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Energies L1& E∞ The algorithm Strict optimality Conclusions

Optimization in image processing

Many fundamental problems in image processing and
computer vision, such as image filtering, segmentation,
registration, and stereo vision, can naturally be formulated
as optimization problems.
Often, these optimization problems can be described as
labeling problems, in which we wish to assign to each
image element (pixel) an element from some finite set of
labels.
We identify each image with a vertex weighted graph
G = (V , E , f ), with vertices V being image voxels, edges E
being pairs {s, t} of adjacent voxels, and f (s) image
intensity at s. Its labeling is a map ` : V → {0, . . . ,m − 1},
with m ≥ 2.
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Lp energies: the case of L1

With any image n-labeling ` we associate local cost map
φ` : V ∪ E → [0,∞] consisting of

unary terms φ`(s) = φs(`(s)), depending on s ∈ V , its label
`(s), and image intensity;
pairwise terms φ`(s, t) = φs,t (`(s), `(t)), depending on
{s, t} ∈ E and their labeling. They reflect desirability of
smoothness/regularity of labeling.
All φs,t (0,0), φs,t (0,1), φs,t (1,0), φs,t (1,1) can be distinct!

L1 (graph cut) energy is defined as

E1(`) := ‖φ`‖1 =
∑
s∈V

φs(`(s)) +
∑
{s,t}∈E

φst (`(s), `(t)),

often represented as (with xi denoting label of vertex i)

E(x) =
∑
i∈V

φi(xi) +
∑
i,j∈E

φij(xi , xj).
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Lp energies: the cases of p ∈ (1,∞]

For p ∈ [1,∞):

Ep(`) := ‖φ`‖p =

∑
s∈V

(
φs(`(s))

)p
+

∑
{s,t}∈E

(
φst (`(s), `(t))

)p

1/p

For p =∞ (of main interest here)

E∞(`) := ‖φ`‖∞ = max
{

max
s∈V

φs(`(s)), max
{s,t}∈E

φst (`(s), `(t))

}

Standard analysis fact: Ep(`)↗p→∞ E∞(`).
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What is the effect of p?

The value p can be seen as a parameter controlling the
balance between minimizing the overall cost Ep(`) versus
minimizing the magnitude of the individual terms φs(`(s))
and φst (`(s), `(t)).

For p = 1, the optimal labeling may contain (few) arbitrarily
large individual terms as long as the sum of the terms is
small.

As p increases, a larger penalty is assigned to solutions
containing large individual terms. This forces local errors to
be distributed more evenly across the image domain.
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p = 1: Graph Cut segmentation via min-cut/max-flow

E1(`) :=
∑

s∈V φs(`(s)) +
∑
{s,t}∈E φst (`(s), `(t))

φs(`(s)) = 0 in all cases (except seeds);

φst (`(s), `(t)) = 0 when `(s) = `(t);

Cost of cut: φst (`(s), `(t)) > 0 (depending of f (s), f (t))
when `(s) 6= `(t).

Min-cut/max-flow (efficiency between O(n2 ln n) and O(n3))
algorithm returns optimized labeling for 2-labeling.

Here and below n := |V ∪ E|.

Optimization is NP-hard for ≥ 3-labeling.
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2-labeling for general E1(`)-optimization

E1(`) :=
∑

s∈V φs(`(s)) +
∑
{s,t}∈E φst (`(s), `(t))

E1 (for 2-labeling) is submodular provided, for every {s, t} ∈ E ,

φst (0,0) + φst (1,1) ≤ φst (0,1) + φst (1,0).

Theorem (Kolmogorov & Zabih 2004)

If E1 is submodular, then min-cut/max-flow algorithm
returns optimized labeling.
If E1 is NOT submodular, then minimizing E1 is NP-hard.
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Ep(`) with 1 ≤ p <∞ is as E1(`)

(
Ep(`)

)p
:=
∑

s∈V
(
φs(`(s))

)p
+
∑
{s,t}∈E

(
φst (`(s), `(t))

)p

Ep is p-submodular provided, for every {s, t} ∈ E ,

φst (0,0)p + φst (1,1)p ≤ φst (0,1)p + φst (1,0)p.

