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Optimization in image processing

I Many fundamental problems in image processing and
computer vision, such as image filtering, segmentation,
registration, and stereo vision, can naturally be formulated as
optimization problems.

I Often, these optimization problems can be described as
labeling problems, in which we wish to assign to each image
element (pixel) an element from some finite set of labels.



Optimization in image processing

We seek a label assignment configuration x that minimizes a given
objective function E , which in the “canonical” case can be written
as follows:

E (x) =
∑
i∈V

φi (xi ) +
∑
i ,j∈E

φij(xi , xj) , (1)

where:

I V is the set of pixels in the image.

I E is the set of all adjacent pairs of pixels in the image.

I xi denotes the label of vertex i , belonging to a finite set of
integers {0, 1 . . . ,K − 1}.
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Data and regularization terms

I The functions φi (·) are referred to as unary terms. Each unary
term depends only on the label xi assigned to the pixel i , and
they are used to indicate the preference of an individual pixel
to be assigned each particular label.

I The functions φij(·, ·) are referred to as pairwise terms. Each
such function depends on the labels assigned to two pixels
simultaneously, and thus introduces a dependency between
the labels of different pixels. Typically, these terms express
that the desired solution should have some degree of
smoothness, or regularity.
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Optimization by graph cuts

I In the general case, global optimization of this labeling
problem is NP-hard.

I In special cases, globally optimal solutions can be found
efficiently.

I For the binary labeling problem, with K = 2, a globally
optimal solution can be computed by solving a
max-flow/min-cut problem on a suitably constructed graph.
This requires all pairwise terms to be submodular.

I A pairwise term φij is said to be submodular if

φij(0, 0) + φij(1, 1) ≤ φij(0, 1) + φij(1, 0) . (8)



Optimization by graph cuts

I At first glance, the restriction to binary labeling may appear
very limiting.

I The multi-label problem can, however, be reduced to a
sequence of binary valued labeling problems using, e.g., the
expansion move algorithm (Boykov et al. 2001, Kolmogorov
et al. 2004)

I Thus, the ability to find optimal solutions for problems with
two labels has high relevance also for the multi-label case.



Generalized objective functions

Looking again at the labeling problem described above, we can
view the objective function E as consisting of two parts:

I A local error measure, in our case defined by the unary and
pairwise terms.

I A global error measure, aggregating the local errors into a
final score. In the case of E , the global error measure is
obtained by summing all the local error measures.
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lp-norm objective functions

If we assume all terms to be non-negative, minimizing E can be
seen as minimizing the l1-norm of the vector containing all unary
and pairwise terms. A natural generalization is to consider
minimization of arbitrary lp-norms, p ≥ 1, i.e., minimizing:

Ep(x) =

∑
i∈V

φpi (xi ) +
∑
i ,j∈E

φpij(xi , xj)

1/p

(12)



What is the effect of p?

I The value p can be seen as a parameter controlling the
balance between minimizing the overall cost versus minimizing
the magnitude of the individual terms.

I For p = 1, the optimal labeling may contain (few) arbitrarily
large individual terms as long as the sum of the terms is small.

I As p increases, a larger penalty is assigned to solutions
containing large individual terms. This forces local errors to
be distributed more evenly across the image domain.



Letting p go to ∞

As p approaches infinity, the objective function approaches the
∞-norm, or max-norm, of the local errors:

E∞(x) = max
{

max
i∈V

φi (xi ), max
{i ,j}∈E

φij(xi , xj)
}
. (13)

In this case, the global error is completely determined by the
largest local error. Intuitively, this means that the local errors are
distributed as evenly as possible across the image domain.



Why are we interested in max-norm problems?

I It is well known that special cases of the max-norm
optimization problems given above can be solved very
efficiently (quasi-linear time) using MSF-cuts, a.k.a.
watershed cuts. These methods has mainly been used for
image segmentation, with only a few papers considering more
general optimization problems.

I Some of these solvable problems are outside of the class of
problems we can solve by minimal graph cuts. (i.e., some
multilabel cases).

I Yet, no systematic study has (to our knowledge) been made
to determine what class of max-norm optimization problems
we can actually solve!



A missing paper?

Kolmogorov and Zabih
What energy functions can be minimized via graph cuts?
IEEE PAMI, 2004



Direct optimization of max-norm problems

I In our paper, we present an efficient (quasi-linear time)
algorithm for optimizing binary labeling problems with the
max-norm E∞ objective function.

I Our algorithm is structurally similar to algorithms for
MSF/watershed cuts.

I We prove that the algorithm produces a globally optimal
solution provided that all pairwise terms are ∞-submodular:

max{φij(0, 0), φij(1, 1)} ≤ max{φij(1, 0), φij(0, 1)}. (14)



Note the symmetry

I We can find globally optimal solutions for E1 objective
functions, if all pairwise terms are 1-submodular. (Using
graph cuts)

φij(0, 0) + φij(1, 1) ≤ φij(0, 1) + φij(1, 0) . (15)

I We can find globally optimal solutions for E∞ objective
functions, if all pairwise terms are ∞-submodular. (Using our
proposed algorithm)

max{φij(0, 0), φij(1, 1)} ≤ max{φij(1, 0), φij(0, 1)}. (16)



Outline of our proposed algorithm

I To describe the method, we introduce the notion of unary and
binary solution atoms.

I A unary atom represents one possible label configuration for a
single vertex.

I A binary atom represent a possible label configuration for a
pair of adjacent vertices.

I Thus, for a binary labeling problem, there are two unary
atoms associated with every pixel and four binary atoms for
every pair of adjacent pixels.

I Each atom has a weight given by the corresponding unary or
binary term of the objective function.



Outline of our proposed algorithm

The algorithm works as follows:

I Start with a set S consisting of all possible atoms.
I For each atom A, in order of decreasing weight:

I If A is still in S , and is not the only remaining atom for that
vertex/edge, remove A from S .

I After the removal of A, S may contain incompatible atoms.
Iteratively remove incompatible atoms until S contains no
more incompatible atoms.



Beyond ∞-submodular functions?

I For graph cuts/E1 problems, minimizing non-submodular
functions is NP-hard in the general case.

I In the E∞ case, we can minimize at least all ∞-submodular
functions with two labels.

I Open question: Is the problem of minimizing E∞ functions
that are not ∞-submodular also NP-hard? (Spoiler alert: it
appears not!)



Conclusions

I Optimization problems, specifically pixel labeling problems,
are frequently occuring in image processing applications.

I We are specifically interested in problems where the objective
function is given by the max-norm of the local errors.

I For many such problems, globally optimal solutions can be
found very efficiently, in quasi linear time using “MSF-like
algorithms”. We have initiated a systematic study of these
problems, to determine exactly what class of problems can be
solved in this way.

I An important first result, presented here, is that the class of
solvable problems includes all binary labeling problems with
∞-submodular pairwise terms.



Thank you for your attention!


