$L_1 \&$

Optimization of Max-Norm Objective Functions in Image Processing and Computer Vision

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Department of Radiology, University of Pennsylvania

Joint work with Filip Malmberg and Robin Strand

MIPG Seminar, UPenn, March 7, 2019

< ロ > < 同 > < 三 >

3 Which max-norm energies E_{∞} can be efficiently optimized?

- 4 Efficient algorithm optimizing E_{∞} for 2-labeling
- 5 Lexicographical order refinement of E_∞

6 Conclusions

ヘロト ヘアト ヘビト ヘビト

- Energies we will optimize
- 2 Algorithms for L_p , $p < \infty$; NP-completeness
- 3 Which max-norm energies E_{∞} can be efficiently optimized?
- 4 Efficient algorithm optimizing E_{∞} for 2-labeling
- 5 Lexicographical order refinement of E_{∞}

6 Conclusions

ヘロト 人間 ト ヘヨト ヘヨト

= 900

Energies L_{1} E_{∞} The algorithm Optimization in image processing

- Many fundamental problems in image processing and computer vision, such as image filtering, segmentation, registration, and stereo vision, can naturally be formulated as optimization problems.
- Often, these optimization problems can be described as *labeling* problems, in which we wish to assign to each image element (pixel) an element from some finite set of labels.
- We identify each image with a vertex weighted graph *G* = (*V*, *E*, *f*), with vertices *V* being image voxels, edges *E* being pairs {*s*, *t*} of adjacent voxels, and *f*(*s*) image intensity at *s*. Its labeling is a map *l*: *V* → {0,...,n-1}, with n ≥ 2.

・ロト ・四ト ・ヨト ・ヨト

Energies L_1 E_{∞} The algorithm Optimization in image processing

- Many fundamental problems in image processing and computer vision, such as image filtering, segmentation, registration, and stereo vision, can naturally be formulated as optimization problems.
- Often, these optimization problems can be described as *labeling* problems, in which we wish to assign to each image element (pixel) an element from some finite set of labels.
- We identify each image with a vertex weighted graph *G* = (*V*, *E*, *f*), with vertices *V* being image voxels, edges *E* being pairs {*s*, *t*} of adjacent voxels, and *f*(*s*) image intensity at *s*. Its labeling is a map *l*: *V* → {0,...,n-1}, with n ≥ 2.

ヘロン 人間 とくほ とくほ とう

Energies L_1 E_{∞} The algorithm Optimization in image processing

- Many fundamental problems in image processing and computer vision, such as image filtering, segmentation, registration, and stereo vision, can naturally be formulated as optimization problems.
- Often, these optimization problems can be described as *labeling* problems, in which we wish to assign to each image element (pixel) an element from some finite set of labels.
- We identify each image with a vertex weighted graph *G* = (*V*, *E*, *f*), with vertices *V* being image voxels, edges *E* being pairs {*s*, *t*} of adjacent voxels, and *f*(*s*) image intensity at *s*. Its labeling is a map *l*: *V* → {0,...,n-1}, with n ≥ 2.

ヘロン ヘアン ヘビン ヘビン

Energies L_1 E_{∞} The algorithm Optimization in image processing

- Many fundamental problems in image processing and computer vision, such as image filtering, segmentation, registration, and stereo vision, can naturally be formulated as optimization problems.
- Often, these optimization problems can be described as *labeling* problems, in which we wish to assign to each image element (pixel) an element from some finite set of labels.
- We identify each image with a vertex weighted graph *G* = (*V*, *E*, *f*), with vertices *V* being image voxels, edges *E* being pairs {*s*, *t*} of adjacent voxels, and *f*(*s*) image intensity at *s*. Its labeling is a map *l*: *V* → {0,...,*n* − 1}, with *n* ≥ 2.

ヘロト 人間 ト ヘヨト ヘヨト

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

- unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;
- pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ ε and their labeling. They reflect desirability of smoothness/regularity of labeling.

L₁ (graph cut) energy is defined as

 $E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i,j \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

= 990

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

- unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;
- pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ E and their labeling. They reflect desirability of smoothness/regularity of labeling.

L1 (graph cut) energy is defined as

 $E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i,j \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

- unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;
- pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ ε and their labeling. They reflect desirability of smoothness/regularity of labeling.

L1 (graph cut) energy is defined as

 $E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i,j \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

- unary terms φ_ℓ(s) = φ_s(ℓ(s)), depending on s ∈ V, its label ℓ(s), and image intensity;
- pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ E and their labeling. They reflect desirability of smoothness/regularity of labeling.

$L_{1} \text{ (graph cut) energy is defined as}$ $E_{1}(\ell) := \|\phi_{\ell}\|_{1} = \sum_{s \in V} \phi_{s}(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$ often represented as (with x_{i} denoting label of vertex *i*) $E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_{i}(x_{i}) + \sum_{i,j \in \mathcal{E}} \phi_{ij}(x_{i}, x_{j}).$ (Chris Clesielski Optimization of Max-Norm Objective Functions 2 of 20

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

- unary terms φ_ℓ(s) = φ_s(ℓ(s)), depending on s ∈ V, its label ℓ(s), and image intensity;
- pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ E and their labeling. They reflect desirability of smoothness/regularity of labeling.

