Differentiability versus continuity: Restriction and extension theorems and monstrous examples

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based on BAMS survey written with Juan B. Seoane-Sepúlveda

Colloquium at Universidad Complutense de Madrid, Spain, November 8, 2018.

Example (New simple construction of a classic example)

There exists a differentiable nowhere monotone map $f: \mathbb{R} \to \mathbb{R}$.

Example (Greatly simplified construction of 2016 example)

There exists a differentiable auto-homeomorphism \mathfrak{f} of a compact perfect $\mathfrak{X} \subset \mathbb{R}$ with $\mathfrak{f}' \equiv \mathbf{0}$.

Theorem (C^1) interpolation thm, no Lebesgue measure needed)

For every continuous $f: \mathbb{R} \to \mathbb{R}$:

- there is perfect $P \subset \mathbb{R}$ s.t. $f \upharpoonright P$ is Lipschitz;
- there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Theorem (Simple proof of Whitney and Jarník extension thms)

Example (New simple construction of a classic example)

There exists a differentiable nowhere monotone map $f: \mathbb{R} \to \mathbb{R}$.

Example (Greatly simplified construction of 2016 example)

There exists a differentiable auto-homeomorphism \mathfrak{f} of a compact perfect $\mathfrak{X} \subset \mathbb{R}$ with $\mathfrak{f}' \equiv 0$.

Theorem (C^1) interpolation thm, no Lebesgue measure needed)

For every continuous $f: \mathbb{R} \to \mathbb{R}$:

- there is perfect $P \subset \mathbb{R}$ s.t. $f \upharpoonright P$ is Lipschitz;
- there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Theorem (Simple proof of Whitney and Jarník extension thms)

Example (New simple construction of a classic example)

There exists a differentiable nowhere monotone map $f: \mathbb{R} \to \mathbb{R}$.

Example (Greatly simplified construction of 2016 example)

There exists a differentiable auto-homeomorphism \mathfrak{f} of a compact perfect $\mathfrak{X} \subset \mathbb{R}$ with $\mathfrak{f}' \equiv 0$.

Theorem (C^1) interpolation thm, no Lebesgue measure needed)

For every continuous $f: \mathbb{R} \to \mathbb{R}$:

- there is perfect $P \subset \mathbb{R}$ s.t. $f \upharpoonright P$ is Lipschitz;
- there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Theorem (Simple proof of Whitney and Jarník extension thms)

Example (New simple construction of a classic example)

There exists a differentiable nowhere monotone map $f: \mathbb{R} \to \mathbb{R}$.

Example (Greatly simplified construction of 2016 example)

There exists a differentiable auto-homeomorphism \mathfrak{f} of a compact perfect $\mathfrak{X} \subset \mathbb{R}$ with $\mathfrak{f}' \equiv 0$.

Theorem (C^1 interpolation thm, no Lebesgue measure needed)

For every continuous $f: \mathbb{R} \to \mathbb{R}$:

- there is perfect $P \subset \mathbb{R}$ s.t. $f \upharpoonright P$ is Lipschitz;
- there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Theorem (Simple proof of Whitney and Jarník extension thms)

Example (New simple construction of a classic example)

There exists a differentiable nowhere monotone map $f: \mathbb{R} \to \mathbb{R}$.

Example (Greatly simplified construction of 2016 example)

There exists a differentiable auto-homeomorphism \mathfrak{f} of a compact perfect $\mathfrak{X} \subset \mathbb{R}$ with $\mathfrak{f}' \equiv 0$.

Theorem (C^1 interpolation thm, no Lebesgue measure needed)

For every continuous $f: \mathbb{R} \to \mathbb{R}$:

- there is perfect $P \subset \mathbb{R}$ s.t. $f \upharpoonright P$ is Lipschitz;
- there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Theorem (Simple proof of Whitney and Jarník extension thms)

Example (New simple construction of a classic example)

There exists a differentiable nowhere monotone map $f: \mathbb{R} \to \mathbb{R}$.

Example (Greatly simplified construction of 2016 example)

There exists a differentiable auto-homeomorphism \mathfrak{f} of a compact perfect $\mathfrak{X} \subset \mathbb{R}$ with $\mathfrak{f}' \equiv 0$.

Theorem (C^1 interpolation thm, no Lebesgue measure needed)

For every continuous $f: \mathbb{R} \to \mathbb{R}$:

- there is perfect $P \subset \mathbb{R}$ s.t. $f \upharpoonright P$ is Lipschitz;
- there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Theorem (Simple proof of Whitney and Jarník extension thms)

Example (New simple construction of a classic example)

There exists a differentiable nowhere monotone map $f: \mathbb{R} \to \mathbb{R}$.

Example (Greatly simplified construction of 2016 example)

There exists a differentiable auto-homeomorphism \mathfrak{f} of a compact perfect $\mathfrak{X} \subset \mathbb{R}$ with $\mathfrak{f}' \equiv 0$.

Theorem (C^1 interpolation thm, no Lebesgue measure needed)

For every continuous $f: \mathbb{R} \to \mathbb{R}$:

- there is perfect $P \subset \mathbb{R}$ s.t. $f \upharpoonright P$ is Lipschitz;
- there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Theorem (Simple proof of Whitney and Jarník extension thms)

No familiarity with Lebesgue measure s needed to follow any proof behind this talk

No familiarity with Lebesgue measure is needed to follow any proof behind this talk

Outline

- 1 Continuity from differentiability: classical results
- Continuity from differentiability: newer results
- 3 Differentiability from continuity: differentiable restrictions
- $lackbox{4}$ Properties of differentiable maps on perfect $P\subset\mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems

Outline

- 1 Continuity from differentiability: classical results
- Continuity from differentiability: newer results
- 3 Differentiability from continuity: differentiable restrictions
- $ext{ } ext{ } ext$
- 5 Differentiable extensions: Jarník and Whitney theorems

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

Clearly, if $F : \mathbb{R} \to \mathbb{R}$ is differentiable, then F is continuous.

