G = \langle \widehat{D}, E, \widehat{w} \rangle$. **Output:** A map $\hat{\varphi}(x, \cdot)$.

- 1: Run $DA(G, \widehat{w}, x)$ and record $C^+(y) = c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 2: Run $DA(G, -\widehat{w}, x)$ & record $C^{-}(y) = -c_{\max}(p_y)$ for $y \in \widehat{D}$;
- 3: Return $\hat{\varphi}(x, y) = C^+(y) C^-(y)$ for every $y \in \widehat{D}$;

Algorithm $A_{\hat{\varphi}}$ requires $O(n \ln n)$ operations, n – the size of \widehat{D} .

・ロト ・ 理 ト ・ ヨ ト ・

1 Minimum Barrier Distance, $\hat{
ho}$, in the discrete setting

2 How to compute $\hat{\rho}$?

(3) Minimum Barrier Distance, ρ , in the continuous setting

Experiments: comparison with other distance measures

5 Newest result: fast algorithm for computing $\hat{
ho}$

ヘロト ヘワト ヘビト ヘビト

Input: Continuous function $f: D \to \mathbb{R}$, considered as an image,

where $D = \prod_{i=1}^{k} [a_i, b_i]$ $(a_i, b_i \in \mathbb{R})$.

For a (continuous) path $p: [0, 1] \rightarrow D$ its barrier cost is

 $c_b(p) = \max_t w(p(t)) - \min_t w(p(t)), \text{ here } w = f.$

(Note that max and min are attained, as $w \circ p$ is continuous.

The continuous barrier distance

between $x, y \in D$ is given by:

Input: Continuous function $f: D \to \mathbb{R}$, considered as an image,

where $D = \prod_{i=1}^{k} [a_i, b_i]$ $(a_i, b_i \in \mathbb{R})$.

For a (continuous) path $p \colon [0,1] \to D$ its barrier cost is

 $c_b(p) = \max_t w(p(t)) - \min_t w(p(t)), \text{ here } w = f.$

(Note that max and min are attained, as $w \circ p$ is continuous.)

The continuous barrier distance

between $x, y \in D$ is given by:

Input: Continuous function $f: D \to \mathbb{R}$, considered as an image,

where $D = \prod_{i=1}^{k} [a_i, b_i]$ $(a_i, b_i \in \mathbb{R})$.

For a (continuous) path $p \colon [0,1] \to D$ its barrier cost is

 $c_b(p) = \max_t w(p(t)) - \min_t w(p(t)), \text{ here } w = f.$

(Note that max and min are attained, as $w \circ p$ is continuous.)

The continuous barrier distance

between $x, y \in D$ is given by:

Input: Continuous function $f: D \to \mathbb{R}$, considered as an image,

where $D = \prod_{i=1}^{k} [a_i, b_i]$ $(a_i, b_i \in \mathbb{R})$.

For a (continuous) path $p \colon [0,1] \to D$ its barrier cost is

 $c_b(p) = \max_t w(p(t)) - \min_t w(p(t)), \text{ here } w = f.$

(Note that max and min are attained, as $w \circ p$ is continuous.)

The continuous barrier distance

between $x, y \in D$ is given by:

For $\varphi(x, y) = \min_{p \in \Pi_{x,y}} c_{\max}(p) - \max_{p \in \Pi_{x,y}} c_{\min}(p)$

and $c_{\max}(p) = \max_t w(p(t))$

 $\mathbf{C}_{\min}(\mathbf{p}_1) = \mathbf{0} < \mathbf{C}_{\max}(\mathbf{p}_1)$

 $c_{\max}(p_2) = 0 > c_{\min}(p_2)$

For $\varphi(x, y) = \min_{p \in \Pi_{x,y}} c_{\max}(p) - \max_{p \in \Pi_{x,y}} c_{\min}(p)$

Below g:

 p_2

w(p) = -dist(p,g)

Above g:

w(p) = dist(p,g)

