History
 Problem
 Examples & Characterization
 Proof
 Open problem

 0000
 00000
 00000
 00000
 00000
 00000

Linearly continuous maps discontinuous on the graphs of twice differentiable functions

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University

Based on a submitted manuscript written with Daniel L. Rodríguez-Vidanes

44th Summer Symposium in Real Analysis XLII, Paris & Orsay, France, June 21, 2022.

★ E > < E >

Separate and linear continuity – definitions and background

2 Sets of points of discontinuity: characterizations

3 Tangent lines and characterization of \mathcal{D}_L^n

- ∢ ⊒ →

Separate and linear continuity – definitions and background

2 Sets of points of discontinuity: characterizations

3 Tangent lines and characterization of \mathcal{D}^n_L

Proof of Main Theorem

5 Comments and open problem

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

separately continuous, SC, iff the mapping

 $t \mapsto f(x_1, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_n)$ is continuous for every $\langle x_1, \ldots, x_n \rangle \in \mathbb{R}^n$ and $i \in \{1, \ldots, n\}$;

- equivalently, when *f* ↾ *ℓ* is continuous for every line *ℓ* in ℝⁿ parallel to one of the coordinate axis;
- linearly continuous, LC, iff *f* ↾ ℓ is continuous for every line ℓ in ℝⁿ.

Example (Genocchi and Peano 1884 calculus text)

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{ for } \langle x, y \rangle \neq \langle 0, 0 \rangle \\ 0 & \text{ for } \langle x, y \rangle = \langle 0, 0 \rangle \end{cases}$$

is linearly continuous but discontinuous (on $\{(y^2,y)\colon y\in\mathbb{R}\})$

Krzysztof Chris Ciesielski

Linearly continuous maps discontinuous on D²-graphs

• separately continuous, SC, iff the mapping

 $t \mapsto f(x_1, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_n)$ is continuous for every $\langle x_1, \ldots, x_n \rangle \in \mathbb{R}^n$ and $i \in \{1, \ldots, n\}$;

- equivalently, when *f* ↾ ℓ is continuous for every line ℓ in ℝⁿ parallel to one of the coordinate axis;
- linearly continuous, LC, iff *f* ↾ ℓ is continuous for every line ℓ in ℝⁿ.

Example (Genocchi and Peano 1884 calculus text)

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{ for } \langle x, y \rangle \neq \langle 0, 0 \rangle \\ 0 & \text{ for } \langle x, y \rangle = \langle 0, 0 \rangle \end{cases}$$

is linearly continuous but discontinuous (on $\{(y^2,y)\colon y\in\mathbb{R}\})$

Krzysztof Chris Ciesielski

Linearly continuous maps discontinuous on D²-graphs

• separately continuous, SC, iff the mapping

 $t \mapsto f(x_1, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_n)$ is continuous for every $\langle x_1, \ldots, x_n \rangle \in \mathbb{R}^n$ and $i \in \{1, \ldots, n\}$;

- equivalently, when *f* ↾ ℓ is continuous for every line ℓ in ℝⁿ parallel to one of the coordinate axis;
- linearly continuous, LC, iff *f* ↾ ℓ is continuous for every line ℓ in ℝⁿ.

Example (Genocchi and Peano 1884 calculus text)

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{ for } \langle x, y \rangle \neq \langle 0, 0 \rangle \\ 0 & \text{ for } \langle x, y \rangle = \langle 0, 0 \rangle \end{cases}$$

is linearly continuous but discontinuous (on $\{(y^2,y)\colon y\in\mathbb{R}\})$

• separately continuous, SC, iff the mapping

 $t \mapsto f(x_1, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_n)$ is continuous for every $\langle x_1, \ldots, x_n \rangle \in \mathbb{R}^n$ and $i \in \{1, \ldots, n\}$;

- equivalently, when *f* ↾ ℓ is continuous for every line ℓ in ℝⁿ parallel to one of the coordinate axis;
- linearly continuous, LC, iff *f* ↾ ℓ is continuous for every line ℓ in ℝⁿ.

Example (Genocchi and Peano 1884 calculus text)

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{ for } \langle x, y \rangle \neq \langle 0, 0 \rangle \\ 0 & \text{ for } \langle x, y \rangle = \langle 0, 0 \rangle \end{cases}$$
(1)

is linearly continuous but discontinuous (on $\{(y^2, y) : y \in \mathbb{R}\}$).

 History
 Problem
 Examples & Characterization
 Proof
 Open problem

 Implications between these continuities

Clearly we have the following irreversible implications

f is cont. $\stackrel{(1)}{\Longrightarrow}$ *f* linearly cont. $\stackrel{xy}{\stackrel{x^2+y^2}{\Longrightarrow}}$ *f* separately cont.

But Cauchy, in his 1821 book *Cours d'analyse*, has a theorem:

A separately continuous function of real variables is continuous.

Q. Was Cauchy mistaken?

A. Perhaps, but not necessarily!

Cauchy worked with non-Archimedean reals and for such reals the result can be interpreted as correct, see

K. Ciesielski & D. Miller, A continuous tale ., _, RAEx 2016,

Krzysztof Chris Ciesielski

Clearly we have the following irreversible implications

f is cont. $\stackrel{(1)}{\Longrightarrow}$ *f* linearly cont. $\stackrel{\frac{xy}{x^2+y^2}}{\Longrightarrow}$ *f* separately cont.

But Cauchy, in his 1821 book *Cours d'analyse*, has a theorem:

A separately continuous function of real variables is continuous.

Q. Was Cauchy mistaken?

A. Perhaps, but not necessarily!

Cauchy worked with non-Archimedean reals and for such reals the result can be interpreted as correct, see

K. Ciesielski & D. Miller, A continuous tale ., ,, RAEx 2016,

Krzysztof Chris Ciesielski

Clearly we have the following irreversible implications

f is cont.
$$\stackrel{(1)}{\Longrightarrow}$$
 f linearly cont. $\stackrel{xy}{\stackrel{x^2+y^2}{\Longrightarrow}}$ *f* separately cont.

But Cauchy, in his 1821 book Cours d'analyse, has a theorem:

A separately continuous function of real variables is continuous.

Q. Was Cauchy mistaken?

A. Perhaps, but not necessarily!

Cauchy worked with non-Archimedean reals and for such reals the result can be interpreted as correct, see

K. Ciesielski & D. Miller, A continuous tale ...,,RAEx 2016,

Krzysztof Chris Ciesielski

 History
 Problem
 Examples & Characterization
 Proof
 Open problem

 Implications
 between these continuities

Clearly we have the following irreversible implications

f is cont.
$$\stackrel{(1)}{\Longrightarrow}$$
 f linearly cont. $\stackrel{\frac{xy}{x^2+y^2}}{\Longrightarrow}$ *f* separately cont.

But Cauchy, in his 1821 book *Cours d'analyse*, has a theorem:

A separately continuous function of real variables is continuous.

Q. Was Cauchy mistaken?

A. Perhaps, but not necessarily!

Cauchy worked with non-Archimedean reals and for such reals the result can be interpreted as correct, see

K. Ciesielski & D. Miller, A continuous tale ., ., RAEx 2016,

Krzysztof Chris Ciesielski

 History
 Problem
 Examples & Characterization
 Proof
 Open problem

 Implications
 between these continuities

Clearly we have the following irreversible implications

f is cont.
$$\stackrel{(1)}{\Longrightarrow}$$
 f linearly cont. $\stackrel{\frac{xy}{x^2+y^2}}{\Longrightarrow}$ *f* separately cont.

But Cauchy, in his 1821 book *Cours d'analyse*, has a theorem:

A separately continuous function of real variables is continuous.

- Q. Was Cauchy mistaken?
- A. Perhaps, but not necessarily! Cauchy worked with non-Archimedean reals and for such reals the result can be interpreted as correct, see

K. Ciesielski & D. Miller, A continuous tale ., _,,RAFx 2016, ,

Krzysztof Chris Ciesielski

 History
 Problem
 Examples & Characterization
 Proof
 Open problem

 Implications
 between these continuities

Clearly we have the following irreversible implications

f is cont.
$$\stackrel{(1)}{\Longrightarrow}$$
 f linearly cont. $\stackrel{xy}{\stackrel{x^2+y^2}{\Longrightarrow}}$ *f* separately cont.