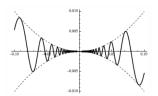
For differentiable $G: \mathbb{C} \to \mathbb{C}$, G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

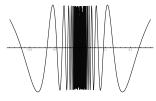
$$F(x) := \begin{cases} x^2 \sin(x^{-1}) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

About $F(x) = x^2 \sin(x^{-1})$

This F appeared already in the 1881 paper of Vito Volterra (1860-1940)



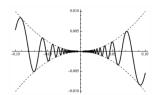
Graph of F



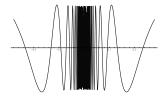
Graph of F

About $F(x) = x^2 \sin(x^{-1})$

This F appeared already in the 1881 paper of Vito Volterra (1860-1940)



Graph of F



Graph of F'

To what extend f = F' must be continuous?

Jean-Gaston Darboux (1842-1917)

Theorem (Darboux 1875)

Any derivative $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property (IVP), that is, for every a < b and y between f(a) and f(b) there exists an $x \in [a,b]$ with f(x) = y.

Since then, maps with IVP are called Darboux functions

To what extend f = F' must be continuous?

Jean-Gaston Darboux (1842-1917)

Theorem (Darboux 1875)

Any derivative $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property (IVP), that is, for every a < b and y between f(a) and f(b) there exists an $x \in [a,b]$ with f(x) = y.

Since then, maps with IVP are called Darboux functions.

To what extend f = F' must be continuous?

Jean-Gaston Darboux (1842-1917)

Theorem (Darboux 1875)

Any derivative $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property (IVP), that is, for every a < b and y between f(a) and f(b) there exists an $x \in [a,b]$ with f(x) = y.

Since then, maps with IVP are called Darboux functions.

Baire result

René-Louis Baire (1874-1932)

Theorem (1899 dissertation of Baire

The derivative of any differentiable $F: \mathbb{R} \to \mathbb{R}$ is Baire class one, that is, it is a pointwise limit of continuous functions. In particular, the set of points of continuity of F' (as for any Baire class one function) is a dense G_{δ} -set.

Baire result

René-Louis Baire (1874-1932)

Theorem (1899 dissertation of Baire)

The derivative of any differentiable $F: \mathbb{R} \to \mathbb{R}$ is Baire class one, that is, it is a pointwise limit of continuous functions. In particular, the set of points of continuity of F' (as for any Baire class one function) is a dense G_8 -set.

Baire result

René-Louis Baire (1874-1932)

Theorem (1899 dissertation of Baire)

The derivative of any differentiable $F: \mathbb{R} \to \mathbb{R}$ is Baire class one, that is, it is a pointwise limit of continuous functions. In particular, the set of points of continuity of F' (as for any Baire class one function) is a dense G_{δ} -set.

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s) - f(g)| < 1/n \text{ for all } s, t \in (x - \delta, x + \delta)\}.$$

If $g = \lim_{n \to \infty} g_n$, $g_n \colon \mathbb{R} \to \mathbb{R}$ continuous, then C_g contains a dense G_δ -set $G := \bigcap_{n=1}^\infty \bigcup_{N=1}^\infty U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem

Let $G \subset \mathbb{R}$

There exists a derivative f with $C_f = G$ iff G is a dense G_{δ} .

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n)-f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s) - f(g)| < 1/n \text{ for all } s, t \in (x - \delta, x + \delta)\}.$$

If $g=\lim\limits_{n o\infty}g_n,\,g_n\colon\mathbb{R} o\mathbb{R}$ continuous, then C_g contains a dense G_δ -set $G:=\bigcap_{n=1}^\infty\bigcup_{N=1}^\infty\,U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem

Let $G \subset \mathbb{R}$

There exists a derivative f with $C_f = G$ iff G is a dense G_{δ} .

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s) - f(g)| < 1/n \text{ for all } s, t \in (x - \delta, x + \delta)\}.$$

If $g = \lim_{n \to \infty} g_n$, $g_n \colon \mathbb{R} \to \mathbb{R}$ continuous, then C_g contains a dense G_δ -set $G := \bigcap_{n=1}^\infty \bigcup_{N=1}^\infty U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem

Let $G \subset \mathbb{R}$

There exists a derivative f with $C_f = G$ iff G is a dense G_δ .

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$ continuous.

For any $g: \mathbb{R} \to \mathbb{R}$, $C_g := \{x: g \text{ is continuous at } x\}$ is a G_δ -set: $C_g := \bigcap_{n=1}^{\infty} V_n$, where the open sets V_n are defined as

$$V_n := \bigcup_{\delta>0} \{x \in \mathbb{R} \colon |g(s) - f(g)| < 1/n \text{ for all } s, t \in (x - \delta, x + \delta)\}.$$

If $g = \lim_{n \to \infty} g_n$, $g_n \colon \mathbb{R} \to \mathbb{R}$ continuous, then C_g contains a dense G_δ -set $G := \bigcap_{n=1}^\infty \bigcup_{N=1}^\infty U_N^n$, where each U_N^n is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem

Let $G \subset \mathbb{R}$.

There exists a derivative f with $C_f = G$ iff G is a dense G_δ .

Outline

- 1 Continuity from differentiability: classical results
- Continuity from differentiability: newer results
- 3 Differentiability from continuity: differentiable restrictions
- $ext{ } ext{ } ext$
- 5 Differentiable extensions: Jarník and Whitney theorems

Theorem (Relatively new)

If $f = f_n \circ \cdots \circ f_1$, where each $f_i : [0, 1] \to [0, 1]$ is a derivative, then f has a fixed point.

