Differentiability versus continuity: What good Calc 1 student may ask about

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based on BAMS survey written with Juan B. Seoane-Sepúlveda

Colloquium of Math Department at WVU, December 4, 2019

All discussed notions should be known to any math major

All presented results have "elementary" proofs

- The text of this presentation can be found on my page:
 - https://math.wvu.edu/~kciesiel/presentations.html

All discussed notions should be known to any math major

All presented results have "elementary" proofs

- The text of this presentation can be found on my page:
 - https://math.wvu.edu/~kciesiel/presentations.html

All discussed notions should be known to any math major

All presented results have "elementary" proofs

The text of this presentation can be found on my page:
 https://math.wvu.edu/~kciesiel/presentations.html

All discussed notions should be known to any math major

All presented results have "elementary" proofs

- The text of this presentation can be found on my page:
 - https://math.wvu.edu/~kciesiel/presentations.html

Outline

- What good properties differentiable functions MUST have?
- 2 How BAD differentiable functions can be?
- 3 Differentiability from continuity: differentiable restrictions
- $lackbox{4}$ Properties of differentiable maps on perfect $P\subset\mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems

Outline

- What good properties differentiable functions MUST have?
- 2 How BAD differentiable functions can be?
- Oifferentiability from continuity: differentiable restrictions
- 4 Properties of differentiable maps on perfect $P \subset \mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems

Clearly, if $F: \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

$$(F'(0) = 0 \text{ by squeeze theorem, as } \left| \frac{F(x) - F(0)}{x - 0} \right| \le \left| \frac{x^2 - F(0)}{x - 0} \right| = |x|.)$$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G \colon \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

$$(F'(0) = 0 \text{ by squeeze theorem, as } \left| \frac{F(x) - F(0)}{x - 0} \right| \le \left| \frac{x^2 - F(0)}{x - 0} \right| = |x|.)$$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

$$(F'(0)=0$$
 by squeeze theorem, as $\left|\frac{F(x)-F(0)}{x-0}\right|\leq \left|\frac{x^2-F(0)}{x-0}\right|=|x|.)$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

$$(F'(0) = 0 \text{ by squeeze theorem, as } \left| \frac{F(x) - F(0)}{x - 0} \right| \le \left| \frac{x^2 - F(0)}{x - 0} \right| = |x|.)$$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

$$(F'(0)=0$$
 by squeeze theorem, as $\left|\frac{F(x)-F(0)}{x-0}\right|\leq \left|\frac{x^2-F(0)}{x-0}\right|=|x|.)$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

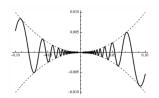
However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

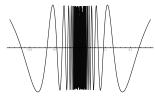
$$(F'(0)=0$$
 by squeeze theorem, as $\left|\frac{F(x)-F(0)}{x-0}\right| \leq \left|\frac{x^2-F(0)}{x-0}\right| = |x|$.)

About $F(x) = x^2 \sin(x^{-1})$

This F appeared already in the 1881 paper of Vito Volterra (1860-1940)



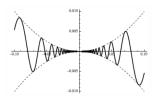
Graph of F



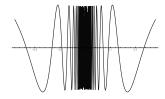
Graph of F

About $F(x) = x^2 \sin(x^{-1})$

This F appeared already in the 1881 paper of Vito Volterra (1860-1940)



Graph of F



Graph of F'

good bad Cont⇒Diff Properties of f ↑ P Differentiable Extensions

To what extend f = F' must be continuous?

Jean-Gaston Darboux (1842-1917)

Theorem (Darboux 1875)

Any derivative $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property (IVP), that is, for every a < b and y between f(a) and f(b) there exists an $x \in [a,b]$ with f(x) = y.

Since then, maps with IVP are called Darboux functions.

good bad Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

To what extend f = F' must be continuous?

Jean-Gaston Darboux (1842-1917)

Theorem (Darboux 1875)

Any derivative $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property (IVP), that is, for every a < b and y between f(a) and f(b) there exists an $x \in [a,b]$ with f(x) = y.

Since then, maps with IVP are called Darboux functions.

good bad Cont⇒Diff Properties of f ↑ P Differentiable Extensions

To what extend f = F' must be continuous?

Jean-Gaston Darboux (1842-1917)

Theorem (Darboux 1875)

Any derivative $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property (IVP), that is, for every a < b and y between f(a) and f(b) there exists an $x \in [a,b]$ with f(x) = y.

Since then, maps with IVP are called Darboux functions.

Fix $a, b, y \in \mathbb{R}$ with $f(a) \leq y \leq f(b)$.

Define
$$\varphi \colon \mathbb{R} \to \mathbb{R}$$
 as $\varphi(t) := F(t) - yt$. So $\varphi'(t) = f(t) - yt$

and
$$\varphi'(a) = f(a) - y \le 0 \le f(b) - y = \varphi'(b)$$
.

Need
$$x \in [a, b]$$
 with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a,b] is attained at an $x \in (a,b)$.

Properties of $f \upharpoonright P$

Fix $a, b, y \in \mathbb{R}$ with $f(a) \le y \le f(b)$.

Can assume that a < b. Need $x \in [a, b]$ with f(x) = y.

Define
$$arphi\colon \mathbb{R} o\mathbb{R}$$
 as $arphi(t):= extstyle F(t) - extstyle yt.$ So $arphi'(t)= extstyle f(t)- extstyle yt$

and
$$arphi'(a)=f(a)-y\leq 0\leq f(b)-y=arphi'(b).$$

Need
$$x \in [a, b]$$
 with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a, b] is attained at an $x \in (a, b)$.

