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Image, scene, and the associated graph

f̂ : D̂ → R is a digital image, where

D̂ = Zk ∩∏k
i=1[ai ,bi ] (ai ,bi ∈ R) is a digital scene

with x , y ∈ D̂ adjacent provided
∑

i |x(i)− y(i)| = 1.

We will treat also this structure,

G = 〈D̂, {{x , y} : x , y adjacent}, f̂ 〉,

as a vertex weighted graph G = 〈V (G),E(G), ŵ〉.
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Minimum Barrier Distance in discrete setting

For a path p = 〈c1, . . . , ck 〉 in G = 〈D̂,E , ŵ〉

cb(p) = max
i

ŵ(ci) −min
i

ŵ(ci)

is the barrier cost of p.

The barrier distance

between x and y in D̂

is given by:

!  �
!  �

(x,w(x))! (y,w(y))!

Discrete MBD Continuous MBD

Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) � min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}
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x! y!

ρ̂(x , y) = min{cb(p) : p is a path in G from x to y}
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MBD vs geodesic distance

ρ̂(x , y) = min{cb(p) : p is a path in G from x to y}

ρ̂(x , y) is, in a way,

a vertical component of

the geodesic distance

between x and y .

!  �
!  �

(x,w(x))! (y,w(y))!
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Theorem
ρ̂ is a pseudo-metric:
it is symmetric and it satisfies the triangle inequality.
(However, ρ̂(x , y) can be equal 0 for x 6= y.)
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MBD as a measure of connectivity

ρ̂(x , y) = min{cb(p) : p is a path in G from x to y}

β(x , y) = exp(−ρ̂(x , y))

has some similarity to the

FC connectivity measure for the

object-feature base affinity with

average intensity value m = ŵ(s):

!  �
!  �

(x,w(x))! (y,w(y))!
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β(x , s) is small when |ŵ(x)−m| is large.

ρ̂(x , y) can be used to define RFC-like object:

P(s, t) = {c ∈ D̂ : ρ̂(c, s) < ρ̂(c, t)}.

(Not studied yet.)
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ρ̂(x , y) can be used to define RFC-like object:

P(s, t) = {c ∈ D̂ : ρ̂(c, s) < ρ̂(c, t)}.

(Not studied yet.)

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 4



Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm

MBD as a measure of connectivity

ρ̂(x , y) = min{cb(p) : p is a path in G from x to y}

β(x , y) = exp(−ρ̂(x , y))

has some similarity to the

FC connectivity measure for the

object-feature base affinity with

average intensity value m = ŵ(s):
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Can Dijkstra-like algorithm find ρ̂(x , y)?

Natural Algorithm:
Input: A seed x in the image/graph G = 〈D̂,E , ŵ〉.
Output: L(y),U(y) ∈ R, a path py from x to y with the range in
[L(y),U(y)] s.t. (hopefully) ρ̂(x , y) = U(y)− L(y).
Initialization: Push x to queue Q ordered via U(y)− L(y).

1: Put L(y) = −∞, U(y) =∞ for y 6= x , L(x) = U(x) = ŵ(x);
2: while Q is not empty do
3: Pop z from Q;
4: for every y adjacent to z do
5: Put L = min{L(z), ŵ(y)} and U = max{U(z), ŵ(y)};
6: if U(y)− L(y) > U − L then
7: Put L(y) = L and U(y) = U;
8: Push y to Q;
9: end if

10: end for
11: end while

end
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Failure of Natural Algorithm!
Let x be the lower left spel, with ŵ = 0.5.

Let y be the upper right spel, with ŵ = 0.8.

The optimal path is po = 〈.5; .6; .5; .8〉,
giving ρ̂(x , y) = .3

However, the Natural Algorithm returns

the path p = 〈.5; .41; .5; .8〉
with cb(p) = .39 > ρ̂(x , y).

Question (We do not know the answer)

Do the numbers U(y)− L(y) returned by Natural Algorithm
approximate ρ̂(x , y) in any reasonable sense?

So, how do we effectively compute the numbers ρ̂(x , y)?

R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 6
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Let y be the upper right spel, with ŵ = 0.8.
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Better attempt to compute ρ̂(x , y)

Let Π̂x ,y = {p : p is a path in G from x to y} and, for p ∈ Π̂x ,y ,

let cmin(p) = mint ŵ(p(t)) and cmax(p) = maxt ŵ(p(t)).

Let ϕ̂(x , y) = minp∈Π̂x,y
cmax(p)−maxp∈Π̂x,y

cmin(p)

Clearly

ϕ̂(x , y) ≤ ρ̂(x , y)

Is ϕ̂(x , y) = ρ̂(x , y)?

!  �
!  �

(x,w(x))! (y,w(y))!