For n = 1: easy exercise, as h(x) = f(x) - x is Darboux.

For n=2: proved independently in 2001 by Csörnyei, O'Neil & Prokaj

For arbitrary *n*: Szuca 2003.

Open Problem

Must *f* as in the theorem have connected graph?

Theorem (Relatively new)

If $f = f_n \circ \cdots \circ f_1$, where each $f_i : [0,1] \to [0,1]$ is a derivative, then f has a fixed point.

For n = 1: easy exercise, as h(x) = f(x) - x is Darboux.

For *n* = 2: proved independently in <mark>2001</mark> by Csörnyei, O'Neil & Preiss and by Elekes, Keleti & Prokaj

For arbitrary *n*: Szuca 2003.

Open Problem

Must *f* as in the theorem have connected graph?

Theorem (Relatively new)

If $f = f_n \circ \cdots \circ f_1$, where each $f_i : [0,1] \to [0,1]$ is a derivative, then f has a fixed point.

For n = 1: easy exercise, as h(x) = f(x) - x is Darboux.

For n=2: proved independently in 2001 by Csörnyei, O'Neil & Preiss and by Elekes, Keleti & Prokaj

For arbitrary *n*: Szuca 2003.

Open Problem

Must *f* as in the theorem have connected graph?

Theorem (Relatively new)

If $f = f_n \circ \cdots \circ f_1$, where each $f_i : [0,1] \to [0,1]$ is a derivative, then f has a fixed point.

For n = 1: easy exercise, as h(x) = f(x) - x is Darboux.

For n = 2: proved independently in 2001 by Csörnyei, O'Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary *n*: Szuca 2003.

Open Problem

Must *f* as in the theorem have connected graph?

Theorem (Relatively new)

If $f = f_n \circ \cdots \circ f_1$, where each $f_i : [0,1] \to [0,1]$ is a derivative, then f has a fixed point.

For n = 1: easy exercise, as h(x) = f(x) - x is Darboux.

For n = 2: proved independently in 2001 by Csörnyei, O'Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary *n*: Szuca 2003.

Open Problem

Must *f* as in the theorem have connected graph?

Theorem (Relatively new)

If $f = f_n \circ \cdots \circ f_1$, where each $f_i : [0,1] \to [0,1]$ is a derivative, then f has a fixed point.

For n = 1: easy exercise, as h(x) = f(x) - x is Darboux.

For n = 2: proved independently in 2001 by Csörnyei, O'Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary *n*: Szuca 2003.

Open Problem

Must *f* as in the theorem have connected graph?

Fixed point property

Theorem (Relatively new)

If $f = f_n \circ \cdots \circ f_1$, where each $f_i : [0,1] \to [0,1]$ is a derivative, then f has a fixed point.

For n = 1: easy exercise, as h(x) = f(x) - x is Darboux.

For n = 2: proved independently in 2001 by Csörnyei, O'Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary *n*: Szuca 2003.

Open Problem

Must f as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

Let $f = f_n \circ \cdots \circ f_1$, where each f_i is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski **2018**)

There exist derivatives $\varphi, \gamma \colon [-1, 1] \to [-1, 1]$ such that their composition $\psi := \varphi \circ \gamma$ is not of Baire class one.

We use $\gamma(x) := \cos(x^{-1})$ and φ Pompeiu's map, see below.

Let $f = f_n \circ \cdots \circ f_1$, where each f_i is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski **2018**)

There exist derivatives $\varphi, \gamma \colon [-1, 1] \to [-1, 1]$ such that their composition $\psi := \varphi \circ \gamma$ is not of Baire class one.

We use $\gamma(x) := \cos(x^{-1})$ and φ Pompeiu's map, see below.

Let $f = f_n \circ \cdots \circ f_1$, where each f_i is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski **2015**)

There exist derivatives $\varphi, \gamma \colon [-1, 1] \to [-1, 1]$ such that their composition $\psi := \varphi \circ \gamma$ is not of Baire class one.

We use $\gamma(x) := \cos(x^{-1})$ and φ Pompeiu's map, see below.

Let $f = f_n \circ \cdots \circ f_1$, where each f_i is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must *f* be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski **2016**)

There exist derivatives $arphi, \gamma \colon [-1,1] o [-1,1]$ such that their composition $\psi := arphi \circ \gamma$ is not of Baire class one.

We use $\gamma(x) := \cos(x^{-1})$ and φ Pompeiu's map, see below.

Let $f = f_n \circ \cdots \circ f_1$, where each f_i is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski **2018**)

There exist derivatives $arphi, \gamma\colon [-1,1] o [-1,1]$ such that their composition $\psi:=arphi\circ\gamma$ is not of Baire class one.

We use $\gamma(x) := \cos(x^{-1})$ and φ Pompeiu's map, see below.

Let $f = f_n \circ \cdots \circ f_1$, where each f_i is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski 2018)

There exist derivatives $\varphi, \gamma \colon [-1, 1] \to [-1, 1]$ such that their composition $\psi := \varphi \circ \gamma$ is not of Baire class one.

We use $\gamma(x) := \cos(x^{-1})$ and φ Pompeiu's map, see below.

Let $f = f_n \circ \cdots \circ f_1$, where each f_i is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski 2018)

There exist derivatives $\varphi, \gamma \colon [-1, 1] \to [-1, 1]$ such that their composition $\psi := \varphi \circ \gamma$ is not of Baire class one.

We use $\gamma(x) := \cos(x^{-1})$ and φ Pompeiu's map, see below.