So,
$$\varphi'(x) = 0$$
, as needed

Fix $a, b, y \in \mathbb{R}$ with $f(a) \le y \le f(b)$.

Can assume that a < b. Need $x \in [a, b]$ with f(x) = y.

Define
$$\varphi \colon \mathbb{R} \to \mathbb{R}$$
 as $\varphi(t) := F(t) - yt$. So $\varphi'(t) = f(t) - yt$

and
$$\varphi'(a) = f(a) - y \le 0 \le f(b) - y = \varphi'(b)$$
.

Need $x \in [a, b]$ with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a, b] is attained at an $x \in (a, b)$.

So, $\varphi'(x) = 0$, as needed

Fix $a, b, y \in \mathbb{R}$ with $f(a) \le y \le f(b)$.

Can assume that a < b. Need $x \in [a, b]$ with f(x) = y.

Define
$$\varphi \colon \mathbb{R} \to \mathbb{R}$$
 as $\varphi(t) := F(t) - yt$. So $\varphi'(t) = f(t) - yt$

and
$$\varphi'(a) = f(a) - y \le 0 \le f(b) - y = \varphi'(b)$$
.

Need $x \in [a, b]$ with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a, b] is attained at an $x \in (a, b)$.

So, $\varphi'(x) = 0$, as needed

Fix $a, b, y \in \mathbb{R}$ with $f(a) \le y \le f(b)$.

Can assume that a < b. Need $x \in [a, b]$ with f(x) = y.

Define
$$\varphi \colon \mathbb{R} \to \mathbb{R}$$
 as $\varphi(t) := F(t) - yt$. So $\varphi'(t) = f(t) - yt$

and
$$\varphi'(a) = f(a) - y \le 0 \le f(b) - y = \varphi'(b)$$
.

Need $x \in [a, b]$ with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a, b] is attained at an $x \in (a, b)$.

So, $\varphi'(x) = 0$, as needed

Fix $a, b, y \in \mathbb{R}$ with $f(a) \le y \le f(b)$.

Can assume that a < b. Need $x \in [a, b]$ with f(x) = y.

Define
$$\varphi \colon \mathbb{R} \to \mathbb{R}$$
 as $\varphi(t) := F(t) - yt$. So $\varphi'(t) = f(t) - yt$

and
$$\varphi'(a) = f(a) - y \le 0 \le f(b) - y = \varphi'(b)$$
.

Need
$$x \in [a, b]$$
 with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a, b] is attained at an $x \in (a, b)$.

So, $\varphi'(x) = 0$, as needed.

Fix $a, b, y \in \mathbb{R}$ with $f(a) \le y \le f(b)$.

Can assume that a < b. Need $x \in [a, b]$ with f(x) = y.

Define
$$\varphi \colon \mathbb{R} \to \mathbb{R}$$
 as $\varphi(t) := F(t) - yt$. So $\varphi'(t) = f(t) - yt$

and
$$\varphi'(a) = f(a) - y \le 0 \le f(b) - y = \varphi'(b)$$
.

Need
$$x \in [a, b]$$
 with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a, b] is attained at an $x \in (a, b)$.

So,
$$\varphi'(x) = 0$$
, as needed

Fix $a, b, y \in \mathbb{R}$ with $f(a) \le y \le f(b)$.

Can assume that a < b. Need $x \in [a, b]$ with f(x) = y.

Define
$$\varphi \colon \mathbb{R} \to \mathbb{R}$$
 as $\varphi(t) := F(t) - yt$. So $\varphi'(t) = f(t) - yt$

and
$$\varphi'(a) = f(a) - y \le 0 \le f(b) - y = \varphi'(b)$$
.

Need
$$x \in [a, b]$$
 with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a,b] is attained at an $x \in (a,b)$.

So, $\varphi'(x) = 0$, as needed.

Fix $a, b, y \in \mathbb{R}$ with $f(a) \le y \le f(b)$.

Can assume that a < b. Need $x \in [a, b]$ with f(x) = y.

Define
$$\varphi \colon \mathbb{R} \to \mathbb{R}$$
 as $\varphi(t) := F(t) - yt$. So $\varphi'(t) = f(t) - yt$

and
$$\varphi'(a) = f(a) - y \le 0 \le f(b) - y = \varphi'(b)$$
.

Need $x \in [a, b]$ with $\varphi'(x) = 0$. Can assume $\varphi'(a) < 0 < \varphi'(b)$.

Then, minimum of φ on [a,b] is attained at an $x \in (a,b)$.

So, $\varphi'(x) = 0$, as needed.

Baire result

René-Louis Baire (1874-1932)

Theorem (1899 dissertation of Baire)

The derivative of any differentiable $F: \mathbb{R} \to \mathbb{R}$ is Baire class one, that is, it is a pointwise limit of continuous functions. In particular, the set of points of continuity of F' (as for any Baire class one function) is a **dense** G_8 -set.

Baire result

René-Louis Baire (1874-1932)

Theorem (1899 dissertation of Baire)

The derivative of any differentiable $F: \mathbb{R} \to \mathbb{R}$ is Baire class one, that is, it is a pointwise limit of continuous functions. In particular, the set of points of continuity of F' (as for any Baire class one function) is a dense $G_{\mathbb{R}}$ -set

Baire result

René-Louis Baire (1874-1932)

Theorem (1899 dissertation of Baire)

The derivative of any differentiable $F: \mathbb{R} \to \mathbb{R}$ is Baire class one, that is, it is a pointwise limit of continuous functions. In particular, the set of points of continuity of F' (as for any Baire class one function) is a **dense** G_{δ} -set.