Discrete MBD Continuous MBD

Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) � min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}
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Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm

ϕ̂(x , y) 6= ρ̂(x , y) but ϕ̂(x , y) ≈ ρ̂(x , y)

y – upper right

x – lower left

minp∈Π̂x,y
cmax(p) = cmax(0.5,0.41,0.5) = 0.5

maxp∈Π̂x,y
cmin(p) = cmin(0.5,0.6,0.5) = 0.5

But ϕ̂(x , y) = 0 6= 0.09 = ρ̂(x , y).

Nevertheless,

ϕ̂(x , y) ≈ ρ̂(x , y), as we prove via continuous MBD.

There is a very fast algorithm calculating ϕ̂(x , y).
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Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm

Fast algorithm Aϕ̂ calculating ϕ̂(x , ·)

Let DA(G, ŵ , x) – Dijkstra algorithm returning py ’s with

ρ̂max(x , y) = cmax(py ).

Then DA(G,−ŵ , x) returns py ’s with ρ̂min(x , y) = −cmax(py ).

Algorithm Aϕ̂:
Input: A seed x in the image/graph G = 〈D̂,E , ŵ〉.
Output: A map ϕ̂(x , ·).

1: Run DA(G, ŵ , x) and record C+(y) = cmax(py ) for y ∈ D̂;
2: Run DA(G,−ŵ , x) & record C−(y) = −cmax(py ) for y ∈ D̂;
3: Return ϕ̂(x , y) = C+(y)− C−(y) for every y ∈ D̂;

Algorithm Aϕ̂ requires O(n ln n) operations, n – the size of D̂.
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Outline

1 Minimum Barrier Distance, ρ̂, in the discrete setting

2 How to compute ρ̂?

3 Minimum Barrier Distance, ρ, in the continuous setting

4 Experiments: comparison with other distance measures

5 Newest result: fast algorithm for computing ρ̂
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Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm

Image, barrier cost of a path, and barrier distance

Input: Continuous function f : D → R, considered as an image,

where D =
∏k

i=1[ai ,bi ] (ai ,bi ∈ R).

For a (continuous) path p : [0,1]→ D its barrier cost is

cb(p) = max
t

w(p(t)) −min
t

w(p(t)), here w = f .

(Note that max and min are attained, as w ◦ p is continuous.)

The continuous barrier distance

between x , y ∈ D is given by:

ρ(x , y) = inf{cb(p) : p from x to y}

!  �
!  �

(x,w(x))! (y,w(y))!

Discrete MBD Continuous MBD

Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) � min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}
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Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) � min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}
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x! y!
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Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm

Topologists sine curve example

g(t) = sin(1/t) for t 6= 0, g(0) = 0

Above g:!
w(p)=dist(p,g)

Below g:!
w(p)=–dist(p,g)

y!

x!

p1!

p2!

ρ(x , y) = inf{cb(p) : p ∈ Πx ,y}

Put cmin(p) = mint w(p(t))

and cmax(p) = maxt w(p(t))

cmin(p1) = 0 < cmax(p1)

cmax(p2) = 0 > cmin(p2)

For ϕ(x , y) = minp∈Πx,y cmax(p)−maxp∈Πx,y cmin(p)

cmax(p2)− cmin(p1) = 0 = ϕ(x , y) = ρ(x , y) < cb(p)
for any p ∈ Πx ,y .

In ρ(x , y), operation inf cannot be replaced with min !
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Continuous barrier distance to the rescue of Aϕ̂

Theorem (Deep result on simple connected domains)

If there are p1,p2 ∈ Πx ,y with a < cmin(p1) and cmax(p2) < b,
then there is a single p ∈ Πx ,y with the range in (a,b).

Corollary (continuous case)

ϕ(x , y) = ρ(x , y) for a w on a simple connected domain D.

Theorem (ϕ̂(x , y)→ ϕ(x , y) = ρ(x , y) when ŵ → w )

For every x , y ∈ D̂ there is a p ∈ Π̂x ,y with the range in the
interval [ρ̂min(x , y)− ε, ρ̂max(x , y) + ε], where
ε = max{|w(x)− w(y)| : x , y ∈ D̂ & maxi |x(i)− y(i)| ≤ 1}.
In particular, |ϕ̂(x , y)− ρ̂(x , y)| ≤ 2ε, ϕ̂(x , ·) returned by Aϕ̂.

Proof: (1) Extend ŵ to w via k -linear interpolation. (2) Find p
for w with cb(p) ≈ ϕ(x , y) = ρ(x , y). (3) Digitize p.
R. Stranda, K. Chris Ciesielski, F. Malmberg, P.K. Saha The Minimum Barrier Distance Transform 12



Discrete MBD Computing ρ̂ Continuous MBD Experiments Newest algorithm

Continuous barrier distance to the rescue of Aϕ̂

Theorem (Deep result on simple connected domains)

If there are p1,p2 ∈ Πx ,y with a < cmin(p1) and cmax(p2) < b,
then there is a single p ∈ Πx ,y with the range in (a,b).