Let $f = f_n \circ \cdots \circ f_1$, where each f_i is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski 2018)

There exist derivatives $\varphi, \gamma \colon [-1, 1] \to [-1, 1]$ such that their composition $\psi := \varphi \circ \gamma$ is not of Baire class one.

We use $\gamma(x) := \cos(x^{-1})$ and φ Pompeiu's map, see below.

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

Simple construction of a differentiable monster follows

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

Simple construction of a differentiable monster follows

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set Z^c = {x: f'(x) ≠ 0}.

Simple construction of a differentiable monster follows

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; and many others)

There is differentiable $f: \mathbb{R} \to \mathbb{R}$ which is nowhere monotone.

Note that

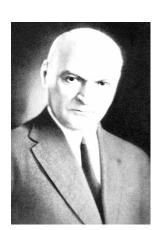
- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set $Z^c = \{x : f'(x) \neq 0\}$.

Simple construction of a differentiable monster follows.

Diff \Longrightarrow Cont Monster Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

Arnaud Denjoy and Dimitrie Pompeiu

Arnaud Denjoy (1884–1974)



Dimitrie Pompeiu (1873-1954)

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

_emma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity follows from $|g(x)| \le \sum_{i=1}^{\infty} r^i (|x| + i + 1)$.

Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{v - x} \le 6\psi_i'(x)$.

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity follows from $|g(x)| \le \sum_{i=1}^{\infty} r^i (|x| + i + 1)$.

Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{v - x} \le 6\psi_i'(x)$.

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity follows from $|g(x)| \le \sum_{i=1}^{\infty} r^i (|x| + i + 1)$.

Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{y-x} \le 6\psi_i'(x)$.

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity follows from $|g(x)| \leq \sum_{i=1}^{\infty} r^i (|x| + i + 1)$.

Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{y-x} \le 6\psi_i'(x)$.

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity follows from $|g(x)| \leq \sum_{i=1}^{\infty} r^i (|x| + i + 1)$.

Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{y-x} \le 6\psi_i'(x)$.

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity follows from $|g(x)| \leq \sum_{i=1}^{\infty} r^i (|x| + i + 1)$.

Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{y-x} \le 6\psi_i'(x)$.

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity follows from $|g(x)| \le \sum_{i=1}^{\infty} r^i (|x| + i + 1)$.

Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{y - x} \le 6\psi_i'(x)$.

A variant of Pompeiu function, of 1907

Fix $r \in (0,1)$ and $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$ such that $|q_i| \leq i$ for all $i \in \mathbb{N}$.

Lemma (KC; small variation of Pompeiu's result)

- (i) $g(x) = \sum_{i=1}^{\infty} r^i (x q_i)^{1/3}$ is continuous, "differentiable," strictly increasing, onto \mathbb{R} , with $g'(q) = \infty$ for all $q \in \mathbb{Q}$.
- (ii) $h = g^{-1} : \mathbb{R} \nearrow \mathbb{R}$ is everywhere differentiable with $h' \ge 0$ and $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.
- (iii) $Z^c = \mathbb{R} \setminus Z$ is also dense in \mathbb{R} .
- **Pr.** (i) Continuity follows from $|g(x)| \leq \sum_{i=1}^{\infty} r^i (|x| + i + 1)$.

Differentiability requires $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$. Easy when series $= \infty$. Other case follows from $0 < \frac{\psi_i(y) - \psi_i(x)}{y-x} \le 6\psi_i'(x)$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f'>0$$
 on $t+D$: $f'(t+d)=h'(d)-h'(t+d)=h'(d)>0$, as $t+d\in Z$

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f'>0 \text{ on } t+D$$
: $f'(t+d)=h'(d)-h'(t+d)=h'(d)>0$, as $t+d\in Z$.

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f'>0 \text{ on } t+D$$
: $f'(t+d)=h'(d)-h'(t+d)=h'(d)>0$, as $t+d\in Z$

$$f'<0 ext{ on } D$$
: $f'(d)=h'(d-t)-h'(d)=-h'(d)<0, ext{ as } d-t\in Z.$

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f'>0$$
 on $t+D$: $f'(t+d)=h'(d)-h'(t+d)=h'(d)>0$, as $t+d\in Z$

$$f'<0 ext{ on } D$$
: $f'(d)=h'(d-t)-h'(d)=-h'(d)<0, ext{ as } d-t\in Z.$

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f'>0 \text{ on } t+D$$
: $f'(t+d)=h'(d)-h'(t+d)=h'(d)>0$, as $t+d\in Z$.

$$f'<0 ext{ on } D$$
: $f'(d)=h'(d-t)-h'(d)=-h'(d)<0$, as $d-t\in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R} : h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f'>0 \text{ on } t+D$$
: $f'(t+d)=h'(d)-h'(t+d)=h'(d)>0$, as $t+d\in Z$.

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any
$$t$$
 in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f'>0$$
 on $t+D$: $f'(t+d)=h'(d)-h'(t+d)=h'(d)>0$, as $t+d\in Z$.

$$f' < 0 \text{ on } D$$
: $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Lemma There is a strictly increasing differentiable $h: \mathbb{R} \to \mathbb{R}$ with $Z = \{x \in \mathbb{R}: h'(x) = 0\}$ being a dense G_{δ} -set.

Theorem (KC 2017)

If h is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical $t \in \mathbb{R}$.

Pr. Let $D \subset \mathbb{R} \setminus Z$ be countable dense. So, h' > 0 on D.

Any t in residual $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$ works.

$$f' > 0$$
 on $t + D$: $f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0$, as $t + d \in Z$.

$$f' < 0$$
 on D : $f'(d) = h'(d-t) - h'(d) = -h'(d) < 0$, as $d-t \in Z$.