L1 (graph cut) energy is defined as

$$E_1(\ell) := \|\phi_\ell\|_1 = \sum_{\boldsymbol{s} \in V} \phi_{\boldsymbol{s}}(\ell(\boldsymbol{s})) + \sum_{\{\boldsymbol{s},t\} \in \mathcal{E}} \phi_{\boldsymbol{s}t}(\ell(\boldsymbol{s}),\ell(t)),$$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i,j \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

With any image *n*-labeling ℓ we associate local cost map $\phi_{\ell} \colon V \cup \mathcal{E} \to [0, \infty]$ consisting of

- unary terms $\phi_{\ell}(s) = \phi_{s}(\ell(s))$, depending on $s \in V$, its label $\ell(s)$, and image intensity;
- pairwise terms φ_ℓ(s, t) = φ_{s,t}(ℓ(s), ℓ(t)), depending on {s, t} ∈ E and their labeling. They reflect desirability of smoothness/regularity of labeling.
- L1 (graph cut) energy is defined as

$$E_1(\ell) := \|\phi_\ell\|_1 = \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)),$$

often represented as (with x_i denoting label of vertex i)

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \phi_i(x_i) + \sum_{i,j \in \mathcal{E}} \phi_{ij}(x_i, x_j).$$

 $\begin{array}{c|c} \hline L_{1^{\&}} & E_{\infty} & \text{The algorithm} & \text{Lex order} \\ \hline L_{p} \text{ energies: the cases of } p \in (1,\infty] \end{array}$

For $p \in [1, \infty)$:

$$E_{p}(\ell) := \|\phi_{\ell}\|_{p} = \left(\sum_{s \in V} (\phi_{s}(\ell(s)))^{p} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{p}\right)^{1/p}$$

For $p = \infty$ (of main interest here)

$$\mathsf{E}_{\infty}(\ell) := \|\phi_{\ell}\|_{\infty} = \max\left\{\max_{oldsymbol{s}\in V} \phi_{oldsymbol{s}}(\ell(oldsymbol{s})), \max_{\{oldsymbol{s},t\}\in\mathcal{E}} \phi_{oldsymbol{s}t}(\ell(oldsymbol{s}),\ell(t))
ight\}$$

Standard analysis fact: $E_p(\ell) \nearrow_{p \to \infty} E_{\infty}(\ell)$.

Energies $L_{1,8}$ E_{∞} The algorithm Lex order L_p energies: the cases of $p \in (1,\infty]$

For $p \in [1, \infty)$:

$$\mathsf{E}_{\mathsf{p}}(\ell) := \|\phi_{\ell}\|_{\mathsf{p}} = \left(\sum_{\boldsymbol{s}\in V} (\phi_{\boldsymbol{s}}(\ell(\boldsymbol{s})))^{\mathsf{p}} + \sum_{\{\boldsymbol{s},t\}\in\mathcal{E}} (\phi_{\boldsymbol{s}t}(\ell(\boldsymbol{s}),\ell(t)))^{\mathsf{p}}\right)^{1/\mathsf{p}}$$

For $p = \infty$ (of main interest here)

$$\mathsf{E}_{\infty}(\ell) := \|\phi_{\ell}\|_{\infty} = \max\left\{\max_{s \in V} \phi_{s}(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$$

Standard analysis fact: $E_p(\ell) \nearrow_{p \to \infty} E_{\infty}(\ell)$.

Energies $L_{1^{\&}}$ E_{∞} The algorithm Lex order L_p energies: the cases of $p \in (1,\infty]$

For $p \in [1, \infty)$:

$$E_{\rho}(\ell) := \|\phi_{\ell}\|_{\rho} = \left(\sum_{\boldsymbol{s}\in V} (\phi_{\boldsymbol{s}}(\ell(\boldsymbol{s})))^{\rho} + \sum_{\{\boldsymbol{s},t\}\in\mathcal{E}} (\phi_{\boldsymbol{s}t}(\ell(\boldsymbol{s}),\ell(t)))^{\rho}\right)^{1/\rho}$$

For $p = \infty$ (of main interest here)

$$\mathsf{E}_{\infty}(\ell) := \|\phi_{\ell}\|_{\infty} = \max\left\{\max_{s \in V} \phi_{s}(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$$

Standard analysis fact: $E_p(\ell) \nearrow_{p \to \infty} E_{\infty}(\ell)$.

- The value *p* can be seen as a parameter controlling the balance between minimizing the overall cost $E_p(\ell)$ versus minimizing the magnitude of the individual terms $\phi_s(\ell(s))$ and $\phi_{st}(\ell(s), \ell(t))$.
- For *p* = 1, the optimal labeling may contain (few) arbitrarily large individual terms as long as the sum of the terms is small.
- As *p* increases, a larger penalty is assigned to solutions containing large individual terms. This forces local errors to be distributed more evenly across the image domain.

ヘロト ヘ戸ト ヘヨト ヘヨト

- The value *p* can be seen as a parameter controlling the balance between minimizing the overall cost $E_p(\ell)$ versus minimizing the magnitude of the individual terms $\phi_s(\ell(s))$ and $\phi_{st}(\ell(s), \ell(t))$.
- For *p* = 1, the optimal labeling may contain (few) arbitrarily large individual terms as long as the sum of the terms is small.
- As *p* increases, a larger penalty is assigned to solutions containing large individual terms. This forces local errors to be distributed more evenly across the image domain.

ヘロト ヘ戸ト ヘヨト ヘヨト

- The value *p* can be seen as a parameter controlling the balance between minimizing the overall cost $E_p(\ell)$ versus minimizing the magnitude of the individual terms $\phi_s(\ell(s))$ and $\phi_{st}(\ell(s), \ell(t))$.
- For *p* = 1, the optimal labeling may contain (few) arbitrarily large individual terms as long as the sum of the terms is small.
- As *p* increases, a larger penalty is assigned to solutions containing large individual terms. This forces local errors to be distributed more evenly across the image domain.



- 2 Algorithms for L_p , $p < \infty$; NP-completeness
 - 3 Which max-norm energies E_∞ can be efficiently optimized?
- 4 Efficient algorithm optimizing E_∞ for 2-labeling
- 5 Lexicographical order refinement of E_∞

6 Conclusions

ヘロト 人間 ト ヘヨト ヘヨト

Energies L_1 E_{∞} The algorithm Lex order Conclusions $\rho = 1$: Graph Cut segmentation via min-cut/max-flow

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (polynomial time) algorithm returns optimized labeling **for 2-labeling**.

Optimization is NP-hard for \geq 3-labeling.

くロト (過) (目) (日)

Energies L_1 E_{∞} The algorithm Lex order Conclusions $\rho = 1$: Graph Cut segmentation via min-cut/max-flow

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t)$;
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (polynomial time) algorithm returns optimized labeling **for 2-labeling**.

Optimization is NP-hard for \geq 3-labeling.

