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History Problem Examples & Characterization Proof Open problem

Definitions of separate and linear continuities
An f : Rn → R, with n = 2,3,4, . . ., is

separately continuous, SC, iff the mapping
t 7→ f (x1, . . . , xi−1, t , xi+1, . . . , xn) is continuous for every
〈x1, . . . , xn〉 ∈ Rn and i ∈ {1, . . . ,n};
equivalently, when f � ` is continuous for every line ` in Rn

parallel to one of the coordinate axis;
linearly continuous, LC, iff f � ` is continuous for every
line ` in Rn.

Example (Genocchi and Peano 1884 calculus text)

f (x , y) =

{
xy2

x2+y4 for 〈x , y〉 6= 〈0,0〉
0 for 〈x , y〉 = 〈0,0〉

(1)

is linearly continuous but discontinuous (on {(y2, y) : y ∈ R}).
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Implications between these continuities
Clearly we have the following irreversible implications

f is cont.
(1)

=⇒ f linearly cont.
xy

x2+y2
=⇒ f separately cont.

But Cauchy, in his 1821 book Cours d’analyse, has a theorem:

A separately continuous function of real variables is continuous.

Q. Was Cauchy mistaken?

A. Perhaps, but not necessarily!
Cauchy worked with non-Archimedean reals and for such
reals the result can be interpreted as correct, see

K. Ciesielski & D. Miller, A continuous tale . . . , RAEx 2016
Krzysztof Chris Ciesielski Linearly continuous maps discontinuous on D2-graphs 2
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Baire classification

Theorem ([Baire 1899] for n = 2, [Lebesgue 1905] for all n)

Every separately continuous f : Rn → R is Baire class n− 1 and
need not be of lower Baire class.

On the other hand

Theorem ([Zajíček 2019] and [Banakh-Maslyuchenko 2020] )

Every linearly continuous f : Rn → R is Baire class 1.
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Sets of discontinuity points for SC functions

D(f ) denotes the set of points of discontinuity of f

Theorem (Kershner 1943, characterization of {D(f ) : f ∈ SC})
For any set D ⊂ Rn

D = D(f ) for some separately continuous f on Rn iff
D is an Fσ set and every orthogonal projection of D onto a
coordinate hyperplane has first category image.

Problem (Kronrod 1944, still not satisfactorily answered)
Find a characterization of the classes

Dn
L := {D(f ) : f : Rn → R is linearly continuous}

for n = 2,3, . . ..
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A result of Slobodnik

For a family F of subsets of Rn let E(F) be the closure of F
under countable unions and isometrical images.

Notice that Dn
L = E(Dn

L).

Theorem (Slobodnik 1976)
For every n ≥ 2

Dn
L ⊂ E(Lipnwd ),

where Lipnwd is the family of all restrictions of Lipschitz
functions g : Rn−1 → R to compact nowhere dense K ⊂ Rn−1.

In particular, any D ∈ Dn
L has Lebesgue measure 0,

while there is a separately continuous f : Rn → R with
D(f ) having positive Lebesgue measure.
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Revised problem of Kronrod
(P) For n ≥ 2 find a family F ⊂ Lipnwd such that E(F) = Dn

L .

Let Conv, Dk , and Ck be the classes of all f : Rn−1 → R that
are, respectively, convex, k -times differentiable, and
continuously k -times differentiable.

Theorem (KC and T. Glatzer 2013)

E(Convnwd ) ⊂ Dn
L .

E(C2
nwd ) ⊂ Dn

L for n = 2.
E(D1

nwd ) 6⊂ Dn
L for n = 2.

Problem (KC and T. Glatzer 2013)
For n = 2

is E(C1
nwd ) ⊂ Dn

L?
what about E(D2

nwd ) ⊂ Dn
L?
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Main results of this talk
Is E(C1

nwd ) ⊂ D2
L? What about E(D2

nwd ) ⊂ D2
L?

Theorem (Zajíček, 2022 preprint)

E(C1
nwd ) 6⊂ D2

L.

Theorem (Main result of the talk)

For every f ∈ C1 with nowhere monotone derivative f ′ there
exists a nowhere dense perfect P ⊂ R such that f � P /∈ D2

L.

Corollary

E(D2
nwd ) 6⊂ D2

L.

