Graph-based Segmentation with Local Band Constraints

Caio de Moraes Braz¹, Paulo A. V. Miranda¹, Krzysztof Chris Ciesielski², Fábio A. M. Cappabianco³

¹Dept. of Computer Science, University of São Paulo

²Dept. of Mathematics, West Virginia University

³Institute of Science and Technology, Federal University of São Paulo

21st International Conference on Discrete Geometry for Computer Imagery March 26th, 2019

Local Band Constraints

1/31

(日) (周) (王) (王)

Outline

Background 2

3 Local Band Constraint

Experiments 4

< A >

э

Outline

2 Background

3 Local Band Constraint

4 Experiments

5 Conclusion

Braz, Miranda, Ciesielski and Cappabianco

э

イロト イヨト イヨト

Introduction

- Image Segmentation Recognition and delineation
- Graph Based Segmentation
- Energy Optimization
- High-level Constraints

3

< 同 > < 国 > < 国 >

Outline

Background 2

Local Band Constraint

Experiments

Conclusion

Braz, Miranda, Ciesielski and Cappabianco

< □ > < 同 >

э

Graph Based Image Segmentation

- Graph partition problem.
- Subject to hard constraints (seed markers).

Energy Optimizers

In this work, we are interested in an energy optimality criterion which is defined by a graph-cut measure. Two important classes of energy optimization on the GGC framework are:

- Max-Min (e.g.: OIFT, ORFC)
- Min-Sum (e.g.: Graph-Cuts)

Our algorithms are based on OIFT, ensuring that the segmentation with Max-Min energy is found. The resulting segmentation gives a global optimum solution by maximizing the following graph-cut measure, subject to the seed constraints.

$$\varepsilon_{\min}(L) = \min\{\omega(s,t) \colon (s,t) \in \mathcal{A} \& L(s) > L(t)\}$$
(1)

7/31

イロト イポト イヨト イヨト 三日

High-Level Constraints

High Level constraints intended to regularize object borders are common in literature, some examples are:

- Geodesic Star Constraint (GSC) [Gulshan et.al., 2010] Directs the target object to have a star convex shape.
- Hedgehog Shape Prior (HSP) [Isack et.al., 2016] Uses the gradient of a distance transform from the seeds (i.e. a vector field) to avoid abrupt angle variations on the border.
- Boundary Band Constraint (BB) [Braz & Miranda, 2014]
 Prevents the generated segmentation to be irregular in relation to the level sets of a given reference cost map,by setting a maximum allowed variation between any two points of the boundary.

8/31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Boundary Band Constraint (BB) - Definition

For $\Delta > 0$ and a cost map $C : \mathcal{I} \to [0, \infty)$, a pixel $t \in \mathcal{O}$ is BB_{Δ} provided $C(t) < C(s) + \Delta$ for all $s \in bd(\mathcal{O})$.

An object \mathcal{O} is BB_{Δ} provided every $t \in \mathcal{O}$ is BB_{Δ}.

Figure: (a-b) Segmentation results by OIFT without and with the BB constraint, respectively. (c-d) The BB fixed size band evolves from the seeds, adapting to the image contents.

9/31

< ロ > < 同 > < 回 > < 回 >

Boundary Band Constraint (BB) - Drawbacks

- Local changes can generate constraint violations in any other part of its border.
- Can result in greater sensitivity to the initialization of the cost map *C* and to the positioning of object seeds.

In order to address these issues, we can limit locally the constraint checks, leading to the Local Boundary Band Constraint.

Outline

2 Background

3 Local Band Constraint

4 Experiments

5 Conclusion

Braz, Miranda, Ciesielski and Cappabianco

э

イロト イヨト イヨト

Local Boundary Band Constraint (LBB) - Definition

For $\Delta, R > 0$ and a cost map $C: \mathcal{I} \to [0, \infty)$, a pixel $t \in \mathcal{O}$ is LBB_{Δ}^{R} provided $C(t) < C(s) + \Delta$ for all $s \in bd(\mathcal{O})$ such that $||s - t|| \leq R$.

An object \mathcal{O} is LBB^{R}_{Δ} provided every $t \in \mathcal{O}$ is LBB^{R}_{Δ} .

- Consistency checks are limited locally.
- \mathcal{O} is $\mathsf{BB}_\Delta \implies \mathcal{O}$ is LBB^R_Δ .
- BB_{Δ} is the limit case of LBB^{*R*}_{Δ}, when $R \rightarrow \infty$.

Braz, Miranda, Ciesielski and Cappabianco

12/31

・ロット (雪) (目) (日) ヨ

Local Boundary Band Constraint (LBB) - Issues

- Computationally expensive.
- Analysis of the dynamic set of bd(O) inside the radius R at runtime.

In order to address this we need an approximate alternative definition.

