$L_1 \&$

Efficient algorithms for max-norm and lexicographically optimized labelings

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Department of Radiology, University of Pennsylvania

Joint work with Filip Malmberg and Robin Strand

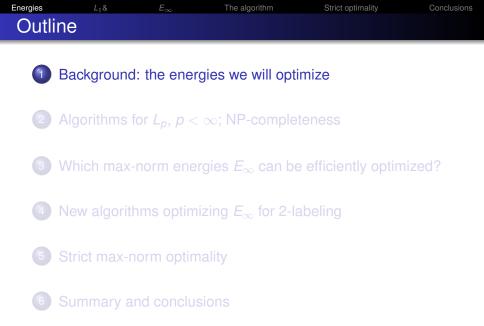
University of Saõ Paulo, Brazil, May 27, 2019

イロト イポト イヨト イヨト

Background: the energies we will optimize

- 2 Algorithms for L_p , $p < \infty$; NP-completeness
- 3 Which max-norm energies E_{∞} can be efficiently optimized?
- 4 New algorithms optimizing E_{∞} for 2-labeling
- 5 Strict max-norm optimality
- 6 Summary and conclusions

ヘロト 人間 ト ヘヨト ヘヨト



くロト (過) (目) (日)

Energies L_1 E_{∞} The algorithm Strict optimality Optimization in image processing

- Many fundamental problems in image processing and computer vision, such as image filtering, segmentation, registration, and stereo vision, can naturally be formulated as optimization problems.
- Often, these optimization problems can be described as *labeling* problems, in which we wish to assign to each image element (pixel) an element from some finite set of labels.
- We identify each image with a vertex weighted graph *G* = (*V*, *E*, *f*), with vertices *V* being image voxels, edges *E* being pairs {*s*, *t*} of adjacent voxels, and *f*(*s*) image intensity at *s*. Its labeling is a map *l*: *V* → {0,...,*m*-1}, with *m* ≥ 2.

◆□ > ◆□ > ◆豆 > ◆豆 > →

Energies L_1 E_{∞} The algorithmStrict optimalityOptimization in image processing

- Many fundamental problems in image processing and computer vision, such as image filtering, segmentation, registration, and stereo vision, can naturally be formulated as optimization problems.
- Often, these optimization problems can be described as *labeling* problems, in which we wish to assign to each image element (pixel) an element from some finite set of labels.
- We identify each image with a vertex weighted graph G = (V, E, f), with vertices V being image voxels, edges E being pairs {s, t} of adjacent voxels, and f(s) image intensity at s. Its labeling is a map ℓ: V → {0,...,m-1}, with m ≥ 2.

ヘロン 人間 とくほ とくほ とう

Energies L_1 E_{∞} The algorithmStrict optimalityOptimization in image processing

- Many fundamental problems in image processing and computer vision, such as image filtering, segmentation, registration, and stereo vision, can naturally be formulated as optimization problems.
- Often, these optimization problems can be described as *labeling* problems, in which we wish to assign to each image element (pixel) an element from some finite set of labels.
- We identify each image with a vertex weighted graph *G* = (*V*, *E*, *f*), with vertices *V* being image voxels, edges *E* being pairs {*s*, *t*} of adjacent voxels, and *f*(*s*) image intensity at *s*. Its labeling is a map *l*: *V* → {0,...,*m*-1}, with *m* ≥ 2.

ヘロン ヘアン ヘビン ヘビン

Energies L_1 E_{∞} The algorithmStrict optimalityOptimization in image processing

- Many fundamental problems in image processing and computer vision, such as image filtering, segmentation, registration, and stereo vision, can naturally be formulated as optimization problems.
- Often, these optimization problems can be described as *labeling* problems, in which we wish to assign to each image element (pixel) an element from some finite set of labels.
- We identify each image with a vertex weighted graph *G* = (*V*, *E*, *f*), with vertices *V* being image voxels, edges *E* being pairs {*s*, *t*} of adjacent voxels, and *f*(*s*) image intensity at *s*. Its labeling is a map *l*: *V* → {0,...,*m*-1}, with *m* ≥ 2.

ヘロト 人間 ト ヘヨト ヘヨト

Energies

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

• unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;

The algorithm

Conclusions

- pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ ε and their labeling. They reflect desirability of smoothness/regularity of labeling.
 All φ_{s,t}(0,0), φ_{s,t}(0,1), φ_{s,t}(1,0), φ_{s,t}(1,1) can be distinct
- L_1 (graph cut) energy is defined as

$$E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

Energies

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

• unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;

The algorithm

Strict optimality

Conclusions

- pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ ε and their labeling. They reflect desirability of smoothness/regularity of labeling.
 All φ_{s,t}(0,0), φ_{s,t}(0,1), φ_{s,t}(1,0), φ_{s,t}(1,1) can be distinct
- L_1 (graph cut) energy is defined as

$$E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

Energies

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

• unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;

The algorithm

Strict optimality

Conclusions

pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ E and their labeling. They reflect desirability of smoothness/regularity of labeling.
 All φ_{s,t}(0,0), φ_{s,t}(0,1), φ_{s,t}(1,0), φ_{s,t}(1,1) can be distinct

 L_1 (graph cut) energy is defined as

 $E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

> < 臣 > < 臣 >

Energies

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

• unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;

The algorithm

Strict optimality

Conclusions

pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ E and their labeling. They reflect desirability of smoothness/regularity of labeling.
 All φ_{s,t}(0,0), φ_{s,t}(0,1), φ_{s,t}(1,0), φ_{s,t}(1,1) can be distinct!

L_1 (graph cut) energy is defined as

$$E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i, j \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

Energies

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

• unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;

The algorithm

Strict optimality

Conclusions

pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ E and their labeling. They reflect desirability of smoothness/regularity of labeling.
 All φ_{s,t}(0,0), φ_{s,t}(0,1), φ_{s,t}(1,0), φ_{s,t}(1,1) can be distinct!

L1 (graph cut) energy is defined as

 $E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i, j \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

Energies

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

• unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;

The algorithm

pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ E and their labeling. They reflect desirability of smoothness/regularity of labeling.
 All φ_{s,t}(0,0), φ_{s,t}(0,1), φ_{s,t}(1,0), φ_{s,t}(1,1) can be distinct!

L1 (graph cut) energy is defined as

$$E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i,j \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

Strict optimality

Energies L_1 E_∞ The algorithm L_p energies: the cases of $p \in (1,\infty]$

For $p \in [1, \infty)$:

$$E_{p}(\ell) := \|\phi_{\ell}\|_{p} = \left(\sum_{s \in V} (\phi_{s}(\ell(s)))^{p} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{p}\right)^{1/p}$$

For $p = \infty$ (of main interest here)

$$\mathsf{E}_{\infty}(\ell) := \|\phi_{\ell}\|_{\infty} = \max\left\{\max_{s\in V} \phi_s(\ell(s)), \max_{\{s,t\}\in\mathcal{E}} \phi_{st}(\ell(s),\ell(t))
ight\}$$

Standard analysis fact: $E_p(\ell) \nearrow_{p \to \infty} E_{\infty}(\ell)$.