 $\mathcal{C}_{\max}(\mathcal{P}_2) = 0 > \mathcal{C}_{\min}(\mathcal{P}_2)$

For $\varphi(x, y) = \min_{p \in \Pi_{x,y}} c_{\max}(p) - \max_{p \in \Pi_{x,y}} c_{\min}(p)$

 p_2

 $C_{\min}(p_1) = 0 < C_{\max}(p_1)$

For $\varphi(x, y) = \min_{p \in \Pi_{x,y}} c_{\max}(p) - \max_{p \in \Pi_{x,y}} c_{\min}(p)$

 p_2

and $c_{\max}(p) = \max_t w(p(t))$

 $C_{\min}(p_1) = 0 < C_{\max}(p_1)$

 $C_{\max}(D_2) = 0 > C_{\min}(D_2)$

For $\varphi(x, y) = \min_{p \in \Pi_{x,y}} c_{\max}(p) - \max_{p \in \Pi_{x,y}} c_{\min}(p)$

Below g:

 p_2

w(p) = -dist(p,g)

Above g:

w(p) = dist(p,g)

For $\varphi(x, y) = \min_{\rho \in \Pi_{x,y}} c_{\max}(\rho) - \max_{\rho \in \Pi_{x,y}} c_{\min}(\rho)$

 p_2

 $c_{\max}(p_2) - c_{\min}(p_1) = 0 = \varphi(x, y) = \rho(x, y) < c_b(p)$ for any $p \in \Pi_{x,y}$. In $\rho(x, y)$, operation inf cannot be replaced with min !

 $C_{\max}(D_2) = 0 > C_{\min}(D_2)$

 $C_{\min}(p_1) = 0 < C_{\max}(p_1)$

 $c_{\text{max}}(p_2) = 0 > c_{\text{min}}(p_2)$

For $\varphi(x, y) = \min_{\rho \in \Pi_{x,y}} c_{\max}(\rho) - \max_{\rho \in \Pi_{x,y}} c_{\min}(\rho)$

 p_2

 $\begin{aligned} c_{\max}(p_2) - c_{\min}(p_1) &= 0 = \varphi(x, y) = \rho(x, y) < c_b(p) \\ & \text{for any } p \in \Pi_{x, y}. \\ & \text{In } \rho(x, y), \text{ operation inf cannot be replaced with min !} \end{aligned}$

 $c_{\min}(p_1) = 0 < c_{\max}(p_1)$

 $c_{\text{max}}(p_2) = 0 > c_{\text{min}}(p_2)$

For $\varphi(x, y) = \min_{p \in \Pi_{x,y}} c_{\max}(p) - \max_{p \in \Pi_{x,y}} c_{\min}(p)$

 p_2

and $c_{\max}(p) = \max_t w(p(t))$

 $c_{\min}(p_1) = 0 < c_{\max}(p_1)$

 $c_{\text{max}}(p_2) = 0 > c_{\text{min}}(p_2)$

・ロット (雪) () () () ()

For $\varphi(x, y) = \min_{p \in \Pi_{x,y}} c_{\max}(p) - \max_{p \in \Pi_{x,y}} c_{\min}(p)$

w(p) = -dist(p,g)

 p_2

w(p)=dist(p,g)

 $c_{\max}(p_2) - c_{\min}(p_1) = 0 = \varphi(x, y) = \rho(x, y) < c_b(p)$ for any $p \in \Pi_{x,y}$.

 $C_{\min}(p_1) = 0 < C_{\max}(p_1)$ p_2 $C_{\max}(D_2) = 0 > C_{\min}(D_2)$

For $\varphi(x, y) = \min_{p \in \Pi_{x,y}} c_{\max}(p) - \max_{p \in \Pi_{x,y}} c_{\min}(p)$

In particular, $|\hat{\varphi}(x, y) - \hat{\rho}(x, y)| \le 2\varepsilon$, $\hat{\varphi}(x, \cdot)$ returned by $A_{\hat{\varphi}}$.

Proof: (1) Extend \hat{w} to w via k-linear interpolation. (2) Find p for w with $c_b(p) \approx \varphi(x, y) = \rho(x, y)$. (3) Digitize p_{ab} , q_{ab} , $q_{$

 $\varphi(x, y) = \rho(x, y)$ for a w on a simple connected domain D.

Theorem $(\hat{arphi}(x,y) o arphi(x,y) = ho(x,y)$ when $\hat{w} o w$)

For every $x, y \in \widehat{D}$ there is a $p \in \widehat{\Pi}_{x,y}$ with the range in the interval $[\widehat{\rho}_{\min}(x, y) - \varepsilon, \widehat{\rho}_{\max}(x, y) + \varepsilon]$, where $\varepsilon = \max\{|w(x) - w(y)| \colon x, y \in \widehat{D} \& \max_i |x(i) - y(i)| \le 1\}$. In particular, $|\widehat{\varphi}(x, y) - \widehat{\rho}(x, y)| \le 2\varepsilon$, $\widehat{\varphi}(x, \cdot)$ returned by $A_{\widehat{\varphi}}$.