Corollary (continuous case)

ϕ(x , y) = ρ(x , y) for a w on a simple connected domain D.

Theorem (ϕ̂(x , y)→ ϕ(x , y) = ρ(x , y) when ŵ → w )
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Outline

1 Minimum Barrier Distance, ρ̂, in the discrete setting

2 How to compute ρ̂?

3 Minimum Barrier Distance, ρ, in the continuous setting

4 Experiments: comparison with other distance measures

5 Newest result: fast algorithm for computing ρ̂
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Experiments

We compared the output ϕ̂(x , y) of Aϕ̂ (approximating ρ̂(x , y))
with the distances minimizing costs c(p), p = 〈p1,p2, . . . ,pm〉:

fuzzy dF ; c(p) =
∑m−1

i=1
fA(pi )+fA(pi+1)

2 · ‖pi − pi+1‖;
geodesic dG; c(p) =

∑
i ω |fA(pi)− fA(pi+1)|+ ‖pi − pi+1‖;

FC: max-arc dmax; c(p) = maxi=1,...,m−1 |fA(pi)− fA(pi+1)|;

We compared the distances with respect to:

(A) the ratios between inter-object and intra-object distances &
the influence by the seed points position: should be low;

(B) influence by introduction of noise & smoothing (blur):
should be small.
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Stability w.r.t. seed position

p2 fixed;
p1 is chosen ran-
domly 1000 times
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Stability w.r.t. seed position: interpretation

max-arc (Fuzzy Connectedness) distance is the most
robust;

MBD is just slightly worst than max-arc and only for the
image with a low boundary gradient;

MBD is at least as good than the other distances;
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Stability w.r.t. Gaussian noise and smoothing

Test image

p2 and p3 are fixed

p1 is
randomly chosen
1000 times.
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Figure 6: Stability to Gaussian noise and smoothing, see the text. The distance values

are normalized so that d(p1, p3) = 1 on the original image. The confidence intervals in the

upper plots cover one standard deviation.
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Figure 7: Stability to Gaussian noise and smoothing, see the text. The distance values

are normalized so that d(p1, p3) = 1 on the original image. The confidence intervals in the
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Interpretation:

Sensitivity to noise and blur:

MBD has low sensitivity;

fuzzy distance on edge image and max-arc are sensitive;

fuzzy distance: performs well for the image with a high
boundary gradient; not so well for the image with a low
boundary gradient.

Separation of the object from the background (ratio):

all considered distances perform reasonably well;

the performance of max-arc (FC) decreases, with
weakening boundary gradient and/or introduction of noise;
no such decrease for MBD;
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Outline

1 Minimum Barrier Distance, ρ̂, in the discrete setting

2 How to compute ρ̂?

3 Minimum Barrier Distance, ρ, in the continuous setting

4 Experiments: comparison with other distance measures

5 Newest result: fast algorithm for computing ρ̂
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Newest fast algorithm for computing ρ̂

DA(G, ŵ , x) – returns py ’s with ρ̂max(x , y) = cmax(py ).

Define wa(x) = w(x) for w(x) ≥ a and wa(x) =∞ otherwise.

Algorithm Aρ̂:
Input: Graph G = 〈D̂,E , ŵ〉 and the vertex x in G.
Output: A path p̂y in G from x to y with cb(p̂y ) = ρ̂(x , y).
Auxiliary: Current value Cb of cb(p̂y );

1: List R = {w(c) ≤ w(x) : c ∈ D̂} with no repetition;
2: for every a ∈ R do
3: Run DA(G,wa, x);
4: if cb(py ) < Cb then
5: Put Cb = cb(py ) and p̂y = py ;
6: end if
7: end for
8: Return p̂y ;
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On the algorithm Aρ̂

Theorem (KC: Proved about two weeks ago)

Aρ̂ returns paths p̂y with the exact values cb(p̂y ) = ρ̂(x , y).

Aρ̂ requires O(k(n + k)) operations
n – the size of D̂, and k – the size of {w(c) ≤ w(x) : c ∈ D̂}.

This estimate reduces to O(n), when k � n,

usually true in the image processing.
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Summary

Minimum Barrier Distance ρ̂ — novel quasi distance function:

Can be effectively computed.

Is quite stable with respect to:
change of seed position and introduction of noise or blur.
(Comparing to fuzzy, geodesic, and max-arc distances.)

ρ̂(x , y) measures:
homogeneity, for |ŵ(x)− ŵ(y)| small;
≈ |ŵ(x)− ŵ(y)| (c.a. object feature) for |ŵ(x)− ŵ(y)| large.

More experimental evaluation of ρ̂ is still needed.
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Thank you for your attention!
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