Energies L_1 E_∞ The algorithm L_p energies: the cases of $p \in (1,\infty]$

For $p \in [1, \infty)$:

$$E_{\rho}(\ell) := \|\phi_{\ell}\|_{\rho} = \left(\sum_{\boldsymbol{s}\in V} (\phi_{\boldsymbol{s}}(\ell(\boldsymbol{s})))^{\rho} + \sum_{\{\boldsymbol{s},t\}\in\mathcal{E}} (\phi_{\boldsymbol{s}t}(\ell(\boldsymbol{s}),\ell(t)))^{\rho}\right)^{1/\rho}$$

For $p = \infty$ (of main interest here)

$$\mathsf{E}_{\infty}(\ell) := \|\phi_{\ell}\|_{\infty} = \max\left\{\max_{s \in V} \phi_{s}(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$$

Standard analysis fact: $E_p(\ell) \nearrow_{p \to \infty} E_{\infty}(\ell)$.

Energies L_1 E_∞ The algorithm L_p energies: the cases of $p \in (1,\infty]$

For $p \in [1, \infty)$:

$$E_{\rho}(\ell) := \|\phi_{\ell}\|_{\rho} = \left(\sum_{\boldsymbol{s}\in V} (\phi_{\boldsymbol{s}}(\ell(\boldsymbol{s})))^{\rho} + \sum_{\{\boldsymbol{s},t\}\in\mathcal{E}} (\phi_{\boldsymbol{s}t}(\ell(\boldsymbol{s}),\ell(t)))^{\rho}\right)^{1/\rho}$$

For $p = \infty$ (of main interest here)

$$\mathsf{E}_{\infty}(\ell) := \|\phi_{\ell}\|_{\infty} = \max\left\{\max_{s \in V} \phi_{s}(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$$

Standard analysis fact: $E_p(\ell) \nearrow_{p \to \infty} E_{\infty}(\ell)$.

Strict optimality

- The value *p* can be seen as a parameter controlling the balance between minimizing the overall cost $E_p(\ell)$ versus minimizing the magnitude of the individual terms $\phi_s(\ell(s))$ and $\phi_{st}(\ell(s), \ell(t))$.
- For *p* = 1, the optimal labeling may contain (few) arbitrarily large individual terms as long as the sum of the terms is small.
- As *p* increases, a larger penalty is assigned to solutions containing large individual terms. This forces local errors to be distributed more evenly across the image domain.

ヘロト ヘ戸ト ヘヨト ヘヨト

- The value *p* can be seen as a parameter controlling the balance between minimizing the overall cost $E_p(\ell)$ versus minimizing the magnitude of the individual terms $\phi_s(\ell(s))$ and $\phi_{st}(\ell(s), \ell(t))$.
- For *p* = 1, the optimal labeling may contain (few) arbitrarily large individual terms as long as the sum of the terms is small.
- As *p* increases, a larger penalty is assigned to solutions containing large individual terms. This forces local errors to be distributed more evenly across the image domain.

ヘロト ヘ戸ト ヘヨト ヘヨト

- The value *p* can be seen as a parameter controlling the balance between minimizing the overall cost $E_p(\ell)$ versus minimizing the magnitude of the individual terms $\phi_s(\ell(s))$ and $\phi_{st}(\ell(s), \ell(t))$.
- For *p* = 1, the optimal labeling may contain (few) arbitrarily large individual terms as long as the sum of the terms is small.
- As *p* increases, a larger penalty is assigned to solutions containing large individual terms. This forces local errors to be distributed more evenly across the image domain.

- 2 Algorithms for L_p , $p < \infty$; NP-completeness
- ${}_{\textcircled{3}}$ Which max-norm energies ${\it E}_{\infty}$ can be efficiently optimized?
- [4] New algorithms optimizing E_∞ for 2-labeling
- 5 Strict max-norm optimality
- 6 Summary and conclusions

ヘロト ヘ戸ト ヘヨト ヘヨト

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (efficiency between $O(n^2 \ln n)$ and $O(n^3)$) algorithm returns optimized labeling **for 2-labeling**.

Here and below $n := |V \cup \mathcal{E}|$.

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (efficiency between $O(n^2 \ln n)$ and $O(n^3)$) algorithm returns optimized labeling **for 2-labeling**.

Here and below $n := |V \cup \mathcal{E}|$.

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (efficiency between $O(n^2 \ln n)$ and $O(n^3)$) algorithm returns optimized labeling **for 2-labeling**.

Here and below $n := |V \cup \mathcal{E}|$.

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (efficiency between $O(n^2 \ln n)$ and $O(n^3)$) algorithm returns optimized labeling **for 2-labeling**.

Here and below $n := |V \cup \mathcal{E}|$.

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (efficiency between $O(n^2 \ln n)$ and $O(n^3)$) algorithm returns optimized labeling **for 2-labeling**.

Here and below $n := |V \cup \mathcal{E}|$.

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (efficiency between $O(n^2 \ln n)$ and $O(n^3)$) algorithm returns optimized labeling **for 2-labeling**.

Here and below $n := |V \cup \mathcal{E}|$.

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (efficiency between $O(n^2 \ln n)$ and $O(n^3)$) algorithm returns optimized labeling **for 2-labeling**.

Here and below $n := |V \cup \mathcal{E}|$.

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

 E_1 (for 2-labeling) is submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0) + \phi_{st}(1,1) \le \phi_{st}(0,1) + \phi_{st}(1,0).$

Theorem (Kolmogorov & Zabih 2004)

- If *E*₁ is submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_1 is **NOT** submodular, then minimizing E_1 is NP-hard.

ヘロト ヘ戸ト ヘヨト ヘヨト

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

 E_1 (for 2-labeling) is submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0) + \phi_{st}(1,1) \le \phi_{st}(0,1) + \phi_{st}(1,0).$

Theorem (Kolmogorov & Zabih 2004)

• If *E*₁ is submodular, then min-cut/max-flow algorithm returns optimized labeling.

• If E_1 is **NOT** submodular, then minimizing E_1 is NP-hard.

くロト (過) (目) (日)

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

 E_1 (for 2-labeling) is submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0) + \phi_{st}(1,1) \le \phi_{st}(0,1) + \phi_{st}(1,0).$

Theorem (Kolmogorov & Zabih 2004)

 If E₁ is submodular, then min-cut/max-flow algorithm returns optimized labeling.