ヘロト 人間 ト ヘヨト ヘヨト

Energies $L_{1,k}$ E_{∞} The algorithm Lex order Conclusions $\rho = 1$: Graph Cut segmentation via min-cut/max-flow

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t)$;
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (polynomial time) algorithm returns optimized labeling **for 2-labeling**.

Optimization is NP-hard for \geq 3-labeling.

ヘロト ヘアト ヘビト ヘビト

Energies $L_{1,k}$ E_{∞} The algorithm Lex order Conclusions $\rho = 1$: Graph Cut segmentation via min-cut/max-flow

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (polynomial time) algorithm returns optimized labeling **for 2-labeling**.

Optimization is NP-hard for \geq 3-labeling.

ヘロト ヘアト ヘビト ヘビト

Energies $L_{1,k}$ E_{∞} The algorithm Lex order Conclusions $\rho = 1$: Graph Cut segmentation via min-cut/max-flow

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t)$;
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (polynomial time) algorithm returns optimized labeling **for 2-labeling**.

Optimization is NP-hard for \geq 3**-labeling**.

ヘロン 人間 とくほ とくほ とう

Energies L_1 E_{∞} The algorithm Lex order Conclusions $\rho = 1$: Graph Cut segmentation via min-cut/max-flow

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t)$;
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Min-cut/max-flow (polynomial time) algorithm returns optimized labeling **for 2-labeling**.

Optimization is NP-hard for \geq 3-labeling.

(雪) (ヨ) (ヨ)

2-labeling for general $E_1(\ell)$ -optimization

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

 E_1 (for 2-labeling) is submodular provided, for every $\{s,t\} \in \mathcal{E}$,

 $\phi_{st}(0,0) + \phi_{st}(1,1) \le \phi_{st}(0,1) + \phi_{st}(1,0).$

Theorem (Kolmogorov & Zabih 2004)

- If *E*₁ is submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_1 is **NOT** submodular, then minimizing E_1 is NP-hard.

イロト イポト イヨト イヨト

Energies L_1 E_{∞} The algorithm Lex order **2-labeling for general** $E_1(\ell)$ -optimization

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

 E_1 (for 2-labeling) is submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0) + \phi_{st}(1,1) \le \phi_{st}(0,1) + \phi_{st}(1,0).$

Theorem (Kolmogorov & Zabih 2004)

• If *E*₁ is submodular, then min-cut/max-flow algorithm returns optimized labeling.

• If E_1 is **NOT** submodular, then minimizing E_1 is NP-hard.

くロト (過) (目) (日)

Energies L_1 E_{∞} The algorithm Lex order **2-labeling for general** $E_1(\ell)$ -optimization

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

 E_1 (for 2-labeling) is submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0) + \phi_{st}(1,1) \le \phi_{st}(0,1) + \phi_{st}(1,0).$

Theorem (Kolmogorov & Zabih 2004)

 If E₁ is submodular, then min-cut/max-flow algorithm returns optimized labeling.

• If E_1 is **NOT** submodular, then minimizing E_1 is NP-hard.

イロト イポト イヨト イヨト

Energies L_1 E_{∞} The algorithm Lex order **2-labeling for general** $E_1(\ell)$ -optimization

$$E_1(\ell) := \sum_{s \in V} \phi_s(\ell(s)) + \sum_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))$$

 E_1 (for 2-labeling) is submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0) + \phi_{st}(1,1) \le \phi_{st}(0,1) + \phi_{st}(1,0).$

Theorem (Kolmogorov & Zabih 2004)

- If E₁ is submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_1 is **NOT** submodular, then minimizing E_1 is NP-hard.

くロト (過) (目) (日)

Energies L_1 E_∞ The algorithm $E_ ho(\ell)$ with $1 \le p < \infty$ is as $E_1(\ell)$

$$(E_{\rho}(\ell))^{\rho} := \sum_{s \in V} (\phi_s(\ell(s)))^{\rho} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{\rho}$$

 E_p is *p*-submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0)^{p} + \phi_{st}(1,1)^{p} \le \phi_{st}(0,1)^{p} + \phi_{st}(1,0)^{p}.$

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

- If E_p is p-submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_p is **NOT** *p*-submodular, then minimizing E_p is NP-hard.

ヘロト ヘ戸ト ヘヨト ヘヨト

Energies L_1 E_∞ The algorithm $E_{
ho}(\ell)$ with $1 \leq
ho < \infty$ is as $E_1(\ell)$

$$(E_{\rho}(\ell))^{\rho} := \sum_{s \in V} (\phi_s(\ell(s)))^{\rho} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{\rho}$$

 E_p is *p*-submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0)^{p} + \phi_{st}(1,1)^{p} \le \phi_{st}(0,1)^{p} + \phi_{st}(1,0)^{p}.$

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

- If E_p is p-submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_p is **NOT** *p*-submodular, then minimizing E_p is NP-hard.

ヘロト 人間 ト ヘヨト ヘヨト

Energies L_1 E_∞ The algorithm $E_{
ho}(\ell)$ with $1 \leq
ho < \infty$ is as $E_1(\ell)$

$$(E_{\rho}(\ell))^{\rho} := \sum_{s \in V} (\phi_s(\ell(s)))^{\rho} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{\rho}$$

 E_p is *p*-submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0)^{\rho} + \phi_{st}(1,1)^{\rho} \le \phi_{st}(0,1)^{\rho} + \phi_{st}(1,0)^{\rho}.$

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

 If E_p is p-submodular, then min-cut/max-flow algorithm returns optimized labeling.

• If E_p is **NOT** *p*-submodular, then minimizing E_p is NP-hard.