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s) - g(t)| < 1/n \text{ for all } s, t \in (x - \delta, x + \delta)\}.$$

If $g=\lim\limits_{n o\infty}g_n,\,g_n\colon\mathbb{R} o\mathbb{R}$ continuous, then C_g contains a dense G_δ -set $G:=\bigcap_{n=1}^\infty\bigcup_{N=1}^\infty U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem (Sets of points of continuity of derivatives

Let $G \subset \mathbb{R}$.

There exists a derivative f with $C_f = G$ iff G is a dense G_δ .

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s)-g(t)| < 1/n \text{ for all } s,t \in (x-\delta,x+\delta)\}.$$

If $g=\lim\limits_{n o\infty}g_n,\,g_n\colon\mathbb{R} o\mathbb{R}$ continuous, then C_g contains a dense G_δ -set $G:=\bigcap_{n=1}^\infty\bigcup_{N=1}^\infty U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem (Sets of points of continuity of de

Let $G \subset \mathbb{R}$.

There exists a derivative f with $\mathcal{C}_f = \mathcal{G}$ iff \mathcal{G} is a dense $\mathcal{G}_\delta.$

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s)-g(t)| < 1/n \text{ for all } s,t \in (x-\delta,x+\delta)\}.$$

If $g = \lim_{n \to \infty} g_n$, $g_n \colon \mathbb{R} \to \mathbb{R}$ continuous, then C_g contains a dense G_δ -set $G := \bigcap_{n=1}^\infty \bigcup_{N=1}^\infty U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem

Let $G \subset \mathbb{R}$.

There exists a derivative f with $C_f=G$ iff G is a dense $G_\delta.$

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s)-g(t)| < 1/n \text{ for all } s,t \in (x-\delta,x+\delta)\}.$$

If $g = \lim_{n \to \infty} g_n$, $g_n \colon \mathbb{R} \to \mathbb{R}$ continuous, then C_g contains a dense G_{δ} -set $G := \bigcap_{n=1}^{\infty} \bigcup_{N=1}^{\infty} U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem (Sets of points of continuity of derivatives)

Let $G \subset \mathbb{R}$.

There exists a derivative f with $C_f = G$ iff G is a dense G_δ .

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s)-g(t)| < 1/n \text{ for all } s,t \in (x-\delta,x+\delta)\}.$$

If $g = \lim_{n \to \infty} g_n$, $g_n \colon \mathbb{R} \to \mathbb{R}$ continuous, then C_g contains a dense G_δ -set $G := \bigcap_{n=1}^\infty \bigcup_{N=1}^\infty U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem (Sets of points of continuity of derivatives)

Let $G \subset \mathbb{R}$.

There exists a derivative f with $C_f = G$ iff G is a dense G_δ .

Other properties that derivatives and continuous maps

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f \colon [0,1] \to [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$. So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

Must *f* as above have connected graph?

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f : [0,1] \rightarrow [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$. So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f: [0,1] \rightarrow [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$ So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f: [0,1] \rightarrow [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$ So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f \colon [0,1] \to [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$. So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f \colon [0,1] \to [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$. So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f \colon [0,1] \to [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$. So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f: [0,1] \rightarrow [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$. So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

- Any derivative $f: \mathbb{R} \to \mathbb{R}$ has a connected graph. (True for any Darboux Baire class one map.)
- Any derivative $f \colon [0,1] \to [0,1]$ has a fix point: an $x \in [0,1]$ with f(x) = x. g(x) := f(x) - x is a derivative with $g(0) \ge 0 \ge g(1)$. So, there is $x \in [0,1]$ with g(x) = 0.
- (New result, from years 2000-2003) Finite composition f of derivatives from I := [0, 1] into I has a fix point.

Open Problem

Outline

- What good properties differentiable functions MUST have?
- 2 How BAD differentiable functions can be?
- 3 Differentiability from continuity: differentiable restrictions
- 4 Properties of differentiable maps on perfect $P \subset \mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems

There are continuous nowhere monotone maps

(e.g. Weierstrass example we discuss latter). Can such maps be differentiable?

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; KC 2017; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable *f* is a monster iff *f'* attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

There are continuous nowhere monotone maps (e.g. Weierstrass example we discuss latter).

Can such maps be differentiable?

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; KC 2017; and many others)

There is differentiable $f\colon \mathbb{R} o\mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

There are continuous nowhere monotone maps (e.g. Weierstrass example we discuss latter). Can such maps be differentiable?

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; KC 2017; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

There are continuous nowhere monotone maps (e.g. Weierstrass example we discuss latter). Can such maps be differentiable?

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; KC 2017; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable *f* is a monster iff *f'* attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

There are continuous nowhere monotone maps (e.g. Weierstrass example we discuss latter). Can such maps be differentiable?

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; KC 2017; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

There are continuous nowhere monotone maps (e.g. Weierstrass example we discuss latter). Can such maps be differentiable?

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; KC 2017; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set Z^c = {x: f'(x) ≠ 0}.

There are continuous nowhere monotone maps (e.g. Weierstrass example we discuss latter). Can such maps be differentiable?

