Continuous, differentiable, and twice differentiable functions: How big are the gaps between these classes?

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and
MIPG, Departmentof Radiology, University of Pennsylvania

Summer Symposium in Real Analysis XXXVI, June 2012

Project scope: understanding the hierarchy

$$
\mathcal{A} \subset \mathcal{C}^{\infty} \subset \cdots \subset \mathcal{C}^{2} \subset D^{2} \subset \mathcal{C}^{1} \subset D^{1} \subset \mathcal{C} \subset \mathcal{B}_{1} \subset \mathcal{B}_{2} \subset \cdots \subset \mathcal{B}_{\alpha} \subset \cdots
$$

- $D^{n}-n$ times differentiable functions
- \mathcal{C}^{n} - continuously n times differentiable functions
- \mathcal{B}_{α} - Baire class α functions, $\alpha<\omega_{1}$
- \mathcal{A} - analytic functions

All for functions $f: X \rightarrow Y$, where the classes are defined.
Scope: Understanding this hierarchy by
Finding natural properties that distinguish between these classes.

The simplest example, and (partially) Calc 1 puzzle

> Theorem (Tietze Extension Thm)
> For every closed subset X of \mathbb{R} and $f: X \rightarrow \mathbb{R}$ with $f \in \mathcal{C}$ there is an $F: \mathbb{R} \rightarrow \mathbb{R}$ extending f such that $F \in \mathcal{C}$.

Question (To ponder during the talk)

Does Tietze Extension Thm hold if the class \mathcal{C} of continuous functions is replaced with the class of:

- \mathcal{C}^{1} functions?
- D^{1} functions?

What happens with these questions, if $X \subset \mathbb{R}^{n}$ and we like to extend f to \mathbb{R}^{n} ?
What about other, more general spaces than \mathbb{R}^{n} ?

It makes sense to assume here that X has no isolated points.

Baire class functions: $\mathcal{C} \subsetneq \mathcal{B}_{1}$

- The derivatives $\Delta=\left\{f^{\prime}: f: \mathbb{R} \rightarrow \mathbb{R}, f \in D^{1}\right\}$, are \mathcal{B}_{1}, need not be in \mathcal{C} :

$$
\Delta \subset \mathcal{B}_{1}, \Delta \not \subset \mathcal{C}
$$

- The same for the class Appr of approximately continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$, that is, such that for every $a<b$, every $x \in f^{-1}((a, b))$ is a density point of $f^{-1}((a, b))$:

$$
\text { Appr } \subset \mathcal{B}_{1}, \text { Appr } \not \subset \mathcal{C}
$$

Any other natural examples here that I missed?

Baire class functions: $\mathcal{B}_{1} \subsetneq \mathcal{B}_{2}$

The following classes of generalized continuity functions $f: \mathbb{R} \rightarrow \mathbb{R}$:
extendable Ext, almost continuous AC, connectivity Conn, and Darboux Darb,
coincide within \mathcal{B}_{1} class [Brown, Humke, Laczkovich, 1988]:

$$
\text { Ext } \cap \mathcal{B}_{1}=\mathrm{AC} \cap \mathcal{B}_{1}=\mathrm{Conn} \cap \mathcal{B}_{1}=\operatorname{Darb} \cap \mathcal{B}_{1}
$$

but are all distinct within the Baire class 2
[Brown 1974], [Jastrzȩbski 1989], [Ciesielski, Jastrzȩbski 2000]:

$$
\text { Ext } \cap \mathcal{B}_{2} \subsetneq \mathrm{AC} \cap \mathcal{B}_{2} \subsetneq \operatorname{Conn} \cap \mathcal{B}_{2} \subsetneq \operatorname{Darb} \cap \mathcal{B}_{2}
$$

(The situation is drastically different for these classes and functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, n>1$.)

Any other natural examples for $\mathcal{B}_{1} \subsetneq \mathcal{B}_{2}$?

Baire class functions: $\mathcal{B}_{n-1} \subsetneq \mathcal{B}_{n}, n \geq 1$

A function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}, n \geq 2$, is separately continuous if it is continuous w.r.t. each variable.