・ロン・西方・ ・ ヨン・

Energies $L_{1^{\&}}$ E_{∞} The algorithm $E_{
ho}(\ell)$ with $1 \leq
ho < \infty$ is as $E_1(\ell)$

$$(E_{\rho}(\ell))^{\rho} := \sum_{s \in V} (\phi_s(\ell(s)))^{\rho} + \sum_{\{s,t\} \in \mathcal{E}} (\phi_{st}(\ell(s),\ell(t)))^{\rho}$$

 E_p is *p*-submodular provided, for every $\{s, t\} \in \mathcal{E}$,

 $\phi_{st}(0,0)^{\rho} + \phi_{st}(1,1)^{\rho} \le \phi_{st}(0,1)^{\rho} + \phi_{st}(1,0)^{\rho}.$

Corollary (Obvious, Malmberg & Strand, IWCIA 2018)

- If E_p is p-submodular, then min-cut/max-flow algorithm returns optimized labeling.
- If E_p is **NOT** *p*-submodular, then minimizing E_p is NP-hard.

イロト イポト イヨト イヨト

 $\phi_{st}(0,0)^p + \phi_{st}(1,1)^p < \phi_{st}(0,1)^p + \phi_{st}(1,0)^p.$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.

くロト (過) (目) (日)

$$\phi_{st}(0,0)^p + \phi_{st}(1,1)^p \le \phi_{st}(0,1)^p + \phi_{st}(1,0)^p.$$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.

ヘロト 人間 ト ヘヨト ヘヨト

$$\phi_{st}(0,0)^p + \phi_{st}(1,1)^p \le \phi_{st}(0,1)^p + \phi_{st}(1,0)^p.$$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.

イロト イ押ト イヨト イヨトー

$$\phi_{st}(0,0)^p + \phi_{st}(1,1)^p \le \phi_{st}(0,1)^p + \phi_{st}(1,0)^p.$$

p-submodular for every $p < \infty$ implies ∞ -submodularity:

 $\max\{\phi_{st}(0,0),\phi_{st}(1,1)\} \le \max\{\phi_{st}(1,0),\phi_{st}(0,1)\}.$

Theorem (Malmberg & Strand, IWCIA 2018)

1- and ∞ -submodularity imply p-submodularity for all p. In such case min-cut/max-flow algorithm optimizes E_p for every $p < \infty$.

イロト イ押ト イヨト イヨトー

- 1 Energies we will optimize
- 2 Algorithms for L_p , $p < \infty$; NP-completeness
- 3 Which max-norm energies E_{∞} can be efficiently optimized?
- 4 Efficient algorithm optimizing E_{∞} for 2-labeling
- 5 Lexicographical order refinement of E_{∞}

6 Conclusions

ヘロト 人間 ト ヘヨト ヘヨト

= 900

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization of cut),

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra (quasi-linear time) algorithm returns optimized labeling for *n*-labeling **for arbitrary large** *n*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization of cut),

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: φ_{st}(ℓ(s), ℓ(t)) > 0 (depending of f(s), f(t)) when ℓ(s) ≠ ℓ(t).

Dijkstra (quasi-linear time) algorithm returns optimized labeling for *n*-labeling **for arbitrary large** *n*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization of cut),

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t)$;
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra (quasi-linear time) algorithm returns optimized labeling for *n*-labeling **for arbitrary large** *n*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization of cut),

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra (quasi-linear time) algorithm returns optimized labeling for *n*-labeling **for arbitrary large** *n*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization of cut),

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra (quasi-linear time) algorithm returns optimized labeling for *n*-labeling **for arbitrary large** *n*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization of cut),

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra (quasi-linear time) algorithm returns optimized labeling for *n*-labeling **for arbitrary large** *n*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

We get FC segmentations (as minimization of cut),

- $\phi_s(\ell(s)) = 0$ in all cases (except seeds, when $= \infty$);
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) = \ell(t);$
- Cost of cut: $\phi_{st}(\ell(s), \ell(t)) > 0$ (depending of f(s), f(t)) when $\ell(s) \neq \ell(t)$.

Dijkstra (quasi-linear time) algorithm returns optimized labeling for *n*-labeling **for arbitrary large** *n*! Better than for $E_1(\ell)$ (i.e., GC) segmentations.

Q. For what other E_{∞} s are there efficient optimizing algorithms?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Malmberg, Ciesielski, Strand, DGCI 2019) There is an algorithm quasi-linear with respect to n = 1

returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm is NOT Dijkstra-like! More on this latter. This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm is NOT Dijkstra-like! More on this latter. This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm is NOT Dijkstra-like! More on this latter. This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm is NOT Dijkstra-like! More on this latter. This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm is NOT Dijkstra-like! More on this latter. This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm is NOT Dijkstra-like! More on this latter. This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm is NOT Dijkstra-like! More on this latter. This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any ∞ -submodular energy E_{∞} .

The algorithm is NOT Dijkstra-like! More on this latter. This is all that is in the DGCI 2019 paper.

Natural questions, towards post DGCI 2019 work:

Q1: Is ∞ -submodularity assumption essential in the thm?

Energies $L_{1^{\&}}$ E_{∞} The algorithm Lex order Conclusions Optimal 2-labeling for $E_{\infty}(\ell)$ with no ∞ -submodularity

Full answer to Q1:

Theorem (Malmberg, Ciesielski, Strand; 2019 ???) There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$:

 $\max \{ \max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)) \}.$

More about the algorithm latter.

• • • • • • • • • • • •

Energies $L_{1^{\&}}$ E_{∞} The algorithm Lex order Conclusions Optimal 2-labeling for $E_{\infty}(\ell)$ with no ∞ -submodularity

Full answer to Q1:

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$:

 $\max \{ \max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)) \}.$

More about the algorithm latter.

イロト イポト イヨト イヨト

Energies $L_{1^{\&}}$ E_{∞} The algorithm Lex order Conclusions Optimal 2-labeling for $E_{\infty}(\ell)$ with no ∞ -submodularity

Full answer to Q1:

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$:

 $\max \{ \max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)) \}.$

More about the algorithm latter.

くロト (過) (目) (日)

Energies L_1 E_{∞} The algorithm Lex order Conclusions Optimal 2-labeling for $E_{\infty}(\ell)$ with no ∞ -submodularity

Full answer to Q1:

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$:

 $\max \{ \max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)) \}.$

More about the algorithm latter.