Outline

- 1 Continuity from differentiability: classical results
- Continuity from differentiability: newer results
- 3 Differentiability from continuity: differentiable restrictions
- $ext{ } ext{ } ext$
- 5 Differentiable extensions: Jarník and Whitney theorems

Diff \Longrightarrow Cont Monster Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

How much differentiability continuous map must have

None?

Example (Weierstrass 1886; Bolzano, unpublished, 1822) There exists continuous $F: \mathbb{R} \to \mathbb{R}$ differentiable at no point.

Deierstraf

Bernard Bolzano (1781-1848)

Karl Weierstrass (1815–1897)

How much differentiability continuous map must have

None?

Example (Weierstrass 1886; Bolzano, unpublished, 1822)

There exists continuous $F \colon \mathbb{R} \to \mathbb{R}$ differentiable at no point.

Deierstraf

Bernard Bolzano (1781-1848)

Karl Weierstrass (1815–1897)

How much differentiability continuous map must have

None?

Example (Weierstrass 1886; Bolzano, unpublished, 1822)

There exists continuous $F : \mathbb{R} \to \mathbb{R}$ differentiable at no point.

Deierstraf

Bernard Bolzano (1781-1848)

Karl Weierstrass (1815–1897)

Weierstrass' Monster: $W(x) := \sum_{n=0}^{\infty} \frac{1}{2^n} \cos(13^n \pi x)$

Teiji Takagi (1875-1960)

Bartel van der Waerden (1903–1996)

 $F(x) = \sum_{n=0}^{\infty} 4^n \min\{|x - \frac{k}{8^n}| \colon k \in \mathbb{Z}\}$ Weierstrass' Monster of
Takagi from 1903, and
van der Waerden, from 1930

Differentiable restriction theorem

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof

Let $f = (f_1, f_2) \colon [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f \colon \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof

Let $f = (f_1, f_2) \colon [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2) \colon [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2)$: $[0, 1] \rightarrow [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2) \colon [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So

Some differentiability after all!

Theorem (Laczkovich 1984)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is perfect $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ is differentiable.

Remark

There are continuous $f: \mathbb{R} \to \mathbb{R}$ such that $f \upharpoonright Q$ can be differentiable only when Q is both first category and meager.

Proof.

Let $f = (f_1, f_2) \colon [0, 1] \to [0, 1]^2$ be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that f_1 is nowhere approximately and \mathcal{I} -approximately differentiable. So it is as in the remark.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC

For every continuous increasing $f: [a,b] \to \mathbb{R}$ there is perfect P such that $f \upharpoonright P$ is Lipschitz.

Proof based on the following results, due to Riesz:

Lemma (Rising sun lemma 1932, proof is an easy exercise)

If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c,d) of $U = \{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Fact (Proved by induction)

Let a < b and $\mathcal J$ be a family of open intervals with $\bigcup \mathcal J \subset (a,b)$.

(i) If
$$[\alpha, \beta] \subset \bigcup \mathcal{J}$$
, then $\sum_{I \in \mathcal{J}} \ell(I) > \beta - \alpha$.

(ii) If $l \in \mathcal{J}$ are pairwise disjoint, then $\sum_{l \in \mathcal{I}} \ell(l) \leq b - a$.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing $f:[a,b]\to\mathbb{R}$ there is perfect P such that $f\upharpoonright P$ is Lipschitz.

Proof based on the following results, due to Riesz:

Lemma (Rising sun lemma 1932, proof is an easy exercise)

If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c,d) of $U = \{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Fact (Proved by induction)

Let a < b and $\mathcal J$ be a family of open intervals with $\bigcup \mathcal J \subset (a,b)$.

- (i) If $[\alpha, \beta] \subset \bigcup \mathcal{J}$, then $\sum_{l \in \mathcal{J}} \ell(l) > \beta \alpha$.
- (ii) If $I \in \mathcal{J}$ are pairwise disjoint, then $\sum_{I \in \mathcal{I}} \ell(I) \leq b a$.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing $f:[a,b]\to\mathbb{R}$ there is perfect P such that $f\upharpoonright P$ is Lipschitz.

Proof based on the following results, due to Riesz:

Lemma (Rising sun lemma 1932, proof is an easy exercise

If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c,d) of $U = \{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Fact (Proved by induction)

Let a < b and $\mathcal J$ be a family of open intervals with $\bigcup \mathcal J \subset (a,b)$.

- (i) If $[\alpha, \beta] \subset \bigcup \mathcal{J}$, then $\sum_{l \in \mathcal{J}} \ell(l) > \beta \alpha$
- (ii) If $l \in \mathcal{J}$ are pairwise disjoint, then $\sum_{l \in \mathcal{I}} \ell(l) \leq b a$.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing $f:[a,b]\to\mathbb{R}$ there is perfect P such that $f\upharpoonright P$ is Lipschitz.

Proof based on the following results, due to Riesz:

Lemma (Rising sun lemma 1932, proof is an easy exercise)

If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c,d) of $U = \{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Fact (Proved by induction)

Let a < b and ${\mathcal J}$ be a family of open intervals with $\bigcup {\mathcal J} \subset (a,b)$.

- (i) If $[\alpha, \beta] \subset \bigcup \mathcal{J}$, then $\sum_{l \in \mathcal{J}} \ell(l) > \beta \alpha$
- (ii) If $l \in \mathcal{J}$ are pairwise disjoint, then $\sum_{l \in \mathcal{I}} \ell(l) \leq b a$.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing $f:[a,b]\to\mathbb{R}$ there is perfect P such that $f\upharpoonright P$ is Lipschitz.

Proof based on the following results, due to Riesz:

Lemma (Rising sun lemma 1932, proof is an easy exercise)

If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c,d) of $U = \{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Fact (Proved by induction)

Let a < b and \mathcal{J} be a family of open intervals with $\bigcup \mathcal{J} \subset (a,b)$.