For the class SC_{n+1} of separately continuous functions on \mathbb{R}^{n+1} we have

Theorem ([Baire 1899] for $n=1$, [Lebesgue 1905] for all n)

Every f from SC_{n+1} is of Baire calss n, but need not be of Baire class n-1:

$$
\mathrm{SC}_{n+1} \subset \mathcal{B}_{n}, \mathrm{SC}_{n+1} \not \subset \mathcal{B}_{n-1}
$$

Separately continuous function $f: \mathbb{R}^{\omega} \rightarrow \mathbb{R}$ need not be Borel!

Problems for: $\mathcal{B}_{\alpha} \subsetneq \mathcal{B}_{\beta}, \alpha<\beta<\omega_{1}$

Question

Are there any natural properties distinguishing the classes
$\mathcal{B}_{\alpha} \subsetneq \mathcal{B}_{\beta}$ for $\omega \leq \alpha<\beta<\omega_{1}$?

Question

Are there any natural classes of functions from \mathbb{R} to \mathbb{R} that distinguish classes $\mathcal{B}_{n} \subsetneq \mathcal{B}_{n+1}$ for $n \geq 2$?

Any progress on Calc 1 puzzle, for the \mathcal{C}^{1} case?

Question (Reminder)

If $X \subset \mathbb{R}$ is perfect and $f: X \rightarrow \mathbb{R}$ is f is \mathcal{C}^{1}, must there exist a \mathcal{C}^{1} extension $F: \mathbb{R} \rightarrow \mathbb{R}$ of f ?

YES?

NO?

Solution for Calc 1 puzzle, the \mathcal{C}^{1} case:

Question
If $X \subset \mathbb{R}$ is perfect and $f: X \rightarrow \mathbb{R}$ is f is \mathcal{C}^{1}, must there exist a \mathcal{C}^{1} extension $F: \mathbb{R} \rightarrow \mathbb{R}$ of f ?

Answer: NO $\quad X=\{0\} \cup \bigcup_{n}\left[a_{n}, b_{n}\right], f^{\prime}(x)=0$ for all $x \in X$.

Truly Calc 1 problem:

How to choose the intervals to insure there is no \mathcal{C}^{1} extension?
(1) Insure that $\lim _{n \rightarrow \infty} \frac{f\left(a_{n}\right)-f\left(b_{n+1}\right)}{a_{n}-b_{n+1}}>0$.
(2) Apply Mean Value Theorem to notice that no D^{1} extension of f can have continuous derivative at 0 .

Differentiable functions: the $\mathcal{C}^{1} \subsetneq D^{1}$ case

Tietze Extension Theorem does not hold for \mathcal{C}^{1} functions. However, it does hold for D^{1} functions (from $X \subset \mathbb{R}$ into \mathbb{R}):

Theorem ([Petruska, Laczkovich, 1974], possibly earlier Jarnik)
For every closed subset X of \mathbb{R} and $f: X \rightarrow \mathbb{R}$ with $f \in D^{1}$ there is an $F: \mathbb{R} \rightarrow \mathbb{R}$ extending f such that $F \in D^{1}$.

Question (may be easy)

Does the above theorem hold for functions of n-variables, $n>1$?

Tietze-type Extension Theorems: Summary

- $\mathcal{A} \nsim \mathcal{A}$ - log function
- $\mathcal{A} \rightsquigarrow \mathcal{C}^{\infty}$ - easy to see
- $\mathcal{C}^{\infty} \nLeftarrow \mathcal{C}^{1}$ — our Calc 1 example:

- $D^{1} \rightsquigarrow D^{1}$ — Petruska, Laczkovich; possibly Jarnik
- $\mathcal{C} \rightsquigarrow \mathcal{C}$ - Tietze

: Interpolation property

For perfect $P \subset \mathbb{R}$ and $\mathcal{F} \subset \mathcal{G} \subset \mathcal{C}$
$\operatorname{Int}(\mathcal{G}, \mathcal{F}): \forall g \in \mathcal{G} \exists f \in \mathcal{F}$ such that $P \cap[f=g]$ is uncountable.