ヘロト 人間 ト ヘヨト ヘヨト

Energies L_1 E_{∞} The algorithm Lex order Conclusions Optimal 2-labeling for $E_{\infty}(\ell)$ with no ∞ -submodularity

Full answer to Q1:

Theorem (Malmberg, Ciesielski, Strand; 2019 ???) There is an algorithm, quasi-linear with respect to $n = |V \cup \mathcal{E}|$, returning minimal 2-labeling for any $E_{\infty}(\ell)$:

 $\max \{ \max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t)) \}.$

More about the algorithm latter.

Theorem (Malmberg, Ciesielski, Strand; 2019 ???) Optimization problem of the general form of E_{∞} energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_{∞} energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_{∞} energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

ヘロト ヘアト ヘビト ヘビト

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

ヘロト ヘアト ヘビト ヘビト

Theorem (Malmberg, Ciesielski, Strand; 2019 ???)

Optimization problem of the general form of E_∞ energy for more than 2 labels is NP-hard.

Remaining version of Q2:

Q: Under what conditions there exists an efficient (polynomial-time) algorithm for optimization of E_{∞} energy for 3 or more labels?

Can be done in FC/Dijkstra setting. Not (NP-hard) in general.

ヘロト 人間 ト ヘヨト ヘヨト

 $\begin{array}{c|c} \mbox{Energies} & $L_1\& $ E_{\infty}$ & The algorithm $ Lex $ order $ Conclusions$ \\ \hline \mbox{Optimal} \geq 3-labeling $ of $ E_{\infty}(\ell)$ is $ NP-hard: proof $ \\ \hline \end{array}$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t);$
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G}

(i.e., no adjacent vertices have came label).

But graph *n*-coloring problem for any $n \ge 3$ is NP-complete! It is not for n = 2. $\begin{array}{c|c} {\sf Energies} & {\sf L}_1\& & {\sf E}_\infty & {\sf The algorithm} & {\sf Lex \ order} & {\sf Conclusion} \\ \hline {\sf Optimal} \geq 3{\sf -labeling \ of \ } E_\infty(\ell) \ {\sf is \ NP-hard: \ proof} \end{array}$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

• $\phi_s(\ell(s)) = 0$ in all cases;

- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G}

(i.e., no adjacent vertices have came label).

But graph *n*-coloring problem for any $n \ge 3$ is NP-complete! It is not for n = 2.

2

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G}

(i.e., no adjacent vertices have came label).

But graph *n*-coloring problem for any $n \ge 3$ is NP-complete! It is not for n = 2.

æ –

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_\infty(\ell)$ is 0 if, and only if, ℓ is a coloring of ${\mathcal G}$

(i.e., no adjacent vertices have came label).

But graph *n*-coloring problem for any $n \ge 3$ is NP-complete! It is not for n = 2.

= 990

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_\infty(\ell)$ is 0 if, and only if, ℓ is a coloring of ${\mathcal G}$

(i.e., no adjacent vertices have came label).

But graph *n*-coloring problem for any $n \ge 3$ is NP-complete! It is not for n = 2.

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G}

(i.e., no adjacent vertices have came label).

But graph *n*-coloring problem for any $n \ge 3$ is NP-complete! It is not for n = 2. $\begin{array}{c|c} \mbox{Energies} & L_{1}\& & E_{\infty} & \mbox{The algorithm} & \mbox{Lex order} & \mbox{Conclusions} \\ \hline \mbox{Optimal} \geq 3\mbox{-labeling of } E_{\infty}(\ell) \mbox{ is NP-hard: proof} \end{array}$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G}

(i.e., no adjacent vertices have came label).

But graph *n*-coloring problem for any $n \ge 3$ is NP-complete! It is not for n = 2.

= 990

 $\begin{array}{c|c} \mbox{Energies} & L_{1}\& & E_{\infty} & \mbox{The algorithm} & \mbox{Lex order} & \mbox{Conclusions} \\ \hline \mbox{Optimal} \geq 3\mbox{-labeling of } E_{\infty}(\ell) \mbox{ is NP-hard: proof} \end{array}$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

For a graph $\mathcal{G} = (V, \mathcal{E})$ put:

- $\phi_s(\ell(s)) = 0$ in all cases;
- $\phi_{st}(\ell(s), \ell(t)) = 1$ when $\ell(s) = \ell(t)$;
- $\phi_{st}(\ell(s), \ell(t)) = 0$ when $\ell(s) \neq \ell(t)$.

Then, the minimal $E_{\infty}(\ell)$ is 0 if, and only if, ℓ is a coloring of \mathcal{G}

(i.e., no adjacent vertices have came label).

But graph *n*-coloring problem for any $n \ge 3$ is NP-complete! It is not for n = 2.

= 990

- Energies we will optimize
- 2 Algorithms for L_p , $p < \infty$; NP-completeness
- 3 Which max-norm energies E_{∞} can be efficiently optimized?
- 4 Efficient algorithm optimizing E_{∞} for 2-labeling
- 5 Lexicographical order refinement of E_∞

6 Conclusions

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s,0)\}$ and $\{(s,1)\}$ for each $v \in V$ binary: four $\{(s,i), (t,j)\}$ $(i, j \in \{0,1\})$ for each $\{s,t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(t)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s,0)\}$ and $\{(s,1)\}$ for each $v \in V$ binary: four $\{(s,i), (t,j)\}$ $(i, j \in \{0,1\})$ for each $\{s,t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(s)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(s)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s,0)\}$ and $\{(s,1)\}$ for each $v \in V$ binary: four $\{(s,i), (t,j)\}$ $(i, j \in \{0,1\})$ for each $\{s,t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(s)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(t)$

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two $\{(s,0)\}$ and $\{(s,1)\}$ for each $v \in V$ binary: four $\{(s,i), (t,j)\}$ $(i, j \in \{0,1\})$ for each $\{s,t\} \in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(s)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(t)$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two {(s, 0)} and {(s, 1)} for each $v \in V$ binary: four {(s, i), (t, j)} (i, $j \in \{0, 1\}$) for each {s, t} $\in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: ϕ_s

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(t)$

ヘロト 人間 とくほ とく ロト

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two {(*s*, 0)} and {(*s*, 1)} for each $v \in V$ binary: four {(*s*, *i*), (*t*, *j*)} (*i*, *j* \in {0, 1}) for each {*s*, *t*} $\in \mathcal{E}$.