• If E_1 is **NOT** submodular, then minimizing E_1 is NP-hard.

くロト (過) (目) (日)

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

 E_1 (for 2-labeling) is submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0) + \phi_{st}(1,1) \le \phi_{st}(0,1) + \phi_{st}(1,0).$

Theorem (Kolmogorov & Zabih 2004)

- If E₁ is submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_1 is **NOT** submodular, then minimizing E_1 is NP-hard.

イロト イ理ト イヨト イヨト

$$(E_{\rho}(\ell))^{\rho} := \sum_{s \in V} (\phi_s(\ell(s)))^{\rho} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{\rho}$$

 E_p is *p*-submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0)^{p} + \phi_{st}(1,1)^{p} \le \phi_{st}(0,1)^{p} + \phi_{st}(1,0)^{p}.$

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

- If E_p is p-submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_p is **NOT** *p*-submodular, then minimizing E_p is NP-hard.

ヘロト ヘ戸ト ヘヨト ヘヨト

Strict optimality

$$(E_{\rho}(\ell))^{\rho} := \sum_{s \in V} (\phi_s(\ell(s)))^{\rho} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{\rho}$$

 E_p is *p*-submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0)^{p} + \phi_{st}(1,1)^{p} \le \phi_{st}(0,1)^{p} + \phi_{st}(1,0)^{p}.$

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

- If E_p is p-submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_p is **NOT** *p*-submodular, then minimizing E_p is NP-hard.

ヘロト 人間 ト ヘヨト ヘヨト

Strict optimality

$$(E_{\rho}(\ell))^{\rho} := \sum_{s \in V} (\phi_s(\ell(s)))^{\rho} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{\rho}$$

 E_p is *p*-submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0)^{p} + \phi_{st}(1,1)^{p} \le \phi_{st}(0,1)^{p} + \phi_{st}(1,0)^{p}.$

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

 If E_p is p-submodular, then min-cut/max-flow algorithm returns optimized labeling.

• If E_p is **NOT** *p*-submodular, then minimizing E_p is NP-hard.

ヘロト ヘアト ヘビト ヘビト

Strict optimality

$$(E_{\rho}(\ell))^{\rho} := \sum_{s \in V} (\phi_s(\ell(s)))^{\rho} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{\rho}$$

 E_p is *p*-submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0)^{\rho} + \phi_{st}(1,1)^{\rho} \le \phi_{st}(0,1)^{\rho} + \phi_{st}(1,0)^{\rho}.$

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

- If E_p is p-submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_p is **NOT** *p*-submodular, then minimizing E_p is NP-hard.

イロト イ押ト イヨト イヨトー

Strict optimality

Energies L_1 E_∞ The algorithm Strict optimality Conclusions $E_
ho(\ell)$ with 1 $\leq
ho < \infty$ VS $E_\infty(\ell)$

 $\phi_{st}(0,0)^p + \phi_{st}(1,1)^p \le \phi_{st}(0,1)^p + \phi_{st}(1,0)^p.$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.

Actually, ϕ is ∞ -submodular iff there is an N so that ϕ is *p*-submodular for all $p \in (N, \infty)$. Energies L_1 E_∞ The algorithm Strict optimality Conclusions $E_
ho(\ell)$ with 1 $\leq
ho < \infty$ VS $E_\infty(\ell)$

$$\phi_{st}(0,0)^{\rho} + \phi_{st}(1,1)^{\rho} \le \phi_{st}(0,1)^{\rho} + \phi_{st}(1,0)^{\rho}.$$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.

Energies L_1 E_∞ The algorithm Strict optimality Conclusions $E_
ho(\ell)$ with 1 $\leq
ho < \infty$ VS $E_\infty(\ell)$

$$\phi_{st}(0,0)^{\rho} + \phi_{st}(1,1)^{\rho} \le \phi_{st}(0,1)^{\rho} + \phi_{st}(1,0)^{\rho}.$$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.

Energies L_1 E_∞ The algorithm Strict optimality Conclusions $E_
ho(\ell)$ with $1 \le
ho < \infty$ VS $E_\infty(\ell)$

$$\phi_{st}(0,0)^{\rho} + \phi_{st}(1,1)^{\rho} \le \phi_{st}(0,1)^{\rho} + \phi_{st}(1,0)^{\rho}.$$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.

Energies L_1 E_∞ The algorithm Strict optimality Conclusions $E_
ho(\ell)$ with $1 \le
ho < \infty$ VS $E_\infty(\ell)$

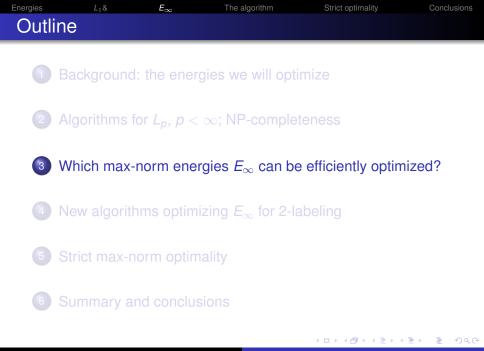
$$\phi_{st}(0,0)^{\rho} + \phi_{st}(1,1)^{\rho} \le \phi_{st}(0,1)^{\rho} + \phi_{st}(1,0)^{\rho}.$$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.



 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization, not maximization)

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra algorithm (efficiency between O(n) and $O(n \ln n)$) returns optimized labeling for *m*-labeling **for arbitrary large** *m*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization, not maximization)

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t)$;
- Cost of cut: φ_{st}(ℓ(s), ℓ(t)) > 0 (depending of f(s), f(t)) when ℓ(s) ≠ ℓ(t).

Dijkstra algorithm (efficiency between O(n) and $O(n \ln n)$) returns optimized labeling for *m*-labeling **for arbitrary large** *m*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization, not maximization)

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t)$;
- Cost of cut: φ_{st}(ℓ(s), ℓ(t)) > 0 (depending of f(s), f(t)) when ℓ(s) ≠ ℓ(t).

