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Preamble: Whats ahead

All discussed notions should be known to any math major

All results presented have proofs (often very new) that
require no Lebesgue measure theory

The text of this presentation can be found on my page:

https://math.wvu.edu/˜kciesiel/presentations.html
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Outline

1 Continuity from differentiability: classical results

2 Continuity from differentiability: newer results

3 Differentiability from continuity: differentiable restrictions

4 Properties of differentiable maps on perfect P ⊂ R

5 Differentiable extensions: Jarník and Whitney theorems

6 Summary
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Continuity from differentiability: What is it to ask?

Clearly, if F : R→ R is differentiable, then F is continuous.

For differentiable G : C→ C, G′ is continuous (due to Cauchy.)

However, F ′ need not be continuous, e.g., for

F (x) :=

{
x2 sin

(
x−1) for x 6= 0,

0 for x = 0.

True question: To what extend f = F ′ must be continuous?

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 2
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About F (x) = x2 sin
(
x−1
)

This F appeared already in the
1881 paper of Vito Volterra

(1860-1940)

Graph of F

-0.2 -0.1 0.0 0.1 0.2

Graph of F ′
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To what extend f = F ′ must be continuous?

Jean-Gaston Darboux
(1842-1917)

Theorem (Darboux 1875)
Any derivative f : R→ R has the
intermediate value property (IVP),
that is, for every a < b and y
between f (a) and f (b) there exists an
x ∈ [a,b] with f (x) = y.

Since then, maps with IVP are called
Darboux functions.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 4
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Baire result

René-Louis Baire
(1874-1932)

Theorem (1899 dissertation of Baire)
The derivative of any differentiable
F : R→ R is Baire class one, that is,
it is a pointwise limit of continuous
functions. In particular, the set of
points of continuity of F ′ (as for any
Baire class one function) is a dense
Gδ-set.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 5
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Proof of previous theorem and a characterization

F ′(x) = lim
n→∞

Fn(x), with Fn(x) := f (x+1/n)−f (x)
1/n continuous.

For any g : R→ R, Cg := {x : g is continuous at x} is a Gδ-set:
Cg :=

⋂∞
n=1 Vn, where the open sets Vn are defined as

Vn :=
⋃
δ>0

{x ∈ R : |g(s)− g(t)| < 1/n for all s, t ∈ (x − δ, x + δ)}.

If g = lim
n→∞

gn, gn : R→ R continuous, then Cg contains a

dense Gδ-set G :=
⋂∞

n=1
⋃∞

N=1 Un
N , where each Un

N is the
interior of the closed set

{x ∈ R : |fk (x)− fm(x)| ≤ 1/n for all m, k ≥ N}.

Theorem (Sets of points of continuity of derivatives)
Let G ⊂ R.
There exists a derivative f with Cf = G iff G is a dense Gδ.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 6
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Fixed point property

Theorem (Relatively new)

If f = fn ◦ · · · ◦ f1, where each fi : [0,1]→ [0,1] is a derivative,
then f has a fixed point.

For n = 1: easy exercise, as h(x) = f (x)− x is Darboux.

For n = 2: proved independently in 2001
by Csörnyei, O’Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary n: Szuca 2003.

Open Problem
Must f as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 7



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Fixed point property

Theorem (Relatively new)

If f = fn ◦ · · · ◦ f1, where each fi : [0,1]→ [0,1] is a derivative,
then f has a fixed point.

For n = 1: easy exercise, as h(x) = f (x)− x is Darboux.

For n = 2: proved independently in 2001
by Csörnyei, O’Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary n: Szuca 2003.

Open Problem
Must f as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 7



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Fixed point property

Theorem (Relatively new)

If f = fn ◦ · · · ◦ f1, where each fi : [0,1]→ [0,1] is a derivative,
then f has a fixed point.

For n = 1: easy exercise, as h(x) = f (x)− x is Darboux.

