Linearly continuous maps discontinuous on the graphs of twice differentiable functions

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University
Based on a submitted manuscript written with Daniel L. Rodríguez-Vidanes
44th Summer Symposium in Real Analysis XLII, Paris \& Orsay, France, June 21, 2022.

Outline

(1) Separate and linear continuity - definitions and background
(2) Sets of points of discontinuity: characterizations
(3) Tangent lines and characterization of \mathcal{D}_{L}^{n}

4 Proof of Main Theorem
(5) Comments and open problem
(1) Separate and linear continuity - definitions and background
(2) Sets of points of discontinuity: characterizations
(3) Tangent lines and characterization of \mathcal{D}_{L}^{n}
4. Proof of Main Theorem
(5) Comments and open problem

Definitions of separate and linear continuities

An $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, with $n=2,3,4, \ldots$, is

- separately continuous, SC, iff the mapping $t \mapsto f\left(x_{1}, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_{n}\right)$ is continuous for every $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \mathbb{R}^{n}$ and $i \in\{1, \ldots, n\} ;$
- equivalently, when $f \upharpoonright \ell$ is continuous for every line ℓ in \mathbb{R}^{n} parallel to one of the coordinate axis;
- linearly continuous, LC, iff $f \upharpoonright \ell$ is continuous for every line ℓ in \mathbb{R}^{n}.

Example (Genocchi and Peano 1884 calculus text)

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}} & \text { for }\langle x, y\rangle \neq\langle 0,0\rangle \tag{1}\\ 0 & \text { for }\langle x, y\rangle=\langle 0,0\rangle\end{cases}
$$

is linearly continuous but discontinuous (on $\left\{\left(y^{2}, y\right): y \in \mathbb{R}\right\}$).

Implications between these continuities

Clearly we have the following irreversible implications f is cont. $\xlongequal{(1)} f$ linearly cont. $\stackrel{\frac{x y}{x^{2}+2^{2}}}{\Longrightarrow} f$ separately cont.

But Cauchy, in his 1821 book Cours d'analyse, has a theorem:
A separately continuous function of real variables is continuous.
Q. Was Cauchy mistaken?
A. Perhaps, but not necessarily!

Cauchy worked with non-Archimedean reals and for such reals the result can be interpreted as correct, see
K. Ciesielski \& D. Miller, A continuous tale ..., RAEx 2016

Theorem (Baire 1899] for $n=2$, [Lebesgue 1905] for all n)
 Every separately continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Baire class $n-1$ and need not be of lower Baire class.

On the other hand

Theorem (Zajiček 2019] and [Banakh-Maslyuchenko 2020])

Every linearly continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Baire class 1.

Outline

(1) Separate and linear continuity - definitions and background

(2) Sets of points of discontinuity: characterizations
(3) Tangent lines and characterization of \mathcal{D}_{L}^{n}
4. Proof of Main Theorem
(5) Comments and open problem

Sets of discontinuity points for SC functions

$D(f)$ denotes the set of points of discontinuity of f
Theorem (Kershner 1943, characterization of $\{D(f): f \in S C\}$)
For any set $D \subset \mathbb{R}^{n}$

- $D=D(f)$ for some separately continuous f on \mathbb{R}^{n} iff
- D is an F_{σ} set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Problem (Kronrod 1944, still not satisfactorily answered)
Find a characterization of the classes

$$
\mathcal{D}_{L}^{n}:=\left\{D(f): f: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { is linearly continuous }\right\}
$$

for $n=2,3, \ldots$

A result of Slobodnik

For a family \mathcal{F} of subsets of \mathbb{R}^{n} let $\mathbb{E}(\mathcal{F})$ be the closure of \mathcal{F} under countable unions and isometrical images.

Notice that $\mathcal{D}_{L}^{n}=\mathbb{E}\left(\mathcal{D}_{L}^{n}\right)$.

Theorem (Slobodnik 1976)

For every $n \geq 2$

$$
\mathcal{D}_{L}^{n} \subset \mathbb{E}\left(\operatorname{Lip}_{n w d}\right),
$$

where $\mathrm{Lip}_{n w d}$ is the family of all restrictions of Lipschitz functions $g: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ to compact nowhere dense $K \subset \mathbb{R}^{n-1}$.

In particular, any $D \in \mathcal{D}_{L}^{n}$ has Lebesgue measure 0 ,
while there is a separately continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $D(f)$ having positive Lebesgue measure.

Revised problem of Kronrod

(P) For $n \geq 2$ find a family $\mathcal{F} \subset \operatorname{Lip}_{n w d}$ such that $\mathbb{E}(\mathcal{F})=\mathcal{D}_{L}^{n}$.