But Cauchy, in his 1821 book *Cours d'analyse*, has a theorem:

A separately continuous function of real variables is continuous.

- Q. Was Cauchy mistaken?
- A. Perhaps, but not necessarily!

Cauchy worked with non-Archimedean reals and for such reals the result can be interpreted as correct, see

K. Ciesielski & D. Miller, A continuous tale ..., RAEx 2016

Krzysztof Chris Ciesielski

History	Problem	Examples & Characterization	Proof	Open problem		
Baire classification						

Theorem ([Baire 1899] for n = 2, [Lebesgue 1905] for all n)

Every separately continuous $f : \mathbb{R}^n \to \mathbb{R}$ is Baire class n - 1 and need not be of lower Baire class.

On the other hand

Theorem ([Zajiček 2019] and [Banakh-Maslyuchenko 2020])

Every linearly continuous $f : \mathbb{R}^n \to \mathbb{R}$ is Baire class 1.

<20 € ► 3

History	Problem	Examples & Characterization	Proof	Open problem		
Baire classification						

Theorem ([Baire 1899] for n = 2, [Lebesgue 1905] for all n)

Every separately continuous $f : \mathbb{R}^n \to \mathbb{R}$ is Baire class n - 1 and need not be of lower Baire class.

On the other hand

Theorem ([Zajíček 2019] and [Banakh-Maslyuchenko 2020])

Every linearly continuous $f : \mathbb{R}^n \to \mathbb{R}$ is Baire class 1.

⇒ < ≥ > < ≥</p>

Separate and linear continuity – definitions and background

2 Sets of points of discontinuity: characterizations

3 Tangent lines and characterization of \mathcal{D}^n_L

Proof of Main Theorem

5 Comments and open problem

∃ → < ∃ →</p>

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_{σ} set and every orthogonal projection of D onto a

Theorem (Kershner 1943, characterization of $\{D(f): f \in SC\}$)

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_σ set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Problem (Kronrod 1944, still not satisfactorily answered)

Find a characterization of the classes

 $\mathcal{D}^n_L := \{ D(f) \colon f \colon \mathbb{R}^n o \mathbb{R} \text{ is linearly continuous} \}$

for n = 2, 3,

Theorem (Kershner 1943, characterization of $\{D(f): f \in SC\}$)

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_σ set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Problem (Kronrod 1944, still not satisfactorily answered)

Find a characterization of the classes

 $\mathcal{D}^n_L := \{ D(f) \colon f \colon \mathbb{R}^n o \mathbb{R} \text{ is linearly continuous} \}$

for n = 2, 3,

Theorem (Kershner 1943, characterization of $\{D(f): f \in SC\}$)

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_{σ} set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Theorem (Kershner 1943, characterization of $\{D(f): f \in SC\}$)

For any set $D \subset \mathbb{R}^n$

- D = D(f) for some separately continuous f on \mathbb{R}^n iff
- D is an F_σ set and every orthogonal projection of D onto a coordinate hyperplane has first category image.

Problem (Kronrod 1944, still not satisfactorily answered)

Find a characterization of the classes

 $\mathcal{D}_L^n := \{ D(f) \colon f \colon \mathbb{R}^n \to \mathbb{R} \text{ is linearly continuous} \}$

for *n* = 2, 3,

< < >> < </>

For a family \mathcal{F} of subsets of \mathbb{R}^n let $\mathbb{E}(\mathcal{F})$ be the closure of \mathcal{F} under countable unions and isometrical images.

Notice that $\mathcal{D}_L^n = \mathbb{E}(\mathcal{D}_L^n)$.

Theorem (Slobodnik 1976)

For every $n \ge 2$

 $\mathcal{D}_L^n \subset \mathbb{E}(\operatorname{Lip}_{nwd}),$

where Lip_{nwd} is the family of all restrictions of Lipschitz functions $g : \mathbb{R}^{n-1} \to \mathbb{R}$ to compact nowhere dense $K \subset \mathbb{R}^{n-1}$.

In particular, any $D \in \mathcal{D}_L^n$ has Lebesgue measure 0,

while there is a separately continuous $f : \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue measure.

For a family \mathcal{F} of subsets of \mathbb{R}^n let $\mathbb{E}(\mathcal{F})$ be the closure of \mathcal{F} under countable unions and isometrical images.

Notice that $\mathcal{D}_L^n = \mathbb{E}(\mathcal{D}_L^n)$.

Theorem (Slobodnik 1976)

For every $n \ge 2$

 $\mathcal{D}_L^n \subset \mathbb{E}(\operatorname{Lip}_{nwd}),$

where Lip_{nwd} is the family of all restrictions of Lipschitz functions $g : \mathbb{R}^{n-1} \to \mathbb{R}$ to compact nowhere dense $K \subset \mathbb{R}^{n-1}$.

In particular, any $D \in \mathcal{D}_L^n$ has Lebesgue measure 0,

while there is a separately continuous $f : \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue measure.

For a family \mathcal{F} of subsets of \mathbb{R}^n let $\mathbb{E}(\mathcal{F})$ be the closure of \mathcal{F} under countable unions and isometrical images.

Notice that $\mathcal{D}_L^n = \mathbb{E}(\mathcal{D}_L^n)$.

Theorem (Slobodnik 1976)

For every $n \ge 2$

 $\mathcal{D}_L^n \subset \mathbb{E}(\operatorname{Lip}_{nwd}),$

where Lip_{nwd} is the family of all restrictions of Lipschitz functions $g \colon \mathbb{R}^{n-1} \to \mathbb{R}$ to compact nowhere dense $K \subset \mathbb{R}^{n-1}$.

In particular, any $D \in \mathcal{D}_L^n$ has Lebesgue measure 0,

while there is a separately continuous $f : \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue measure.

Krzysztof Chris Ciesielski

For a family \mathcal{F} of subsets of \mathbb{R}^n let $\mathbb{E}(\mathcal{F})$ be the closure of \mathcal{F} under countable unions and isometrical images.

Notice that $\mathcal{D}_L^n = \mathbb{E}(\mathcal{D}_L^n)$.

Theorem (Slobodnik 1976)

For every $n \ge 2$

 $\mathcal{D}_L^n \subset \mathbb{E}(\operatorname{Lip}_{nwd}),$

where Lip_{nwd} is the family of all restrictions of Lipschitz functions $g \colon \mathbb{R}^{n-1} \to \mathbb{R}$ to compact nowhere dense $K \subset \mathbb{R}^{n-1}$.

In particular, any $D \in \mathcal{D}_L^n$ has Lebesgue measure 0,

while there is a separately continuous $f : \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue measure.

Krzysztof Chris Ciesielski

< ⊒ >

For a family \mathcal{F} of subsets of \mathbb{R}^n let $\mathbb{E}(\mathcal{F})$ be the closure of \mathcal{F} under countable unions and isometrical images.

Notice that $\mathcal{D}_L^n = \mathbb{E}(\mathcal{D}_L^n)$.

Theorem (Slobodnik 1976)

For every $n \ge 2$

 $\mathcal{D}_L^n \subset \mathbb{E}(\operatorname{Lip}_{nwd}),$

where Lip_{nwd} is the family of all restrictions of Lipschitz functions $g \colon \mathbb{R}^{n-1} \to \mathbb{R}$ to compact nowhere dense $K \subset \mathbb{R}^{n-1}$.

In particular, any $D \in \mathcal{D}_L^n$ has Lebesgue measure 0,

while there is a separately continuous $f : \mathbb{R}^n \to \mathbb{R}$ with D(f) having positive Lebesgue measure.

Let Conv, D^k , and C^k be the classes of all $f : \mathbb{R}^{n-1} \to \mathbb{R}$ that are, respectively, convex, *k*-times differentiable, and continuously *k*-times differentiable.

Theorem (KC and T. Glatzer 2013)

- $\mathbb{E}(\operatorname{Conv}_{nwd}) \subset \mathcal{D}_L^n$.
- $\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$ for n = 2.
- $\mathbb{E}(D_{nwd}^1) \not\subset \mathcal{D}_L^n$ for n = 2.

Problem (KC and T. Glatzer 2013)

- is $\mathbb{E}(C_{nwd}^1) \subset \mathcal{D}_L^n$?
- what about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^n_L$?

Let Conv, D^k , and C^k be the classes of all $f : \mathbb{R}^{n-1} \to \mathbb{R}$ that are, respectively, convex, *k*-times differentiable, and continuously *k*-times differentiable.