Proof: (1) Extend \hat{w} to w via k-linear interpolation. (2) Find p for w with $c_b(p) \approx \varphi(x, y) = \rho(x, y)$. (3) Digitize p_{abc} , q_{abc} ,

 $\varphi(x, y) = \rho(x, y)$ for a w on a simple connected domain D.

Theorem ($\hat{\varphi}(x,y) \rightarrow \varphi(x,y) = \rho(x,y)$ when $\hat{w} \rightarrow w$)

For every $x, y \in \widehat{D}$ there is a $p \in \widehat{\Pi}_{x,y}$ with the range in the interval $[\widehat{\rho}_{\min}(x, y) - \varepsilon, \widehat{\rho}_{\max}(x, y) + \varepsilon]$, where $\varepsilon = \max\{|w(x) - w(y)| : x, y \in \widehat{D} \& \max_i |x(i) - y(i)| \le 1\}$. In particular, $|\widehat{\rho}(x, y) - \widehat{\rho}(x, y)| \le 2\varepsilon$, $\widehat{\rho}(x, \cdot)$ returned by $A_{\widehat{\rho}}$.

Proof: (1) Extend \hat{w} to w via k-linear interpolation. (2) Find p for w with $c_b(p) \approx \varphi(x, y) = \rho(x, y)$. (3) Digitize p_{ab} , q_{ab} , $q_{$

 $\varphi(x, y) = \rho(x, y)$ for a w on a simple connected domain D.

Theorem ($\hat{\varphi}(x, y) \rightarrow \varphi(x, y) = \rho(x, y)$ when $\hat{w} \rightarrow w$)

For every $x, y \in \widehat{D}$ there is a $p \in \widehat{\Pi}_{x,y}$ with the range in the interval $[\widehat{\rho}_{\min}(x, y) - \varepsilon, \widehat{\rho}_{\max}(x, y) + \varepsilon]$, where $\varepsilon = \max\{|w(x) - w(y)| \colon x, y \in \widehat{D} \& \max_i |x(i) - y(i)| \le 1\}$. In particular, $|\widehat{\rho}(x, y) - \widehat{\rho}(x, y)| \le 2\varepsilon$, $\widehat{\rho}(x, \cdot)$ returned by $A_{\widehat{\rho}}$.

Proof: (1) Extend \hat{w} to w via k-linear interpolation. (2) Find p for w with $c_b(p) \approx \varphi(x, y) = \rho(x, y)$. (3) Digitize p_{abc} , p_{abc} ,

 $\varphi(x, y) = \rho(x, y)$ for a w on a simple connected domain D.

Theorem ($\hat{\varphi}(x,y)
ightarrow \varphi(x,y) =
ho(x,y)$ when $\hat{w}
ightarrow w$)

For every $x, y \in \widehat{D}$ there is a $p \in \widehat{\Pi}_{x,y}$ with the range in the interval $[\widehat{\rho}_{\min}(x, y) - \varepsilon, \widehat{\rho}_{\max}(x, y) + \varepsilon]$, where $\varepsilon = \max\{|w(x) - w(y)| \colon x, y \in \widehat{D} \& \max_i |x(i) - y(i)| \le 1\}$. In particular, $|\widehat{\varphi}(x, y) - \widehat{\rho}(x, y)| \le 2\varepsilon$, $\widehat{\varphi}(x, \cdot)$ returned by $A_{\widehat{\varphi}}$.

Proof: (1) Extend \hat{w} to w via k-linear interpolation. (2) Find p for w with $c_b(p) \approx \varphi(x, y) = \rho(x, y)$. (3) Digitize p_{abc} , p_{abc} ,

 $\varphi(x, y) = \rho(x, y)$ for a w on a simple connected domain D.