Let Conv, D^{k}, and C^{k} be the classes of all $f: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ that are, respectively, convex, k-times differentiable, and continuously k-times differentiable.

Theorem (KC and T. Glatzer 2013)

- $\mathbb{E}\left(\operatorname{Conv}_{n w d}\right) \subset \mathcal{D}_{L}^{n}$.
- $\mathbb{E}\left(C_{n w d}^{2}\right) \subset \mathcal{D}_{L}^{n}$ for $n=2$.
- $\mathbb{E}\left(D_{n w d}^{1}\right) \not \subset \mathcal{D}_{L}^{n}$ for $n=2$.

Problem (KC and T. Glatzer 2013)

For $n=2$

- is $\mathbb{E}\left(C_{n w d}^{1}\right) \subset \mathcal{D}_{L}^{n}$?
- what about $\mathbb{E}\left(D_{n w d}^{2}\right) \subset \mathcal{D}_{L}^{n}$?

Main results of this talk

- Is $\mathbb{E}\left(C_{n w d}^{1}\right) \subset \mathcal{D}_{L}^{2}$? What about $\mathbb{E}\left(D_{n w d}^{2}\right) \subset \mathcal{D}_{L}^{2}$?

Theorem (Zajíček, 2022 preprint)

$\mathbb{E}\left(C_{n w d}^{1}\right) \not \subset \mathcal{D}_{L}^{2}$.

Theorem (Main result of the talk)

For every $f \in C^{1}$ with nowhere monotone derivative f^{\prime} there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin \mathcal{D}_{L}^{2}$.

Corollary

$$
\mathbb{E}\left(D_{n w d}^{2}\right) \not \subset \mathcal{D}_{L}^{2} .
$$

Proof of Corollary.

Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable nowhere monotone. Use Main Theorem with $f(x):=\int_{0}^{x} h(t) d t$.

Outline

(1) Separate and linear continuity - definitions and background
(2) Sets of points of discontinuity: characterizations
(3) Tangent lines and characterization of \mathcal{D}_{L}^{n}

4 Proof of Main Theorem
(5) Comments and open problem

LC maps $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $D(g)=f \upharpoonright P$: tangents of f

Choose a C^{1} map $\eta: \mathbb{R} \rightarrow[0, \infty)$ with $\eta^{-1}(0)=P$ and a set $C:=\left\{c_{i} \in \mathbb{R}^{2}: i \in \mathbb{N}\right\}$ contained in the envelope $E:=\{\langle x, y\rangle: f(x)<y<f(x)+\eta(x)\}$ with $C^{\prime}=f \upharpoonright P$.

Figure: (a, b) is a component of $\mathbb{R} \backslash P$; each D_{i} is centered in c_{i}

LC maps $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $D(g)=f \upharpoonright P$: tangents of f

Choose pairwise disjoint open disks $D_{i}:=B\left(c_{i}, \varepsilon_{i}\right) \subset E$ and put

$$
g(p):=\sum_{i \in \mathbb{N}} \frac{\operatorname{dist}\left(p, D_{i}^{c}\right)}{\varepsilon_{i}} \text { see sketch of its graph. }
$$

Lemma

$D(g)=f \upharpoonright P$ and $g \upharpoonright \ell$ is continuous, except possibly when ℓ intersects infinitely many D_{i} 's and is a "tangent line" to f at $x \in P$.
$D(g)=f \upharpoonright P$ and $g \upharpoonright \ell$ is continuous, except possibly when ℓ intersects infinitely many D_{i} 's and is a "tangent line" to f at $x \in P$.

Proof of $\mathbb{E}\left(\operatorname{Conv}_{n w d}\right) \subset \mathcal{D}_{L}^{n}$.

Any ℓ that intersects infinitely many D_{i} 's is below convex f, while all disks D_{i} are above f.

Proof of $\mathbb{E}\left(C_{n w d}^{2}\right) \subset \mathcal{D}_{L}^{n}$.

If $f \in C^{2}$, then $T_{f, P}$ - the union of all lines tangent to f at $x \in P$ - is nowhere dense in \mathbb{R}^{2}. (Requires some argument.) So, we can choose disks D_{i} disjoint with $T_{f, P}$.

