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The theorem Induction MA

The theorem and its motivation

Theorem (What we will prove)

Assume MA. If X ∈ [R]<c then every Y ⊂ X is a Gδ subset of X ,
that is, there exists a Gδ set G ⊂ R such that G ∩ X = Y.

Corollary (Explaining why Theorem is important)

If MA holds, then 2κ = 2ω for every infinite cardinal κ < c.

Proof.
For X ∈ [R]κ

2κ = |P(X )| = |{B ∩ X : B ∈ Borel}| ≤ |Borel| = 2ω.
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The theorem Induction MA

Reduction to a combinatorial statement

Thm: Under MA, every Y ⊂ X ∈ [R]<c is a Gδ subset of X .

B := {Bn : n < ω} a countable base for R. It is enough to prove:

Proposition (Reduction)

Under MA, for every Y ⊂ X ∈ [R]<c there is Â ⊂ ω such that
for every x ∈ X

x ∈ Y ⇔ x ∈ Bn for infinitely many n from Â.

Proof of reduction.

Fix Y ⊂ X ∈ [R]<c and let Â ⊂ ω be as in Proposition.
For every k < ω the set Gk :=

⋃
{Bn : n ∈ Â & n > k} is open.

G :=
⋂

k<ω Gk is as needed, as for every x ∈ X

x ∈ Y ⇔ x ∈ Gk for all k < ω.
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The theorem Induction MA

Inductive construction of Â for countable Y

Fix countable Y ⊂ R and X ⊂ Y . Need Â ⊂ ω such that

∀x ∈ X
[
x ∈ Y ⇔ x ∈ Bn for infinitely many n from Â.

]

Proof.
Let X \ Y = {zn : n < ω} and Y × ω = {〈yn, kn〉 : n < ω}.

Construct increasing 〈An ∈ [ω]<ω〉n<ω aiming for Â =
⋃

n<ω An.

Ensuring infinity (diagonalization): For every n < ω insert to
An ⊃ An−1 an m with m > kn and yn ∈ Bm.

Preservation of finiteness: and such that zi 6∈ Bm for all
m ∈ An \ An−1 and i ≤ n.

Then Â =
⋃

n<ω An is as needed.
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⋃

n<ω An.

Ensuring infinity (diagonalization): For every n < ω insert to
An ⊃ An−1 an m with m > kn and yn ∈ Bm.

Preservation of finiteness: and such that zi 6∈ Bm for all
m ∈ An \ An−1 and i ≤ n.

Then Â =
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]

Proof.
Let X \ Y = {zn : n < ω} and Y × ω = {〈yn, kn〉 : n < ω}.

Construct increasing 〈An ∈ [ω]<ω〉n<ω aiming for Â =
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∀x ∈ X
[
x ∈ Y ⇔ x ∈ Bn for infinitely many n from Â.
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The theorem Induction MA

From induction to a partial order, PO, set

Fixed countable Y ⊂ R and X ⊂ Y . Need Â ⊂ ω such that

∀x ∈ X
[
x ∈ Y ⇔ x ∈ Bn for infinitely many n from Â.

]
Define PO set 〈P,≤〉 by P := [ω]<ω × [X \ Y ]<ω

and for 〈A1,C1〉, 〈A0,C0〉 ∈ P we let

〈A1,C1〉 ≤ 〈A0,C0〉 provided A1 ⊃ A0, C1 ⊃ C0, and

c 6∈ Bm for all m ∈ A1 \ A0 and c ∈ C0.

We will construct 〈A0,C0〉 ≥ 〈A1,C1〉 ≥ 〈A2,C2〉 · · · aiming for
Â =

⋃
n<ω An. Sequence needs contain an element from each:

Dk
y = {〈A,C〉 ∈ P : ∃m ∈ A (m ≥ k & y ∈ Bm)} with y ∈ Y , k < ω;

Ez = {〈A,C〉 ∈ P : z ∈ C} with z ∈ X \ Y .

The construction is possible (density) and Â is as needed.
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The theorem Induction MA

From induction to a partial order, PO, set

Fixed countable Y ⊂ R and X ⊂ Y . Need Â ⊂ ω such that
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]
Define PO set 〈P,≤〉 by P := [ω]<ω × [X \ Y ]<ω

and for 〈A1,C1〉, 〈A0,C0〉 ∈ P we let

〈A1,C1〉 ≤ 〈A0,C0〉 provided A1 ⊃ A0, C1 ⊃ C0, and

c 6∈ Bm for all m ∈ A1 \ A0 and c ∈ C0.

We will construct 〈A0,C0〉 ≥ 〈A1,C1〉 ≥ 〈A2,C2〉 · · · aiming for
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Krzysztof Chris Ciesielski Tutorial on Martin’s Axiom, by example 4



The theorem Induction MA

From induction to a partial order, PO, set

Fixed countable Y ⊂ R and X ⊂ Y . Need Â ⊂ ω such that
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The theorem Induction MA

Dense sets and generic filters

D ⊂ P is dense (in a PO set 〈P,≤〉) provided
for every p ∈ P there exists a q ∈ D such that q ≤ p.

We just proved that sets Dk
y and Ez are dense in our PO set.

F ⊂ P is a filter provided

1 q ∈ F whenever q ≥ p ∈ F
2 for every p,q ∈ F there is r ∈ F with r ≤ p and r ≤ q

For the constructed sequence 〈〈Ai ,Ci〉 : i < ω〉 we have a filter

F := {〈A,C〉 : 〈A,C〉 ≤ 〈Ai ,Ci〉 for some i}.