- Cost of a unary atom $\{(s, i)\}$: ϕ_s
- Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

・ 同下 ・ ヨト ・ ヨト

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two {(*s*, 0)} and {(*s*, 1)} for each $v \in V$ binary: four {(*s*, *i*), (*t*, *j*)} (*i*, *j* \in {0, 1}) for each {*s*, *t*} $\in \mathcal{E}$.

• Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$

• Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(s, i) = \phi_{st}(s, j)$

< 🗇 🕨 < 🖻 🕨

 $E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_s(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$

Atoms $\mathcal{A}(\ell)$ of ℓ : input for ϕ .. and ϕ . (to calculate $E_{\infty}(\ell)$), i.e., $\mathcal{A}(\ell) := \{\{(s, \ell(s))\} : s \in V\} \cup \{\{(s, \ell(s)), (t, \ell(t))\} : \{s, t\} \in \mathcal{E}\}$

Atoms \mathcal{A} of E_{∞} : all such possible atoms, i.e.,

unary: two {(*s*, 0)} and {(*s*, 1)} for each $v \in V$ binary: four {(*s*, *i*), (*t*, *j*)} (*i*, *j* \in {0, 1}) for each {*s*, *t*} $\in \mathcal{E}$.

- Cost of a unary atom $\{(s, i)\}$: $\phi_s(i)$
- Cost of a binary atom $\{(s, i), (t, j)\}$: $\phi_{st}(i, j)$

通 とう ほう うちょう

$$E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_{s}(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$$

Set $\mathcal{A}' \subset \mathcal{A}$ of atoms is consistent when $\mathcal{A}(\ell) \subset \mathcal{A}'$ for some ℓ

Finding $\min_{\ell} E_{\infty}(\ell)$ is equivalent to finding minimal $C \in \mathbb{R}$ with $\mathcal{A}(C) :=$ all atoms with cost $\leq C$

being consistent.

くロト (過) (目) (日)

$$\mathsf{E}_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_{s}(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$$

Set $\mathcal{A}' \subset \mathcal{A}$ of atoms is consistent when $\mathcal{A}(\ell) \subset \mathcal{A}'$ for some ℓ

Finding $\min_{\ell} E_{\infty}(\ell)$ is equivalent to finding minimal $C \in \mathbb{R}$ with $\mathcal{A}(C) :=$ all atoms with cost $\leq C$

being consistent.

$$E_{\infty}(\ell) := \max\left\{\max_{s \in V} \phi_{s}(\ell(s)), \max_{\{s,t\} \in \mathcal{E}} \phi_{st}(\ell(s), \ell(t))\right\}$$

Set $\mathcal{A}' \subset \mathcal{A}$ of atoms is consistent when $\mathcal{A}(\ell) \subset \mathcal{A}'$ for some ℓ

Finding $\min_{\ell} E_{\infty}(\ell)$ is equivalent to finding minimal $C \in \mathbb{R}$ with $\mathcal{A}(C) :=$ all atoms with cost $\leq C$

being consistent.

・ 同 ト ・ 臣 ト ・ 臣 ト …

Lemma

A set A' of atoms is consistent if, and only if, a naturally associated with it 2-conjunctive formula is satisfiable.

Since satisfiability of such formulas is decidable in a linear time (e.g., by Aspvall, Plass, Tarjan algorithm):

Corollary

There is an algorithm deciding consistency of a set A' of atoms. It has linear complexity w.r.t. |A'|.

ヘロト ヘ戸ト ヘヨト ヘヨト

Lemma

A set A' of atoms is consistent if, and only if, a naturally associated with it 2-conjunctive formula is satisfiable.

Since satisfiability of such formulas is decidable in a linear time (e.g., by Aspvall, Plass, Tarjan algorithm):

Corollary

There is an algorithm deciding consistency of a set A' of atoms. It has linear complexity w.r.t. |A'|.

くロト (過) (目) (日)

Lemma

A set A' of atoms is consistent if, and only if, a naturally associated with it 2-conjunctive formula is satisfiable.

Since satisfiability of such formulas is decidable in a linear time (e.g., by Aspvall, Plass, Tarjan algorithm):

Corollary

There is an algorithm deciding consistency of a set A' of atoms. It has linear complexity w.r.t. |A'|.

Lemma

A set A' of atoms is consistent if, and only if, a naturally associated with it 2-conjunctive formula is satisfiable.

Since satisfiability of such formulas is decidable in a linear time (e.g., by Aspvall, Plass, Tarjan algorithm):

Corollary

There is an algorithm deciding consistency of a set A' of atoms. It has linear complexity w.r.t. |A'|.

・ 同 ト ・ ヨ ト ・ ヨ ト

- For all possible costs *C* of the atoms in \mathcal{A} decide if $\mathcal{A}(C)$ is consistent.
- ② The smallest C with consistent $\mathcal{A}(C)$ is our minimal energy.

• The algorithm deciding consistency of $\mathcal{A}(C)$ returns also a labeling justifying it.

It is enough to check the consistency of A(C) for log₂ |A|-many values of C.
 So, we get complexity O(m ln m), with m = |A|.

くロト (過) (目) (日)

• For all possible costs *C* of the atoms in \mathcal{A} decide if $\mathcal{A}(C)$ is consistent.

(2) The smallest *C* with consistent $\mathcal{A}(C)$ is our minimal energy.

Note that

• The algorithm deciding consistency of $\mathcal{A}(C)$ returns also a labeling justifying it.

It is enough to check the consistency of A(C) for log₂ |A|-many values of C.
 So, we get complexity O(m ln m), with m = |A|.

くロト (過) (目) (日)

- For all possible costs *C* of the atoms in \mathcal{A} decide if $\mathcal{A}(C)$ is consistent.
- ② The smallest C with consistent $\mathcal{A}(C)$ is our minimal energy.