Theorem (KC and T. Glatzer 2013)

- $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.
- $\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$ for n = 2.
- $\mathbb{E}(D_{nwd}^1) \not\subset \mathcal{D}_L^n$ for n = 2.

Problem (KC and T. Glatzer 2013)

- is $\mathbb{E}(C_{nwd}^1) \subset \mathcal{D}_L^n$?
- what about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^n_L$?

Let Conv, D^k , and C^k be the classes of all $f : \mathbb{R}^{n-1} \to \mathbb{R}$ that are, respectively, convex, *k*-times differentiable, and continuously *k*-times differentiable.

Theorem (KC and T. Glatzer 2013)

•
$$\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$$
.

- $\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$ for n = 2.
- $\mathbb{E}(D_{nwd}^1) \not\subset \mathcal{D}_L^n$ for n = 2.

Problem (KC and T. Glatzer 2013)

- is $\mathbb{E}(C_{nwd}^1) \subset \mathcal{D}_L^n$?
- what about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^n_L$?

Let Conv, D^k , and C^k be the classes of all $f : \mathbb{R}^{n-1} \to \mathbb{R}$ that are, respectively, convex, *k*-times differentiable, and continuously *k*-times differentiable.

Theorem (KC and T. Glatzer 2013)

•
$$\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$$
.

•
$$\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$$
 for $n = 2$.

• $\mathbb{E}(D_{nwd}^1) \not\subset \mathcal{D}_L^n$ for n = 2.

Problem (KC and T. Glatzer 2013)

For n = 2

• is
$$\mathbb{E}(C_{nwd}^1) \subset \mathcal{D}_L^n$$
?

• what about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^n_L$?

History Problem Examples & Characterization Proof Open problem Open problem Open Proof Open Problem Open Prob

(P) For $n \ge 2$ find a family $\mathcal{F} \subset \operatorname{Lip}_{nwd}$ such that $\mathbb{E}(\mathcal{F}) = \mathcal{D}_L^n$.

Let Conv, D^k , and C^k be the classes of all $f : \mathbb{R}^{n-1} \to \mathbb{R}$ that are, respectively, convex, *k*-times differentiable, and continuously *k*-times differentiable.

Theorem (KC and T. Glatzer 2013)

- $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.
- $\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$ for n = 2.

•
$$\mathbb{E}(D_{nwd}^1) \not\subset \mathcal{D}_L^n$$
 for $n = 2$.

Problem (KC and T. Glatzer 2013)

- is $\mathbb{E}(C_{nwd}^1) \subset \mathcal{D}_L^n$?
- what about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^n_L$?

History Problem Examples & Characterization Proof Open problem Revised problem of Kronrod

(P) For $n \ge 2$ find a family $\mathcal{F} \subset \operatorname{Lip}_{nwd}$ such that $\mathbb{E}(\mathcal{F}) = \mathcal{D}_L^n$.

Let Conv, D^k , and C^k be the classes of all $f : \mathbb{R}^{n-1} \to \mathbb{R}$ that are, respectively, convex, *k*-times differentiable, and continuously *k*-times differentiable.

Theorem (KC and T. Glatzer 2013)

•
$$\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$$
.

•
$$\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$$
 for $n = 2$.

•
$$\mathbb{E}(D_{nwd}^1) \not\subset \mathcal{D}_L^n$$
 for $n = 2$.

Problem (KC and T. Glatzer 2013)

For n = 2

• is
$$\mathbb{E}(C_{nwd}^1) \subset \mathcal{D}_L^n$$
?

• what about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^n_L$?

History Problem Examples & Characterization Proof Open problem Revised problem of Kronrod

(P) For $n \ge 2$ find a family $\mathcal{F} \subset \operatorname{Lip}_{nwd}$ such that $\mathbb{E}(\mathcal{F}) = \mathcal{D}_L^n$.

Let Conv, D^k , and C^k be the classes of all $f : \mathbb{R}^{n-1} \to \mathbb{R}$ that are, respectively, convex, *k*-times differentiable, and continuously *k*-times differentiable.

Theorem (KC and T. Glatzer 2013)

•
$$\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$$
.

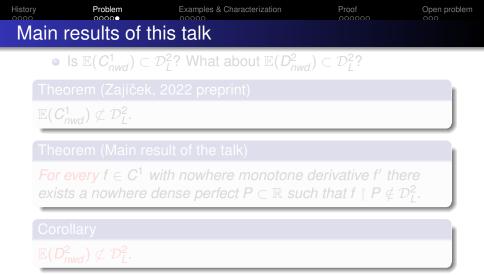
•
$$\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$$
 for $n = 2$.

•
$$\mathbb{E}(D_{nwd}^1) \not\subset \mathcal{D}_L^n$$
 for $n = 2$.

Problem (KC and T. Glatzer 2013)

• is
$$\mathbb{E}(C_{nwd}^1) \subset \mathcal{D}_L^n$$
?

• what about
$$\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^n_L$$
?



Proof of Corollary.

Let $h: \mathbb{R} \to \mathbb{R}$ be differentiable nowhere monotone. Use Main Theorem with $f(x) := \int_0^x h(t) dt$.

Theorem (Zajíček, 2022 preprint)

 $\mathbb{E}(C^1_{nwd}) \not\subset \mathcal{D}^2_L.$

Theorem (Main result of the talk)

For every $f \in C^1$ with nowhere monotone derivative f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin \mathcal{D}_L^2$.

Corollary

 $\mathbb{E}(D_{nwd}^2) \not\subset \mathcal{D}_L^2.$

Proof of Corollary.

Let $h: \mathbb{R} \to \mathbb{R}$ be differentiable nowhere monotone. Use Main Theorem with $f(x) := \int_0^x h(t) dt$.

Theorem (Zajíček, 2022 preprint)

 $\mathbb{E}(C_{nwd}^1) \not\subset \mathcal{D}_L^2.$

Theorem (Main result of the talk)

For every $f \in C^1$ with nowhere monotone derivative f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin D_L^2$.

Corollary

 $\mathbb{E}(D_{nwd}^2) \not\subset \mathcal{D}_L^2.$

Proof of Corollary.

Let $h: \mathbb{R} \to \mathbb{R}$ be differentiable nowhere monotone. Use Main Theorem with $f(x) := \int_0^x h(t) dt$.

• Is $\mathbb{E}(C_{nwd}^1) \subset \mathcal{D}_L^2$? What about $\mathbb{E}(D_{nwd}^2) \subset \mathcal{D}_L^2$?

Theorem (Zajíček, 2022 preprint)

 $\mathbb{E}(C_{nwd}^1) \not\subset \mathcal{D}_L^2.$

Theorem (Main result of the talk)

For every $f \in C^1$ with nowhere monotone derivative f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin \mathcal{D}_I^2$.

Corollary

 $\mathbb{E}(D_{nwd}^2) \not\subset \mathcal{D}_L^2.$

Proof of Corollary.

Let $h: \mathbb{R} \to \mathbb{R}$ be differentiable nowhere monotone. Use Main Theorem with $f(x) := \int_0^x h(t) dt$.

• Is $\mathbb{E}(C^1_{nwd}) \subset \mathcal{D}^2_L$? What about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^2_L$?

Theorem (Zajíček, 2022 preprint)

 $\mathbb{E}(C_{nwd}^1) \not\subset \mathcal{D}_L^2.$

Theorem (Main result of the talk)

For every $f \in C^1$ with nowhere monotone derivative f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin \mathcal{D}_L^2$.

Corollary

 $\mathbb{E}(D^2_{nwd}) \not\subset \mathcal{D}^2_L.$

Proof of Corollary.

Let $h: \mathbb{R} \to \mathbb{R}$ be differentiable nowhere monotone. Use Main Theorem with $f(x) := \int_0^x h(t) dt$.

• Is $\mathbb{E}(C^1_{nwd}) \subset \mathcal{D}^2_L$? What about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^2_L$?

Theorem (Zajíček, 2022 preprint)

 $\mathbb{E}(C_{nwd}^1) \not\subset \mathcal{D}_L^2.$

Theorem (Main result of the talk)

For every $f \in C^1$ with nowhere monotone derivative f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin \mathcal{D}_L^2$.

Corollary

 $\mathbb{E}(D^2_{nwd}) \not\subset \mathcal{D}^2_L.$

Proof of Corollary.