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; KC 2017; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set Z^c = {x: f'(x) ≠ 0}.

good bad Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

Arnaud Denjoy and Dimitrie Pompeiu

Arnaud Denjoy (1884–1974)

Dimitrie Pompeiu (1873-1954)

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .

(ii)
$$Z$$
 is G_δ as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .

(ii)
$$Z$$
 is G_{δ} as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .

(ii)
$$Z$$
 is G_{δ} as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from (i).

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .

(ii)
$$Z$$
 is G_{δ} as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from (i).

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .

(ii)
$$Z$$
 is G_{δ} as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from (i).

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity and "differentiability" of g is proved in the following slides. This easily implies the rest of (i).
- (ii) Z is G_{δ} as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from (i).

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity and "differentiability" of g is proved in the following slides. This easily implies the rest of (i).
- (ii) Z is G_{δ} as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from (i).

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity and "differentiability" of g is proved in the following slides. This easily implies the rest of (i).
- (ii) Z is G_{δ} as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from (i).

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity and "differentiability" of g is proved in the following slides. This easily implies the rest of (i).
- (ii) Z is G_{δ} as $Z = \bigcap_{i,N \in \mathbb{N}} \bigcup_{n \geq N} h_n^{-1}(-1/i,1/i)$, where $h_n(x) := \frac{h(x+2^{-n})-h(x)}{2^{-n}}$. The rest of (ii) & (iii) easily follow from (i).

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any t in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any t in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$.

$$f'<0 \text{ on } D$$
: $f'(d)=h'(d-t)-h'(d)=-h'(d)<0$, as $d-t\in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any t in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$.

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any t in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$.

$$f' < 0$$
 on D: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

$$g(x) = \sum_{i=1}^{\infty} r^i (x - q_i)^{1/3}$$
 is continuous

g is continuous, since the series $g(x) = \sum_{i=1}^{\infty} r^i (x - q_i)^{1/3}$

converges uniformly on every bounded set:

$$|g(x)| \leq \sum_{i=1}^{\infty} r^i (|x| + i + 1)$$
, as

$$|(x-q_i)^{1/3}| \le (|x|+|q_i|+1)^{1/3} \le |x|+|q_i|+1 \le |x|+i+1.$$

$$g(x) = \sum_{i=1}^{\infty} r^{i}(x - q_{i})^{1/3}$$
 is "differentiable"

Let $\psi_i(x) := r^i(x - q_i)^{1/3}$. It is enough to show that

$$g'(x) = \sum_{i=1}^{\infty} \psi_i'(x). \tag{1}$$

- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) = \infty$, since, for every $y \neq x$, $\frac{g(x)-g(y)}{x-y} = \sum_{i=1}^{\infty} \frac{\psi_i(x)-\psi_i(y)}{x-y} \geq \sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$, and $\sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$ is arbitrarily large for big n & small |x-y|.
- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) < \infty$, since, for every $y \neq x$, we have $0 < \frac{\psi_i(x) \psi_i(y)}{x y} \le 6\psi_i'(x)$. (Draw graph.) Indeed, for $\varepsilon > 0$ and $n \in \mathbb{N}$ for which $\sum_{i=n+1}^{\infty} \psi_i'(x) < \varepsilon/14$.

$$\left| \frac{g(x) - g(y)}{x - y} - \sum_{i=1}^{\infty} \psi_i'(x) \right| \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + 7 \left| \sum_{i=n+1}^{\infty} \psi_i'(x) \right|$$

$$\leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + \frac{\varepsilon}{2},$$

which is less than ε for y close enough to $X_{\text{loc}} \to \text{loc} \to \text{loc}$

$$g(x) = \sum_{i=1}^{\infty} r^{i}(x - q_{i})^{1/3}$$
 is "differentiable"

$$g'(x) = \sum_{i=1}^{\infty} \psi_i'(x). \tag{1}$$

- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) = \infty$, since, for every $y \neq x$, $\frac{g(x)-g(y)}{x-y} = \sum_{i=1}^{\infty} \frac{\psi_i(x)-\psi_i(y)}{x-y} \geq \sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$, and $\sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$ is arbitrarily large for big n & small |x-y|.
- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) < \infty$, since, for every $y \neq x$, we have $0 < \frac{\psi_i(x) \psi_i(y)}{x y} \le 6\psi_i'(x)$. (Draw graph.) Indeed, for $\varepsilon > 0$ and $n \in \mathbb{N}$ for which $\sum_{i=n+1}^{\infty} \psi_i'(x) < \varepsilon/14$

$$\left| \frac{g(x) - g(y)}{x - y} - \sum_{i=1}^{\infty} \psi_i'(x) \right| \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + 7 \left| \sum_{i=n+1}^{\infty} \psi_i'(x) \right| \\
\leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + \frac{\varepsilon}{2},$$

$$g(x) = \sum_{i=1}^{\infty} r^i (x - q_i)^{1/3}$$
 is "differentiable"

$$g'(x) = \sum_{i=1}^{\infty} \psi_i'(x). \tag{1}$$

(1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) = \infty$, since, for every $y \neq x$,

$$\frac{g(x) - g(y)}{x - y} = \sum_{i=1}^{\infty} \frac{\psi_i(x) - \psi_i(y)}{x - y} \ge \sum_{i=1}^{n} \frac{\psi_i(x) - \psi_i(y)}{x - y}$$

and $\sum_{i=1}^{n} \frac{\psi_i(x) - \psi_i(y)}{x - y}$ is arbitrarily large for big n & small |x - y|.