Proof of Corollary.
Let h : R→ R be differentiable nowhere monotone.
Use Main Theorem with f (x) :=

∫ x
0 h(t) dt .
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Outline

1 Separate and linear continuity – definitions and background

2 Sets of points of discontinuity: characterizations

3 Tangent lines and characterization of Dn
L

4 Proof of Main Theorem

5 Comments and open problem
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History Problem Examples & Characterization Proof Open problem

LC maps g : R2 → R with D(g) = f � P: tangents of f

Choose a C1 map η : R→ [0,∞) with η−1(0) = P and a set
C := {ci ∈ R2 : i ∈ N} contained in the envelope
E := {〈x , y〉 : f (x) < y < f (x) + η(x)} with C′ = f � P.

x
0 a b

y

f

f

f
f + η

D1D2

Figure: (a,b) is a component of R \ P; each Di is centered in ci
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History Problem Examples & Characterization Proof Open problem

LC maps g : R2 → R with D(g) = f � P: tangents of f
Choose pairwise disjoint open disks Di := B(ci , εi) ⊂ E and put

g(p) :=
∑
i∈N

dist(p,Dc
i )

εi
see sketch of its graph.

Lemma
D(g) = f � P and g � ` is continuous, except possibly when `
intersects infinitely many Di ’s and is a “tangent line” to f at
x ∈ P.
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History Problem Examples & Characterization Proof Open problem

E(Convnwd) ⊂ Dn
L and E(C2

nwd) ⊂ Dn
L for n = 2.

D(g) = f � P and g � ` is continuous, except possibly when `
intersects infinitely many Di ’s and is a “tangent line” to f at
x ∈ P.

Proof of E(Convnwd ) ⊂ Dn
L .

Any ` that intersects infinitely many Di ’s is below convex f ,
while all disks Di are above f .

Proof of E(C2
nwd ) ⊂ Dn

L .

If f ∈ C2, then Tf ,P — the union of all lines tangent to f at x ∈ P
— is nowhere dense in R2. (Requires some argument.) So, we
can choose disks Di disjoint with Tf ,P .
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History Problem Examples & Characterization Proof Open problem

Banakh-Maslyuchenko characterizations of Dn
L

Theorem (Banakh & Maslyuchenko 2020)

M ∈ Dn
L iff M is a countable union of closed `-miserable sets

K ⊂ Rn, that is, such that there exists a closed set L ⊂ Rn

containing K with the properties:
(i) L is an `-neighborhood of K : for any line ` in Rn and any

p̄ ∈ ` ∩ K there is an open J in ` such that p̄ ∈ J ⊂ L;
(ii) K ⊂ cl(R2 \ L).

For LC map g(p) :=
∑

i∈N
dist(p,Dc

i )

εi
defined above

K := f � P is `-miserable with L := R2 \
⋃

i∈N Di .
This characterization is still hard to grasp and/or use.
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Outline

1 Separate and linear continuity – definitions and background

2 Sets of points of discontinuity: characterizations

3 Tangent lines and characterization of Dn
L

4 Proof of Main Theorem

5 Comments and open problem
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History Problem Examples & Characterization Proof Open problem

The main lemma

Thm: For every f ∈ C1 with nowhere monotone f ′ there exists a
nowhere dense perfect P ⊂ R such that f � P /∈ D2

L.

Lemma (Main Lemma)

For every a < b and f ∈ C1 with nowhere monotone f ′ there are
d ∈ (a,b) and perfect nowhere dense Nd ⊂ (a,d) such that
〈d , f (d)〉 ∈ int(Tf ,Nd ).

Proof of Lemma is based on several simpler facts.
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History Problem Examples & Characterization Proof Open problem

Construction of nowhere dense P ⊂ R with f � P /∈ D2
L

Construct a sequence 〈〈Is,ds,Ns〉 : s ∈ 2<ω〉 s.t.

(An) In = {Is : s ∈ 2n} consists of pairwise disjoint non-trivial
closed intervals each of length |Is| ≤ (2

3)n.
(Bn) If s, t ∈ 2≤n and s ⊂ t , then It ⊂ Is and Nt ∪ {dt} ⊂

⋃
In.

(Cn) If Is = [as,bs], then ds ∈ (as,bs), Ns ⊂ (as,ds) is nowhere
dense, and 〈ds, f (ds)〉 ∈ int(Tf ,Ns ).