- [Zahorski 1947], answering question of Ulam: $\neg / n t_{\mathbb{R}}(\mathcal{C}, \mathcal{A})$; [Zahorski 1947] asked for $\operatorname{Int} \mathbb{R}_{\mathbb{R}}\left(\mathcal{C}, \mathcal{C}^{\infty}\right)$
- [Agronsky, Bruckner, Laczkovich, Preiss 1985], Intp $\left(\mathcal{C}, \mathcal{C}^{1}\right)$
- [Olevskiĭ 1994]: $\neg I n t_{\mathbb{R}}\left(\mathcal{C}, \mathcal{C}^{2}\right)$
- $\neg \ln t_{\mathbb{R}}\left(\mathcal{C}, D^{2}\right)$, by [Morayne, 1985]: $\operatorname{Int}_{P}\left(D^{n}, \mathcal{C}^{n}\right)$ for all n

Related results [Olevskiï 1994]: discripancy between \mathcal{C}^{2} and \mathcal{C}^{1}

- $\operatorname{Int} t_{P}\left(\mathcal{C}^{1}, \mathcal{C}^{2}\right)$, but $\neg \operatorname{lnt}_{P}\left(\mathcal{C}^{1}, \mathcal{C}^{3}\right)$, so also $\neg \operatorname{Int}_{P}\left(\mathcal{C}^{1}, D^{3}\right)$
- $\neg \operatorname{lnt} t_{p}\left(C^{n}, \mathcal{C}^{n+1}\right)$, so also $\neg \operatorname{lnt}_{p}\left(\mathcal{C}^{n}, D^{n+1}\right)$, for $n \geq 2$

: path continuity - generalization of SC

Theorem ([Rosenthal, 1955], earlier results: Lebesgue; others)

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that for every $f: \mathbb{R} \rightarrow \mathbb{R}$ from \mathcal{C}^{1} its restriction to $f \cup f^{-1}=\bigcup_{x \in \mathbb{R}}\{\langle x, f(x)\rangle,\langle f(x), x\rangle\}$ is continuous.
Then F is continuous.
However, there are discontinuous $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with continuous restrictions to $f \cup f^{-1}$ for every $f \in D^{2}$

Theorem ([Ciesielski, Glatzer, 2012])

There is a $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which has continuous restrictions to $f \cup f^{-1}$ for every $f \in D^{2}$ and for which the set of points of discontinuities has positive Hausdorff 1-measure.
This is the best possible result in this direction.

: set-theoretical angle

Covering the plane by few graphs of functions

Theorem ([Ciesielski, Pawlikowski, 2005],
 generalizing [Steprāns 1999])

It is consistent with the standard axioms of set theory ZFC (follows from the Covering Property Axiom CPA), and independent from the ZFC axioms, that the plane \mathbb{R}^{2} can be covered by less that continuum many $(<\operatorname{card}(\mathbb{R}))$ sets $f \cup f^{-1}$ with $f \in \mathcal{C}^{1}$.

However, \mathbb{R}^{2} cannot be covered by less that continuum many sets $f \cup f^{-1}$ with $f \in D^{2}$.

Open problem on covering \mathbb{R}^{n} by graphs of functions

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ let

$$
\operatorname{Gr}(f)=\bigcup_{\langle x, y\rangle \in \mathbb{R}^{2}}\{\langle x, y, f(x, y)\rangle,\langle x, f(x, y), y\rangle,\langle f(x, y), x, y\rangle\}
$$

Theorem ([Sikorski ?], generalizing Sierpiński)

\mathbb{R}^{3} can be covered by $\leq \kappa$ many sets $\operatorname{Gr}(f)$, with $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ if, and only if, $\operatorname{card}(\mathbb{R}) \leq \kappa^{++}$

Question (probably difficult)

Is it consistent with ZFC that $\operatorname{card}(\mathbb{R})=\kappa^{++}$and \mathbb{R}^{3} can be covered by κ many sets $\operatorname{Gr}(f)$, with $f \in \mathcal{C}^{1} ? f \in \mathcal{C}$?

: set-theoretical angle

$[\mathbb{R}]^{c}$ all $S \subset \mathbb{R}$ of cardinality continuum; $\mathcal{F} \subset \mathcal{C}$.
$\operatorname{Im}(\mathcal{F}): \forall S \in[\mathbb{R}]^{c} \exists f \in \mathcal{F}$ such that $f[S]$ contains a perfect set.
Theorem ([A. Miller 1983])
It is consistent with ZFC that $\operatorname{Im}(\mathcal{C})$ holds.
However, $\operatorname{Im}(\mathcal{C})$ fails under the Continuum Hypothesis.
So, $\operatorname{Im}(\mathcal{C})$ is independent from the ZFC axioms.
Theorem ([Ciesielski, Pawlikowski, 2003]) Im(C) follows from the Covering Property Axiom CPA.