Banakh-Maslyuchenko characterizations of \mathcal{D}_{L}^{n}

Theorem (Banakh \& Maslyuchenko 2020)

$M \in \mathcal{D}_{L}^{n}$ iff M is a countable union of closed ℓ-miserable sets $K \subset \mathbb{R}^{n}$, that is, such that there exists a closed set $L \subset \mathbb{R}^{n}$ containing K with the properties:
(i) L is an ℓ-neighborhood of K : for any line ℓ in \mathbb{R}^{n} and any $\bar{p} \in \ell \cap K$ there is an open J in ℓ such that $\bar{p} \in J \subset L$;
(ii) $K \subset \operatorname{cl}\left(\mathbb{R}^{2} \backslash L\right)$.

- For LC map $g(p):=\sum_{i \in \mathbb{N}} \frac{\operatorname{dist}\left(p, D_{i}^{c}\right)}{\varepsilon_{i}}$ defined above $K:=f \upharpoonright P$ is ℓ-miserable with $L:=\mathbb{R}^{2} \backslash \bigcup_{i \in \mathbb{N}} D_{i}$.
- This characterization is still hard to grasp and/or use.

Outline

(1) Separate and linear continuity - definitions and background

(2) Sets of points of discontinuity: characterizations
(3) Tangent lines and characterization of \mathcal{D}_{L}^{n}

4 Proof of Main Theorem
(5) Comments and open problem

The main lemma

Thm: For every $f \in C^{1}$ with nowhere monotone f^{\prime} there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin \mathcal{D}_{L}^{2}$.

Lemma (Main Lemma)

For every $a<b$ and $f \in C^{1}$ with nowhere monotone f^{\prime} there are $d \in(a, b)$ and perfect nowhere dense $N_{d} \subset(a, d)$ such that $\langle d, f(d)\rangle \in \operatorname{int}\left(T_{f, N_{d}}\right)$.

Proof of Lemma is based on several simpler facts.

Construction of nowhere dense $P \subset \mathbb{R}$ Construct a sequence $\left\langle\left\langle I_{s}, d_{s}, N_{s}\right\rangle: s \in 2^{\langle\omega}\right\rangle$ s.t.

$\left(A_{n}\right) \mathcal{I}_{n}=\left\{I_{s}: s \in 2^{n}\right\}$ consists of pairwise disjoint non-trivial closed intervals each of length $\left|I_{s}\right| \leq\left(\frac{2}{3}\right)^{n}$.
$\left(B_{n}\right)$ If $s, t \in 2^{\leq n}$ and $s \subset t$, then $I_{t} \subset I_{s}$ and $N_{t} \cup\left\{d_{t}\right\} \subset \bigcup I_{n}$.
$\left(C_{n}\right)$ If $I_{s}=\left[a_{s}, b_{s}\right]$, then $d_{s} \in\left(a_{s}, b_{s}\right), N_{s} \subset\left(a_{s}, d_{s}\right)$ is nowhere dense, and $\left\langle d_{s}, f\left(d_{s}\right)\right\rangle \in \operatorname{int}\left(T_{f, N_{s}}\right)$.

Construction: If M_{s} is the middle third of $I_{s}, s \in 2^{n}$,

- choose d_{s} and N_{s} in I_{s} as in Main Lemma;
- pick open interval $\emptyset \neq J_{s} \subset M_{s} \backslash \bigcup_{t \in 2 \leq n}\left(N_{t} \cup\left\{d_{t}\right\}\right)$ and define $\left\{I_{u}: u \in 2^{n+1} \& s \subset u\right\}$ as two components of $I_{s} \backslash J_{s}$.

Define $P:=\bigcap_{n<\omega} \bigcup \mathcal{I}_{n}$.

There is no LC $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $D(g)=f \upharpoonright P$

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

- there is an $s_{0} \in 2^{<\omega}$ s.t. $K_{0}:=f \upharpoonright\left(P \cap I_{s_{0}}\right)$ is ℓ-miserable, i.e., \exists closed ℓ-nbhd L of K_{0} with K_{0} in closure of $U:=L^{c}$.

Construct $\left\langle\left\langle s_{n}, c_{n}, \varepsilon_{n}\right\rangle \in 2^{<\omega} \times U \times \mathbb{R}^{+}: n<\omega\right\rangle$ s.t.
$\left(a_{n}\right) c_{n} \in U \cap \operatorname{int}\left(T_{f, N_{s_{n}}}\right)$ and $\left\|c_{n}-\left\langle d_{s_{n}}, f\left(d_{s_{n}}\right)\right\rangle\right\| \leq 2^{-n}$;
$\left(b_{n}\right) \varepsilon_{n} \in\left(0,2^{-n}\right)$ and $B\left(c_{n}, \varepsilon_{n}\right) \subset U \cap \operatorname{int}\left(T_{f, N_{s_{n}}}\right)$;
$\left(c_{n}\right) s_{n+1} \supset s_{n}$ and $T_{f, p} \cap B\left(c_{n}, \varepsilon_{n}\right) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.
Construction: Given s_{n},