(1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) < \infty$, since, for every $y \neq x$, we have $0 < \frac{\psi_i(x) - \psi_i(y)}{x - v} \le 6\psi_i'(x)$. (Draw graph.)

Indeed, for $\varepsilon > 0$ and $n \in \mathbb{N}$ for which $\sum_{i=n+1}^{\infty} \psi_i'(x) < \varepsilon/14$,

$$\frac{g(x) - g(y)}{x - y} - \sum_{i=1}^{\infty} \psi_i'(x) \Big| \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + 7 \left| \sum_{i=n+1}^{\infty} \psi_i'(x) \right| \\
\leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + \frac{\varepsilon}{2},$$

which is less than ε for y close enough to x_{i} , x_{i} ,

$$g(x) = \sum_{i=1}^{\infty} r^{i}(x - q_{i})^{1/3}$$
 is "differentiable"

$$g'(x) = \sum_{i=1}^{\infty} \psi_i'(x). \tag{1}$$

(1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) = \infty$, since, for every $y \neq x$,

$$\frac{g(x)-g(y)}{x-y} = \sum_{i=1}^{\infty} \frac{\psi_i(x)-\psi_i(y)}{x-y} \ge \sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y},$$

and $\sum_{i=1}^{n} \frac{\psi_i(x) - \psi_i(y)}{x - y}$ is arbitrarily large for big n & small |x - y|.

(1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) < \infty$, since, for every $y \neq x$, we have $0 < \frac{\psi_i(x) - \psi_i(y)}{x - y} \le 6\psi_i'(x)$. (Draw graph.)

Indeed, for $\varepsilon > 0$ and $n \in \mathbb{N}$ for which $\sum_{i=n+1}^{\infty} \psi_i'(x) < \varepsilon/14$,

$$\frac{g(x) - g(y)}{x - y} - \sum_{i=1}^{\infty} \psi_i'(x) \Big| \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + 7 \left| \sum_{i=n+1}^{\infty} \psi_i'(x) \right| \\
\leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + \frac{\varepsilon}{2},$$

which is less than ε for y close enough to x_{i} , x_{i} ,

$$g(x) = \sum_{i=1}^{\infty} r^{i}(x - q_{i})^{1/3}$$
 is "differentiable"

$$g'(x) = \sum_{i=1}^{\infty} \psi_i'(x). \tag{1}$$

(1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) = \infty$, since, for every $y \neq x$, $\frac{g(x)-g(y)}{x-y} = \sum_{i=1}^{\infty} \frac{\psi_i(x)-\psi_i(y)}{x-y} \geq \sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$, and $\sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$ is arbitrarily large for big n & small |x-y|.

(1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) < \infty$, since, for every $y \neq x$, we have $0 < \frac{\psi_i(x) - \psi_i(y)}{x - y} \le 6\psi_i'(x)$. (Draw graph.) Indeed, for $\varepsilon > 0$ and $n \in \mathbb{N}$ for which $\sum_{i=n+1}^{\infty} \psi_i'(x) < \varepsilon/14$

$$\frac{g(x) - g(y)}{x - y} - \sum_{i=1}^{\infty} \psi_i'(x) \Big| \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + 7 \left| \sum_{i=n+1}^{\infty} \psi_i'(x) \right| \\
\leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + \frac{\varepsilon}{2},$$

which is less than ε for y close enough to $X_{\text{loc}} \to \text{loc} \to \text{loc}$

$$g(x) = \sum_{i=1}^{\infty} r^{i}(x - q_{i})^{1/3}$$
 is "differentiable"

$$g'(x) = \sum_{i=1}^{\infty} \psi_i'(x). \tag{1}$$

- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) = \infty$, since, for every $y \neq x$, $\frac{g(x)-g(y)}{x-y} = \sum_{i=1}^{\infty} \frac{\psi_i(x)-\psi_i(y)}{x-y} \geq \sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$, and $\sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$ is arbitrarily large for big n & small |x-y|.
- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) < \infty$, since, for every $y \neq x$, we have $0 < \frac{\psi_i(x) \psi_i(y)}{x y} \le 6\psi_i'(x)$. (Draw graph.)

$$\frac{g(x) - g(y)}{x - y} - \sum_{i=1}^{\infty} \psi_i'(x) \Big| \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + 7 \left| \sum_{i=n+1}^{\infty} \psi_i'(x) \right| \\
\leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + \frac{\varepsilon}{2},$$

which is less than ε for y close enough to $X_{\text{loc}} \leftarrow \text{loc} \leftarrow \text{loc} \leftarrow \text{loc}$

$$g(x) = \sum_{i=1}^{\infty} r^{i}(x - q_{i})^{1/3}$$
 is "differentiable"

$$g'(x) = \sum_{i=1}^{\infty} \psi_i'(x). \tag{1}$$

- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) = \infty$, since, for every $y \neq x$, $\frac{g(x)-g(y)}{x-y} = \sum_{i=1}^{\infty} \frac{\psi_i(x)-\psi_i(y)}{x-y} \geq \sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$, and $\sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$ is arbitrarily large for big n & small |x-y|.
- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) < \infty$, since, for every $y \neq x$, we have $0 < \frac{\psi_i(x) \psi_i(y)}{x y} \le 6\psi_i'(x)$. (Draw graph.) Indeed, for $\varepsilon > 0$ and $n \in \mathbb{N}$ for which $\sum_{i=n+1}^{\infty} \psi_i'(x) < \varepsilon/14$,