Dijkstra algorithm (efficiency between O(n) and $O(n \ln n)$) returns optimized labeling for *m*-labeling **for arbitrary large** *m*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization, not maximization)

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra algorithm (efficiency between O(n) and $O(n \ln n)$) returns optimized labeling for *m*-labeling **for arbitrary large** *m*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization, not maximization)

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra algorithm (efficiency between O(n) and $O(n \ln n)$) returns optimized labeling for *m*-labeling **for arbitrary large** *m*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization, not maximization)

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra algorithm (efficiency between O(n) and $O(n \ln n)$) returns optimized labeling for *m*-labeling **for arbitrary large** *m*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization, not maximization)

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra algorithm (efficiency between O(n) and $O(n \ln n)$) returns optimized labeling for *m*-labeling **for arbitrary large** *m*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

ヘロト ヘアト ヘビト ヘビト

YES! ∞ -sub algotithm

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm, efficiency between O(n) and $O(n \ln n)$, is NOT Dijkstra-like! This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

YES! ∞ -sub algotithm

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm, efficiency between O(n) and $O(n \ln n)$, is NOT Dijkstra-like! This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

YES! ∞ -sub algotithm

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm, efficiency between O(n) and $O(n \ln n)$, is NOT Dijkstra-like! This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

YES! ∞ -sub algotithm

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm, efficiency between O(n) and $O(n \ln n)$, is NOT Dijkstra-like! This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

YES! ∞ -sub algotithm

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm, efficiency between O(n) and $O(n \ln n)$, is NOT Dijkstra-like!

This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

YES! ∞ -sub algotithm

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm, efficiency between O(n) and $O(n \ln n)$, is NOT Dijkstra-like! This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

YES! ∞ -sub algotithm

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm, efficiency between O(n) and $O(n \ln n)$, is NOT Dijkstra-like! This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

YES! ∞ -sub algotithm

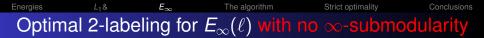
Theorem (Malmberg, Ciesielski, Strand, DGCI 2019)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm, efficiency between O(n) and $O(n \ln n)$, is NOT Dijkstra-like! This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

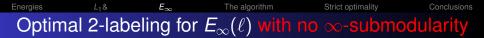
Q1: Is ∞ -submodularity assumption essential in the thm?



Theorem (Malmberg, Ciesielski, Strand; 2019 ???) There is an algorithm, $O(n^2)$ with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$: $\max \{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\}.$

More about the algorithm latter.

イロト イポト イヨト イヨト



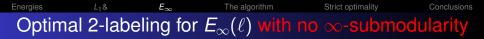
Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

There is an algorithm, $O(n^2)$ with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$:

 $\max \left\{ \max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)) \right\}.$

More about the algorithm latter.

・ 同 ト ・ ヨ ト ・ ヨ ト



Theorem (Malmberg, Ciesielski, Strand; 2019 ???) There is an algorithm, $O(n^2)$ with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$:

 $\max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

More about the algorithm latter.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Malmberg, Ciesielski, Strand; 2019 ???) There is an algorithm, $O(n^2)$ with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$:

 $\max \{ \max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)) \}.$

More about the algorithm latter.

イロト イ押ト イヨト イヨトー

Theorem (Malmberg, Ciesielski, Strand; 2019 ???) There is an algorithm, $O(n^2)$ with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$: $\max \{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\}.$

More about the algorithm latter.

Theorem (Malmberg, Ciesielski, Strand; 2019 ???) Optimization problem of the general form of E_{∞} energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_{∞} energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

ヘロト ヘアト ヘビト ヘビト

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

ヘロン 人間 とくほ とくほ とう

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

ヘロト 人間 ト ヘヨト ヘヨト

Energies $L_{1^{\&}}$ E_{∞} The algorithm Strict optimality **Optimal** \geq 3-labeling of $E_{\infty}(\ell)$ is NP-hard: proof

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t) = 0 \text{ when } \ell(s) \neq \ell(t).$

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G} .

But graph *m*-coloring problem for any $m \ge 3$ is NP-complete! It is not for m = 2.

ヘロト ヘアト ヘビト ヘビト

Conclusions

Energies $L_1^{\&}$ E_{∞} The algorithm Strict optimality **Optimal** \geq 3-labeling of $E_{\infty}(\ell)$ is NP-hard: proof

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

• $\phi_s(\ell(s)) = 0$ in all cases;

- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t);$
- $\phi_{st}(\ell(s), \ell(t) = 0 \text{ when } \ell(s) \neq \ell(t).$

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G} .

But graph *m*-coloring problem for any $m \ge 3$ is NP-complete! It is not for m = 2.

イロト イポト イヨト イヨト

Conclusions

= 990

Energies $L_1^{\&}$ E_{∞} The algorithm Strict optimality **Optimal** \geq 3-labeling of $E_{\infty}(\ell)$ is NP-hard: proof

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G} .

But graph *m*-coloring problem for any $m \ge 3$ is NP-complete! It is not for m = 2.

イロト イポト イヨト イヨト

Conclusions

= 990

Energies L_1 E_{∞} The algorithm Strict optimality **Optimal** \geq 3-labeling of $E_{\infty}(\ell)$ is NP-hard: proof

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t) = 0 \text{ when } \ell(s) \neq \ell(t).$

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G} .

But graph *m*-coloring problem for any $m \ge 3$ is NP-complete! It is not for m = 2.

イロト イポト イヨト イヨト

Conclusions

= 990

Energies $L_{1^{\&}}$ E_{∞} The algorithm Strict optimality **Optimal** \geq 3-labeling of $E_{\infty}(\ell)$ is NP-hard: proof

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t) = 0 \text{ when } \ell(s) \neq \ell(t).$

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G} .

But graph *m*-coloring problem for any $m \ge 3$ is NP-complete! It is not for m = 2.

ヘロト 人間 とくほ とくほ とう

Conclusions

= 990

Energies $L_{1^{\&}}$ E_{∞} The algorithm Strict optimality **Optimal** \geq 3-labeling of $E_{\infty}(\ell)$ is NP-hard: proof

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t) = 0 \text{ when } \ell(s) \neq \ell(t).$

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G} .

But graph *m*-coloring problem for any $m \ge 3$ is NP-complete! It is not for m = 2.

ヘロト 人間 とくほ とくほ とう

Conclusions

= 990

Energies $L_{1^{\&}}$ E_{∞} The algorithm Strict optimality **Optimal** \geq 3-labeling of $E_{\infty}(\ell)$ is NP-hard: proof

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t) = 0 \text{ when } \ell(s) \neq \ell(t).$

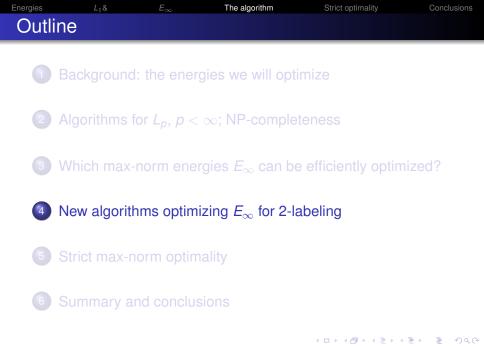
Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G} .

But graph *m*-coloring problem for any $m \ge 3$ is NP-complete! It is not for m = 2.