- (i) If $[\alpha, \beta] \subset \bigcup \mathcal{J}$, then $\sum_{I \in \mathcal{I}} \ell(I) > \beta \alpha$.
- (ii) If $I \in \mathcal{J}$ are pairwise disjoint, then $\sum_{I \in \mathcal{I}} \ell(I) \leq b a$.

Riesz' Rising sun lemma

If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c,d) of $U = \{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Frigyes Riesz (1880-1956)

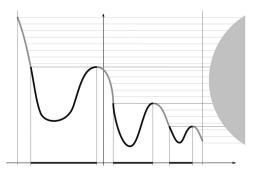


Illustration of the Rising Sun Lemma

The points in the set $U \cap (a, b)$ are those lying in the shadow.

Riesz' Rising sun lemma

If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c,d) of $U = \{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Frigyes Riesz (1880-1956)

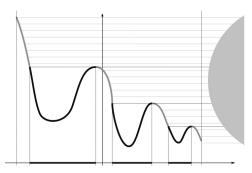


Illustration of the Rising Sun Lemma

The points in the set $U \cap (a, b)$ are those lying in the shadow.

Riesz' Rising sun lemma

If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every component (c,d) of $U = \{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Frigyes Riesz (1880-1956)

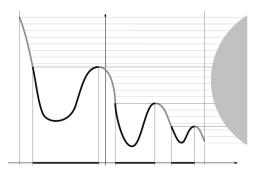


Illustration of the Rising Sun Lemma

The points in the set $U \cap (a, b)$ are those lying in the shadow.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Have: If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every comp. (c,d) of $\{x \in [a,b): g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Sketch of proof. Fix
$$L > \frac{f(b) - f(a)}{b - a}$$
, put $g(t) = f(t) - Lt$, and $U = \{x \in [a, b) \colon g(y) > g(x) \text{ for some } y \in (x, b]\}.$

f is Lipschitz on $P = [\bar{a}, b] \setminus U$ with constant L, where

$$\bar{a} = \sup\{x \colon [a, x) \subset U\}\}.$$
 Fix $X = \{x_n \colon n \in \mathbb{N}\}.$ Need $P \setminus X \neq \emptyset.$

If $\mathcal{J} =$ open components of U, then $\ell(f[J]) \geq L\ell(J)$ for $J \in \mathcal{J}$.

By Fact (ii),
$$\sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\bar{a})$$
. So,

$$\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(f[J]) \leq \frac{f(b) - f(\bar{a})}{L} < b - \bar{a}, \text{ and by Fact (i),}$$

 $P \neq \emptyset$. To get $P \setminus X \neq \emptyset$ increase slightly \mathcal{J} .

```
Goal: If f: \mathbb{R} \to \mathbb{R} is cont \nearrow, then f \upharpoonright P is Lipschitz for a perfect P.
Have: If g: [a,b] \to \mathbb{R} is cont, then g(c) \le g(d) for every comp.
          (c, d) of \{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.
   Sketch of proof. Fix L > \frac{f(b) - f(a)}{b - a}, put g(t) = f(t) - Lt, and
   \bar{a} = \sup\{x : [a, x) \subset U\}. Fix X = \{x_n : n \in \mathbb{N}\}. Need P \setminus X \neq \emptyset.
   P \neq \emptyset. To get P \setminus X \neq \emptyset increase slightly \mathcal{J}.
```

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Have: If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every comp. (c,d) of $\{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Sketch of proof. Fix $L > \frac{f(b)-f(a)}{b-a}$, put g(t) = f(t) - Lt, and $U = \{x \in [a,b) \colon g(y) > g(x) \text{ for some } y \in (x,b]\}.$

f is Lipschitz on $P = [\bar{a}, b] \setminus U$ with constant L, where

$$\bar{a} = \sup\{x \colon [a, x) \subset U\}\}.$$
 Fix $X = \{x_n \colon n \in \mathbb{N}\}.$ Need $P \setminus X \neq \emptyset.$

If $\mathcal{J} =$ open components of U, then $\ell(f[J]) \geq L\ell(J)$ for $J \in \mathcal{J}$.

By Fact (ii),
$$\sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\bar{a})$$
. So,

$$\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(f[J]) \leq \frac{f(b) - f(\bar{a})}{L} < b - \bar{a}, \text{ and by Fact (i),}$$

 $P \neq \emptyset$. To get $P \setminus X \neq \emptyset$ increase slightly \mathcal{J} .

```
Goal: If f: \mathbb{R} \to \mathbb{R} is cont \nearrow, then f \upharpoonright P is Lipschitz for a perfect P.
```

Have: If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every comp. (c,d) of $\{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Sketch of proof. Fix $L > \frac{f(b)-f(a)}{b-a}$, put g(t) = f(t) - Lt, and $U = \{x \in [a,b) \colon g(y) > g(x) \text{ for some } y \in (x,b]\}.$

f is Lipschitz on $P = [\bar{a}, b] \setminus U$ with constant L, where

 $\bar{a} = \sup\{x \colon [a, x) \subset U\}\}$. Fix $X = \{x_n \colon n \in \mathbb{N}\}$. Need $P \setminus X \neq \emptyset$.

If $\mathcal{J} =$ open components of U, then $\ell(f[J]) \geq L\ell(J)$ for $J \in \mathcal{J}$.