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

If Ep is p-submodular, then min-cut/max-flow algorithm
returns optimized labeling.
If Ep is NOT p-submodular, then minimizing Ep is NP-hard.
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returns optimized labeling.
If Ep is NOT p-submodular, then minimizing Ep is NP-hard.
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Ep(`) with 1 ≤ p <∞ vs E∞(`)

φst (0,0)p + φst (1,1)p ≤ φst (0,1)p + φst (1,0)p.

p-submodular for every p <∞ implies∞-submodularity:

max{φst (0,0), φst (1,1)} ≤ max{φst (1,0), φst (0,1)}.

Theorem (Malmberg & Strand, IWCIA 2018)

1- and∞-submodularity imply p-submodularity for all p. In such
case min-cut/max-flow algorithm optimizes Ep for every p <∞.

Actually, φ is∞-submodular iff there is an N so that φ is
p-submodular for all p ∈ (N,∞).
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Energies L1& E∞ The algorithm Strict optimality Conclusions

FC segmentations are E∞ optimized segmentations

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

We get FC segmentations (as minimization, not maximization)

φs(`(s)) = 0 in all cases (except seeds, when =∞);

φst (`(s), `(t)) = 0 when `(s) = `(t);

Cost of cut: φst (`(s), `(t)) > 0 (depending of f (s), f (t))
when `(s) 6= `(t).

Dijkstra algorithm (efficiency between O(n) and O(n ln n))
returns optimized labeling for m-labeling for arbitrary large m!
Better than for E1(`) (i.e., GC) segmentations.

Q. For what other E∞s are there efficient optimizing algorithms?

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 9 of 20



Energies L1& E∞ The algorithm Strict optimality Conclusions

FC segmentations are E∞ optimized segmentations

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

We get FC segmentations (as minimization, not maximization)

φs(`(s)) = 0 in all cases (except seeds, when =∞);

φst (`(s), `(t)) = 0 when `(s) = `(t);

Cost of cut: φst (`(s), `(t)) > 0 (depending of f (s), f (t))
when `(s) 6= `(t).

Dijkstra algorithm (efficiency between O(n) and O(n ln n))
returns optimized labeling for m-labeling for arbitrary large m!
Better than for E1(`) (i.e., GC) segmentations.

Q. For what other E∞s are there efficient optimizing algorithms?

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 9 of 20



Energies L1& E∞ The algorithm Strict optimality Conclusions

FC segmentations are E∞ optimized segmentations

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

We get FC segmentations (as minimization, not maximization)

φs(`(s)) = 0 in all cases (except seeds, when =∞);

φst (`(s), `(t)) = 0 when `(s) = `(t);

Cost of cut: φst (`(s), `(t)) > 0 (depending of f (s), f (t))
when `(s) 6= `(t).

Dijkstra algorithm (efficiency between O(n) and O(n ln n))
returns optimized labeling for m-labeling for arbitrary large m!
Better than for E1(`) (i.e., GC) segmentations.

Q. For what other E∞s are there efficient optimizing algorithms?

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 9 of 20



Energies L1& E∞ The algorithm Strict optimality Conclusions

FC segmentations are E∞ optimized segmentations

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

We get FC segmentations (as minimization, not maximization)

φs(`(s)) = 0 in all cases (except seeds, when =∞);

φst (`(s), `(t)) = 0 when `(s) = `(t);

Cost of cut: φst (`(s), `(t)) > 0 (depending of f (s), f (t))
when `(s) 6= `(t).

Dijkstra algorithm (efficiency between O(n) and O(n ln n))
returns optimized labeling for m-labeling for arbitrary large m!
Better than for E1(`) (i.e., GC) segmentations.

Q. For what other E∞s are there efficient optimizing algorithms?

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 9 of 20



Energies L1& E∞ The algorithm Strict optimality Conclusions

FC segmentations are E∞ optimized segmentations

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

We get FC segmentations (as minimization, not maximization)

φs(`(s)) = 0 in all cases (except seeds, when =∞);

φst (`(s), `(t)) = 0 when `(s) = `(t);

Cost of cut: φst (`(s), `(t)) > 0 (depending of f (s), f (t))
when `(s) 6= `(t).