Let $h: \mathbb{R} \to \mathbb{R}$ be differentiable nowhere monotone. Use Main Theorem with $f(x) := \int_0^x h(t) dt$.

• Is $\mathbb{E}(C^1_{nwd}) \subset \mathcal{D}^2_L$? What about $\mathbb{E}(D^2_{nwd}) \subset \mathcal{D}^2_L$?

Theorem (Zajíček, 2022 preprint)

 $\mathbb{E}(C_{nwd}^1) \not\subset \mathcal{D}_L^2.$

Theorem (Main result of the talk)

For every $f \in C^1$ with nowhere monotone derivative f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin \mathcal{D}_L^2$.

Corollary

 $\mathbb{E}(D^2_{nwd}) \not\subset \mathcal{D}^2_L.$

Proof of Corollary.

Let $h: \mathbb{R} \to \mathbb{R}$ be differentiable nowhere monotone. Use Main Theorem with $f(x) := \int_0^x h(t) dt$.

History	Problem	Examples & Characterization	Proof	Open problem
0000	00000	00000	00000	000
Outline				

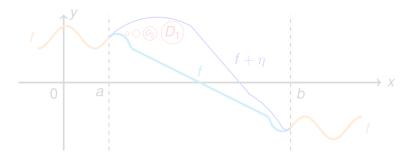
Separate and linear continuity – definitions and background

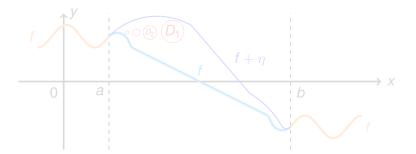
Sets of points of discontinuity: characterizations

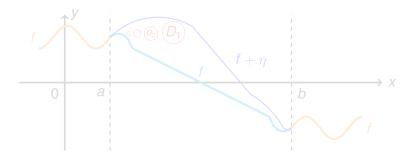
3 Tangent lines and characterization of \mathcal{D}_L^n

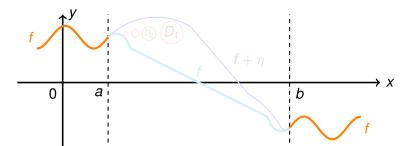
Proof of Main Theorem

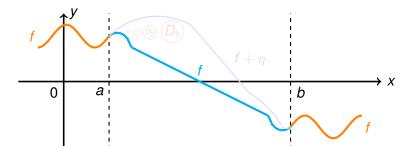
5 Comments and open problem

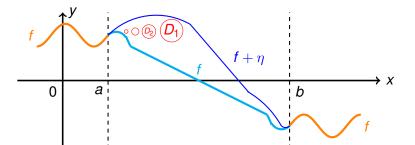


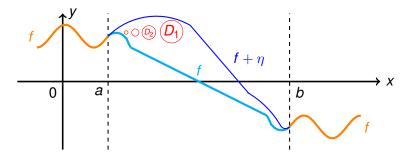


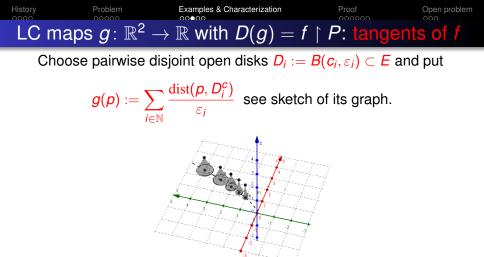






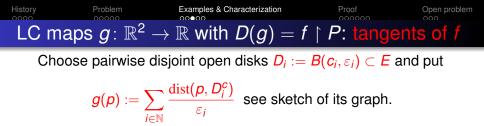


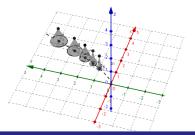




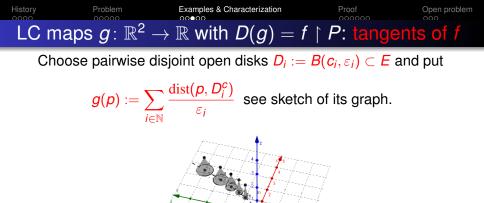
_emma

 $D(g) = f \upharpoonright P$ and $g \upharpoonright \ell$ is continuous, except possibly when ℓ intersects infinitely many D_i 's and is a "tangent line" to f at $x \in P$.

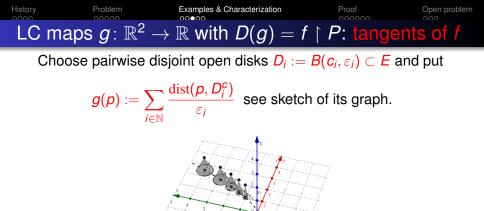




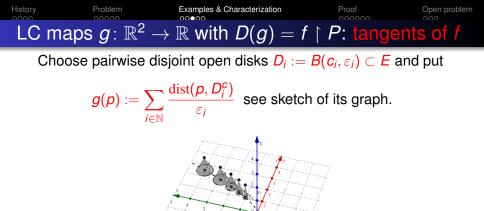
 $D(g) = f \upharpoonright P$ and $g \upharpoonright \ell$ is continuous, except possibly when ℓ intersects infinitely many D_i 's and is a "tangent line" to f at $x \in P$.



 $D(g) = f \upharpoonright P$ and $g \upharpoonright \ell$ is continuous, except possibly when ℓ intersects infinitely many D_i 's and is a "tangent line" to f at $x \in P$.



 $D(g) = f \upharpoonright P$ and $g \upharpoonright \ell$ is continuous, except possibly when ℓ intersects infinitely many D_i 's and is a "tangent line" to f at $x \in P$.



 $D(g) = f \upharpoonright P$ and $g \upharpoonright \ell$ is continuous, except possibly when ℓ intersects infinitely many D_i 's and is a "tangent line" to f at $x \in P$.

Proof of $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.

Any ℓ that intersects infinitely many D_i 's is below convex f, while all disks D_i are above f.

Proof of $\mathbb{E}(C^2_{nwd}) \subset \mathcal{D}^n_L$.

If $f \in C^2$, then $T_{f,P}$ — the union of all lines tangent to f at $x \in P$ — is nowhere dense in \mathbb{R}^2 . (Requires some argument.) So, we can choose disks D_i disjoint with $T_{f,P}$.

Proof of $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.

Any ℓ that intersects infinitely many D_i 's is below convex f, while all disks D_i are above f.

Proof of $\mathbb{E}(C^2_{nwd}) \subset \mathcal{D}^n_L$.

If $f \in C^2$, then $T_{f,P}$ — the union of all lines tangent to f at $x \in P$ — is nowhere dense in \mathbb{R}^2 . (Requires some argument.) So, we can choose disks D_i disjoint with $T_{f,P}$.

Proof of $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.

Any ℓ that intersects infinitely many D_i 's is below convex f, while all disks D_i are above f.

Proof of $\mathbb{E}(C^2_{nwd}) \subset \mathcal{D}^n_L$.

If $f \in C^2$, then $T_{f,P}$ — the union of all lines tangent to f at $x \in P$ — is nowhere dense in \mathbb{R}^2 . (Requires some argument.) So, we can choose disks D_i disjoint with $T_{f,P}$.

Proof of $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.

Any ℓ that intersects infinitely many D_i 's is below convex f, while all disks D_i are above f.

Proof of $\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$.

If $f \in C^2$, then $T_{f,P}$ — the union of all lines tangent to f at $x \in P$ — is nowhere dense in \mathbb{R}^2 . (Requires some argument.) So, we can choose disks D_i disjoint with $T_{f,P}$.

Proof of $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.

Any ℓ that intersects infinitely many D_i 's is below convex f, while all disks D_i are above f.

Proof of $\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$.

If $f \in C^2$, then $T_{f,P}$ — the union of all lines tangent to f at $x \in P$ — is nowhere dense in \mathbb{R}^2 . (Requires some argument.) So, we can choose disks D_i disjoint with $T_{f,P}$.

< < >> < </>

< ∃→

Proof of $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.

Any ℓ that intersects infinitely many D_i 's is below convex f, while all disks D_i are above f.

Proof of $\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$.

If $f \in C^2$, then $T_{f,P}$ — the union of all lines tangent to f at $x \in P$ — is nowhere dense in \mathbb{R}^2 . (Requires some argument.) So, we can choose disks D_i disjoint with $T_{f,P}$.