$$\frac{g(x) - g(y)}{x - y} - \sum_{i=1}^{\infty} \psi_i'(x) \Big| \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + 7 \left| \sum_{i=n+1}^{\infty} \psi_i'(x) \right| \\
\leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) - \psi_i(y)}{x - y} - \psi_i'(x) \right| + \frac{\varepsilon}{2},$$

which is less than ε for y close enough to $X_{\text{loc}} \leftarrow \text{loc} \leftarrow \text{loc} \leftarrow \text{loc}$

$$g(x) = \sum_{i=1}^{\infty} r^{i}(x - q_{i})^{1/3}$$
 is "differentiable"

$$g'(x) = \sum_{i=1}^{\infty} \psi'_i(x). \tag{1}$$

(1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) = \infty$, since, for every $y \neq x$, $\frac{g(x)-g(y)}{x-y} = \sum_{i=1}^{\infty} \frac{\psi_i(x)-\psi_i(y)}{x-y} \geq \sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$, and $\sum_{i=1}^{n} \frac{\psi_i(x)-\psi_i(y)}{x-y}$ is arbitrarily large for big n & small |x-y|.

- (1) holds when $\sum_{i=1}^{\infty} \psi_i'(x) < \infty$, since, for every $y \neq x$, we have $0 < \frac{\psi_i(x) \psi_i(y)}{x y} \le 6\psi_i'(x)$. (Draw graph.) Indeed, for $\varepsilon > 0$ and $n \in \mathbb{N}$ for which $\sum_{i=n+1}^{\infty} \psi_i'(x) < \varepsilon/14$,
- $\left| \frac{g(x) g(y)}{x y} \sum_{i=1}^{\infty} \psi_i'(x) \right| \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) \psi_i(y)}{x y} \psi_i'(x) \right| + 7 \left| \sum_{i=n+1}^{\infty} \psi_i'(x) \right| \\
 \leq \sum_{i=1}^{n} \left| \frac{\psi_i(x) \psi_i(y)}{x y} \psi_i'(x) \right| + \frac{\varepsilon}{2},$

which is less than ε for y close enough to x, $x \in \mathbb{R}$

Outline

- What good properties differentiable functions MUST have?
- 2 How BAD differentiable functions can be?
- 3 Differentiability from continuity: differentiable restrictions
- 4 Properties of differentiable maps on perfect $P \subset \mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems

pood bad Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

How much differentiability continuous map must have

None?

Example (Weierstrass 1886; Bolzano, unpublished, 1822)

There exists continuous $F: \mathbb{R} \to \mathbb{R}$ differentiable at no point.

Deierstraf

Bernard Bolzano (1781-1848)

Karl Weierstrass (1815–1897)

good bad Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

How much differentiability continuous map must have

None?

Example (Weierstrass 1886; Bolzano, unpublished, 1822)

There exists continuous $F : \mathbb{R} \to \mathbb{R}$ differentiable at no point.

Deierstraf

Bernard Bolzano (1781-1848)

(arl Weierstrass (1815–1897)

good bad Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

How much differentiability continuous map must have

None?

Example (Weierstrass 1886; Bolzano, unpublished, 1822)

There exists continuous $F : \mathbb{R} \to \mathbb{R}$ differentiable at no point.

Deierstraf

Bernard Bolzano (1781-1848)

Karl Weierstrass (1815–1897)

Weierstrass' Monster: $W(x) := \sum_{n=0}^{\infty} \frac{1}{2^n} \cos(13^n \pi x)$

Teiji Takagi (1875–1960)

Bartel van der Waerden (1903–1996)

 $F(x) = \sum_{n=0}^{\infty} 4^n \min\{|x - \frac{k}{8^n}| \colon k \in \mathbb{Z}\}$ Weierstrass' Monster of
Takagi from 1903, and
van der Waerden, from 1930

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f\colon \mathbb{R} o\mathbb{R}$ such that $f\restriction Q$ can be differentiable only when Q is both first category and meager.

Proof

Let $f = (f_1, f_2) : [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof

Let $f = (f_1, f_2) : [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2) : [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2) \colon [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2) \colon [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2)$: $[0, 1] \rightarrow [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

New proof of differentiable restriction theorem

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing $f:[a,b]\to\mathbb{R}$ there is perfect P such that $f\upharpoonright P$ is Lipschitz.

This reasonably easily implies the Goal.

New proof of differentiable restriction theorem

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing $f:[a,b]\to\mathbb{R}$ there is perfect P such that $f\upharpoonright P$ is Lipschitz.

This reasonably easily implies the Goal.

New proof of differentiable restriction theorem

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing $f:[a,b]\to\mathbb{R}$ there is perfect P such that $f\upharpoonright P$ is Lipschitz.

This reasonably easily implies the Goal.

Outline

- 1 What good properties differentiable functions MUST have?
- 2 How BAD differentiable functions can be?
- Oifferentiability from continuity: differentiable restrictions
- lack 4 Properties of differentiable maps on perfect $P\subset \mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism \mathfrak{f} of a compact perfect subset \mathfrak{X} of the Cantor ternary set \mathfrak{C} such that $\mathfrak{f}'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}$, $P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterinfultive, as $\mathfrak f$ is shrinking at every $x\in\mathfrak X$ $(|\mathfrak f(x)-\mathfrak f(y)|<|x-y|$ for every $y\in\mathfrak X$ with small |x-y|>0; but it maps compact $\mathfrak X$ onto itself. Also

Theorem (Edelstein 1962,

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}$, $P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$

 $(|f(x) - f(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} onto itself. Also

Theorem (Edelstein 1962)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism \mathfrak{f} of a compact perfect subset \mathfrak{X} of the Cantor ternary set \mathfrak{C} such that $\mathfrak{f}'\equiv 0$.