Theorem ($\hat{\varphi}(x,y)
ightarrow \varphi(x,y) =
ho(x,y)$ when $\hat{w}
ightarrow w$)

For every $x, y \in \widehat{D}$ there is a $p \in \widehat{\Pi}_{x,y}$ with the range in the interval $[\widehat{\rho}_{\min}(x, y) - \varepsilon, \widehat{\rho}_{\max}(x, y) + \varepsilon]$, where $\varepsilon = \max\{|w(x) - w(y)| \colon x, y \in \widehat{D} \& \max_i |x(i) - y(i)| \le 1\}$. In particular, $|\widehat{\varphi}(x, y) - \widehat{\rho}(x, y)| \le 2\varepsilon$, $\widehat{\varphi}(x, \cdot)$ returned by $A_{\widehat{\varphi}}$.

Proof: (1) Extend \hat{w} to w via k-linear interpolation. (2) Find p for w with $c_b(p) \approx \varphi(x, y) = \rho(x, y)$. (3) Digitize p_{abc} , (2) Find p_{abc}

 $\varphi(x, y) = \rho(x, y)$ for a w on a simple connected domain D.

Theorem ($\hat{\varphi}(x,y)
ightarrow \varphi(x,y) =
ho(x,y)$ when $\hat{w}
ightarrow w$)

For every $x, y \in \widehat{D}$ there is a $p \in \widehat{\Pi}_{x,y}$ with the range in the interval $[\widehat{\rho}_{\min}(x, y) - \varepsilon, \widehat{\rho}_{\max}(x, y) + \varepsilon]$, where $\varepsilon = \max\{|w(x) - w(y)| \colon x, y \in \widehat{D} \& \max_i |x(i) - y(i)| \le 1\}$. In particular, $|\widehat{\varphi}(x, y) - \widehat{\rho}(x, y)| \le 2\varepsilon$, $\widehat{\varphi}(x, \cdot)$ returned by $A_{\widehat{\varphi}}$.

Proof: (1) Extend \hat{w} to w via k-linear interpolation. (2) Find p for w with $c_b(p) \approx \varphi(x, y) = \rho(x, y)$. (3) Digitize p_{ab} , where $\phi(x, y) = \phi(x, y)$.

 $\varphi(x, y) = \rho(x, y)$ for a w on a simple connected domain D.

Theorem ($\hat{\varphi}(x, y) \rightarrow \varphi(x, y) = \rho(x, y)$ when $\hat{w} \rightarrow w$)

For every $x, y \in \widehat{D}$ there is a $p \in \widehat{\Pi}_{x,y}$ with the range in the interval $[\widehat{\rho}_{\min}(x, y) - \varepsilon, \widehat{\rho}_{\max}(x, y) + \varepsilon]$, where $\varepsilon = \max\{|w(x) - w(y)| \colon x, y \in \widehat{D} \& \max_i |x(i) - y(i)| \le 1\}$. In particular, $|\widehat{\varphi}(x, y) - \widehat{\rho}(x, y)| \le 2\varepsilon$, $\widehat{\varphi}(x, \cdot)$ returned by $A_{\widehat{\varphi}}$.

Proof: (1) Extend \hat{w} to w via k-linear interpolation. (2) Find p for w with $c_b(p) \approx \varphi(x, y) = \rho(x, y)$. (3) Digitize p

Newest result: fast algorithm for computing $\hat{
ho}$

・ 回 ト ・ ヨ ト ・ ヨ ト

We compared the output $\hat{\varphi}(x, y)$ of $A_{\hat{\varphi}}$ (approximating $\hat{\rho}(x, y)$) with the distances minimizing costs c(p), $p = \langle p_1, p_2, \dots, p_m \rangle$:

- fuzzy d_F ; $c(p) = \sum_{i=1}^{m-1} \frac{f_A(p_i) + f_A(p_{i+1})}{2} \cdot \|p_i p_{i+1}\|;$
- geodesic d_G ; $c(p) = \sum_i \omega |f_A(p_i) f_A(p_{i+1})| + ||p_i p_{i+1}||$;

FC: max-arc d_{\max} ; $c(p) = \max_{i=1,...,m-1} |f_A(p_i) - f_A(p_{i+1})|$;

We compared the distances with respect to:

 (A) the ratios between inter-object and intra-object distances & the influence by the seed points position: should be low;

ヘロト ヘワト ヘビト ヘビト

(B) influence by introduction of noise & smoothing (blur): should be small.

Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm Experiments

We compared the output $\hat{\varphi}(x, y)$ of $A_{\hat{\varphi}}$ (approximating $\hat{\rho}(x, y)$) with the distances minimizing costs c(p), $p = \langle p_1, p_2, \dots, p_m \rangle$:

• fuzzy
$$d_F$$
; $c(p) = \sum_{i=1}^{m-1} \frac{f_A(p_i) + f_A(p_{i+1})}{2} \cdot \|p_i - p_{i+1}\|$;

• geodesic d_G ; $c(p) = \sum_i \omega |f_A(p_i) - f_A(p_{i+1})| + ||p_i - p_{i+1}||$;

FC: max-arc d_{\max} ; $c(p) = \max_{i=1,...,m-1} |f_A(p_i) - f_A(p_{i+1})|$;

We compared the distances with respect to:

 (A) the ratios between inter-object and intra-object distances & the influence by the seed points position: should be low;

ヘロト ヘワト ヘビト ヘビト

(B) influence by introduction of noise & smoothing (blur): should be small.

Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm Experiments

We compared the output $\hat{\varphi}(x, y)$ of $A_{\hat{\varphi}}$ (approximating $\hat{\rho}(x, y)$) with the distances minimizing costs c(p), $p = \langle p_1, p_2, \dots, p_m \rangle$:

• fuzzy
$$d_F$$
; $c(p) = \sum_{i=1}^{m-1} \frac{f_A(p_i) + f_A(p_{i+1})}{2} \cdot \|p_i - p_{i+1}\|;$

• geodesic d_G ; $c(p) = \sum_i \omega |f_A(p_i) - f_A(p_{i+1})| + ||p_i - p_{i+1}||$;

FC: max-arc d_{\max} ; $c(p) = \max_{i=1,...,m-1} |f_A(p_i) - f_A(p_{i+1})|$;

We compared the distances with respect to:

 (A) the ratios between inter-object and intra-object distances & the influence by the seed points position: should be low;

ヘロト ヘワト ヘビト ヘビト

(B) influence by introduction of noise & smoothing (blur): should be small.
Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm Experiments

We compared the output $\hat{\varphi}(x, y)$ of $A_{\hat{\varphi}}$ (approximating $\hat{\rho}(x, y)$) with the distances minimizing costs c(p), $p = \langle p_1, p_2, \dots, p_m \rangle$:

• fuzzy
$$d_{F}$$
; $c(p) = \sum_{i=1}^{m-1} \frac{f_{A}(p_{i}) + f_{A}(p_{i+1})}{2} \cdot \|p_{i} - p_{i+1}\|;$

• geodesic
$$d_G$$
; $c(p) = \sum_i \omega |f_A(p_i) - f_A(p_{i+1})| + ||p_i - p_{i+1}||$;

FC: max-arc d_{\max} ; $c(p) = \max_{i=1,...,m-1} |f_A(p_i) - f_A(p_{i+1})|$;

We compared the distances with respect to:

 (A) the ratios between inter-object and intra-object distances & the influence by the seed points position: should be low;

ヘロト ヘワト ヘビト ヘビト

(B) influence by introduction of noise & smoothing (blur): should be small.

Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm Experiments

We compared the output $\hat{\varphi}(x, y)$ of $A_{\hat{\varphi}}$ (approximating $\hat{\rho}(x, y)$) with the distances minimizing costs c(p), $p = \langle p_1, p_2, \dots, p_m \rangle$:

• fuzzy
$$d_F$$
; $c(p) = \sum_{i=1}^{m-1} \frac{f_A(p_i) + f_A(p_{i+1})}{2} \cdot \|p_i - p_{i+1}\|;$

• geodesic d_G ; $c(p) = \sum_i \omega |f_A(p_i) - f_A(p_{i+1})| + ||p_i - p_{i+1}||$;

FC: max-arc d_{\max} ; $c(p) = \max_{i=1,...,m-1} |f_A(p_i) - f_A(p_{i+1})|$;

We compared the distances with respect to:

 (A) the ratios between inter-object and intra-object distances & the influence by the seed points position: should be low;

・ロット (雪) () () () ()

(B) influence by introduction of noise & smoothing (blur): should be small.

Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm Experiments

We compared the output $\hat{\varphi}(x, y)$ of $A_{\hat{\varphi}}$ (approximating $\hat{\rho}(x, y)$) with the distances minimizing costs c(p), $p = \langle p_1, p_2, \dots, p_m \rangle$:

• fuzzy
$$d_{\mathsf{F}}$$
; $c(p) = \sum_{i=1}^{m-1} \frac{f_{\mathsf{A}}(p_i) + f_{\mathsf{A}}(p_{i+1})}{2} \cdot \|p_i - p_{i+1}\|;$

• geodesic d_G ; $c(p) = \sum_i \omega |f_A(p_i) - f_A(p_{i+1})| + ||p_i - p_{i+1}||$;

FC: max-arc d_{\max} ; $c(p) = \max_{i=1,...,m-1} |f_A(p_i) - f_A(p_{i+1})|$;

We compared the distances with respect to:

 (A) the ratios between inter-object and intra-object distances & the influence by the seed points position: should be low;

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

(B) influence by introduction of noise & smoothing (blur): should be small.

Discrete MBD

Computing $\hat{\rho}$

Continuous MBD

Experiments

Newest algorithm

Stability w.r.t. seed position

Boxes: 25th to the 75th percentile; central mark: the median.

Discrete MBD Comp

Computing $\hat{\rho}$

Continuous MBD

Experiments

Newest algorithm

Stability w.r.t. seed position

Boxes: 25th to the 75th percentile; central mark: the median.

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Stability w.r.t. seed position: interpretation

max-arc (Fuzzy Connectedness) distance is the most robust;

• MBD is just slightly worst than max-arc and only for the image with a low boundary gradient;

• MBD is at least as good than the other distances;

・ 回 ト ・ ヨ ト ・ ヨ ト

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Stability w.r.t. seed position: interpretation

- max-arc (Fuzzy Connectedness) distance is the most robust;
- MBD is just slightly worst than max-arc and only for the image with a low boundary gradient;
- MBD is at least as good than the other distances;

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest algorithm Stability w.r.t. seed position: interpretation

- max-arc (Fuzzy Connectedness) distance is the most robust;
- MBD is just slightly worst than max-arc and only for the image with a low boundary gradient;
- MBD is at least as good than the other distances;

Discrete MBD

Computing $\hat{\rho}$

Continuous MBD

Experiments

Newest algorithm

Stability w.r.t. Gaussian noise and smoothing

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 17

Continuous MBD

Experiments

Newest algorithm

Stability w.r.t. Gaussian noise and smoothing

Gaussian noise – Distance values as function of sigma

Inter-object distance $(d(p_1, p_3))$

э

Gaussian smoothing – Distance values as function of sigma

p₁ is randomly 1000 times.

MBD has low sensitivity;

- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

- all considered distances perform reasonably well;
- the performance of max-arc (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;

Discrete MBD	Computing $\hat{\rho}$	Continuous MBD	Experiments	Newest algorithm
Interpretat	ion:			

- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

- all considered distances perform reasonably well;
- the performance of max-arc (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;

Discrete MBD	Computing $\hat{\rho}$	Continuous MBD	Experiments	Newest algorithm
Interpretation:				

- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

- all considered distances perform reasonably well;
- the performance of max-arc (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;

Discrete MBD	Computing $\hat{\rho}$	Continuous MBD	Experiments	Newest algorithm
Interpretation:				

- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

- all considered distances perform reasonably well;
- the performance of max-arc (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;

Discrete MBD	Computing $\hat{\rho}$	Continuous MBD	Experiments	Newest algorithm
Interpretation:				

- MBD has low sensitivity;
- fuzzy distance on edge image and max-arc are sensitive;
- fuzzy distance: performs well for the image with a high boundary gradient; not so well for the image with a low boundary gradient.

- all considered distances perform reasonably well;
- the performance of max-arc (FC) decreases, with weakening boundary gradient and/or introduction of noise; no such decrease for MBD;

Experiments: comparison with other distance measures

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Newest fast algorithm for computing $\hat{\rho}$

 $DA(G, \widehat{w}, x)$ – returns p_y 's with $\widehat{\rho}_{\max}(x, y) = c_{\max}(p_y)$.

Define $w_a(x) = w(x)$ for $w(x) \ge a$ and $w_a(x) = \infty$ otherwise.