For a family D of sets, a filter F is D-generic provided
F ∩ D 6= ∅ for every D ∈ D dense in the PO set.

Our F is D-generic for D = {Dk
y : y ∈ Y , k < ω} ∪ {Ez : z ∈ X \ Y}.
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2 for every p,q ∈ F there is r ∈ F with r ≤ p and r ≤ q

For the constructed sequence 〈〈Ai ,Ci〉 : i < ω〉 we have a filter

F := {〈A,C〉 : 〈A,C〉 ≤ 〈Ai ,Ci〉 for some i}.

For a family D of sets, a filter F is D-generic provided
F ∩ D 6= ∅ for every D ∈ D dense in the PO set.
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The theorem Induction MA

Outline

1 The theorem we will prove

2 Induction: a way to understand Martin’s Axiom

3 Martin’s Axiom and the proof of our theorem
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The theorem Induction MA

Statement of Martin’s Axiom MA

p,q ∈ P are compatible provided there exists an r ∈ P such
that r ≤ p and r ≤ q;
A ⊂ P is an antichain if no distinct p,q ∈ P are compatible.
〈P,≤〉 is ccc provided P contains no uncountable antichain.

MA: For every ccc PO set 〈P,≤〉 and every family D of
cardinality less than c there exists a D-generic filter F in P.

For countable families D the MA statement is true in ZFC.
No ccc is needed.This is Rasiowa-Sikorski lemma.
MA is consistent with ZFC and the negation of CH, the
continuum hypothesis.
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The theorem Induction MA

Proof of our Theorem, part 1

Fix Y ⊂ X ∈ [R]<c; P := [ω]<ω × [X \ Y ]<ω s.t.
〈A1,C1〉 ≤ 〈A0,C0〉 provided A1 ⊃ A0, C1 ⊃ C0, and

c 6∈ Bm for all m ∈ A1 \ A0 and c ∈ C0.

It is ccc. (Will prove this next.) The family
D = {Dk

y : y ∈ Y , k < ω} ∪ {Ez : z ∈ X \ Y} has cardinality < c.

So, by MA, there exists a D-generic filter F . We claim that

Â =
⋃
{A : 〈A,C〉 ∈ F}

is as needed.
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Â =
⋃
{A : 〈A,C〉 ∈ F}

is as needed.

Krzysztof Chris Ciesielski Tutorial on Martin’s Axiom, by example 7



The theorem Induction MA

Proof of our Theorem: P is ccc

Y ⊂ X ∈ [R]<c and PO set P := [ω]<ω × [X \ Y ]<ω s.t.
〈A1,C1〉 ≤ 〈A0,C0〉 provided A1 ⊃ A0, C1 ⊃ C0, and

c 6∈ Bm for all m ∈ A1 \ A0 and c ∈ C0.

Fix uncountable subset A := {〈Aξ,Cξ〉 : ξ < ω1} of P.

Since [ω]<ω is countable, there are A ∈ [ω]<ω and ζ < ξ < ω1
such that Aζ = Aξ = A.

Then 〈Aζ ,Cζ〉 = 〈A,Cζ〉 and 〈Aξ,Cξ〉 = 〈A,Cξ〉 are compatible,
since 〈A,Cζ ∪ Cξ〉 ∈ P extends them both.

So, A is not an antichain.
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The theorem Induction MA

Proof of our Theorem: “finitely many” part

z ∈ Z = Y \ X =⇒ z ∈ Bn only for finitely many n ∈ Â.

P := [ω]<ω × [X \ Y ]<ω; 〈A1,C1〉 ≤ 〈A0,C0〉 provided
A1 ⊃ A0, C1 ⊃ C0, and c 6∈ Bm for all m ∈ A1 \ A0 and c ∈ C0.

Ez = {〈A,C〉 ∈ P : z ∈ C} with z ∈ X \ Y .

As F is D-generic, there is 〈A0,C0〉 ∈ F ∩ Ez .
It is enough to prove that z 6∈ Bm for every m ∈ Â \ A0.
Take m ∈ Â \ A0.
By the definition of Â there is 〈A,C〉 ∈ F such that m ∈ A.
∃ 〈A1,C1〉 ∈ F extending 〈A,C〉 and 〈A0,C0〉 (as F is filter).

So 〈A1,C1〉 ≤ 〈A0,C0〉, m ∈ A ⊂ A1, m 6∈ A0, and z ∈ C0.
Hence indeed z 6∈ Bm.
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Take m ∈ Â \ A0.
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The theorem Induction MA

Proof of our Theorem: “infinitely many” part

x ∈ Y =⇒ x ∈ Bn for infinitely many n ∈ Â.

P := [ω]<ω × [X \ Y ]<ω; 〈A1,C1〉 ≤ 〈A0,C0〉 provided
A1 ⊃ A0, C1 ⊃ C0, and c 6∈ Bm for all m ∈ A1 \ A0 and c ∈ C0.

Dk
y = {〈A,C〉 ∈ P : ∃m ∈ A (m ≥ k & y ∈ Bm)}.

As F is D-generic, for every k < ω there is 〈A,C〉 ∈ F ∩ Dk
x .

So, there is an m ∈ A ⊂ Â with m > k such that x ∈ Bm.

Hence x ∈ Bm for infinitely many m from Â.

End of the proof!

Krzysztof Chris Ciesielski Tutorial on Martin’s Axiom, by example 10



The theorem Induction MA

Proof of our Theorem: “infinitely many” part

x ∈ Y =⇒ x ∈ Bn for infinitely many n ∈ Â.
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The theorem Induction MA

That is all!

Thank you for your attention!
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