• The algorithm deciding consistency of $\mathcal{A}(C)$ returns also a labeling justifying it.

It is enough to check the consistency of A(C) for log₂ |A|-many values of C.
 So, we get complexity O(m ln m), with m = |A|.

- For all possible costs *C* of the atoms in \mathcal{A} decide if $\mathcal{A}(C)$ is consistent.
- ② The smallest C with consistent $\mathcal{A}(C)$ is our minimal energy.

- The algorithm deciding consistency of $\mathcal{A}(C)$ returns also a labeling justifying it.
- It is enough to check the consistency of A(C) for log₂ |A|-many values of C.
 So, we get complexity O(m ln m), with m = |A|.

- For all possible costs *C* of the atoms in \mathcal{A} decide if $\mathcal{A}(C)$ is consistent.
- ② The smallest C with consistent $\mathcal{A}(C)$ is our minimal energy.

• The algorithm deciding consistency of $\mathcal{A}(C)$ returns also a labeling justifying it.

It is enough to check the consistency of A(C) for log₂ |A|-many values of C.
 So, we get complexity O(m ln m), with m = |A|.

- For all possible costs *C* of the atoms in \mathcal{A} decide if $\mathcal{A}(C)$ is consistent.
- ② The smallest C with consistent A(C) is our minimal energy.

• The algorithm deciding consistency of $\mathcal{A}(C)$ returns also a labeling justifying it.

It is enough to check the consistency of A(C) for log₂ |A|-many values of C.
 So we get complexity O(m |n m) with m = |A|

- For all possible costs *C* of the atoms in \mathcal{A} decide if $\mathcal{A}(C)$ is consistent.
- ② The smallest C with consistent A(C) is our minimal energy.

• The algorithm deciding consistency of $\mathcal{A}(C)$ returns also a labeling justifying it.

It is enough to check the consistency of A(C) for log₂ |A|-many values of C.
 So, we get complexity O(m ln m), with m = |A|.

- Energies we will optimize
- 2 Algorithms for L_p , $p < \infty$; NP-completeness
- 3 Which max-norm energies E_{∞} can be efficiently optimized?
- 4 Efficient algorithm optimizing E_{∞} for 2-labeling
- 5 Lexicographical order refinement of E_∞

6 Conclusions

 $\begin{array}{c|c} Energies & L_1 \& & E_{\infty} & \text{The algorithm} & \text{Lex order} & \text{Conclusions} \\ \hline \\ \textbf{Lexicographical order} \preceq_{\textit{lex}} among labelings \end{array}$

For labeling ℓ let

 $\vec{\mathcal{A}}(\ell) = \langle \boldsymbol{c}_1^{\ell}, \dots, \boldsymbol{c}_k^{\ell} \rangle$: cost of all atoms $\in \mathcal{A}(\ell)$ in \geq -order.

 $ec{\mathcal{A}}(\ell) \prec_{\mathit{lex}} ec{\mathcal{A}}(\ell') \iff c_j^\ell < c_j^{\ell'}, ext{ where } j = \min\{i \colon c_j^\ell < c_j^{\ell'}\}$

Easy fact: $E_{\infty}(\ell) < E_{\infty}(\ell') \implies \vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell')$

So, \prec_{lex} better distinguishes labelling than E_{∞} .

Q. Can we efficiently optimize w.r.t. \prec_{lex} rather than E_{∞} ?

イロト イポト イヨト イヨト

= 990

 $\begin{array}{c|c} Energies & L_1 \& & E_{\infty} & The algorithm & Lex order & Conclusions \\ \hline Lex corder applical order \preceq_{lex} among labelings \end{array}$

For labeling ℓ let

 $\vec{\mathcal{A}}(\ell) = \langle c_1^{\ell}, \dots, c_k^{\ell} \rangle$: cost of all atoms $\in \mathcal{A}(\ell)$ in \geq -order.

 $ec{\mathcal{A}}(\ell) \prec_{\mathit{lex}} ec{\mathcal{A}}(\ell') \iff c_j^\ell < c_j^{\ell'}, ext{ where } j = \min\{i \colon c_j^\ell < c_j^{\ell'}\}$

Easy fact: $E_{\infty}(\ell) < E_{\infty}(\ell') \implies \vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell')$

So, \prec_{lex} better distinguishes labelling than E_{∞} .

Q. Can we efficiently optimize w.r.t. \prec_{lex} rather than E_{∞} ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Energies L_1 [&] E_{∞} The algorithm Lex order Conclusions Lexicographical order \preceq_{lex} among labelings

For labeling ℓ let

 $\vec{\mathcal{A}}(\ell) = \langle c_1^{\ell}, \dots, c_k^{\ell} \rangle$: cost of all atoms $\in \mathcal{A}(\ell)$ in \geq -order.

$$ec{\mathcal{A}}(\ell) \prec_{\mathit{lex}} ec{\mathcal{A}}(\ell') \iff c_j^\ell < c_j^{\ell'}, ext{ where } j = \min\{i \colon c_i^\ell < c_i^{\ell'}\}$$

Easy fact: $E_{\infty}(\ell) < E_{\infty}(\ell') \implies \vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell')$

So, \prec_{lex} better distinguishes labelling than E_{∞} .

Q. Can we efficiently optimize w.r.t. \prec_{lex} rather than E_{∞} ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Energies L_1 [&] E_{∞} The algorithm Lex order Conclusions Lexicographical order \preceq_{lex} among labelings

For labeling ℓ let

 $\vec{\mathcal{A}}(\ell) = \langle \boldsymbol{c}_1^{\ell}, \dots, \boldsymbol{c}_k^{\ell} \rangle$: cost of all atoms $\in \mathcal{A}(\ell)$ in \geq -order.

$$ec{\mathcal{A}}(\ell) \prec_{\mathit{lex}} ec{\mathcal{A}}(\ell') \iff c_j^\ell < c_j^{\ell'}, ext{ where } j = \min\{i \colon c_i^\ell < c_i^{\ell'}\}$$

Easy fact: $E_{\infty}(\ell) < E_{\infty}(\ell') \implies \vec{\mathcal{A}}(\ell) \prec_{\mathit{lex}} \vec{\mathcal{A}}(\ell')$

So, \prec_{lex} better distinguishes labelling than E_{∞} .