Theorem ([Ciesielski, Nishura, 2012])
$\operatorname{Im}\left(\mathcal{C}^{\infty}\right)$ is equivalent to $\operatorname{Im}(\mathcal{C})$, so it follows from CPA. However, $\operatorname{Im}(\mathcal{A})$ is false.

: Peano curve part of talk

For $P \subset \mathbb{R}$ and $\mathcal{F} \subset \mathcal{C}(P)=\mathcal{C}\left(P, \mathbb{R}^{2}\right)$ let
$\operatorname{Peano}(P, \mathcal{F}): \exists f \in \mathcal{F}$ s.t. $f[P]=P^{2}$.

- Peano $([a, b], \mathcal{C})$ holds - classic result of Peano
- Peano([0, 1], D^{1}) is false - noticed by Morayne, 1985, as
$f[P]$ has planar Lebesgue measure zero for differentiable f

Interesting:
Fact: $\exists f \in \mathcal{C}$ from $[0,1]$ onto $[0,1]^{2}$ s.t. $f[0, b]$ convex for all b
Open: Does there exist such f with $f[a, b]$ convex for all $a \leq b$?

True Peano Curve?

Remarkable Portraits Made with a Single Sewing Thread Wrapped through Nails, by Kumi Yamashita
www.thisiscolossal.com/2012/06/

KC: General Peano curve project

For \mathcal{F} being either \mathcal{C}^{n} or $D^{n}, n=0,1,2, \ldots$, let

$$
\operatorname{Peano}(\mathcal{F})=\left\{P \in \operatorname{Perf}: \exists f \in \mathcal{F} \text { s.t. } f[P]=P^{2}\right\}
$$

where Perf $=\{P \subset \mathbb{R}: P$ closed in \mathbb{R}, no isolated points $\}$.
In this notation: $[0,1] \in \operatorname{Peano}(\mathcal{C}) \backslash \operatorname{Peano}\left(D^{1}\right)$.
Assumption $P \in$ Perf can be weakened to

- arbitrary subsets of \mathbb{R} for $\mathcal{F}=\mathcal{C}$
- subsets with no isolated points for $\mathcal{F}=\mathcal{C}^{n}, D^{n}$ with $n \geq 1$.

Peano project scope

To describe classes

- Peano $\left(\mathcal{C}^{n}\right), n=0,1,2, \ldots, \infty$
- Peano $\left(D^{m}\right), m=1,2,3, \ldots$

Warning: By Tietze-type extension theorems

- Peano $(\mathcal{C}(\mathbb{R}))=\operatorname{Peano}(\mathcal{C}(P))$ and $\operatorname{Peano}\left(D^{1}(\mathbb{R})\right)=\operatorname{Peano}\left(D^{1}(P)\right)$
- But no reason for Peano $\left(\mathcal{C}^{n}(\mathbb{R})\right)=\operatorname{Peano}\left(\mathcal{C}^{n}(P)\right)$ for $n>0$ though, clearly $\operatorname{Peano}\left(\mathcal{C}^{n}(\mathbb{R})\right) \subset \operatorname{Peano}\left(\mathcal{C}^{n}(P)\right)$.

Similarly for classes $D^{n}, n>1$.

Peano curve project for class \mathcal{C}

Easy examples

- $[0,1]$ and $[0,1] \cup[2,3] \cup \cdots$ are in Peano(C), but
- $P=[0,1] \cup[2,3]$ is not in Peano(C)!

Two components of P cannot be map onto four of P^{2}

- If P is compact and $P \cap[a, b]$ is homeomorphic to the Cantor set, then $P \in \operatorname{Peano}(\mathcal{C})$
as any compact set is an image of the Cantor set.
- If $P=\{0\} \cup \bigcup_{n=1}^{\infty}[1 /(2 n+1), 1 / 2 n]$, then $P \notin$ Peano(C) ($\{0\}$ would need to be mapped to $\{0\} \times P$.)

Problem: Characterize Peano(C) (at least for compact sets)
Something to do with \# and distribution of components

Peano curve project for classes $\subseteq D^{1}$

Fact: If $P \in \operatorname{Peano}\left(D^{1}\right)$, then P has Lebesgue measure zero: Morayne's argument, via Banach condition (T_{2})

Theorem (KC, unpublished)
Peano $\left(\mathcal{C}^{1}\right)$ contains no compact set.