By Fact (ii), $\sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\bar{a})$. So,

 $\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(f[J]) \leq \frac{f(b) - f(\bar{a})}{L} < b - \bar{a}, \text{ and by Fact (i),}$

 $P \neq \emptyset$. To get $P \setminus X \neq \emptyset$ increase slightly \mathcal{J} .

```
Goal: If f: \mathbb{R} \to \mathbb{R} is cont \nearrow, then f \upharpoonright P is Lipschitz for a perfect P.
Have: If g: [a,b] \to \mathbb{R} is cont, then g(c) \le g(d) for every comp.
          (c, d) of \{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.
   Sketch of proof. Fix L > \frac{f(b)-f(a)}{b-a}, put g(t) = f(t) - Lt, and
             U = \{x \in [a, b) : g(y) > g(x) \text{ for some } y \in (x, b]\}.
   f is Lipschitz on P = [\bar{a}, b] \setminus U with constant L, where
   \bar{a} = \sup\{x \colon [a,x) \subset U\}. Fix X = \{x_n \colon n \in \mathbb{N}\}. Need P \setminus X \neq \emptyset.
   P \neq \emptyset. To get P \setminus X \neq \emptyset increase slightly \mathcal{J}.
```

```
Goal: If f: \mathbb{R} \to \mathbb{R} is cont \nearrow, then f \upharpoonright P is Lipschitz for a perfect P.
Have: If g: [a,b] \to \mathbb{R} is cont, then g(c) \le g(d) for every comp.
          (c, d) of \{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.
   Sketch of proof. Fix L > \frac{f(b)-f(a)}{b-a}, put g(t) = f(t) - Lt, and
             U = \{x \in [a, b) : g(y) > g(x) \text{ for some } y \in (x, b]\}.
   f is Lipschitz on P = [\bar{a}, b] \setminus U with constant L, where
   \bar{a} = \sup\{x \colon [a, x) \subset U\}. Fix X = \{x_n \colon n \in \mathbb{N}\}. Need P \setminus X \neq \emptyset.
   If \mathcal{J} = open components of U, then \ell(f[J]) \geq L\ell(J) for J \in \mathcal{J}.
   P \neq \emptyset. To get P \setminus X \neq \emptyset increase slightly \mathcal{J}.
```

```
Goal: If f: \mathbb{R} \to \mathbb{R} is cont \nearrow, then f \upharpoonright P is Lipschitz for a perfect P.
Have: If g: [a, b] \to \mathbb{R} is cont, then g(c) \le g(d) for every comp.
          (c, d) of \{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.
   Sketch of proof. Fix L > \frac{f(b)-f(a)}{b-a}, put g(t) = f(t) - Lt, and
             U = \{x \in [a, b) : g(y) > g(x) \text{ for some } y \in (x, b]\}.
   f is Lipschitz on P = [\bar{a}, b] \setminus U with constant L, where
   \bar{a} = \sup\{x \colon [a, x) \subset U\}. Fix X = \{x_n \colon n \in \mathbb{N}\}. Need P \setminus X \neq \emptyset.
   If \mathcal{J} = open components of U, then \ell(f[J]) \geq L\ell(J) for J \in \mathcal{J}.
   By Fact (ii), \sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\bar{a}). So,
   P \neq \emptyset. To get P \setminus X \neq \emptyset increase slightly \mathcal{I}.
```

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Have: If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every comp. (c,d) of $\{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Sketch of proof. Fix $L > \frac{f(b)-f(a)}{b-a}$, put g(t) = f(t) - Lt, and $U = \{x \in [a,b) \colon g(y) > g(x) \text{ for some } y \in (x,b]\}.$

f is Lipschitz on $P = [\bar{a}, b] \setminus U$ with constant L, where

$$\bar{a} = \sup\{x \colon [a,x) \subset U\}\}.$$
 Fix $X = \{x_n \colon n \in \mathbb{N}\}.$ Need $P \setminus X \neq \emptyset.$

If $\mathcal{J} =$ open components of U, then $\ell(f[J]) \geq L\ell(J)$ for $J \in \mathcal{J}$.

By Fact (ii),
$$\sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\bar{a})$$
. So,

$$\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(f[J]) \leq \frac{f(b) - f(\bar{a})}{L} < b - \bar{a}, \text{ and by Fact (i),}$$

$$P \neq \emptyset. \text{ To get } P \setminus X \neq \emptyset \text{ increase slightly } \mathcal{J}.$$

←□ → ←□ → ← □ → ← □ → ← ○

```
Goal: If f: \mathbb{R} \to \mathbb{R} is cont \nearrow, then f \upharpoonright P is Lipschitz for a perfect P.
```

Have: If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every comp. (c,d) of $\{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Sketch of proof. Fix $L > \frac{f(b)-f(a)}{b-a}$, put g(t) = f(t) - Lt, and $U = \{x \in [a,b) \colon g(y) > g(x) \text{ for some } y \in (x,b]\}.$

f is Lipschitz on $P = [\bar{a}, b] \setminus U$ with constant L, where

$$\bar{a} = \sup\{x \colon [a,x) \subset U\}\}.$$
 Fix $X = \{x_n \colon n \in \mathbb{N}\}.$ Need $P \setminus X \neq \emptyset.$

If $\mathcal{J} =$ open components of U, then $\ell(f[J]) \geq L\ell(J)$ for $J \in \mathcal{J}$.

By Fact (ii),
$$\sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\bar{a})$$
. So,

$$\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(f[J]) \leq \frac{f(b) - f(\bar{a})}{L} < b - \bar{a}, \text{ and by Fact (i),}$$

 $P \neq \emptyset$. To get $P \setminus X \neq \emptyset$ increase slightly \mathcal{J} .