For n = 2: proved independently in 2001
by Csörnyei, O’Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary n: Szuca 2003.

Open Problem
Must f as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 7



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Fixed point property

Theorem (Relatively new)

If f = fn ◦ · · · ◦ f1, where each fi : [0,1]→ [0,1] is a derivative,
then f has a fixed point.

For n = 1: easy exercise, as h(x) = f (x)− x is Darboux.

For n = 2: proved independently in 2001
by Csörnyei, O’Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary n: Szuca 2003.

Open Problem
Must f as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 7



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Fixed point property

Theorem (Relatively new)

If f = fn ◦ · · · ◦ f1, where each fi : [0,1]→ [0,1] is a derivative,
then f has a fixed point.

For n = 1: easy exercise, as h(x) = f (x)− x is Darboux.

For n = 2: proved independently in 2001
by Csörnyei, O’Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary n: Szuca 2003.

Open Problem
Must f as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 7



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Fixed point property

Theorem (Relatively new)

If f = fn ◦ · · · ◦ f1, where each fi : [0,1]→ [0,1] is a derivative,
then f has a fixed point.

For n = 1: easy exercise, as h(x) = f (x)− x is Darboux.

For n = 2: proved independently in 2001
by Csörnyei, O’Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary n: Szuca 2003.

Open Problem
Must f as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 7



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Fixed point property

Theorem (Relatively new)

If f = fn ◦ · · · ◦ f1, where each fi : [0,1]→ [0,1] is a derivative,
then f has a fixed point.

For n = 1: easy exercise, as h(x) = f (x)− x is Darboux.

For n = 2: proved independently in 2001
by Csörnyei, O’Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary n: Szuca 2003.

Open Problem
Must f as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 7



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Baire classification of composition of the derivatives.

Let f = fn ◦ · · · ◦ f1, where each fi is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (Andy Bruckner and K. Ciesielski 2018)

There exist derivatives ϕ, γ : [−1,1]→ [−1,1] such that their
composition ψ := ϕ ◦ γ is not of Baire class one.

We use γ(x) := cos(x−1) and ϕ Pompeiu’s map (see below).

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 8
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Differentiable monster (# 1)

There are continuous nowhere monotone maps.
Can such maps be differentiable?

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson &
Stromberg 1974; Weil 1976; Aron, Gurariy &
Seoane-Sepúlveda 2005; and many others)
There is differentiable f : R→ R which is nowhere monotone.

Note that

Differentiable f is a monster iff f ′ attains on every interval
both positive and negative values.
So, the derivative f ′ of a differentiable monster is
discontinuous on the dense set Z c = {x : f ′(x) 6= 0}.

Simple construction of a differentiable monster follows.
Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 9
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Arnaud Denjoy and Dimitrie Pompeiu

Arnaud Denjoy (1884–1974) Dimitrie Pompeiu (1873–1954)
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A variant of Pompeiu function, of 1907

Fix r ∈ (0,1) and Q = {qi : i ∈ N} such that |qi | ≤ i for all i ∈ N.

Lemma (KC; small variation of Pompeiu’s result)

(i) g(x) =
∑∞

i=1 r i(x − qi)
1/3 is continuous, “differentiable,”

strictly increasing, onto R, with g′(q) =∞ for all q ∈ Q.
(ii) h = g−1 : R↗ R is everywhere differentiable with h′ ≥ 0

and Z = {x ∈ R : h′(x) = 0} being a dense Gδ-set.
(iii) Z c = R \ Z is also dense in R.

Pr. (i) Continuity follows from |g(x)| ≤
∑∞

i=1 r i(|x |+ i + 1).

Differentiability requires g′(x) =
∑∞

i=1 r i 1
3

1
(x−qi )2/3 . Easy when

series =∞. Other case follows from 0 < ψi (y)−ψi (x)
y−x ≤ 6ψ′i (x).