ヘロン 人間 とくほ とくほ とう

Conclusions

= 990



 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s, 0)\}$ and $\{(s, 1)\}$ for each $v \in V$ binary: four $\{(s, i), (t, j)\}$ $(i, j \in \{0, 1\})$ for each $\{s, t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s, 0)\}$ and $\{(s, 1)\}$ for each $v \in V$ binary: four $\{(s, i), (t, j)\}$ $(i, j \in \{0, 1\})$ for each $\{s, t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s, 0)\}$ and $\{(s, 1)\}$ for each $v \in V$ binary: four $\{(s, i), (t, j)\}$ $(i, j \in \{0, 1\})$ for each $\{s, t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s, 0)\}$ and $\{(s, 1)\}$ for each $v \in V$ binary: four $\{(s, i), (t, j)\}$ $(i, j \in \{0, 1\})$ for each $\{s, t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s, 0)\}$ and $\{(s, 1)\}$ for each $v \in V$ binary: four $\{(s, i), (t, j)\}$ $(i, j \in \{0, 1\})$ for each $\{s, t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two {(*s*, 0)} and {(*s*, 1)} for each $v \in V$ binary: four {(*s*, *i*), (*t*, *j*)} (*i*, *j* \in {0, 1}) for each {*s*, *t*} $\in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two {(*s*, 0)} and {(*s*, 1)} for each $v \in V$ binary: four {(*s*, *i*), (*t*, *j*)} (*i*, *j* \in {0, 1}) for each {*s*, *t*} $\in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two {(*s*, 0)} and {(*s*, 1)} for each $v \in V$ binary: four {(*s*, *i*), (*t*, *j*)} (*i*, *j* \in {0, 1}) for each {*s*, *t*} $\in \mathcal{E}$.

- Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$
- Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two {(*s*, 0)} and {(*s*, 1)} for each $v \in V$ binary: four {(*s*, *i*), (*t*, *j*)} (*i*, *j* \in {0, 1}) for each {*s*, *t*} $\in \mathcal{E}$.

- Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$
- Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

Energies L_1 E_∞ The algorithm Strict optimality Conclusions ∞ -sub algorithm

List all atoms in a list S in a decreasing cost so that if atoms A₀ and A₁ have the same cost and A₁ = {(s, i), (t, i)}, then A₁ proceeds A₀.

- While S is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L
- 3 Return labeling $\ell = \bigcup L$

The locally inconsistency loop is natural.

The trick is to show that the algorithm works property for all ∞ -submodular energies.

ヘロト ヘワト ヘビト ヘビト

Energies L_1 E_∞ The algorithm Strict optimality Conclusions ∞ -sub algorithm

List all atoms in a list S in a decreasing cost

- so that if atoms A_0 and A_1 have the same cost and $A_1 = \{(s, i), (t, i)\}$, then A_1 proceeds A_0 .
- While S is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L
- 3 Return labeling $\ell = \bigcup L$

The locally inconsistency loop is natural.

The trick is to show that the algorithm works property for all ∞ -submodular energies.

ヘロト ヘワト ヘビト ヘビト

- List all atoms in a list S in a decreasing cost so that if atoms A₀ and A₁ have the same cost and A₁ = {(s, i), (t, i)}, then A₁ proceeds A₀.
- While *S* is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L
- 3 Return labeling $\ell = \bigcup L$

The trick is to show that the algorithm works property for all ∞ -submodular energies.

- List all atoms in a list S in a decreasing cost so that if atoms A₀ and A₁ have the same cost and A₁ = {(s, i), (t, i)}, then A₁ proceeds A₀.
- While S is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L
- 3 Return labeling $\ell = \bigcup L$

The trick is to show that the algorithm works property for all ∞ -submodular energies.

- List all atoms in a list S in a decreasing cost so that if atoms A₀ and A₁ have the same cost and A₁ = {(s, i), (t, i)}, then A₁ proceeds A₀.
- While S is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L
- 3 Return labeling $\ell = \bigcup L$

The trick is to show that the algorithm works property for all ∞ -submodular energies.

- List all atoms in a list S in a decreasing cost so that if atoms A₀ and A₁ have the same cost and A₁ = {(s, i), (t, i)}, then A₁ proceeds A₀.
- While S is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L

3 Return labeling $\ell = \bigcup L$

The locally inconsistency loop is natural.

The trick is to show that the algorithm works property for all ∞ -submodular energies.

- List all atoms in a list S in a decreasing cost so that if atoms A₀ and A₁ have the same cost and A₁ = {(s, i), (t, i)}, then A₁ proceeds A₀.
- While S is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L
- 3 Return labeling $\ell = \bigcup L$

The trick is to show that the algorithm works property for all ∞ -submodular energies.

ヘロト ヘ戸ト ヘヨト ヘヨト

- List all atoms in a list S in a decreasing cost so that if atoms A₀ and A₁ have the same cost and A₁ = {(s, i), (t, i)}, then A₁ proceeds A₀.
- While S is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L
- 3 Return labeling $\ell = \bigcup L$

The trick is to show that the algorithm works property for all ∞ -submodular energies.

ヘロト ヘ戸ト ヘヨト ヘヨト

- List all atoms in a list S in a decreasing cost so that if atoms A₀ and A₁ have the same cost and A₁ = {(s, i), (t, i)}, then A₁ proceeds A₀.
- While S is non-empty do
 - Remove the first atom A from S
 - If A is the last atom for its vertex/edge, insert it to list L
 - Consecutively remove from S all atoms that are locally inconsistent with current S ∪ L
- 3 Return labeling $\ell = \bigcup L$

The trick is to show that the algorithm works property for all $\infty\mathchar`-submodular energies.$

くロト (過) (目) (日)

For atoms $A = \{(s, i)\}$ and $A' = \{(s, i), (t, j)\}$ define formulas

The algorithm

$$\psi_{\mathcal{A}}(\boldsymbol{s}) := "\boldsymbol{s}
eq i" = egin{cases}
eg \boldsymbol{s} & ext{if } i = 1, \\ \boldsymbol{s} & ext{if } i = 0 \end{cases}$$

 $\psi_{A}(s,t) := "(s \neq i) \lor (t \neq j)" = \psi_{\{(s,i)\}}(s) \lor \psi_{\{(t,j)\}}(t).$ For a set $\mathcal{A}' = \{A_1, A_2, \dots, A_k\}$ of atoms the formula $\psi_{\mathcal{A}'} := \psi_{A_1} \land \dots \land \psi_{A_k}.$ is in 2-conjunctive normal form.

Theorem

Energies

A set $A_1 \subseteq A$ of atoms is consistent if, and only if, the 2-satisfiability problem for a formula $\psi_{A_1^c}$ has a positive solution.