Construction: If Ms is the middle third of Is, s ∈ 2n,

choose ds and Ns in Is as in Main Lemma;
pick open interval ∅ 6= Js ⊂ Ms \

⋃
t∈2≤n (Nt ∪ {dt}) and

define {Iu : u ∈ 2n+1 & s ⊂ u} as two components of Is \ Js.

Define P :=
⋂

n<ω

⋃
In.
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History Problem Examples & Characterization Proof Open problem

There is no LC g : R2 → R with D(g) = f � P
Otherwise, by Baire Category and Banakh-Maslyuchenko thms

there is an s0 ∈ 2<ω s.t. K0 := f � (P ∩ Is0) is `-miserable,
i.e., ∃ closed `-nbhd L of K0 with K0 in closure of U := Lc .

Construct 〈〈sn, cn, εn〉 ∈ 2<ω × U × R+ : n < ω〉 s.t.

(an) cn ∈ U ∩ int(Tf ,Nsn
) and ‖cn − 〈dsn , f (dsn )〉‖ ≤ 2−n;

(bn) εn ∈ (0,2−n) and B(cn, εn) ⊂ U ∩ int(Tf ,Nsn
);

(cn) sn+1 ⊃ sn and Tf ,p ∩ B(cn, εn) 6= ∅ for every p ∈ Isn+1 .

Construction: Given sn,

there are εn and cn as 〈dsn , f (dsn )〉 ∈ cl(U) ∩ int(Tf ,Nsn
);

to find sn+1 choose: x ∈ Nsn ⊂ Isn s.t. Tf ,x ∩ B(cn, εn) 6= ∅;
δ > 0 s.t. Tf ,p ∩ B(cn, εn) 6= ∅ for every p ∈ (xn − δ, xn + δ);
sn+1 ⊃ sn s.t. Isn+1 ⊂ (xn − δ, xn + δ).
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History Problem Examples & Characterization Proof Open problem

Desired contradiction

We have 〈〈sn, cn, εn〉 ∈ 2<ω × U × R+ : n < ω〉 s.t.

(an) cn ∈ U ∩ int(Tf ,Nsn
) and ‖cn − 〈dsn , f (dsn )〉‖ ≤ 2−n;

(bn) εn ∈ (0,2−n) and B(cn, εn) ⊂ U ∩ int(Tf ,Nsn
);

(cn) sn+1 ⊃ sn and Tf ,p ∩ B(cn, εn) 6= ∅ for every p ∈ Isn+1 .

Let {p} =
⋂

n<ω Isn , p̄ := 〈p, f (p)〉, and ` := Tf ,p.

Then for every n < ω there is pn ∈ ` ∩ B(cn, εn) ⊂ ` ∩ U.

As pn →n p̄, there is no open J in ` with p̄ ∈ J ⊂ R2 \ U = L.

So, L is NOT `-nbhd L of K0 3 p̄, a contradiction.
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History Problem Examples & Characterization Proof Open problem

A result used to prove the main lemma

Main Lemma: For every a < b and f ∈ C1 with nowhere
monotone f ′ there are d ∈ (a,b) and perfect nowhere dense
Nd ⊂ (a,d) such that 〈d , f (d)〉 ∈ int(Tf ,Nd ).

Fact

Let f ∈ C1 be s.t. f ′ is nowhere monotone. If Z ⊂ (−∞,a] and
∅ 6= (r , s) ⊂ Z, then there is ∅ 6= (u, v)⊂ (r , s) s.t.

Tf ,Z\(u,v) ∩ ((a,∞)× R) = Tf ,Z ∩ ((a,∞)× R).

If Z is compact, then there is nowhere dense N ⊂ Z s.t.

Tf ,N ∩ ((a,∞)× R) = Tf ,Z ∩ ((a,∞)× R).
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History Problem Examples & Characterization Proof Open problem

Outline

1 Separate and linear continuity – definitions and background

2 Sets of points of discontinuity: characterizations

3 Tangent lines and characterization of Dn
L

4 Proof of Main Theorem

5 Comments and open problem
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History Problem Examples & Characterization Proof Open problem

Remark and open problem

Remark

E(D2
nwd ) 6⊂ D2

L implies that E(D2
nwd ) 6⊂ Dn

L for all n ≥ 2.

Problem

Is the inclusion E(C2
nwd ) ⊂ Dn

L true for n > 2?
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Thank you for your attention!
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