(ii) and (iii) easily follow from (i).
Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 11
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New simple construction of a differentiable monster

Lemma There is a strictly increasing differentiable h : R→ R
with Z = {x ∈ R : h′(x) = 0} being a dense Gδ-set.

Theorem (KC 2017)

If h is as in Lemma, then f (x) = h(x − t)− h(x) is a
differentiable monster for any typical t ∈ R.

Pr. Let D ⊂ R \ Z be countable dense. So, h′ > 0 on D.

Any t in residual G =
⋂

d∈D
(
(−d + Z ) ∩ (d − Z )

)
works.

Clearly f is differentiable with f ′(x) = h′(x − t)− h′(x).

f ′ > 0 on t + D: f ′(t + d) = h′(d)− h′(t + d) = h′(d) > 0, as t + d ∈ Z .

f ′ < 0 on D: f ′(d) = h′(d − t)− h′(d) = −h′(d) < 0, as d − t ∈ Z .

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 12
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Outline

1 Continuity from differentiability: classical results

2 Continuity from differentiability: newer results

3 Differentiability from continuity: differentiable restrictions

4 Properties of differentiable maps on perfect P ⊂ R

5 Differentiable extensions: Jarník and Whitney theorems

6 Summary
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How much differentiability continuous map must have

None?

Example (Weierstrass 1886; Bolzano, unpublished, 1822)
There exists continuous F : R→ R differentiable at no point.

Bernard Bolzano (1781-1848) Karl Weierstrass (1815–1897)

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 13
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Weierstrass’ Monster: W (x) :=
∑∞

n=0
1
2n cos(13nπx)

Teiji Takagi (1875–1960)

Bartel van der Waerden
(1903–1996)

F (x) =
∑∞

n=0 4nmin{|x − k
8n | : k ∈ Z}

Weierstrass’ Monster of

Takagi from 1903, and

van der Waerden, from 1930

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 14
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Differentiable restriction theorem

Some differentiability after all!

Theorem (Laczkovich 1984)
For every continuous f : R→ R there is perfect Q ⊂ R such that
f � Q is differentiable.

Remark
There are continuous f : R→ R such that f � Q can be
differentiable only when Q is both first category and meager.

Proof.

Let f = (f1, f2) : [0,1]→ [0,1]2 be the classical (ternary-like)
Peano curve. Ciesielski and Larson proved in 1991 that f1 is
nowhere approximately and I-approximately differentiable. So
it is as in the remark.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 15
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New proof of differentiable restriction theorem

Goal: If f : R→ R is cont, then f � Q is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing f : [a,b]→ R there is perfect
P such that f � P is Lipschitz.

Proof based on the following results, due to Riesz:

Lemma (Rising sun lemma 1932, proof is an easy exercise)

If g : [a,b]→ R is cont, then g(c) ≤ g(d) for every component
(c,d) of U = {x ∈ [a,b) : g(x) < g(y) for some y ∈ (x ,b]}.

Fact (Proved by induction)

Let a < b and J be a family of open intervals with
⋃
J ⊂ (a,b).

(i) If [α, β] ⊂
⋃
J , then

∑
I∈J `(I) > β − α.

(ii) If I ∈ J are pairwise disjoint, then
∑

I∈J `(I) ≤ b − a.
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Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Riesz’ Rising sun lemma

If g : [a,b]→ R is cont, then g(c) ≤ g(d) for every component
(c,d) of U = {x ∈ [a,b) : g(x) < g(y) for some y ∈ (x ,b]}.

Frigyes Riesz (1880-1956) Illustration of the Rising Sun Lemma

The points in the set U ∩ (a,b) are those lying in the shadow.
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Proof of Lipschitz restriction theorem

Goal: If f : R→ R is cont↗, then f � P is Lipschitz for a perfect P.
Have: If g : [a,b]→ R is cont, then g(c) ≤ g(d) for every comp.

(c,d) of {x ∈ [a,b) : g(x) < g(y) for some y ∈ (x ,b]}.

