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Image, scene, and the associated graph

Let f : C → R` be a digital image, where

C = Zk ∩∏k
i=1[ai ,bi ] (ai ,bi ∈ R) is a digital scene

with x , y ∈ C (2k -)adjacent provided
∑

i |xi − yi | = 1.

We will treat also this structure as a graph G = 〈C,E〉,

with vertices C and edges E = {{x , y} : x , y ∈ C adjacent}.

(Most theory actually works for arbitrary graphs.)
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From path strength to generalized distance

Π — all paths p = 〈c0, . . . , ck 〉 in G = 〈C,E〉, i.e., {ci , ci+1} ∈ E .

Πc,d — all paths from c ∈ C to d ∈ C.

For a fixed path strength map λ : Π→ [0,∞)

a “distance” is dλ(c,d) = min{λ(π) : π ∈ Πc,d}.

Example. If w : E → [0,∞) is an edge weight map on G,

with w({c,d}) being a (geodesic) distance from c to d ,

then dΣ is the geodesic metric, where

Σ(〈π(0), π(1), . . . , π(k)〉) =
∑k

i=1 w({π(i − 1), π(i)}).
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Generalized distance

d : C2 → [0,∞) is a generalized distance mappings if

it is symmetric and satisfies the triangle inequality.

(We allow possibility that d(c, c) > 0 for some c ∈ C.)

Theorem
Assume that for every path π = 〈π(0), π(1), . . . , π(k)〉

(i) λ(π) = λ(〈π(k), π(k − 1), . . . , π(0)〉), and
(ii) λ(π) ≤ λ(〈π(0), . . . , π(i)〉) + λ(〈π(i), . . . , π(k)〉) for every

0 ≤ i ≤ k.
Then dλ is a generalized distance.

All maps dλ we consider are generalized distances.
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Definition of the Minimum Barrier Distance, MBD

Let w : C → [0,∞) be vertex weight map, e.g., w(c) = ‖f (c)‖.

For a path p = 〈ci〉 ∈ Π let βw(p) = β+
w (p)−β−w (p), where

β+
w (p) = maxi w(ci) and β−w (p) = mini w(ci).

βw is the barrier cost.

The Minimum
Barrier Distance, MBD

between x and y in C

is dβw (x , y), i.e.,

!  �
!  �

(x,w(x))! (y,w(y))!

Discrete MBD Continuous MBD

Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) �min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}
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x! y!

dβw (x , y) = min{βw (p) : p ∈ Πx ,y}. ρ̂ = dβw
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MBD vs geodesic distance

dβw (x , y) = min{cb(p) : p is a path in G from x to y}

dβw (x , y) is, in a way,

a vertical component of

the geodesic distance dΣ

between x and y .

!  �
!  �

(x,w(x))! (y,w(y))!

Discrete MBD Continuous MBD

Minimum Barrier Distance in discrete setting

For a path p = hc1, . . . , ck i in G = hbD, E , wi

cb(p) = max
i

w(ci) �min
i

w(ci)

is the barrier cost of p.

The barrier distance

between x and y in bD

is given by:

!  �
!  �

x!
y!

⇢̂(x , y) = min{cb(p) : p is a path in G from x to y}
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x! y!

dβw is a pseudo-metric: it is symmetric,

satisfies the triangle inequality, and dβw (x , x) = 0.

(However, dβw (x , y) can be equal 0 for x 6= y .)
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Generalized distances used in imaging

Geodesic Distance, dΣ, including the Euclidean Distance
Fuzzy Connectedness, FC: if µ is FC connectivity strength
for affinity κ : E → [0,M] and weight w(e) = M − κ(e), then
dλ(c,d) = M − µ(c,d), where λ(〈ci〉) = maxi w({ci−1, ci}).
Our new Minimum Barrier Distance, dβw

Fuzzy Distance, FD: it is dΣ̂, where for w : C → [0,∞)

ŵ(c,d) = w(c)+w(d)
2 and Σ̂(〈ci〉) =

∑
i ŵ({ci−1, ci})

Watershed: it is dβ+
w

(β+
w (〈ci〉) = maxi w(ci))

For distance d and seed sets S,T ⊂ C, define RFC-like object:

P(S,T ) = {c ∈ C : d(c,S) < D(c,T )}.

We experimentally compared these for dΣ, FC, MBD, FD.
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Standard Dijkstra algorithm, DA, for cost function λ
Algorithm 1 Dijkstra algorithm DA(λ,R)

Input: Path cost function λ on G = 〈C,E〉, non-empty R ⊂ C.
Output: For every c ∈ C, a path πc from an r ∈ R to c.
Auxiliary: Queue Q: if c precedes d in Q, then λ(πc) ≤ λ(πd ).
begin

1: Init: pr = 〈r〉 for r ∈ R, pc = ∅ for c /∈ R, push all r ∈ R to Q;
2: while Q is not empty do
3: Pop d from Q;
4: for every c ∈ C connected by an edge to d do
5: if λ(πd ĉ) < λ(πc) then
6: Put πc = πd ĉ, place c into a proprer place in Q;
7: end if
8: end for
9: end while

end
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Can Dijkstra Algorithm, DA, find (exact) MBD?