So, consistency of $A_1 \subseteq A$ can be decided by in linear time. (Aspvall et al. algorithm.)

Strict optimality

For atoms $A = \{(s, i)\}$ and $A' = \{(s, i), (t, j)\}$ define formulas

The algorithm

$$\psi_{\mathcal{A}}(\boldsymbol{s}) := \text{``} \boldsymbol{s}
eq i extsf{``} = egin{cases}
eg \boldsymbol{s} & extsf{if} \ i = 1, \ \boldsymbol{s} & extsf{if} \ i = 0 \end{cases}$$

$$\psi_{\mathcal{A}}(s,t) := "(s \neq i) \lor (t \neq j)" = \psi_{\{(s,i)\}}(s) \lor \psi_{\{(t,j)\}}(t).$$

For a set $\mathcal{A}' = \{A_1, A_2, \dots, A_k\}$ of atoms the formula $\psi_{\mathcal{A}'} := \psi_{\mathcal{A}_1} \land \dots \land \psi_{\mathcal{A}_k}$ is in *2-conjunctive normal form*

Theorem

Energies

A set $A_1 \subseteq A$ of atoms is consistent if, and only if, the 2-satisfiability problem for a formula $\psi_{A_1^c}$ has a positive solution.

So, consistency of $A_1 \subseteq A$ can be decided by in linear time. (Aspvall et al. algorithm.)

Strict optimality

For atoms $A = \{(s, i)\}$ and $A' = \{(s, i), (t, j)\}$ define formulas

The algorithm

$$\psi_{\mathcal{A}}(\boldsymbol{s}) := \text{``} \boldsymbol{s}
eq i extsf{``} = egin{cases}
eg \boldsymbol{s} & extsf{if} \ i = 1, \ \boldsymbol{s} & extsf{if} \ i = 0 \end{cases}$$

$$\psi_{\mathcal{A}}(\boldsymbol{s},t) := "(\boldsymbol{s} \neq i) \lor (t \neq j)" = \psi_{\{(\boldsymbol{s},i)\}}(\boldsymbol{s}) \lor \psi_{\{(t,j)\}}(t).$$

For a set $\mathcal{A}' = \{A_1, A_2, \dots, A_k\}$ of atoms the formula $\psi_{\mathcal{A}'} := \psi_{A_1} \wedge \dots \wedge \psi_{A_k}$ is in 2-conjunctive normal form.

Theorem

Energies

A set $A_1 \subseteq A$ of atoms is consistent if, and only if, the 2-satisfiability problem for a formula $\psi_{A_1^c}$ has a positive solution.

So, consistency of $A_1 \subseteq A$ can be decided by in linear time. (Aspvall et al. algorithm.)

Strict optimality

For atoms $A = \{(s, i)\}$ and $A' = \{(s, i), (t, j)\}$ define formulas

The algorithm

$$\psi_{\mathcal{A}}(\boldsymbol{s}) := \text{``} \boldsymbol{s}
eq i extsf{``} = egin{cases}
eg \boldsymbol{s} & extsf{if} \ i = 1, \ \boldsymbol{s} & extsf{if} \ i = 0 \end{cases}$$

$$\psi_{\mathcal{A}}(\boldsymbol{s},t) := "(\boldsymbol{s} \neq i) \lor (t \neq j)" = \psi_{\{(\boldsymbol{s},i)\}}(\boldsymbol{s}) \lor \psi_{\{(t,j)\}}(t).$$

For a set $\mathcal{A}' = \{A_1, A_2, \dots, A_k\}$ of atoms the formula $\psi_{\mathcal{A}'} := \psi_{A_1} \wedge \dots \wedge \psi_{A_k}$ is in 2-conjunctive normal form.

Theorem

Energies

A set $A_1 \subseteq A$ of atoms is consistent if, and only if, the 2-satisfiability problem for a formula $\psi_{A_1^c}$ has a positive solution.

So, consistency of $A_1 \subseteq A$ can be decided by in linear time. (Aspvall et al. algorithm.)

Strict optimality

For atoms $A = \{(s, i)\}$ and $A' = \{(s, i), (t, j)\}$ define formulas

The algorithm

$$\psi_{\mathcal{A}}(\boldsymbol{s}) := \text{``} \boldsymbol{s}
eq i extsf{``} = egin{cases}
eg \boldsymbol{s} & extsf{if} \ i = 1, \ \boldsymbol{s} & extsf{if} \ i = 0 \end{cases}$$

$$\psi_{\mathcal{A}}(\boldsymbol{s},t) := "(\boldsymbol{s} \neq i) \lor (t \neq j)" = \psi_{\{(\boldsymbol{s},i)\}}(\boldsymbol{s}) \lor \psi_{\{(t,j)\}}(t).$$

For a set $\mathcal{A}' = \{A_1, A_2, \dots, A_k\}$ of atoms the formula $\psi_{\mathcal{A}'} := \psi_{A_1} \wedge \dots \wedge \psi_{A_k}$ is in 2-conjunctive normal form.

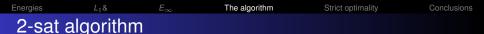
Theorem

Energies

A set $A_1 \subseteq A$ of atoms is consistent if, and only if, the 2-satisfiability problem for a formula $\psi_{A_1^c}$ has a positive solution.

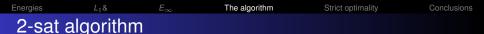
So, consistency of $A_1 \subseteq A$ can be decided by in linear time. (Aspvall et al. algorithm.)

Strict optimality



- List all atoms in a list S in a decreasing cost
- While S is non-empty do
 - Remove the first atom A from S
 - If $S \cup L$ is not consistent, insert A to L
- 3 Return labeling $\ell = \bigcup L$

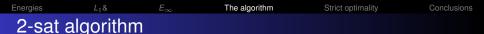
The $S \cup L$ is not consistent clause is decided by Aspvall et al. algorithm.



List all atoms in a list S in a decreasing cost

- While S is non-empty do
 - Remove the first atom A from S
 - If $S \cup L$ is not consistent, insert A to L
- 3 Return labeling $\ell = \bigcup L$

The $S \cup L$ is not consistent clause is decided by Aspvall et al. algorithm.

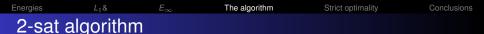


List all atoms in a list S in a decreasing cost
While S is non-empty do

Remove the first atom A from S
If S ∪ L is not consistent, insert A to L

Return labeling l = U L

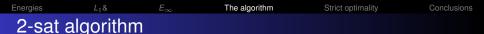
The $S \cup L$ is not consistent clause is decided by Aspvall et al. algorithm.