< < >> < </>

< ∃⇒

Proof of $\mathbb{E}(\text{Conv}_{nwd}) \subset \mathcal{D}_L^n$.

Any ℓ that intersects infinitely many D_i 's is below convex f, while all disks D_i are above f.

Proof of $\mathbb{E}(C_{nwd}^2) \subset \mathcal{D}_L^n$.

If $f \in C^2$, then $T_{f,P}$ — the union of all lines tangent to f at $x \in P$ — is nowhere dense in \mathbb{R}^2 . (Requires some argument.) So, we can choose disks D_i disjoint with $T_{f,P}$.

ヘロト 人間 ト ヘヨト ヘヨト

 $M \in \mathcal{D}_L^n$ iff M is a countable union of closed ℓ -miserable sets $K \subset \mathbb{R}^n$, that is, such that there exists a closed set $L \subset \mathbb{R}^n$ containing K with the properties:

(i) L is an ℓ-neighborhood of K: for any line ℓ in ℝⁿ and any p
∈ ℓ ∩ K there is an open J in ℓ such that p
∈ J ⊂ L;
(ii) K ⊂ cl(ℝ² \ L).

- For LC map $g(p) := \sum_{i \in \mathbb{N}} \frac{\operatorname{dist}(p, D_i^c)}{\varepsilon_i}$ defined above $K := f \upharpoonright P$ is ℓ -miserable with $L := \mathbb{R}^2 \setminus \bigcup_{i \in \mathbb{N}} D_i$.
- This characterization is still hard to grasp and/or use.

 $M \in \mathcal{D}_{L}^{n}$ iff M is a countable union of closed ℓ -miserable sets $K \subset \mathbb{R}^{n}$, that is, such that there exists a closed set $L \subset \mathbb{R}^{n}$ containing K with the properties:

(i) L is an l-neighborhood of K: for any line l in ℝⁿ and any p
∈ l ∩ K there is an open J in l such that p
∈ J ⊂ L;
(ii) K ⊂ cl(ℝ² \ L).

- For LC map $g(p) := \sum_{i \in \mathbb{N}} \frac{\operatorname{dist}(p, D_i^c)}{\varepsilon_i}$ defined above $K := f \upharpoonright P$ is ℓ -miserable with $L := \mathbb{R}^2 \setminus \bigcup_{i \in \mathbb{N}} D_i$.
- This characterization is still hard to grasp and/or use.

 $M \in \mathcal{D}_{L}^{n}$ iff M is a countable union of closed ℓ -miserable sets $K \subset \mathbb{R}^{n}$, that is, such that there exists a closed set $L \subset \mathbb{R}^{n}$ containing K with the properties:

- (i) L is an ℓ-neighborhood of K: for any line ℓ in ℝⁿ and any p
 ∈ ℓ ∩ K there is an open J in ℓ such that p
 ∈ J ⊂ L;
 (ii) K ⊂ cl(ℝ² \ L).
 - For LC map $g(p) := \sum_{i \in \mathbb{N}} \frac{\operatorname{dist}(p, D_i^c)}{\varepsilon_i}$ defined above $K := f \upharpoonright P$ is ℓ -miserable with $L := \mathbb{R}^2 \setminus \bigcup_{i \in \mathbb{N}} D_i$.
 - This characterization is still hard to grasp and/or use.

 $M \in \mathcal{D}_{L}^{n}$ iff M is a countable union of closed ℓ -miserable sets $K \subset \mathbb{R}^{n}$, that is, such that there exists a closed set $L \subset \mathbb{R}^{n}$ containing K with the properties:

(i) L is an ℓ-neighborhood of K: for any line ℓ in ℝⁿ and any p
∈ ℓ ∩ K there is an open J in ℓ such that p
∈ J ⊂ L;
(ii) K ⊂ cl(ℝ² \ L).

- For LC map $g(p) := \sum_{i \in \mathbb{N}} \frac{\operatorname{dist}(p, D_i^c)}{\varepsilon_i}$ defined above $K := f \upharpoonright P$ is ℓ -miserable with $L := \mathbb{R}^2 \setminus \bigcup_{i \in \mathbb{N}} D_i$.
- This characterization is still hard to grasp and/or use.

 $M \in \mathcal{D}_{L}^{n}$ iff M is a countable union of closed ℓ -miserable sets $K \subset \mathbb{R}^{n}$, that is, such that there exists a closed set $L \subset \mathbb{R}^{n}$ containing K with the properties:

- (i) L is an ℓ-neighborhood of K: for any line ℓ in ℝⁿ and any p
 ∈ ℓ ∩ K there is an open J in ℓ such that p
 ∈ J ⊂ L;
 (ii) K ⊂ cl(ℝ² \ L).
 - For LC map $g(p) := \sum_{i \in \mathbb{N}} \frac{\operatorname{dist}(p, D_i^c)}{\varepsilon_i}$ defined above $K := f \upharpoonright P$ is ℓ -miserable with $L := \mathbb{R}^2 \setminus \bigcup_{i \in \mathbb{N}} D_i$.
 - This characterization is still hard to grasp and/or use.

 $M \in \mathcal{D}_{L}^{n}$ iff M is a countable union of closed ℓ -miserable sets $K \subset \mathbb{R}^{n}$, that is, such that there exists a closed set $L \subset \mathbb{R}^{n}$ containing K with the properties:

- (i) L is an ℓ-neighborhood of K: for any line ℓ in ℝⁿ and any p
 ∈ ℓ ∩ K there is an open J in ℓ such that p
 ∈ J ⊂ L;
 (ii) K ⊂ cl(ℝ² \ L).
 - For LC map $g(p) := \sum_{i \in \mathbb{N}} \frac{\operatorname{dist}(p, D_i^c)}{\varepsilon_i}$ defined above $K := f \upharpoonright P$ is ℓ -miserable with $L := \mathbb{R}^2 \setminus \bigcup_{i \in \mathbb{N}} D_i$.
 - This characterization is still hard to grasp and/or use.

History	Problem	Examples & Characterization	Proof	Open problem
0000	00000	00000	00000	
Outline				

Separate and linear continuity – definitions and background

2 Sets of points of discontinuity: characterizations

[3] Tangent lines and characterization of ${\cal D}^n_L$

Proof of Main Theorem

5 Comments and open problem

∃⇒

Thm: For every $f \in C^1$ with nowhere monotone f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin D_L^2$.

Lemma (Main Lemma)

For every a < b and $f \in C^1$ with nowhere monotone f' there are $d \in (a, b)$ and perfect nowhere dense $N_d \subset (a, d)$ such that $\langle d, f(d) \rangle \in int(T_{f,N_d})$.

Proof of Lemma is based on several simpler facts.

Thm: For every $f \in C^1$ with nowhere monotone f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin \mathcal{D}_L^2$.

Lemma (Main Lemma)

For every a < b and $f \in C^1$ with nowhere monotone f' there are $d \in (a, b)$ and perfect nowhere dense $N_d \subset (a, d)$ such that $\langle d, f(d) \rangle \in int(T_{f,N_d})$.

Proof of Lemma is based on several simpler facts.

< ∃→

Thm: For every $f \in C^1$ with nowhere monotone f' there exists a nowhere dense perfect $P \subset \mathbb{R}$ such that $f \upharpoonright P \notin D_L^2$.

Lemma (Main Lemma)

For every a < b and $f \in C^1$ with nowhere monotone f' there are $d \in (a, b)$ and perfect nowhere dense $N_d \subset (a, d)$ such that $\langle d, f(d) \rangle \in int(T_{f,N_d})$.

Proof of Lemma is based on several simpler facts.

< ∃→

Construct a sequence $\langle \langle I_s, d_s, N_s \rangle : s \in 2^{<\omega} \rangle$ s.t.

 $\begin{array}{l} (A_n) \ \mathcal{I}_n = \{I_s \colon s \in 2^n\} \text{ consists of pairwise disjoint non-trivial} \\ \text{ closed intervals each of length } |I_s| \leq \left(\frac{2}{3}\right)^n. \\ (B_n) \ \text{ If } s, t \in 2^{\leq n} \text{ and } s \subset t, \text{ then } I_t \subset I_s \text{ and } N_t \cup \{d_t\} \subset \bigcup \mathcal{I}_n. \\ (C_n) \ \text{ If } I_s = [a_s, b_s], \text{ then } d_s \in (a_s, b_s), N_s \subset (a_s, d_s) \text{ is nowhere} \\ \text{ dense, and } \langle d_s, f(d_s) \rangle \in \text{int}(T_{f,N_s}). \end{array}$

Construction: If M_s is the middle third of I_s , $s \in 2^n$,

- choose *d_s* and *N_s* in *I_s* as in Main Lemma;
- pick open interval Ø ≠ J_s ⊂ M_s \ U_{t∈2≤n}(N_t ∪ {d_t}) and define {I_u: u ∈ 2ⁿ⁺¹ & s ⊂ u} as two components of I_s \ J_s.