Counterintuitive, as f is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} onto itself.

Theorem (Edelstein 1962)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism \mathfrak{f} of a compact perfect subset \mathfrak{X} of the Cantor ternary set \mathfrak{C} such that $\mathfrak{f}'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

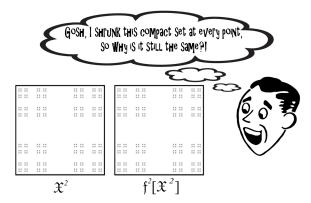


Figure: The result of the action of $\mathfrak{f}^2=\langle\mathfrak{f},\mathfrak{f}\rangle$ on $\mathfrak{X}^2=\mathfrak{X}\times\mathfrak{X}$

Definition of f with $f' \equiv 0$, Monster # 2

 $f = h \circ \sigma \circ h^{-1}$, where $h: 2^{\omega} \to \mathbb{R}$ is embedding and $\sigma \colon 2^{\omega} \to 2^{\omega}$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s = \langle 1, 1, 1, \ldots \rangle, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, \ldots \rangle & \text{if } s = \langle 1, 1, \ldots, 1, 0, s_{k+1}, \ldots \rangle. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Definition of \mathfrak{f} with $\mathfrak{f}' \equiv 0$, Monster # 2

 $\mathfrak{f}=h\circ\sigma\circ h^{-1},$ where $h\colon 2^\omega\to\mathbb{R}$ is embedding and $\sigma\colon 2^\omega\to 2^\omega$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s = \langle 1, 1, 1, \ldots \rangle, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, \ldots \rangle & \text{if } s = \langle 1, 1, \ldots, 1, 0, s_{k+1}, \ldots \rangle. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

 $\mathfrak{f}=h\circ\sigma\circ h^{-1},$ where $h\colon 2^\omega\to\mathbb{R}$ is embedding and $\sigma\colon 2^\omega\to 2^\omega$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s = \langle 1, 1, 1, \ldots \rangle, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, \ldots \rangle & \text{if } s = \langle 1, 1, \ldots, 1, 0, s_{k+1}, \ldots \rangle. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Definition of \mathfrak{f} with $\mathfrak{f}' \equiv 0$, Monster # 2

 $\mathfrak{f}=h\circ\sigma\circ h^{-1},$ where $h\colon 2^\omega\to\mathbb{R}$ is embedding and $\sigma\colon 2^\omega\to 2^\omega$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s = \langle 1, 1, 1, \ldots \rangle, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, \ldots \rangle & \text{if } s = \langle 1, 1, \ldots, 1, 0, s_{k+1}, \ldots \rangle. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Definition of f with $f' \equiv 0$, Monster # 2

 $f = h \circ \sigma \circ h^{-1}$, where $h: 2^{\omega} \to \mathbb{R}$ is embedding and $\sigma \colon 2^{\omega} \to 2^{\omega}$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s = \langle 1, 1, 1, \ldots \rangle, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, \ldots \rangle & \text{if } s = \langle 1, 1, \ldots, 1, 0, s_{k+1}, \ldots \rangle. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Peek at a proof of $f' \equiv 0$ for $f = h \circ \sigma \circ h^{-1}$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,

$$3^{-(n+1)N(s|n)} \le |h(s) - h(t)| \le 3 \cdot 3^{-(n+1)N(s|n)}$$

Also (a):
$$\forall s \in 2^{\omega} \ \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

$$0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega : s_i \neq t_i\} > k. \text{ Ther}$$

$$\frac{|f(h(s)) - f(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \upharpoonright n)}}{3^{-(n+1)N(s \upharpoonright n)}} = 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$$

Def: $h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$,

Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then

$$3^{-(n+1)N(s \upharpoonright n)} < |h(s) - h(t)| < 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$$

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

$$0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega \colon s_i \neq t_i\} > k. \text{ Then } s_i \neq t_i\}$$

$$\frac{|f(h(s)) - f(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \upharpoonright n)}}{3^{-(n+1)N(s \upharpoonright n)}} = 3 \cdot 3^{-(n+1)}.$$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

$$0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega \colon s_i \neq t_i\} > k. \text{ Then}$$

$$\frac{|f(h(s)) - f(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \upharpoonright n)}}{3^{-(n+1)N(s \upharpoonright n)}} = 3 \cdot 3^{-(n+1)}.$$

Peek at a proof of $f' \equiv 0$ for $f = h \circ \sigma \circ h^{-1}$

Def: $h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$, Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \le |h(s) - h(t)| \le 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a): $\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$

$$0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega \colon s_i \neq t_i\} > k. \text{ Then}$$

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \upharpoonright n)}}{3^{-(n+1)N(s \upharpoonright n)}} = 3 \cdot 3^{-(n+1)}.$$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$.

```
Proof of \mathfrak{f}' \equiv 0.
```

To see f'(h(s)) = 0: pick $k < \omega$ from (a) and $\delta > 0$ s.t.