< ロ > < 同 > < 回 > < 回 >

Local Band Constraint (LB) - Definition

For $\Delta, R > 0$ and a cost map $C : \mathcal{I} \to [0, \infty)$, a pixel $t \in \mathcal{O}$ is LB^R_Δ provided $C(t) < C(s) + \Delta$ for all $s \in \mathcal{I} \setminus \mathcal{O}$ such that $||s - t|| \leq R$.

An object \mathcal{O} is LB^{R}_{Δ} provided every $t \in \mathcal{O}$ is LB^{R}_{Δ} .

- Computationally feasible to implement.
- Graph preprocessing.

・ロト ・ 一下 ・ ト ・ ト ・ ト

Relation between LBB and LB

Proposition

Let $r = \max_{(s,t)\in\mathcal{A}} ||s - t||$ and $\delta = \max_{(s,t)\in\mathcal{A}} |C(t) - C(s)|$. If $\Delta, R > 0$ and \mathcal{O} is LB^{R+r}_{Δ} , then \mathcal{O} is $LBB^{R}_{\Delta+\delta}$.

Since usually δ and r are small, so should be the difference between objects that are LB^{R}_{Δ} , LB^{R+r}_{Δ} , $LBB^{R}_{\Delta+\delta}$, or LBB^{R}_{Δ} .

LB Optimallity

Theorem

Let $G = (\mathcal{I}, \mathcal{A}, w)$ be a symmetric edge weighted image digraph with $w: \mathcal{A} \to \mathbb{R}$. Let L be a segmentation returned by Algorithm LB-OIFT applied to G, non-empty disjoint seed sets S_1 and S_0 , cost map $C: \mathcal{I} \to [0, \infty)$, and parameters R > 0 and $\Delta > 0$. Assume that S_1 and S_0 are LB^R_{Δ}-consistent, that is, that there exists a labeling satisfying seeds and LB^R_{Δ} constraints.

Then L satisfies seeds and LB^{R}_{Δ} constraints and maximizes the energy ε_{\min} , given by (1) w.r.t. G, among all segmentations satisfying these constraints.

Outline

- Background
- **Local Band Constraint**

Experiments 4

Conclusion

Braz, Miranda, Ciesielski and Cappabianco

DGCI 2019 - Paris, France 17 / 31

< □ > < 同 >

э

Experiments

We compared LB with shape constraints commonly employed in graph-based segmentation: GSC, HSP and BB. We opted to compare them using Max-Min optimizers, since BB is not yet supported by Min-Sum optimizers

We also tested their robustness in relation to different image resolutions by quantitative experiments, to segment archaeological fragments in seven different resolutions with the geodesic cost.

Shape Template

(a) Circle template (b) Square template

Figure: Shape templates used.

Braz, Miranda, Ciesielski and Cappabianco

Local Band Constraints

DGCI 2019 - Paris, France

19/31

イロト イヨト イヨト

Circle Template

Circle Template

(e) Hedgehog $\theta = 45^{\circ}$

(f) Local Band $\Delta = 2$

Figure: Pool ball OIFT segmentation with a circle template in a 600×338 image.

DGCI 2019 - Paris, France

21/31

イロト イヨト イヨト

Square Template

Figure: Wall tile segmentation by OIFT with a square template in a 576 \times 881 image.

DGCI 2019 - Paris, France

Square Template

Figure: Wall tile segmentation by OIFT with a square template in a 576 \times 881 image.

Seed Displacement

Figure: The accuracy curves for different horizontal displacements of the internal seeds.

< ロ > < 同 > < 回 > < 回 >

Archeological Fragments

Figure: Archaeological fragment segmentation.

Braz, Miranda, Ciesielski and Cappabianco

Local Band Constraints

▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶ DGCI 2019 - Paris, France

Archeological Fragments - Results

Figure: (a)The mean accuracy values to segment the archaeological fragments for different image resolutions.(b) Zoomed results (accuracy \geq 95%).

Liver Image Displacement

(a) B. Band

(b) Local Band

Figure: The mean accuracy curves to segment the liver for seed sets obtained by erosion.

Local Band Constraints

DGCI 2019 - Paris, France

→ ∃ → < ∃</p>

Liver Image Displacement - Results

Figure: The mean accuracy curves to segment the liver for seed sets obtained by erosion.

Outline

- 2 Background
- **3** Local Band Constraint

4 Experiments

< □ > < 同 >

э

Summary

We have proposed the Local Band shape constraint, for the GGC framework, which in its limit case (i.e., $R \to \infty$) is strongly related to Boundary Band constraint and is less sensitive to the seed/template positioning.

To the best of our knowledge, we are also the first to report OIFT with the Hedgehog shape prior.

THANKS!

Braz, Miranda, Ciesielski and Cappabianco

Local Band Constraints

DGCI 2019 - Paris, France 31 / 31

æ

< □ > < □ > < □ > < □ > < □ >