Define
$$P := \bigcap_{n \le \omega} \bigcup \mathcal{I}_n$$
.

・ロット (雪) () () () ()

Construct a sequence $\langle \langle I_s, d_s, N_s \rangle : s \in 2^{<\omega} \rangle$ s.t.

 $\begin{array}{l} (A_n) \ \mathcal{I}_n = \{I_s \colon s \in 2^n\} \text{ consists of pairwise disjoint non-trivial} \\ \text{ closed intervals each of length } |I_s| \leq \left(\frac{2}{3}\right)^n. \\ (B_n) \ \text{ If } s, t \in 2^{\leq n} \text{ and } s \subset t, \text{ then } I_t \subset I_s \text{ and } N_t \cup \{d_t\} \subset \bigcup \mathcal{I}_n. \\ (C_n) \ \text{ If } I_s = [a_s, b_s], \text{ then } d_s \in (a_s, b_s), N_s \subset (a_s, d_s) \text{ is nowhere} \\ \text{ dense, and } \langle d_s, f(d_s) \rangle \in \text{ int}(\mathcal{T}_{t,N_s}). \end{array}$

Construction: If M_s is the middle third of I_s , $s \in 2^n$,

- choose d_s and N_s in I_s as in Main Lemma;
- pick open interval Ø ≠ J_s ⊂ M_s \ U_{t∈2≤n}(N_t ∪ {d_t}) and define {I_u: u ∈ 2ⁿ⁺¹ & s ⊂ u} as two components of I_s \ J_s.

Define
$$P := \bigcap_{n < \omega} \bigcup \mathcal{I}_n$$
.

Krzysztof Chris Ciesielski

ヘロア ヘビア ヘビア・

(*A_n*) *I_n* = {*I_s*: *s* ∈ 2^{*n*}} consists of pairwise disjoint non-trivial closed intervals each of length |*I_s*| ≤ (²/₃)^{*n*}.
(*B_n*) If *s*, *t* ∈ 2^{≤n} and *s* ⊂ *t*, then *I_t* ⊂ *I_s* and *N_t* ∪ {*d_t*} ⊂ ∪*I_n*.
(*C_n*) If *I_s* = [*a_s*, *b_s*], then *d_s* ∈ (*a_s*, *b_s*), *N_s* ⊂ (*a_s*, *d_s*) is nowhere dense, and ⟨*d_s*, *f*(*d_s*)⟩ ∈ int(*T_{t,N_s}*).

Construction: If M_s is the middle third of I_s , $s \in 2^n$,

- choose d_s and N_s in I_s as in Main Lemma;
- pick open interval Ø ≠ J_s ⊂ M_s \ U_{t∈2≤n}(N_t ∪ {d_t}) and define {I_u: u ∈ 2ⁿ⁺¹ & s ⊂ u} as two components of I_s \ J_s.

Define
$$P := \bigcap_{n < \omega} \bigcup \mathcal{I}_n$$
.

Krzysztof Chris Ciesielski

ヘロン ヘアン ヘビン ヘビン

 $\begin{array}{l} (A_n) \ \mathcal{I}_n = \{I_s \colon s \in 2^n\} \text{ consists of pairwise disjoint non-trivial} \\ \text{ closed intervals each of length } |I_s| \leq (\frac{2}{3})^n. \\ (B_n) \ \text{ If } s, t \in 2^{\leq n} \text{ and } s \subset t, \text{ then } I_t \subset I_s \text{ and } N_t \cup \{d_t\} \subset \bigcup \mathcal{I}_n. \\ (C_n) \ \text{ If } I_s = [a_s, b_s], \text{ then } d_s \in (a_s, b_s), N_s \subset (a_s, d_s) \text{ is nowhere} \\ \text{ dense, and } \langle d_s, f(d_s) \rangle \in \operatorname{int}(\mathcal{T}_{f,N_s}). \end{array}$

Construction: If M_s is the middle third of I_s , $s \in 2^n$,

- choose *d_s* and *N_s* in *I_s* as in Main Lemma;
- pick open interval Ø ≠ J_s ⊂ M_s \ U_{t∈2≤n}(N_t ∪ {d_t}) and define {I_u: u ∈ 2ⁿ⁺¹ & s ⊂ u} as two components of I_s \ J_s.

Define
$$P := \bigcap_{n \le \omega} \bigcup \mathcal{I}_n$$
.

ヘロア 人間 アメヨア 人口 ア

 $\begin{array}{l} (A_n) \ \mathcal{I}_n = \{I_s \colon s \in 2^n\} \text{ consists of pairwise disjoint non-trivial} \\ \text{ closed intervals each of length } |I_s| \leq \left(\frac{2}{3}\right)^n. \\ (B_n) \ \text{ If } s,t \in 2^{\leq n} \text{ and } s \subset t \text{, then } I_t \subset I_s \text{ and } N_t \cup \{d_t\} \subset \bigcup \mathcal{I}_n. \\ (C_n) \ \text{ If } I_s = [a_s,b_s], \text{ then } d_s \in (a_s,b_s), N_s \subset (a_s,d_s) \text{ is nowhere} \\ \text{ dense, and } \langle d_s,f(d_s)\rangle \in \operatorname{int}(\mathcal{T}_{f,N_s}). \end{array}$

Construction: If M_s is the middle third of I_s , $s \in 2^n$,

- choose *d_s* and *N_s* in *I_s* as in Main Lemma;
- pick open interval Ø ≠ J_s ⊂ M_s \ U_{t∈2≤n}(N_t ∪ {d_t}) and define {I_u: u ∈ 2ⁿ⁺¹ & s ⊂ u} as two components of I_s \ J_s.

Define
$$P := \bigcap_{n < \omega} \bigcup \mathcal{I}_n$$
.

ヘロン ヘアン ヘビン ヘビン

 $\begin{array}{l} (A_n) \ \mathcal{I}_n = \{I_s \colon s \in 2^n\} \text{ consists of pairwise disjoint non-trivial} \\ \text{ closed intervals each of length } |I_s| \leq \left(\frac{2}{3}\right)^n. \\ (B_n) \ \text{ If } s,t \in 2^{\leq n} \text{ and } s \subset t \text{, then } I_t \subset I_s \text{ and } N_t \cup \{d_t\} \subset \bigcup \mathcal{I}_n. \\ (C_n) \ \text{ If } I_s = [a_s,b_s], \text{ then } d_s \in (a_s,b_s), N_s \subset (a_s,d_s) \text{ is nowhere} \\ \text{ dense, and } \langle d_s,f(d_s)\rangle \in \operatorname{int}(\mathcal{T}_{f,N_s}). \end{array}$

Construction: If M_s is the middle third of I_s , $s \in 2^n$,

- choose *d_s* and *N_s* in *I_s* as in Main Lemma;
- pick open interval Ø ≠ J_s ⊂ M_s \ U_{t∈2≤n}(N_t ∪ {d_t}) and define {I_u: u ∈ 2ⁿ⁺¹ & s ⊂ u} as two components of I_s \ J_s.

Define
$$P := \bigcap_{n < \omega} \bigcup \mathcal{I}_n$$
.

Krzysztof Chris Ciesielski

ヘロン ヘアン ヘビン ヘビン

 $\begin{array}{l} (A_n) \ \mathcal{I}_n = \{I_s \colon s \in 2^n\} \text{ consists of pairwise disjoint non-trivial} \\ \text{ closed intervals each of length } |I_s| \leq \left(\frac{2}{3}\right)^n. \\ (B_n) \ \text{ If } s,t \in 2^{\leq n} \text{ and } s \subset t \text{, then } I_t \subset I_s \text{ and } N_t \cup \{d_t\} \subset \bigcup \mathcal{I}_n. \\ (C_n) \ \text{ If } I_s = [a_s,b_s], \text{ then } d_s \in (a_s,b_s), N_s \subset (a_s,d_s) \text{ is nowhere} \\ \text{ dense, and } \langle d_s,f(d_s)\rangle \in \operatorname{int}(\mathcal{T}_{f,N_s}). \end{array}$

Construction: If M_s is the middle third of I_s , $s \in 2^n$,

- choose *d_s* and *N_s* in *I_s* as in Main Lemma;
- pick open interval Ø ≠ J_s ⊂ M_s \ U_{t∈2≤n}(N_t ∪ {d_t}) and define {I_u: u ∈ 2ⁿ⁺¹ & s ⊂ u} as two components of I_s \ J_s.