- there are ε_{n} and c_{n} as $\left\langle d_{s_{n}}, f\left(d_{s_{n}}\right)\right\rangle \in \operatorname{cl}(U) \cap \operatorname{int}\left(T_{f, N_{s_{n}}}\right)$;
- to find s_{n+1} choose: $x \in N_{s_{n}} \subset I_{s_{n}}$ s.t. $T_{f, x} \cap B\left(c_{n}, \varepsilon_{n}\right) \neq \emptyset$; $\delta>0$ s.t. $T_{f, p} \cap B\left(c_{n}, \varepsilon_{n}\right) \neq \emptyset$ for every $p \in\left(x_{n}-\delta, x_{n}+\delta\right)$; $s_{n+1} \supset s_{n}$ s.t. $I_{s_{n+1}} \subset\left(x_{n}-\delta, x_{n}+\delta\right)$.

Desired contradiction

We have $\left\langle\left\langle s_{n}, c_{n}, \varepsilon_{n}\right\rangle \in 2^{<\omega} \times U \times \mathbb{R}^{+}: n<\omega\right\rangle$ s.t.
$\left(a_{n}\right) \quad c_{n} \in U \cap \operatorname{int}\left(T_{f, N_{s_{n}}}\right)$ and $\left\|c_{n}-\left\langle d_{s_{n}}, f\left(d_{s_{n}}\right)\right\rangle\right\| \leq 2^{-n}$;
$\left(b_{n}\right) \varepsilon_{n} \in\left(0,2^{-n}\right)$ and $B\left(c_{n}, \varepsilon_{n}\right) \subset U \cap \operatorname{int}\left(T_{f, N_{s_{n}}}\right)$;
$\left(c_{n}\right) s_{n+1} \supset s_{n}$ and $T_{f, p} \cap B\left(c_{n}, \varepsilon_{n}\right) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.
Let $\{p\}=\bigcap_{n<\omega} I_{S_{n}}, \bar{p}:=\langle p, f(p)\rangle$, and $\ell:=T_{f, p}$.
Then for every $n<\omega$ there is $p_{n} \in \ell \cap B\left(c_{n}, \varepsilon_{n}\right) \subset \ell \cap U$.
As $p_{n} \rightarrow_{n} \bar{p}$, there is no open J in ℓ with $\bar{p} \in J \subset \mathbb{R}^{2} \backslash U=L$.
So, L is NOT ℓ-nbhd L of $K_{0} \ni \bar{p}$, a contradiction.

A result used to prove the main lemma

Main Lemma: For every $a<b$ and $f \in C^{1}$ with nowhere monotone f^{\prime} there are $d \in(a, b)$ and perfect nowhere dense $N_{d} \subset(a, d)$ such that $\langle d, f(d)\rangle \in \operatorname{int}\left(T_{f, N_{d}}\right)$.

Fact

Let $f \in C^{1}$ be s.t. f^{\prime} is nowhere monotone. If $Z \subset(-\infty, a]$ and $\emptyset \neq(r, s) \subset Z$, then there is $\emptyset \neq(u, v) \subset(r, s)$ s.t.

$$
T_{f, Z \backslash(u, v)} \cap((a, \infty) \times \mathbb{R})=T_{f, Z} \cap((a, \infty) \times \mathbb{R}) .
$$

If Z is compact, then there is nowhere dense $N \subset Z$ s.t.

$$
T_{f, N} \cap((a, \infty) \times \mathbb{R})=T_{f, Z} \cap((a, \infty) \times \mathbb{R}) .
$$

Outline

(1) Separate and linear continuity - definitions and background
(2) Sets of points of discontinuity: characterizations
(3) Tangent lines and characterization of \mathcal{D}_{L}^{n}
4. Proof of Main Theorem
(5) Comments and open problem

Remark and open problem

Remark

$\mathbb{E}\left(D_{n w d}^{2}\right) \not \subset \mathcal{D}_{L}^{2}$ implies that $\mathbb{E}\left(D_{n w d}^{2}\right) \not \subset \mathcal{D}_{L}^{n}$ for all $n \geq 2$.

Problem

Is the inclusion $\mathbb{E}\left(C_{n w d}^{2}\right) \subset \mathcal{D}_{L}^{n}$ true for $n>2$?

Thank you for your attention!