Sketch of proof. Fix L > f (b)−f (a)
b−a , put g(t) = f (t)− Lt , and

U = {x ∈ [a,b) : g(y) > g(x) for some y ∈ (x ,b]}.

f is Lipschitz on P = [ā,b] \ U with constant L, where

ā = sup{x : [a, x) ⊂ U)}. Fix X = {xn : n ∈ N}. Need P \ X 6= ∅.

If J = open components of U, then `(f [J]) ≥ L`(J) for J ∈ J .

By Fact (ii),
∑

J∈J `(f [J]) ≤ f (b)− f (ā). So,∑
J∈J `(J) ≤ 1

L
∑

J∈J `(f [J]) ≤ f (b)−f (ā)
L < b − ā, and by Fact (i),

P 6= ∅. To get P \ X 6= ∅ increase slightly J .
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f is Lipschitz on P = [ā,b] \ U with constant L, where
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ā = sup{x : [a, x) ⊂ U)}. Fix X = {xn : n ∈ N}. Need P \ X 6= ∅.

If J = open components of U, then `(f [J]) ≥ L`(J) for J ∈ J .

By Fact (ii),
∑

J∈J `(f [J]) ≤ f (b)− f (ā). So,∑
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L < b − ā, and by Fact (i),

P 6= ∅. To get P \ X 6= ∅ increase slightly J .

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 18



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Proof of Lipschitz restriction theorem

Goal: If f : R→ R is cont↗, then f � P is Lipschitz for a perfect P.
Have: If g : [a,b]→ R is cont, then g(c) ≤ g(d) for every comp.

(c,d) of {x ∈ [a,b) : g(x) < g(y) for some y ∈ (x ,b]}.

Sketch of proof. Fix L > f (b)−f (a)
b−a , put g(t) = f (t)− Lt , and

U = {x ∈ [a,b) : g(y) > g(x) for some y ∈ (x ,b]}.
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End of proof of differentiable restriction theorem

Goal: If f : R→ R is cont, then f � Q is diff. for some perfect Q.
Have: If f : R→ R is cont↗, then f � P is Lipschitz for a perfect P.

Proof of differentiable restriction theorem.
f is Lipschitz on some perfect P: proved above for somewhere
monotone f ; otherwise f is constant on some perfect set.

For function f � P use Morayne theorem to find perfect Q ⊂ P
such that the quotient map for f � Q is uniformly continuous.
Then Q is as needed.
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Outline

1 Continuity from differentiability: classical results

2 Continuity from differentiability: newer results

3 Differentiability from continuity: differentiable restrictions

4 Properties of differentiable maps on perfect P ⊂ R

5 Differentiable extensions: Jarník and Whitney theorems

6 Summary
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Differentiable monster (# 2)

Are differentiable f : P → R, P ⊂ R perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)
There exists differentiable auto-homeomorphism f of a compact
perfect subset X of the Cantor ternary set C such that f ′ ≡ 0.

Counterintuitive, as f is shrinking at every x ∈ X
(|f(x)− f(y)| < |x − y | for every y ∈ X with small |x − y | > 0)
but it maps compact X onto itself. Also

Theorem (Edelstein 1962, almost contradicting above thm)

If f : X → X is LC and X is compact, then f has a periodic point,

f is locally contractive, LC, provided for every x ∈ X there
is open U 3 x s.t. f � U is Lipschitz with constant < 1.
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Figure: The result of the action of f2 = 〈f, f〉 on X2 = X× X
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Definition of f with f ′ ≡ 0, Monster # 2

f = h ◦ σ ◦ h−1, where h : 2ω → R is embedding and
σ : 2ω → 2ω is the “add one and carry” adding machine:

σ(s) =

{
〈0,0,0, . . .〉 if s = 〈1,1,1, . . .〉,
〈0,0, . . . ,0,1, sk+1, , . . .〉 if s = 〈1,1, . . . ,1,0, sk+1, . . .〉.

h(s) =
∑∞

n=0 2sn3−(n+1)N(s�n),

where N(s � 0) = 1 and, for n > 0,

N(s � n) =
∑

i<n−1

si2i + (1− sn−1)2n−1 + 2n

= (1(1− sn−1)sn−2 . . . s0)2.