• List all atoms in a list S in a decreasing cost

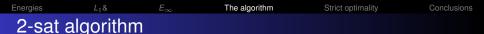
- While S is non-empty do
 - Remove the first atom A from S
 - If $S \cup L$ is not consistent, insert A to L
- 3 Return labeling $\ell = \bigcup L$

The $S \cup L$ is not consistent clause is decided by Aspvall et al. algorithm.



- List all atoms in a list S in a decreasing cost
- While S is non-empty do
 - Remove the first atom A from S
 - If $S \cup L$ is not consistent, insert A to L
- 3 Return labeling $\ell = \bigcup L$

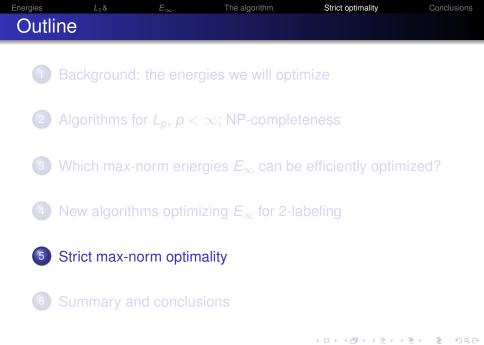
The $S \cup L$ is not consistent clause is decided by Aspvall et al. algorithm.



- List all atoms in a list S in a decreasing cost
- While S is non-empty do
 - Remove the first atom A from S
 - If $S \cup L$ is not consistent, insert A to L
- 3 Return labeling $\ell = \bigcup L$

The $S \cup L$ is not consistent clause is decided by Aspvall et al. algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト



Energies L_1 & E_{∞} The algorithmStrict optimalityStrict optimality via lexicographical order

Max-norm identifies ℓ_1 and ℓ_2 when $E_{\infty}(\ell_1) = E_{\infty}(\ell_2)$.

Lexicographical order \leq is a sharper distinguishing tool.

For labeling ℓ , let $\vec{\ell} = \langle \ell_1, \dots, \ell_n \rangle = \langle \Phi(A_1), \dots, \Phi(A_n) \rangle$ non-increasing for an enumeration $\mathcal{A}(\ell) = \{A_1, \dots, A_n\}$.

 $\ell \prec \ell'$ iff $\ell_i < \ell'_i$, where $i := \min\{k \colon \ell_k < \ell'_k\}$.

 ℓ is strictly optimal when it is maximal w.r.t. \leq .

Strictly optimal implies max-norm optimal, but not converse.

Q: Can we efficiently find also strict optimizers?

くロト (過) (目) (日)

Energies L_1 & E_{∞} The algorithmStrict optimalityStrict optimality via lexicographical order

Max-norm identifies ℓ_1 and ℓ_2 when $E_{\infty}(\ell_1) = E_{\infty}(\ell_2)$.

Lexicographical order \leq is a sharper distinguishing tool.

For labeling ℓ , let $\vec{\ell} = \langle \ell_1, \dots, \ell_n \rangle = \langle \Phi(A_1), \dots, \Phi(A_n) \rangle$ non-increasing for an enumeration $\mathcal{A}(\ell) = \{A_1, \dots, A_n\}$.

 $\ell \prec \ell'$ iff $\ell_i < \ell'_i$, where $i := \min\{k \colon \ell_k < \ell'_k\}$.

 ℓ is strictly optimal when it is maximal w.r.t. \leq .

Strictly optimal implies max-norm optimal, but not converse.

Q: Can we efficiently find also strict optimizers?

ヘロト 人間 ト ヘヨト ヘヨト

Max-norm identifies ℓ_1 and ℓ_2 when $E_{\infty}(\ell_1) = E_{\infty}(\ell_2)$.

Lexicographical order \leq is a sharper distinguishing tool.

For labeling ℓ , let $\vec{\ell} = \langle \ell_1, \dots, \ell_n \rangle = \langle \Phi(A_1), \dots, \Phi(A_n) \rangle$ non-increasing for an enumeration $\mathcal{A}(\ell) = \{A_1, \dots, A_n\}$.

 $\ell \prec \ell'$ iff $\ell_i < \ell'_i$, where $i := \min\{k \colon \ell_k < \ell'_k\}$.

 ℓ is strictly optimal when it is maximal w.r.t. \leq .

Strictly optimal implies max-norm optimal, but not converse.

Q: Can we efficiently find also strict optimizers?

ヘロト 人間 ト ヘヨト ヘヨト

Max-norm identifies ℓ_1 and ℓ_2 when $E_{\infty}(\ell_1) = E_{\infty}(\ell_2)$.

Lexicographical order \leq is a sharper distinguishing tool.

For labeling ℓ , let $\vec{\ell} = \langle \ell_1, \dots, \ell_n \rangle = \langle \Phi(A_1), \dots, \Phi(A_n) \rangle$ non-increasing for an enumeration $\mathcal{A}(\ell) = \{A_1, \dots, A_n\}$.

 $\ell \prec \ell'$ iff $\ell_i < \ell'_i$, where $i := \min\{k \colon \ell_k < \ell'_k\}$.

 ℓ is strictly optimal when it is maximal w.r.t. \leq .

Strictly optimal implies max-norm optimal, but not converse.

Q: Can we efficiently find also strict optimizers?

ヘロト ヘアト ヘビト ヘビト

Max-norm identifies ℓ_1 and ℓ_2 when $E_{\infty}(\ell_1) = E_{\infty}(\ell_2)$.

Lexicographical order \leq is a sharper distinguishing tool.

For labeling ℓ , let $\vec{\ell} = \langle \ell_1, \dots, \ell_n \rangle = \langle \Phi(A_1), \dots, \Phi(A_n) \rangle$ non-increasing for an enumeration $\mathcal{A}(\ell) = \{A_1, \dots, A_n\}$.

 $\ell \prec \ell'$ iff $\ell_i < \ell'_i$, where $i := \min\{k \colon \ell_k < \ell'_k\}$.

 ℓ is strictly optimal when it is maximal w.r.t. \leq .

Strictly optimal implies max-norm optimal, but not converse.

Q: Can we efficiently find also strict optimizers?

・ロト ・ 理 ト ・ ヨ ト ・

Max-norm identifies ℓ_1 and ℓ_2 when $E_{\infty}(\ell_1) = E_{\infty}(\ell_2)$.

Lexicographical order \leq is a sharper distinguishing tool.

For labeling ℓ , let $\vec{\ell} = \langle \ell_1, \dots, \ell_n \rangle = \langle \Phi(A_1), \dots, \Phi(A_n) \rangle$ non-increasing for an enumeration $\mathcal{A}(\ell) = \{A_1, \dots, A_n\}$.