Dijkstra algorithm (efficiency between O(n) and O(n ln n))
returns optimized labeling for m-labeling for arbitrary large m!
Better than for E1(`) (i.e., GC) segmentations.

Q. For what other E∞s are there efficient optimizing algorithms?

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 9 of 20



Energies L1& E∞ The algorithm Strict optimality Conclusions

FC segmentations are E∞ optimized segmentations

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

We get FC segmentations (as minimization, not maximization)

φs(`(s)) = 0 in all cases (except seeds, when =∞);

φst (`(s), `(t)) = 0 when `(s) = `(t);

Cost of cut: φst (`(s), `(t)) > 0 (depending of f (s), f (t))
when `(s) 6= `(t).

Dijkstra algorithm (efficiency between O(n) and O(n ln n))
returns optimized labeling for m-labeling for arbitrary large m!
Better than for E1(`) (i.e., GC) segmentations.

Q. For what other E∞s are there efficient optimizing algorithms?

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 9 of 20



Energies L1& E∞ The algorithm Strict optimality Conclusions

FC segmentations are E∞ optimized segmentations

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

We get FC segmentations (as minimization, not maximization)

φs(`(s)) = 0 in all cases (except seeds, when =∞);

φst (`(s), `(t)) = 0 when `(s) = `(t);

Cost of cut: φst (`(s), `(t)) > 0 (depending of f (s), f (t))
when `(s) 6= `(t).

Dijkstra algorithm (efficiency between O(n) and O(n ln n))
returns optimized labeling for m-labeling for arbitrary large m!
Better than for E1(`) (i.e., GC) segmentations.

Q. For what other E∞s are there efficient optimizing algorithms?

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 9 of 20



Energies L1& E∞ The algorithm Strict optimality Conclusions

Efficient algorithm for 2-labeling∞-submodular E∞?

YES!∞-sub algotithm

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to n = |V ∪ E|,
returning minimal 2-labeling for any∞-submodular energy E∞.

The algorithm, efficiency between O(n) and O(n ln n),
is NOT Dijkstra-like!
This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is∞-submodularity assumption essential in the thm?

Q2: Is there efficient algorithm for ≥ 3-labelings?
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Energies L1& E∞ The algorithm Strict optimality Conclusions

Optimal 2-labeling for E∞(`) with no∞-submodularity

Full answer to Q1: 2-sat algorithm

Theorem (Malmberg, Ciesielski, Strand; 2019 ??? )

There is an algorithm,
O(n2) with respect to n = |V ∪ E|,
returning minimal 2-labeling for any E∞(`):

max
{

maxs∈V φs(`(s)),max{s,t}∈E φst(`(s), `(t))
}

.

More about the algorithm latter.
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Energies L1& E∞ The algorithm Strict optimality Conclusions

Q2: What about optimal ≥ 3-labeling for E∞(`)?

Partial answer to Q2:

Theorem (Malmberg, Ciesielski, Strand; 2019 ??? )
Optimization problem of the general form of E∞ energy for
more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient
(polynomial-time) algorithm for optimization of E∞ energy
for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.
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Energies L1& E∞ The algorithm Strict optimality Conclusions

Optimal ≥ 3-labeling of E∞(`) is NP-hard: proof

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

For a graph G = (V , E) put:

φs(`(s)) = 0 in all cases;

φst (`(s), `(t)) = 1 when `(s) = `(t);

φst (`(s), `(t) = 0 when `(s) 6= `(t).

Then, the minimal E∞(`) is 0 if, and only if, ` is a coloring of G.

But graph m-coloring problem for any m ≥ 3 is NP-complete!
It is not for m = 2.
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Energies L1& E∞ The algorithm Strict optimality Conclusions

Atoms of E∞ and their cost

E∞(`) := max
{

maxs∈V φs(`(s)),max{s,t}∈E φst (`(s), `(t))
}

Atoms A(`) of `: input for φ·· and φ· (to calculate E∞(`)), i.e.,

A(`) :=
{
{(s, `(s))} : s ∈ V

}
∪
{
{(s, `(s)), (t , `(t))} : {s, t} ∈ E

}
Atoms A of E∞: all such possible atoms, i.e.,

unary: two {(s,0)} and {(s,1)} for each v ∈ V

binary: four {(s, i), (t , j)} (i , j ∈ {0,1}) for each {s, t} ∈ E .