So, the result holds also for $\operatorname{Peano}\left(\mathcal{C}^{1}(\mathbb{R})\right) \subseteq \operatorname{Peano}\left(\mathcal{C}^{1}\right)$
Actually, the proof is considerably easier for $\operatorname{Peano}\left(\mathcal{C}^{1}(\mathbb{R})\right)$.

Question

Can Peano(D^{1}) contain a compact set?
If so, can such a set has positive Hausdorff dimension?

Peano curve project for classes $\subseteq \mathcal{C}^{1}$

As Peano $\left(\mathcal{C}^{1}\right)$ contains no compact set, is $\operatorname{Peano}\left(\mathcal{C}^{1}\right) \neq \emptyset$?
Theorem (KC, unpublished)
Peano $\left(\mathcal{C}^{\infty}\right) \neq \emptyset$

Question

With \rightarrow denoting \subset and $P(\mathcal{F})=\operatorname{Peano}(\mathcal{F})$,
can any inclusion in the chart below be reversed?

$$
\begin{aligned}
& P\left(\mathcal{C}^{\infty}(\mathbb{R})\right) \rightarrow \cdots \rightarrow P\left(\mathcal{C}^{2}(\mathbb{R})\right) \rightarrow P\left(D^{2}(\mathbb{R})\right) \rightarrow P\left(\mathcal{C}^{1}(\mathbb{R})\right) \rightarrow P\left(D^{1}(\mathbb{R})\right) \\
& P\left(\mathcal{C}^{\infty}\right) \rightarrow \cdots \rightarrow P\left(\mathcal{C}^{2}\right) \rightarrow P\left(D^{2}\right) \rightarrow P\left(\mathcal{C}^{1}\right) \rightarrow P\left(D^{1}\right)
\end{aligned}
$$

Chart for compact sets

When restricted to compact sets, the chart

$$
\begin{aligned}
& \begin{array}{c}
P\left(C^{\infty}(\mathbb{R})\right) \\
\downarrow \\
\end{array} \rightarrow \cdots \rightarrow\left(\mathcal{C}^{2}(\mathbb{R})\right) \rightarrow P\left(D^{2}(\mathbb{R})\right) \rightarrow P\left(\mathcal{C}^{1}(\mathbb{R})\right) \rightarrow P\left(D^{1}(\mathbb{R})\right) \\
& P\left(\mathcal{C}^{\infty}\right) \rightarrow \cdots \rightarrow P\left(\mathcal{C}^{2}\right) \rightarrow P\left(D^{2}\right) \rightarrow P\left(\mathcal{C}^{1}\right) \rightarrow P\left(D^{1}\right)
\end{aligned}
$$

reduces to:

$$
\begin{array}{cccccccc}
\emptyset & \rightarrow \cdots \rightarrow & \emptyset & \emptyset & \rightarrow \emptyset & \rightarrow P\left(D^{1}\right) \\
\downarrow & \downarrow & \downarrow & \downarrow & \\
\downarrow \\
\emptyset & \rightarrow \cdots \rightarrow & \emptyset & \emptyset & \rightarrow & \rightarrow & P\left(D^{1}\right)
\end{array}
$$

Summary on $\mathcal{A} \subset \mathcal{C}^{\infty} \subset \mathcal{C}^{2} \subset \mathcal{C}^{1} \subset \mathcal{C} \subset \mathcal{B}_{1} \subset \mathcal{B}_{2} \cdots$

$\mathcal{B}_{n-1} \subsetneq \mathcal{B}_{n}$: separately continuous functions $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$
$\mathcal{B}_{1} \subsetneq \mathcal{B}_{2}$: Ext, AC, Conn, and Darb
$\mathcal{C} \subsetneq \mathcal{B}_{1}$: derivatives Δ; approximately continuous functions
$D^{1} \subsetneq \mathcal{C}$: Peano curve for sets of positive messure
$\mathcal{C}^{1} \subsetneq D^{1}$: Tietze Extension Thm
$D^{2} \subsetneq \mathcal{C}^{1}$: Interpolation property;
Path continuity;
Covering plane by graphs of functions
$\mathcal{A} \subsetneq \mathcal{C}^{\infty}$: Image of sets $X \in[\mathbb{R}]^{c}$ contain perfect set; Tietze Extension Thm $\mathcal{A} \rightsquigarrow \mathcal{C}^{\infty}$

Thank you for your attention!