 $\ell \prec \ell'$ iff $\ell_i < \ell'_i$, where $i := \min\{k \colon \ell_k < \ell'_k\}$.

 ℓ is strictly optimal when it is maximal w.r.t. $\preceq.$

Strictly optimal implies max-norm optimal, but not converse.

Q: Can we efficiently find also strict optimizers?

・ロト ・ 理 ト ・ ヨ ト ・

Max-norm identifies ℓ_1 and ℓ_2 when $E_{\infty}(\ell_1) = E_{\infty}(\ell_2)$.

Lexicographical order \leq is a sharper distinguishing tool.

For labeling ℓ , let $\vec{\ell} = \langle \ell_1, \dots, \ell_n \rangle = \langle \Phi(A_1), \dots, \Phi(A_n) \rangle$ non-increasing for an enumeration $\mathcal{A}(\ell) = \{A_1, \dots, A_n\}$.

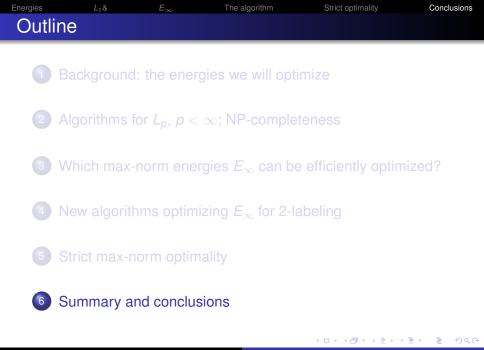
 $\ell \prec \ell'$ iff $\ell_i < \ell'_i$, where $i := \min\{k \colon \ell_k < \ell'_k\}$.

 ℓ is strictly optimal when it is maximal w.r.t. \leq .

Strictly optimal implies max-norm optimal, but not converse.

Q: Can we efficiently find also strict optimizers?

・ロ・ ・ 同・ ・ ヨ・



L1&

The alg

Strict optimalit

Conclusions

Summary (including new results)

	2 labels	\geq 3 labels
general case strict optimization	NP-hard problem	NP-hard problem
∞ -submodular strict optimization		NP-hard problem
	2-sat algorithm $O(n^2)$	NP-hard problem
		NP-hard problem
		NP-hard problem

< 同.

프 🖌 🛪 프 🕨

 $L_1 \&$

The algorit

Strict optimalit

Conclusions

Summary (including new results)

	2 labels	\geq 3 labels
general case strict optimization	NP-hard problem	NP-hard problem
∞ -submodular strict optimization	$\max - \text{flow/min-cut} \\ O(n^2 \ln n) \le \cdot \le O(n^3)$	NP-hard problem
unique weights strict optimization	2-sat algorithm $O(n^2)$	NP-hard problem
		NP-hard problem
		NP-hard problem

< 同.

프 🖌 🛪 프 🕨

 $L_1 \&$

The algorit

Strict optimalit

Conclusions

Summary (including new results)

	2 labels	\geq 3 labels
general case strict optimization	NP-hard problem	NP-hard problem
∞ -submodular strict optimization	$\begin{array}{l} \text{max-flow/min-cut} \\ O(n^2 \ln n) \leq \cdot \leq O(n^3) \end{array}$	NP-hard problem
unique weights strict optimization	2-sat algorithm $O(n^2)$	NP-hard problem
general case	2-sat algorithm; $O(n^2)$	NP-hard problem
∞ -submodular		NP-hard problem

< 同.

프 🖌 🛪 프 🕨

 $L_1 \&$

The algorit

Strict optimalit

Conclusions

Summary (including new results)

	2 labels	\geq 3 labels
general case strict optimization	NP-hard problem	NP-hard problem
∞ -submodular strict optimization	$\begin{array}{l} \max \text{-flow/min-cut} \\ O(n^2 \ln n) \leq \cdot \leq O(n^3) \end{array}$	NP-hard problem
unique weights strict optimization	2-sat algorithm $O(n^2)$	NP-hard problem
general case	2-sat algorithm; $O(n^2)$	NP-hard problem
∞ -submodular	∞ -sub algorithm $O(n) \leq \cdot \leq O(n \ln n)$	NP-hard problem

< 同.

프 🖌 🛪 프 🕨

 $L_1 \&$

The algorit

Strict optimalit

Conclusions

Summary (including new results)

	2 labels	\geq 3 labels
general case strict optimization	NP-hard problem	NP-hard problem
∞ -submodular strict optimization	$\begin{array}{l} \text{max-flow/min-cut} \\ O(n^2 \ln n) \leq \cdot \leq O(n^3) \end{array}$	NP-hard problem
unique weights strict optimization	2-sat algorithm $O(n^2)$	NP-hard problem
general case	2-sat algorithm; $O(n^2)$	NP-hard problem
∞ -submodular	∞ -sub algorithm $O(n) \le \cdot \le O(n \ln n)$	NP-hard problem
$\phi_{\boldsymbol{s}}(i) = \phi_{\boldsymbol{s}t}(i,i) = \boldsymbol{0};$	Dijkstra algorithm	Dijkstra algorithm
$\phi_{st}(i,j) = \phi_{st}(j,i) \ge 0$		

< 同.

프 🖌 🛪 프 🕨

 $L_1 \&$

The algori

Strict optimalit

Conclusions

Summary (including new results)

	2 labels	\geq 3 labels
general case strict optimization	NP-hard problem	NP-hard problem
∞ -submodular strict optimization	$\max - \text{flow/min-cut} \\ O(n^2 \ln n) \le \cdot \le O(n^3)$	NP-hard problem
unique weights strict optimization	2-sat algorithm $O(n^2)$	NP-hard problem
general case	2-sat algorithm; $O(n^2)$	NP-hard problem
∞ -submodular	∞ -sub algorithm $O(n) \le \cdot \le O(n \ln n)$	NP-hard problem
$\phi_{s}(i) = \phi_{st}(i,i) = 0;$	Dijkstra algorithm	Dijkstra algorithm
$\phi_{st}(i,j) = \phi_{st}(j,i) \ge 0$	$O(n) \leq \cdot \leq O(n \ln n)$	$O(n) \leq \cdot \leq O(n \ln n)$

< 同.

프 🖌 🛪 프 🕨

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear or quadratic time.
- Some max-norm for \geq 3-labeling are NP-hard.

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear or quadratic time.
- Some max-norm for \geq 3-labeling are NP-hard.

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear or quadratic time.
- Some max-norm for \geq 3-labeling are NP-hard.

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear or quadratic time.
- Some max-norm for \geq 3-labeling are NP-hard.

ies	L ₁ &
-----	------------------

Thank you for your attention!

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 20 of 20

< 🗇 🕨

★ Ξ → ★ Ξ →

ъ