Cost of a unary atom {(s, i)}: φs(i)

Cost of a binary atom {(s, i), (t , j)}: φst (i , j)

Set A′ ⊂ A of atoms is consistent when A(`) ⊂ A′ for some `.
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Energies L1& E∞ The algorithm Strict optimality Conclusions

∞-sub algorithm

1 List all atoms in a list S in a decreasing cost
so that if atoms A0 and A1 have the same cost and
A1 = {(s, i), (t , i)}, then A1 proceeds A0.

2 While S is non-empty do
Remove the first atom A from S
If A is the last atom for its vertex/edge, insert it to list L
Consecutively remove from S all atoms that are
locally inconsistent with current S ∪ L

3 Return labeling ` =
⋃

L

The locally inconsistency loop is natural.

The trick is to show that the algorithm works property for all
∞-submodular energies.
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Energies L1& E∞ The algorithm Strict optimality Conclusions

Towards 2-sat algorithm: 2-satisfiability

For atoms A = {(s, i)} and A′ = {(s, i), (t , j)} define formulas

ψA(s) := “s 6= i” =

{
¬s if i = 1,
s if i = 0

ψA(s, t) := “(s 6= i) ∨ (t 6= j)” = ψ{(s,i)}(s) ∨ ψ{(t ,j)}(t).

For a set A′ = {A1,A2, . . . ,Ak} of atoms the formula
ψA′ := ψA1 ∧ · · · ∧ ψAk . is in 2-conjunctive normal form.

Theorem

A set A1 ⊆ A of atoms is consistent if, and only if, the
2-satisfiability problem for a formula ψAc

1
has a positive solution.

So, consistency of A1 ⊆ A can be decided by in linear time.
(Aspvall et al. algorithm.)
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Energies L1& E∞ The algorithm Strict optimality Conclusions

2-sat algorithm

1 List all atoms in a list S in a decreasing cost
2 While S is non-empty do

Remove the first atom A from S
If S ∪ L is not consistent, insert A to L

3 Return labeling ` =
⋃

L

The S ∪ L is not consistent clause is decided by Aspvall et al.
algorithm.
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Strict optimality via lexicographical order

Max-norm identifies `1 and `2 when E∞(`1) = E∞(`2).

Lexicographical order � is a sharper distinguishing tool.

For labeling `, let ~̀= 〈`1, . . . , `n〉 = 〈Φ(A1), . . . ,Φ(An)〉
non-increasing for an enumeration A(`) = {A1, . . . ,An}.

` ≺ `′ iff `i < `′i , where i := min{k : `k < `′k}.

` is strictly optimal when it is maximal w.r.t. �.

Strictly optimal implies max-norm optimal, but not converse.

Q: Can we efficiently find also strict optimizers?
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Summary (including new results)

2 labels ≥ 3 labels
general case NP-hard problem NP-hard problem

strict optimization
∞-submodular max-flow/min-cut

NP-hard problem
strict optimization O(n2 ln n) ≤ · ≤ O(n3)

unique weights 2-sat algorithm
NP-hard problem

strict optimization O(n2)

general case 2-sat algorithm; O(n2) NP-hard problem

∞-submodular
∞-sub algorithm

NP-hard problem
O(n) ≤ · ≤ O(n ln n)

φs(i) = φst (i , i) = 0; Dijkstra algorithm Dijkstra algorithm
φst (i , j) = φst (j , i) ≥ 0 O(n) ≤ · ≤ O(n ln n) O(n) ≤·≤ O(n ln n)
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Conclusions

Optimization problems, specifically pixel labeling problems,
are frequently occurring in image processing applications.

We are specifically interested in problems where the
objective function is given by the max-norm of the local
errors.

For many such problems, globally optimal solutions can be
found very efficiently, in quasi linear or quadratic time.

Some max-norm for ≥ 3-labeling are NP-hard.
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Thank you for your attention!
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