E.g. N(101101) = (1001101)2
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Proof of f ′ ≡ 0 for f = h ◦ σ ◦ h−1

Def: h(s) =
∑∞

n=0 2sn3−(n+1)N(s�n),
Fact: If s 6= t ∈ 2ω and n = min{i < ω : si 6= ti}, then

3−(n+1)N(s�n)≤|h(s)− h(t)|≤3 · 3−(n+1)N(s�n).

Also (a): ∀s ∈ 2ω ∃k < ω N(σ(s) � n) = N(s � n) + 1 for all n > k

as it fails only for s = 〈s0, . . . , sn−2, sn−1, . . .〉 = 〈1, . . . ,1,0, . . .〉.

Proof of f ′ ≡ 0.

To see f ′(h(s)) = 0: pick k < ω from (a) and δ > 0 s.t.
0 < |h(s)− h(t)| < δ implies n = min{i < ω : si 6= ti} > k . Then,

|f(h(s))− f(h(t))|
|h(s)− h(t)|

≤ 3 · 3−(n+1)N(σ(s)�n)

3−(n+1)N(s�n)
= 3 · 3−(n+1).

So f ′(h(s)) = 0, as 3 · 3−(n+1) is arbitrarily small for small δ.
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Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Dynamical system f

Every orbit {x , f (x), f 2(x), . . .} of f is dense in X.

So, f is a minimal dynamical system. Must it be?

Theorem (KC & JJ 2016: YES, essentially)
If f : X → X is onto, PC, and X is infinite compact, then there is
a perfect P ⊂ X s.t. f � P is a minimal dynamical system,

where f is pointwise contractive, PC, if for every x ∈ X there is
open U 3 x and L ∈ [0,1) s.t. |f (x)− f (y)| ≤ L|x − y | for all
y ∈ U.
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Outline

1 Continuity from differentiability: classical results
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3 Differentiability from continuity: differentiable restrictions

4 Properties of differentiable maps on perfect P ⊂ R

5 Differentiable extensions: Jarník and Whitney theorems
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Notation

For J = (a,a + h) let IJ = [a + h/3,a + 2h/3], middle third of J.

For closed Q ⊂ R and f : Q → R let

Q̂ = Q∪
⋃
{IJ : J is a bounded connected component of R\Q},

f̄ : R→ R — “the” linear interpolation of f , f̂ = f̄ � Q̂.

�

�

IJ IJ IJ IJIJ

Figure: The linear interpolation f̄ of f , represented by thick curves.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 25



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Notation

For J = (a,a + h) let IJ = [a + h/3,a + 2h/3], middle third of J.

For closed Q ⊂ R and f : Q → R let

Q̂ = Q∪
⋃
{IJ : J is a bounded connected component of R\Q},

f̄ : R→ R — “the” linear interpolation of f , f̂ = f̄ � Q̂.

�

�

IJ IJ IJ IJIJ

Figure: The linear interpolation f̄ of f , represented by thick curves.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 25



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Notation

For J = (a,a + h) let IJ = [a + h/3,a + 2h/3], middle third of J.

For closed Q ⊂ R and f : Q → R let

Q̂ = Q∪
⋃
{IJ : J is a bounded connected component of R\Q},

f̄ : R→ R — “the” linear interpolation of f , f̂ = f̄ � Q̂.

�

�

IJ IJ IJ IJIJ

Figure: The linear interpolation f̄ of f , represented by thick curves.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 25



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Notation

For J = (a,a + h) let IJ = [a + h/3,a + 2h/3], middle third of J.