Algorithm $A_{\hat{\rho}}$:

Input: Graph $G = \langle \hat{D}, E, \hat{w} \rangle$ and the vertex *x* in *G*. **Output:** A path \hat{p}_y in *G* from *x* to *y* with $c_b(\hat{p}_y) = \hat{\rho}(x, y)$. **Auxiliary:** Current value C_b of $c_b(\hat{p}_y)$;

- 1: List $R = \{w(c) \le w(x) : c \in \hat{D}\}$ with no repetition;
- 2: **for** every *a* ∈ *R* **do**
- 3: Run $DA(G, w_a, x);$
- 4: if $c_b(p_y) < C_b$ then
- 5: Put $C_b = c_b(p_y)$ and $\hat{p}_y = p_y$?
- 6: end if
- 7: end for
- 8: Return \hat{p}_y ;

・ロト ・ 理 ト ・ ヨ ト ・

Newest fast algorithm for computing $\hat{\rho}$

 $DA(G, \widehat{w}, x)$ – returns p_y 's with $\hat{\rho}_{max}(x, y) = c_{max}(p_y)$.

Define $w_a(x) = w(x)$ for $w(x) \ge a$ and $w_a(x) = \infty$ otherwise.

Algorithm $A_{\hat{\rho}}$:

Input: Graph $G = \langle \hat{D}, E, \hat{w} \rangle$ and the vertex *x* in *G*. **Output:** A path \hat{p}_y in *G* from *x* to *y* with $c_b(\hat{p}_y) = \hat{\rho}(x, y)$. **Auxiliary:** Current value C_b of $c_b(\hat{p}_y)$;

- 1: List $R = \{w(c) \le w(x) : c \in \hat{D}\}$ with no repetition;
- 2: **for** every *a* ∈ *R* **do**
- 3: Run $DA(G, w_a, x);$
- 4: if $c_b(p_y) < C_b$ then
- 5: Put $C_b = c_b(p_y)$ and $\hat{p}_y = p_y$?
- 6: end if
- 7: end for
- 8: Return \hat{p}_y ;

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Newest fast algorithm for computing $\hat{\rho}$

 $DA(G, \widehat{w}, x)$ – returns p_y 's with $\hat{\rho}_{max}(x, y) = c_{max}(p_y)$.

Define $w_a(x) = w(x)$ for $w(x) \ge a$ and $w_a(x) = \infty$ otherwise.

Algorithm $A_{\hat{\rho}}$:

Input: Graph $G = \langle \hat{D}, E, \hat{w} \rangle$ and the vertex *x* in *G*. **Output:** A path \hat{p}_y in *G* from *x* to *y* with $c_b(\hat{p}_y) = \hat{\rho}(x, y)$. **Auxiliary:** Current value C_b of $c_b(\hat{p}_y)$;

- 1: List $R = \{w(c) \le w(x) : c \in \hat{D}\}$ with no repetition;
- 2: **for** every *a* ∈ *R* **do**
- 3: Run $DA(G, w_a, x);$
- 4: if $c_b(p_y) < C_b$ then
- 5: Put $C_b = c_b(p_y)$ and $\hat{p}_y = p_y$?
- 6: end if
- 7: end for
- 8: Return \hat{p}_y ;

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Discrete MBD Computing $\hat{\rho}$ Continuous MBD Experiments Newest fast algorithm for computing $\hat{\rho}$

 $DA(G, \widehat{w}, x)$ – returns p_y 's with $\hat{\rho}_{\max}(x, y) = c_{\max}(p_y)$.

Define $w_a(x) = w(x)$ for $w(x) \ge a$ and $w_a(x) = \infty$ otherwise.

Algorithm $A_{\hat{\rho}}$:

Input: Graph $G = \langle \hat{D}, E, \hat{w} \rangle$ and the vertex *x* in *G*. **Output:** A path \hat{p}_y in *G* from *x* to *y* with $c_b(\hat{p}_y) = \hat{\rho}(x, y)$. **Auxiliary:** Current value C_b of $c_b(\hat{p}_y)$;

- 1: List $R = \{w(c) \le w(x) \colon c \in \hat{D}\}$ with no repetition;
- 2: for every $a \in R$ do
- 3: Run $DA(G, w_a, x)$;
- 4: if $c_b(p_y) < C_b$ then

5: Put
$$C_b = c_b(p_y)$$
 and $\hat{p}_y = p_y$;

- 6: end if
- 7: end for
- 8: Return \hat{p}_y ;

御下 《唐下 《唐下 》 唐

Newest algorithm

Discrete MBD Computing $\hat{
ho}$ Continuous MBD Experiments Newest algorithm On the algorithm $A_{\hat{
ho}}$

Theorem (KC: Proved about two weeks ago)

 $A_{\hat{\rho}}$ returns paths $\hat{\rho}_y$ with the exact values $c_b(\hat{\rho}_y) = \hat{\rho}(x, y)$.