DA returns correctly distances: Geodesic, FC, FD, Watershed,

as their paths strengths are smooth in sense of Falcão et al.

DA does not work properly for MBD:

!!

! !

s!

c!

.5!

.5!

.7!

.4! !

.8!d!

Example: MBD value dβw (s, c) = .8− .5 for the indicated w .

DA(βw , {s}) returns suboptimal πc , with βw (πc) = .8− .4.
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Fast algorithms approximating MBD

Algorithm 2 Aappr
MBD({s})

Input: A vertex weight map w on a graph G = 〈C,E〉, an s ∈ C.
Output: A map ϕ(·, {s})).
begin

1: Run DA(β+
w , {s})); record dβ+

w
(c, {s})) = β+

w (πc) for c ∈ C;
2: Run DA(β+

v , {s})), where v = M−w and M = maxc∈C w(c),
and record dβ−

w
(c, {s})) = M − β+

v (πc) for every c ∈ C;
3: Return ϕ(·, {s})) = dβ+

w
(c, {s}))− dβ−

w
(c, {s})) for c ∈ C;

end

The output of Aappr
MBD({s}) approximates MBD dβw (·, {s})):
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ϕ(·, {s})) ≈ dβw (·, {s}))
G = 〈C,E ,w〉— graph of a rectangular k -D image f , w = ‖f‖,

ε = max{|w(x)− w(y)| : x , y ∈ C are (2k − 1)-adjacent}.

Theorem (ϕ(c, s) ≤ dβw (c, s) ≤ ϕ(c, s) + 2ε )

Proof is based on deep result on continuous equivalent of MBD:

For f being continuous on a simple connected domain,

continuous-ϕ(c,d) = continuous-dβw (c,d).

Proof of Thm:
(1) Extend f to continuous f̂ via k -linear interpolation.
(2) Find continuous path p ∈ Πx ,y with βw (p) ≈ ϕ(x , y).
(3) Digitize p.
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Aappr
MBD(S) and DA(βw ,S): pros and cons

Both fast, in order between O(n) and O(n ln n), n = |C|.

Aappr
MBD(S) underestimates MBD, with known error rate ε;

needs to run “simple” DA |S|-many times, slowing for large S.

DA(βw ,S) overestimates MBD with unknown error bound;

complexity is (essentially) independent of the size of S;

Conjecture

The error of DA(βw ,S) does not exceed 2ε, maybe even ε.

So far, no theoretical proof for this.
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Simple algorithm for exact MBD

Algorithm 3 Asimple
MBD (S)

Input: A vertex weight w on G = 〈C,E〉, non-empty S ⊂ C.
Output: The paths pc from S to c with βw (pc) = dβw (c,S).
begin

1: Init: U = max{w(s) : s ∈ S} and pc = ∅ for every c ∈ C;
2: Push all numbers from {w(c) ≤ U : c ∈ C} to a queue Q;
3: while Q is not empty do
4: Pop a from Q, run DA(β+

v ,S) with v = wa, return πc ’s;
(wa(c) = w(c) if w(c) ≥ a, wa(c) =∞ otherwise)

5: for every c ∈ C do
6: if βv (πc) < βw (pc) then
7: Put pc = πc ;
8: end if
9: end for

10: end while
end
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Faster algorithm for exact MBD
Algorithm 4 AMBD(S)

Auxiliary: β−w -optimal πc from S to c; a queue Q: if c � d then
β+

w (πc) < β+
w (πd ) or β+

w (πc) = β+
w (πd ) and β−w (πc) > β−w (πd ).

begin
1: Init: ps = πs = 〈s〉 for s ∈ S and pc = πc = ∅ for c ∈ C \ S;
2: Push all s ∈ S to Q;
3: while Q is not empty do
4: Pop c from Q;
5: for every d ∈ C connected by an edge to c do
6: if β−w (πc ˆd) > β−w (πd ) then
7: Set πd ← πc ˆd and place d into Q;
8: if βw (πd ) < βw (pd ) then
9: Set pd ← πd ;

10: end if
11: end if
12: End everything;
13: end for
14: end while
end
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Correctness of the algorithms for exact MBD

Theorem
Let n be the size of the graph and m be the size of a fix set Z ,
containing W = {w(c) : c ∈ C}. The algorithm computational
complexity is either

(BH) O(m n ln n), if we use binary heap as Q, or
(LS) O(m(n + m)), if we use as Q a list structure.
After AMBD(S) terminates, we indeed have βw (pc) = dw (c,S)

for all c ∈ C. The same is true for Asimple
MBD (S).

Proof for AMBD(S) is quite intricate; for Asimple
MBD (S) is quite easy.