For closed Q ⊂ R and f : Q → R let

Q̂ = Q∪
⋃
{IJ : J is a bounded connected component of R\Q},

f̄ : R→ R — “the” linear interpolation of f , f̂ = f̄ � Q̂.

�

�

IJ IJ IJ IJIJ

Figure: The linear interpolation f̄ of f , represented by thick curves.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 25



Diff=⇒Cont Monster Cont=⇒Diff Properties of f � P Differentiable Extensions Summary

Jarník’s differentiable extension theorems
Theorem (Jarník 1923)
If Q ⊂ R is perfect, than any differentiable f : Q → R has
differentiable extension F : R→ R.

Proved in:

V. Jarník, O rozšíření definičního oboru funkcí jedné proměnné,
přičemž zůstává zachována derivabilita funkce (in Czech)
Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, Sur l’extension du domaine de définition
des fonctions d’une variable, qui laisse intacte la dé rivabilité de
la fonction (in French), Bull. Internat. de l’Académie des
Sciences de Bohême (1923), 1–5.

Independently proved in 1974 by Petruska and Laczkovich.
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Vojtěch Jarník and Hassler Whitney

Vojtěch Jarník (1897–1970) Hassler Whitney (1907-1989)
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Jarník and Whitney differentiable extension theorems

Theorem (Jarník and Whitney thms, version of MC&KC 2017)
If Q ⊂ R is closed, than any differentiable f : Q → R has
differentiable extension F : R→ R. This F is C1 iff such
extension exists iff f̂ = f̄ � Q̂ is continuously differentiable.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985:
C1 interpolation theorem)

For every continuous f : R→ R there is C1 map g : R→ R with
f ∩ g uncountable.

Proof of Corollary: We proved that there is perfect Q ⊂ R s.t.
the quotient map of h = f � Q is uniformly continuous.

It is easy to see that ĥ is continuously differentiable for such h.
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Our proof of Jarník and Whitney thms (for perfect Q)

Differentiable f : Q → R has differentiable extension F : R→ R.

Proposition (Linear interpolation almost works)

If f : Q → R is differentiable, then f̄ is differentiable at any x ∈ R
which is not an end-point of a connected component of R \Q.

The right extension: Small modification of f̄ : F = f̄ + g:

ba
Figure: A format of the graph (thin continuous curve) of F = f̄ + g on
a component (a,b) of R \Q. Thick segments: parts of the graph of f

Details: elementary. Require some checking.
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Differentiable extensions of f, Monster # 2

By Jarník’s theorem, our f : X→ X can be extended to
differentiable F : R→ R. Can such F be C1?

Theorem (KC & JJ 2016: No)

If f : X → R is differentiable with |f ′| < 1 on X and f has a C1

extension, then X * f [X ].

Can such F can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

For every closed set P ⊆ R and differentiable f : P → R, there
exists a differentiable extension F : R→ R of f such that F is
nowhere monotone on R \ P. In particular, if P is nowhere
dense in R, then f̂ is monotone on no interval.

Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 30
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Differentiable monster (#3)

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone
function F : R→ R (i.e., Monster #1)
such that F � X = f (i.e., Monster #2).

So #3, as #1+ #2 = #3

Proof.
Use previous theorem to f.
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Summary of new (2017+) presented results
Example (New simple construction of a classic example)
There exists a differentiable nowhere monotone map f : R→ R.

Example (Greatly simplified construction of 2016 example)
There exists a differentiable auto-homeomorphism f of a
compact perfect X ⊂ R with f ′ ≡ 0.

Theorem (C1 interpolation thm, no Lebesgue measure needed)

For every continuous f : R→ R:
there is perfect P ⊂ R s.t. f � P is Lipschitz;
there is C1 map g : R→ R with f ∩ g uncountable.

Theorem (Simple proof of Whitney and Jarník extension thms)
If Q ⊂ R is closed, than any differentiable f : Q → R has
differentiable extension F : R→ R.This F is C1 iff such
extension exists iff a simple (new) condition for f holds.
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