Q. Can we efficiently optimize w.r.t. \prec_{lex} rather than E_{∞} ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Energies L_1 [&] E_{∞} The algorithm Lex order Conclusions Lexicographical order \preceq_{lex} among labelings

For labeling ℓ let

 $\vec{\mathcal{A}}(\ell) = \langle \boldsymbol{c}_1^{\ell}, \dots, \boldsymbol{c}_k^{\ell} \rangle$: cost of all atoms $\in \mathcal{A}(\ell)$ in \geq -order.

$$ec{\mathcal{A}}(\ell) \prec_{\mathit{lex}} ec{\mathcal{A}}(\ell') \iff c_j^\ell < c_j^{\ell'}, ext{ where } j = \min\{i \colon c_i^\ell < c_i^{\ell'}\}$$

Easy fact: $E_{\infty}(\ell) < E_{\infty}(\ell') \implies \vec{\mathcal{A}}(\ell) \prec_{\mathit{lex}} \vec{\mathcal{A}}(\ell')$

So, \prec_{lex} better distinguishes labelling than E_{∞} .

Q. Can we efficiently optimize w.r.t. \prec_{lex} rather than E_{∞} ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

YES when energy *E* is 1- and ∞ -submodular.

By graph cut algorithm, since

Theorem

For any energy *E*, there is (easily computable) p > 0 s.t. $\vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell') \iff E_p(\ell) < E_p(\ell')$

NO when energy is not ∞ -submodular.

Such problem is NP-hard: reduces to the problem of finding maximal independent set of vertices in a graph, which is known to be NP-hard.

YES when energy *E* is 1- and ∞ -submodular.

By graph cut algorithm, since

Theorem

For any energy *E*, there is (easily computable) p > 0 s.t. $\vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell') \iff E_p(\ell) < E_p(\ell')$

NO when energy is not ∞ -submodular.

Such problem is NP-hard: reduces to the problem of finding maximal independent set of vertices in a graph, which is known to be NP-hard.

YES when energy *E* is 1- and ∞ -submodular.

By graph cut algorithm, since

Theorem

For any energy *E*, there is (easily computable) p > 0 s.t. $\vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell') \iff E_p(\ell) < E_p(\ell')$

NO when energy is not ∞ -submodular.

Such problem is NP-hard: reduces to the problem of finding maximal independent set of vertices in a graph, which is known to be NP-hard.

ヘロン 人間 とくほ とくほ とう

ъ

YES when energy *E* is 1- and ∞ -submodular.

By graph cut algorithm, since

Theorem

For any energy E, there is (easily computable) p > 0 s.t.

 $ec{\mathcal{A}}(\ell) \prec_{\mathit{lex}} ec{\mathcal{A}}(\ell') \iff \mathit{E}_{\mathit{
ho}}(\ell) < \mathit{E}_{\mathit{
ho}}(\ell')$

NO when energy is not ∞ -submodular.

Such problem is NP-hard: reduces to the problem of finding maximal independent set of vertices in a graph, which is known to be NP-hard.

YES when energy *E* is 1- and ∞ -submodular.

By graph cut algorithm, since

Theorem

For any energy *E*, there is (easily computable) p > 0 s.t. $\vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell') \iff E_p(\ell) < E_p(\ell')$

NO when energy is not ∞ -submodular.

Such problem is NP-hard: reduces to the problem of finding maximal independent set of vertices in a graph, which is known to be NP-hard.

YES when energy *E* is 1- and ∞ -submodular.

By graph cut algorithm, since

Theorem

For any energy *E*, there is (easily computable) p > 0 s.t. $\vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell') \iff E_p(\ell) < E_p(\ell')$

NO when energy is not ∞ -submodular.

Such problem is NP-hard: reduces to the problem of finding maximal independent set of vertices in a graph, which is known to be NP-hard.

YES when energy *E* is 1- and ∞ -submodular.

By graph cut algorithm, since

Theorem

For any energy *E*, there is (easily computable) p > 0 s.t. $\vec{\mathcal{A}}(\ell) \prec_{lex} \vec{\mathcal{A}}(\ell') \iff E_p(\ell) < E_p(\ell')$

NO when energy is not ∞ -submodular.

Such problem is NP-hard: reduces to the problem of finding maximal independent set of vertices in a graph, which is known to be NP-hard.

- Energies we will optimize
- 2 Algorithms for L_p , $p < \infty$; NP-completeness
- 3 Which max-norm energies E_∞ can be efficiently optimized?
- 4 Efficient algorithm optimizing E_{∞} for 2-labeling
- 5 Lexicographical order refinement of E_∞

6 Conclusions

ヘロト 人間 ト ヘヨト ヘヨト

э.

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear time.
- Some max-norm for \geq 3-labeling are NP-hard.
- \leq_{lex} -optimization equivalent to E_p -optimization for large p.

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear time.
- Some max-norm for \geq 3-labeling are NP-hard.
- \leq_{lex} -optimization equivalent to E_p -optimization for large p.

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear time.
- Some max-norm for \geq 3-labeling are NP-hard.
- \leq_{lex} -optimization equivalent to E_p -optimization for large p.

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear time.
- Some max-norm for \geq 3-labeling are NP-hard.
- \leq_{lex} -optimization equivalent to E_p -optimization for large p.

- Optimization problems, specifically pixel labeling problems, are frequently occurring in image processing applications.
- We are specifically interested in problems where the objective function is given by the max-norm of the local errors.
- For many such problems, globally optimal solutions can be found very efficiently, in quasi linear time.
- Some max-norm for \geq 3-labeling are NP-hard.
- \leq_{lex} -optimization equivalent to E_p -optimization for large p.

Energies	L ₁ &	The algorithm	Lex order	Conclusions

Thank you for your attention!

K. Chris Ciesielski Optimization of Max-Norm Objective Functions 20 of 20

< ∃⇒