Define
$$P := \bigcap_{n < \omega} \bigcup \mathcal{I}_n$$
.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\begin{array}{l} (A_n) \ \mathcal{I}_n = \{I_s \colon s \in 2^n\} \text{ consists of pairwise disjoint non-trivial} \\ \text{ closed intervals each of length } |I_s| \leq \left(\frac{2}{3}\right)^n. \\ (B_n) \ \text{ If } s,t \in 2^{\leq n} \text{ and } s \subset t \text{, then } I_t \subset I_s \text{ and } N_t \cup \{d_t\} \subset \bigcup \mathcal{I}_n. \\ (C_n) \ \text{ If } I_s = [a_s,b_s], \text{ then } d_s \in (a_s,b_s), N_s \subset (a_s,d_s) \text{ is nowhere} \\ \text{ dense, and } \langle d_s,f(d_s)\rangle \in \operatorname{int}(\mathcal{T}_{f,N_s}). \end{array}$

Construction: If M_s is the middle third of I_s , $s \in 2^n$,

- choose *d_s* and *N_s* in *I_s* as in Main Lemma;
- pick open interval Ø ≠ J_s ⊂ M_s \ U_{t∈2≤n}(N_t ∪ {d_t}) and define {I_u: u ∈ 2ⁿ⁺¹ & s ⊂ u} as two components of I_s \ J_s.

Define
$$P := \bigcap_{n < \omega} \bigcup \mathcal{I}_n$$
.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

History Problem Examples & Characterization Proof Open problem Constant of the proof December of the proof De

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

there is an s₀ ∈ 2^{<ω} s.t. K₀ := f ↾ (P ∩ I_{s0}) is ℓ-miserable,
 i.e., ∃ closed ℓ-nbhd L of K₀ with K₀ in closure of U := L^c.

Construct $\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$ s.t. (*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $||c_n - \langle d_{s_n}, f(d_{s_n}) \rangle || \le 2^{-n}$; (*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$; (*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Construction: Given *s*_n,

• there are ε_n and c_n as $\langle d_{s_n}, f(d_{s_n}) \rangle \in cl(U) \cap int(T_{f,N_{s_n}});$

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

there is an s₀ ∈ 2^{<ω} s.t. K₀ := f ↾ (P ∩ I_{s0}) is ℓ-miserable,
 i.e., ∃ closed ℓ-nbhd L of K₀ with K₀ in closure of U := L^c.

Construct $\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$ s.t. (*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $||c_n - \langle d_{s_n}, f(d_{s_n}) \rangle || \le 2^{-n}$; (*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$; (*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Construction: Given *s*_n,

• there are ε_n and c_n as $\langle d_{s_n}, f(d_{s_n}) \rangle \in cl(U) \cap int(T_{f,N_{s_n}});$

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

there is an s₀ ∈ 2^{<ω} s.t. K₀ := f ↾ (P ∩ I_{s0}) is ℓ-miserable,
 i.e., ∃ closed ℓ-nbhd L of K₀ with K₀ in closure of U := L^c.

Construct $\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$ s.t. (*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $||c_n - \langle d_{s_n}, f(d_{s_n}) \rangle || \le 2^{-n}$; (*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$; (*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Construction: Given s_n ,

• there are ε_n and c_n as $\langle d_{s_n}, f(d_{s_n}) \rangle \in cl(U) \cap int(T_{f,N_{s_n}});$

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

• there is an $s_0 \in 2^{<\omega}$ s.t. $K_0 := f \upharpoonright (P \cap I_{s_0})$ is ℓ -miserable, i.e., \exists closed ℓ -nbhd *L* of K_0 with K_0 in closure of $U := L^c$.

Construct $\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$ s.t. (*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $\|c_n - \langle d_{s_n}, f(d_{s_n}) \rangle\| \le 2^{-n}$; (*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$; (*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Construction: Given *s*_n,

• there are ε_n and c_n as $\langle d_{s_n}, f(d_{s_n}) \rangle \in cl(U) \cap int(T_{f,N_{s_n}});$

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

• there is an $s_0 \in 2^{<\omega}$ s.t. $K_0 := f \upharpoonright (P \cap I_{s_0})$ is ℓ -miserable, i.e., \exists closed ℓ -nbhd *L* of K_0 with K_0 in closure of $U := L^c$.

Construct $\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$ s.t. (*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $||c_n - \langle d_{s_n}, f(d_{s_n}) \rangle || \le 2^{-n}$; (*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$; (*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Construction: Given *s*_n,

• there are ε_n and c_n as $\langle d_{s_n}, f(d_{s_n}) \rangle \in cl(U) \cap int(T_{f,N_{s_n}});$

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

there is an s₀ ∈ 2^{<ω} s.t. K₀ := f ↾ (P ∩ I_{s0}) is ℓ-miserable,
 i.e., ∃ closed ℓ-nbhd L of K₀ with K₀ in closure of U := L^c.

Construct $\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$ s.t. (*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $||c_n - \langle d_{s_n}, f(d_{s_n}) \rangle || \le 2^{-n}$; (*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$; (*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Construction: Given s_n ,

• there are ε_n and c_n as $\langle d_{s_n}, f(d_{s_n}) \rangle \in cl(U) \cap int(T_{f,N_{s_n}});$

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

there is an s₀ ∈ 2^{<ω} s.t. K₀ := f ↾ (P ∩ I_{s0}) is ℓ-miserable,
 i.e., ∃ closed ℓ-nbhd L of K₀ with K₀ in closure of U := L^c.

Construct
$$\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$$
 s.t.
(*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $||c_n - \langle d_{s_n}, f(d_{s_n}) \rangle || \le 2^{-n}$;
(*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$;
(*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Construction: Given s_n ,

- there are ε_n and c_n as $\langle d_{s_n}, f(d_{s_n}) \rangle \in cl(U) \cap int(T_{f,N_{s_n}});$
- to find s_{n+1} choose: $x \in N_{s_n} \subset I_{s_n}$ s.t. $T_{f,x} \cap B(c_n, \varepsilon_n) \neq \emptyset$; $\delta > 0$ s.t. $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in (x_n - \delta, x_n + \delta)$; $s_{n+1} \supset s_n$ s.t. $I_{s_{n+1}} \subset (x_n - \delta, x_n + \delta)$.

Otherwise, by Baire Category and Banakh-Maslyuchenko thms

there is an s₀ ∈ 2^{<ω} s.t. K₀ := f ↾ (P ∩ I_{s0}) is ℓ-miserable,
 i.e., ∃ closed ℓ-nbhd L of K₀ with K₀ in closure of U := L^c.

Construct
$$\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$$
 s.t.
(*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $||c_n - \langle d_{s_n}, f(d_{s_n}) \rangle || \le 2^{-n}$;
(*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$;
(*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Construction: Given s_n ,

- there are ε_n and c_n as $\langle d_{s_n}, f(d_{s_n}) \rangle \in cl(U) \cap int(T_{f,N_{s_n}});$
- to find s_{n+1} choose: $x \in N_{s_n} \subset I_{s_n}$ s.t. $T_{f,x} \cap B(c_n, \varepsilon_n) \neq \emptyset$; $\delta > 0$ s.t. $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in (x_n - \delta, x_n + \delta)$; $s_{n+1} \supset s_n$ s.t. $I_{s_{n+1}} \subset (x_n - \delta, x_n + \delta)$.

We have
$$\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$$
 s.t.
(*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $||c_n - \langle d_{s_n}, f(d_{s_n}) \rangle || \le 2^{-n}$;
(*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$;
(*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Let
$$\{p\} = \bigcap_{n < \omega} I_{s_n}, \bar{p} := \langle p, f(p) \rangle$$
, and $\ell := T_{f,p}$.