However, AMBD(S) executes the main while loop considerably
fewer times than Asimple

MBD (S) does.
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What is compared?

the exact MBD algorithm AMBD(S);
the interval algorithm DA(βw ,S) overestimating MBD;
Aappr

MBD(S) executed ones for each seed point;
it underestimates MBD, with an error ≤ 2ε;
A?appr

MBD (S) executed only ones even for multiple seeds.

Experiments were conducted on a computer: HP Proliant
ML350 G6 with 2 Intel X5650 6-core processors (2.67Hz) and
104GGB memory.

The used 2D images, from the grabcut dataset, came with the
true segmentations. Their sizes range from 113032 pixels (for
284× 398 image) to 307200 (for 640× 480 image).
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2D images from the grabcut dataset

Figure: Images from the grabcut dataset used in the experiments.
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Results

For each s = 1, . . . ,25, the following was repeated 100 times:
(1) extract a random image from the database;
(2) generate randomly the set S of s seed points in the image;
(3) run each algorithm on this image with the chosen set S.
Graphs display averages.
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More results and conclusions
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Figure: The mean number pixels
with incorrect value of MBD

We declared as “winners,”
used in the segmentation ex-
periments:

AMBD(S) as it is exact and
reasonably fast;

DA(βw ,S) as it is the fastest and
has the smallest error
from approximations.
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Algorithms used in the segmentation valuation

For gray-scale digital images f : C → [0,∞):

The exact MBD computed with AMBD(S), where
w(c) = f (c).
An approximate MBD computed with DA(βw ,S), where
w(c) = f (c).
The geodesic distance computed with DA(Σ,S), where, for
adjacent c,d ∈ C, w(c,d) = |f (c)− f (d)|.
The fuzzy distance computed with DA(Σ̂,S), where
w(c) = f (c).
The fuzzy connectedness computed with DA(w ,S), where,
for adjacent c,d ∈ C, w(c,d) = M −κ(c,d) = |f (c)− f (d)|.

We start with the 2D grabcut images.
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Speed w.r.t. image size
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Figure: Mean execution time on small images obtained by cutting out
grabcut images. A single seed point is used for each image.

The actual execution time of AMBD(S) depends on the image
size in a linear manner, rather than in the (worst case scenario
proven) quadratic manner.
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Seeds chosen by erosion, no noise or blur
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Figure: The value for each algorithm for the seeds chosen for
indicated erosion radius represent average over the 17 images.

All algorithms performed well, with just a slight better accuracy
for MBD algorithms.
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Seeds chosen by the users, no noise or blur

Figure: Example of seed points, users 1–4, respectively.
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Figure: Boxplots of Dice coefficient, seeds from users 1–4.
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Seeds chosen by the users, smoothing added

1 5 10
0

0.5

1

m
ea
n
d
ic
e
va
lu
e

Gaussian smoothing (σ)

 

 

exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

1 5 10
0

6

12

18

m
ea
n
ex
ec
u
ti
o
n
ti
m
e
(s
)

Gaussian smoothing (σ)

 

 

exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

Figure: The performance of the five algorithms as a function of
smoothing the images.

MBD algorithms handled smoothing a lot better than FC and FD

Smoothing improves execution time for exact MBD algorithm
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Seeds chosen by the users, noise added
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Figure: The performance of the five algorithms as a function of
adding noise to the images.
MBD algorithms handled noise better than other algorithms for
not very noisy images
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Blur added to the images with fixed level of noise
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Figure: The performance of the five algorithms as a function of
smoothing, applied to the images with added fixed level of noise.
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Noise added to the smoothed images
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Figure: The performance of the five algorithms as a function of
adding noise, applied to the smoothed images.
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3D experiments: the image

(a) (b) (c)

Figure: The 3D T1-weighted MRI image of the brain, smoothed by
Gaussian blur with sigma value 0.5. (a) three perpendicular slices; (b)
reference segmentation of the same slices; (c) surface rendering of
the reference segmentation.
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3D experiments: the results
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Figure: The performance of the five algorithms on the image for the
asymmetrically chosen seeds at the indicated erosion radius.

MBD algorithms compare favorably with the other algorithms

K. Chris Ciesielski The Minimum Barrier Distance Transform 28



DT’s MBD approx MBD exact MBD Experiments: different MBD’s Experiments: segmentations Conclusions

Outline

1 Path-induced distance mappings

2 The Minimum Barrier Distance, MBD

3 Fast computation of approximations of MBD

4 Polynomial time algorithm for exact MBD

5 Experiments: comparison of different algorithms for MBD

6 Experiments: segmentations for different distances

7 Conclusions

K. Chris Ciesielski The Minimum Barrier Distance Transform 28



DT’s MBD approx MBD exact MBD Experiments: different MBD’s Experiments: segmentations Conclusions

Summary

Minimum Barrier Distance:

Can be efficiently computed: (a) exactly; (b) approximately.

The segmentations associated with MBD compare
favorably with those associates with: geodesic distance
(GD), fuzzy distance (FD), and relative fuzzy
connectedness (RFC).

The segmentations associated with MBD are more robust
to smoothing and to noise than GD, FD, and RFC.
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Thank you for your attention!
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