 $0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega \colon s_i \neq t_i\} > k. \text{ Then }$

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \mid n)}}{3^{-(n+1)N(s \mid n)}} = 3 \cdot 3^{-(n+1)}.$$

```
Def: h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},
Fact: If s \neq t \in 2^{\omega} and n = \min\{i < \omega : s_i \neq t_i\}, then 3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}.
```

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$.

Proof of $\mathfrak{f}' \equiv 0$.

To see $\mathfrak{f}'(h(s)) = 0$: pick $k < \omega$ from (a) and $\delta > 0$ s.t. $0 < |h(s) - h(t)| < \delta$ implies $n = \min\{i < \omega : s_i \neq t_i\} > k$. Then,

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \restriction n)}}{3^{-(n+1)N(s \restriction n)}} = 3 \cdot 3^{-(n+1)}$$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$.

Proof of $\mathfrak{f}'\equiv 0$.

To see $\mathfrak{f}'(h(s)) = 0$: pick $k < \omega$ from (a) and $\delta > 0$ s.t. $0 < |h(s) - h(t)| < \delta$ implies $n = \min\{i < \omega : s_i \neq t_i\} > k$. Then,

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \mid n)}}{3^{-(n+1)N(s \mid n)}} = 3 \cdot 3^{-(n+1)}.$$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$.

Proof of $\mathfrak{f}'\equiv 0$.

To see $\mathfrak{f}'(h(s)) = 0$: pick $k < \omega$ from (a) and $\delta > 0$ s.t. $0 < |h(s) - h(t)| < \delta$ implies $n = \min\{i < \omega : s_i \neq t_i\} > k$. Then,

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s)|n)}}{3^{-(n+1)N(s|n)}} = 3 \cdot 3^{-(n+1)}.$$

Outline

- What good properties differentiable functions MUST have?
- 2 How BAD differentiable functions can be?
- Differentiability from continuity: differentiable restrictions
- 4 Properties of differentiable maps on perfect $P \subset \mathbb{R}$
- Differentiable extensions: Jarník and Whitney theorems

Jarník's differentiable extension theorems

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné, přičemž zůstává zachována derivabilita funkce* (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

good bad Cont \Longrightarrow Diff Properties of f
estriction P Differentiable Extensions

Jarník's differentiable extension theorems

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné,* přičemž zůstává zachována derivabilita funkce (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

Jarník's differentiable extension theorems

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné,* přičemž zůstává zachována derivabilita funkce (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

good bad Cont \Longrightarrow Diff Properties of f
estriction P

Jarník's differentiable extension theorems

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

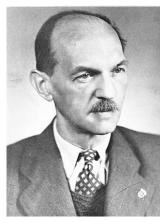
Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné,* přičemž zůstává zachována derivabilita funkce (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

good bad Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

Vojtěch Jarník and Hassler Whitney



Vojtěch Jarník (1897–1970)

Hassler Whitney (1907-1989)

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \mid \hat{Q}$ is continuously differentiable.

Here \hat{Q} is a simple natural extension of Q.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985) C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

It is easy to see that \hat{h} is continuously differentiable for such h_{e}

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \upharpoonright \hat{Q}$ is continuously differentiable.

Here \hat{Q} is a simple natural extension of Q.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: \mathcal{C}^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

It is easy to see that \hat{h} is continuously differentiable for such h_{e}

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \upharpoonright \hat{Q}$ is continuously differentiable.

Here \hat{Q} is a simple natural extension of Q.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

It is easy to see that \hat{h} is continuously differentiable for such h_{e}

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \upharpoonright \hat{Q}$ is continuously differentiable.

Here \hat{Q} is a simple natural extension of Q.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

It is easy to see that \hat{h} is continuously differentiable for such $h_{\frac{1}{2}}$

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \upharpoonright \hat{Q}$ is continuously differentiable.

Here \hat{Q} is a simple natural extension of Q.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

It is easy to see that \hat{h} is continuously differentiable for such $h_{\underline{z}}$

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $t: Q \to \mathbb{R}$ is differentiable, then t is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of \bar{f} : $F = \bar{f} + g$:

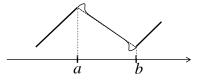


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

pood bad Cont⇒Diff Properties of f ↑ P Differentiable Extensions

Our proof of Jarník and Whitney thms (for perfect Q)

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of f: F = f + g:

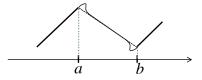


Figure: A format of the graph (thin continuous curve) of F = f + g on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of \bar{f} : $F = \bar{f} + g$:

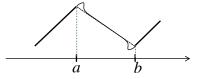


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of \bar{f} : $F = \bar{f} + g$:

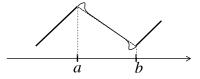


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of \bar{f} : $F = \bar{f} + g$:

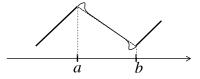


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such F can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2015)

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 20 6: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such *F* can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2015)

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such F can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2015)

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such *F* can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2015)

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such *F* can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such *F* can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F \colon \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1)

such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as #1 + #2 = #3

Proof

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F: \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1) such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as #1 + #2 = #3

Proof

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F: \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1) such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as #1 + #2 = #3

Proof

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F: \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1) such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as
$$#1 + #2 = #3$$

Proof

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F: \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1) such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as #1 + #2 = #3

Proof.

BAMS survey contains a lot of other results

But this is all for today

Thank you for your attention!

BAMS survey contains a lot of other results

But this is all for today

Thank you for your attention!

BAMS survey contains a lot of other results

But this is all for today

Thank you for your attention!