 $A_{\hat{\rho}}$ requires O(k(n+k)) operations n – the size of \hat{D} , and k – the size of $\{w(c) \le w(x) : c \in \hat{D}\}$.

This estimate reduces to O(n), when $k \ll n$,

usually true in the image processing.

・ロット (雪) () () () ()

Theorem (KC: Proved about two weeks ago)

 $A_{\hat{\rho}}$ returns paths $\hat{\rho}_y$ with the exact values $c_b(\hat{\rho}_y) = \hat{\rho}(x, y)$.

 $A_{\hat{\rho}}$ requires O(k(n+k)) operations n – the size of \hat{D} , and k – the size of $\{w(c) \le w(x) : c \in \hat{D}\}$.

This estimate reduces to O(n), when $k \ll n$,

usually true in the image processing.

ヘロト ヘアト ヘビト ヘビト

Theorem (KC: Proved about two weeks ago)

 $A_{\hat{\rho}}$ returns paths $\hat{\rho}_y$ with the exact values $c_b(\hat{\rho}_y) = \hat{\rho}(x, y)$.

 $A_{\hat{\rho}}$ requires O(k(n+k)) operations n – the size of \hat{D} , and k – the size of $\{w(c) \le w(x) : c \in \hat{D}\}$.

This estimate reduces to O(n), when $k \ll n$,

usually true in the image processing.

ヘロト ヘアト ヘビト ヘビト

ヘロア ヘビア ヘビア・

Summary

Minimum Barrier Distance $\hat{\rho}$ — novel quasi distance function:

- Can be effectively computed.
- Is quite stable with respect to: change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- $\hat{\rho}(x, y)$ measures:
 - homogeneity, for $|\hat{w}(x) \hat{w}(y)|$ small;
 - $\approx |\hat{w}(x) \hat{w}(y)|$ (c.a. object feature) for $|\hat{w}(x) \hat{w}(y)|$ large.

ヘロン ヘアン ヘビン ヘビン

Minimum Barrier Distance $\hat{\rho}$ — novel guasi distance function:

- Can be effectively computed.
- Is guite stable with respect to:
- $\hat{\rho}(x, y)$ measures:
 - homogeneity, for $|\hat{w}(x) \hat{w}(y)|$ small;
 - $\approx |\hat{w}(x) \hat{w}(y)|$ (c.a. object feature) for $|\hat{w}(x) \hat{w}(y)|$ large.

- Can be effectively computed.
- Is quite stable with respect to: change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)

• $\hat{\rho}(x, y)$ measures:

- homogeneity, for $|\hat{w}(x) \hat{w}(y)|$ small;
- $\approx |\hat{w}(x) \hat{w}(y)|$ (c.a. object feature) for $|\hat{w}(x) \hat{w}(y)|$ large.

ヘロア ヘビア ヘビア・

- Can be effectively computed.
- Is quite stable with respect to: change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- $\hat{\rho}(x, y)$ measures:
 - homogeneity, for $|\hat{w}(x) \hat{w}(y)|$ small;
 - $\approx |\hat{w}(x) \hat{w}(y)|$ (c.a. object feature) for $|\hat{w}(x) \hat{w}(y)|$ large.

ヘロア ヘビア ヘビア・

- Can be effectively computed.
- Is quite stable with respect to: change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- $\hat{\rho}(x, y)$ measures:
 - homogeneity, for $|\hat{w}(x) \hat{w}(y)|$ small;
 - $\approx |\hat{w}(x) \hat{w}(y)|$ (c.a. object feature) for $|\hat{w}(x) \hat{w}(y)|$ large.

・ロット (雪) () () () ()

- Can be effectively computed.
- Is quite stable with respect to: change of seed position and introduction of noise or blur. (Comparing to fuzzy, geodesic, and max-arc distances.)
- $\hat{\rho}(x, y)$ measures:
 - homogeneity, for $|\hat{w}(x) \hat{w}(y)|$ small;
 - $\approx |\hat{w}(x) \hat{w}(y)|$ (c.a. object feature) for $|\hat{w}(x) \hat{w}(y)|$ large.

ヘロア ヘビア ヘビア・

< 🗇 🕨

(* E) * E)

ъ

Thank you for your attention!

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 23