Then for every $n < \omega$ there is $p_n \in \ell \cap B(c_n, \varepsilon_n) \subset \ell \cap U$.

As $p_n o_n ar{p}$, there is no open J in ℓ with $ar{p} \in J \subset \mathbb{R}^2 \setminus U = L$.

So, *L* is NOT ℓ -nbhd *L* of $K_0 \ni \bar{p}$, a contradiction.

A D b 4 A b

< ∃→

We have
$$\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$$
 s.t.
(*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $\|c_n - \langle d_{s_n}, f(d_{s_n}) \rangle\| \le 2^{-n}$;
(*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$;
(*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Let
$$\{p\} = \bigcap_{n < \omega} I_{s_n}$$
, $\bar{p} := \langle p, f(p) \rangle$, and $\ell := T_{f,p}$.

Then for every $n < \omega$ there is $p_n \in \ell \cap B(c_n, \varepsilon_n) \subset \ell \cap U$.

As $p_n o_n ar{p}$, there is no open J in ℓ with $ar{p} \in J \subset \mathbb{R}^2 \setminus U = L$.

So, *L* is NOT ℓ -nbhd *L* of $K_0 \ni \bar{p}$, a contradiction.

A D b 4 A b

< ∃→

We have
$$\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$$
 s.t.
(*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $\|c_n - \langle d_{s_n}, f(d_{s_n}) \rangle\| \le 2^{-n}$;
(*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$;
(*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Let
$$\{p\} = \bigcap_{n < \omega} I_{s_n}$$
, $\bar{p} := \langle p, f(p) \rangle$, and $\ell := T_{f,p}$.

Then for every $n < \omega$ there is $p_n \in \ell \cap B(c_n, \varepsilon_n) \subset \ell \cap U$.

As $p_n o_n ar{p}$, there is no open J in ℓ with $ar{p} \in J \subset \mathbb{R}^2 \setminus U = L$.

So, *L* is NOT ℓ -nbhd *L* of $K_0 \ni \overline{p}$, a contradiction.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(문)(문)

We have
$$\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$$
 s.t.
(*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $\|c_n - \langle d_{s_n}, f(d_{s_n}) \rangle\| \le 2^{-n}$;
(*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$;
(*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Let
$$\{p\} = \bigcap_{n < \omega} I_{s_n}$$
, $\bar{p} := \langle p, f(p) \rangle$, and $\ell := T_{f,p}$.

Then for every $n < \omega$ there is $p_n \in \ell \cap B(c_n, \varepsilon_n) \subset \ell \cap U$.

As $p_n \rightarrow_n \bar{p}$, there is no open *J* in ℓ with $\bar{p} \in J \subset \mathbb{R}^2 \setminus U = L$.

So, *L* is NOT ℓ -nbhd *L* of $K_0 \ni \bar{p}$, a contradiction.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We have
$$\langle \langle s_n, c_n, \varepsilon_n \rangle \in 2^{<\omega} \times U \times \mathbb{R}^+ : n < \omega \rangle$$
 s.t.
(*a_n*) $c_n \in U \cap \operatorname{int}(T_{f,N_{s_n}})$ and $\|c_n - \langle d_{s_n}, f(d_{s_n}) \rangle\| \le 2^{-n}$;
(*b_n*) $\varepsilon_n \in (0, 2^{-n})$ and $B(c_n, \varepsilon_n) \subset U \cap \operatorname{int}(T_{f,N_{s_n}})$;
(*c_n*) $s_{n+1} \supset s_n$ and $T_{f,p} \cap B(c_n, \varepsilon_n) \neq \emptyset$ for every $p \in I_{s_{n+1}}$.

Let
$$\{p\} = \bigcap_{n < \omega} I_{s_n}$$
, $\bar{p} := \langle p, f(p) \rangle$, and $\ell := T_{f,p}$.

Then for every $n < \omega$ there is $p_n \in \ell \cap B(c_n, \varepsilon_n) \subset \ell \cap U$.

As $p_n \rightarrow_n \bar{p}$, there is no open J in ℓ with $\bar{p} \in J \subset \mathbb{R}^2 \setminus U = L$.

So, *L* is NOT ℓ -nbhd *L* of $K_0 \ni \bar{p}$, a contradiction.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main Lemma: For every a < b and $f \in C^1$ with nowhere monotone f' there are $d \in (a, b)$ and perfect nowhere dense $N_d \subset (a, d)$ such that $\langle d, f(d) \rangle \in int(T_{f,N_d})$.

Fact

Let $f \in C^1$ be s.t. f' is nowhere monotone. If $Z \subset (-\infty, a]$ and $\emptyset \neq (r, s) \subset Z$, then there is $\emptyset \neq (u, v) \subset (r, s)$ s.t.

 $T_{f,Z\setminus(u,v)}\cap((a,\infty)\times\mathbb{R})=T_{f,Z}\cap((a,\infty)\times\mathbb{R}).$

If *Z* is compact, then there is nowhere dense $N \subset Z$ s.t.

 $T_{f,N} \cap ((a,\infty) \times \mathbb{R}) = T_{f,Z} \cap ((a,\infty) \times \mathbb{R}).$

Main Lemma: For every a < b and $f \in C^1$ with nowhere monotone f' there are $d \in (a, b)$ and perfect nowhere dense $N_d \subset (a, d)$ such that $\langle d, f(d) \rangle \in int(T_{f,N_d})$.

Fact

Let $f \in C^1$ be s.t. f' is nowhere monotone. If $Z \subset (-\infty, a]$ and $\emptyset \neq (r, s) \subset Z$, then there is $\emptyset \neq (u, v) \subset (r, s)$ s.t.

$$T_{f,Z\setminus(u,v)}\cap ((a,\infty)\times\mathbb{R})=T_{f,Z}\cap ((a,\infty)\times\mathbb{R}).$$

If *Z* is compact, then there is nowhere dense $N \subset Z$ s.t.

 $T_{f,N} \cap ((a,\infty) \times \mathbb{R}) = T_{f,Z} \cap ((a,\infty) \times \mathbb{R}).$

Main Lemma: For every a < b and $f \in C^1$ with nowhere monotone f' there are $d \in (a, b)$ and perfect nowhere dense $N_d \subset (a, d)$ such that $\langle d, f(d) \rangle \in int(T_{f,N_d})$.

Fact

Let $f \in C^1$ be s.t. f' is nowhere monotone. If $Z \subset (-\infty, a]$ and $\emptyset \neq (r, s) \subset Z$, then there is $\emptyset \neq (u, v) \subset (r, s)$ s.t.

$$T_{f,Z\setminus(u,v)}\cap ((a,\infty)\times\mathbb{R})=T_{f,Z}\cap ((a,\infty)\times\mathbb{R}).$$

If Z is compact, then there is nowhere dense $N \subset Z$ s.t.

$$T_{f,N} \cap ((a,\infty) \times \mathbb{R}) = T_{f,Z} \cap ((a,\infty) \times \mathbb{R}).$$

History	Problem	Examples & Characterization	Proof	Open problem
0000	00000	00000	000000	000
Outline				

Separate and linear continuity – definitions and background

2 Sets of points of discontinuity: characterizations

3 Tangent lines and characterization of \mathcal{D}_L^n

Proof of Main Theorem

Remark

$\mathbb{E}(D^2_{nwd}) \not\subset \mathcal{D}^2_L$ implies that $\mathbb{E}(D^2_{nwd}) \not\subset \mathcal{D}^n_L$ for all $n \ge 2$.

Problem

Is the inclusion $\mathbb{E}(C^2_{nwd}) \subset \mathcal{D}^n_L$ true for n > 2?

Krzysztof Chris Ciesielski

Linearly continuous maps discontinuous on D²-graphs 17

<ロ> (四) (四) (三) (三) (三)

Remark

$\mathbb{E}(D^2_{nwd}) \not\subset \mathcal{D}^2_L$ implies that $\mathbb{E}(D^2_{nwd}) \not\subset \mathcal{D}^n_L$ for all $n \ge 2$.

Problem

Is the inclusion $\mathbb{E}(C^2_{nwd}) \subset \mathcal{D}^n_L$ true for n > 2?

<ロ> <四> <四> <四> <三</td>

0000 00000 00000 00000 00 0	History	Problem	Examples & Characterization	Proof	Open problem
	0000	00000	00000	000000	000

Thank you for your attention!

 $\Xi \rightarrow$