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Have: If $g: [a,b] \to \mathbb{R}$ is cont, then $g(c) \le g(d)$ for every comp. (c,d) of $\{x \in [a,b) \colon g(x) < g(y) \text{ for some } y \in (x,b]\}.$

Sketch of proof. Fix $L > \frac{f(b)-f(a)}{b-a}$, put g(t) = f(t) - Lt, and $U = \{x \in [a,b) \colon g(y) > g(x) \text{ for some } y \in (x,b]\}.$

f is Lipschitz on $P = [\bar{a}, b] \setminus U$ with constant L, where

$$\bar{a} = \sup\{x \colon [a,x) \subset U\}\}.$$
 Fix $X = \{x_n \colon n \in \mathbb{N}\}.$ Need $P \setminus X \neq \emptyset.$

If $\mathcal{J} =$ open components of U, then $\ell(f[J]) \geq L\ell(J)$ for $J \in \mathcal{J}$.

By Fact (ii),
$$\sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\bar{a})$$
. So,

$$\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(f[J]) \leq \frac{f(b) - f(\bar{a})}{L} < b - \bar{a}, \text{ and by Fact (i),}$$

 $P \neq \emptyset$. To get $P \setminus X \neq \emptyset$ increase slightly \mathcal{J} .

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q. Have: If $f: \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Proof of differentiable restriction theorem.

f is Lipschitz on some perfect *P*: proved above for somewhere monotone *f*; otherwise *f* is constant on some perfect set.

For function $f \upharpoonright P$ use Morayne theorem to find perfect $Q \subset P$ such that the quotient map for $f \upharpoonright Q$ is uniformly continuous. Then Q is as needed.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Have: If $f: \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Proof of differentiable restriction theorem.

f is Lipschitz on some perfect *P*: proved above for somewhere monotone *f*; otherwise *f* is constant on some perfect set.

For function $f \upharpoonright P$ use Morayne theorem to find perfect $Q \subset P$ such that the quotient map for $f \upharpoonright Q$ is uniformly continuous. Then Q is as needed.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q.

Have: If $f: \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Proof of differentiable restriction theorem.

f is Lipschitz on some perfect *P*: proved above for somewhere monotone *f*; otherwise *f* is constant on some perfect set.

For function $f \upharpoonright P$ use Morayne theorem to find perfect $Q \subset P$ such that the quotient map for $f \upharpoonright Q$ is uniformly continuous. Then Q is as needed.

Goal: If $f: \mathbb{R} \to \mathbb{R}$ is cont, then $f \upharpoonright Q$ is diff. for some perfect Q. Have: If $f: \mathbb{R} \to \mathbb{R}$ is cont \nearrow , then $f \upharpoonright P$ is Lipschitz for a perfect P.

Proof of differentiable restriction theorem.

f is Lipschitz on some perfect *P*: proved above for somewhere monotone *f*; otherwise *f* is constant on some perfect set.

For function $f \upharpoonright P$ use Morayne theorem to find perfect $Q \subset P$ such that the quotient map for $f \upharpoonright Q$ is uniformly continuous. Then Q is as needed.

Outline

- Ontinuity from differentiability: classical results
- Continuity from differentiability: newer results
- 3 Differentiability from continuity: differentiable restrictions
- lack4 Properties of differentiable maps on perfect $P\subset\mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism \mathfrak{f} of a compact perfect subset \mathfrak{X} of the Cantor ternary set \mathfrak{C} such that $\mathfrak{f}'\equiv 0$.

Counterintuitive, as f is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}$, $P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as f is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself. Also

Theorem (Edelstein 1962

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}$, $P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$

 $(|\mathfrak{f}(x)-\mathfrak{f}(y)|<|x-y|$ for every $y\in\mathfrak{X}$ with small |x-y|>0 but it maps compact \mathfrak{X} **onto** itself. Also

Theorem (Edelstein 1962)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}$, $P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} onto itself.

Theorem (Edelstein 1962)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}$, $P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

• f is *locally contractive, LC*, provided for every $x \in X$ there is open $U \ni x$ s.t. $f \upharpoonright U$ is Lipschitz with constant < 1.

21

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as \mathfrak{f} is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

• f is locally contractive, LC, provided for every $x \in X$ there is open $U \ni x$ s.t. $f \upharpoonright U$ is Lipschitz with constant < 1.

21

Are differentiable $f: P \to \mathbb{R}, P \subset \mathbb{R}$ perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism $\mathfrak f$ of a compact perfect subset $\mathfrak X$ of the Cantor ternary set $\mathfrak C$ such that $\mathfrak f'\equiv 0$.

Counterintuitive, as f is shrinking at every $x \in \mathfrak{X}$ $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y| \text{ for every } y \in \mathfrak{X} \text{ with small } |x - y| > 0)$ but it maps compact \mathfrak{X} **onto** itself.

Theorem (Edelstein 1962, almost contradicting above thm)

If $f: X \to X$ is LC and X is compact, then f has a periodic point,

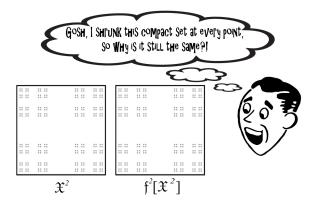


Figure: The result of the action of $\mathfrak{f}^2=\langle\mathfrak{f},\mathfrak{f}\rangle$ on $\mathfrak{X}^2=\mathfrak{X}\times\mathfrak{X}$

Definition of \mathfrak{f} with $\mathfrak{f}' \equiv 0$, Monster # 2

 $\mathfrak{f}=h\circ\sigma\circ h^{-1},$ where $h\colon 2^\omega\to\mathbb{R}$ is embedding and $\sigma\colon 2^\omega\to 2^\omega$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s_i = 1 \text{ for all } i < \omega, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, s_{k+2}, \ldots \rangle & \text{if } s_k = 0 \text{ & } s_i = 1 \text{ for } i < k. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Definition of \mathfrak{f} with $\mathfrak{f}'\equiv 0$, Monster # 2

 $\mathfrak{f}=h\circ\sigma\circ h^{-1},$ where $h\colon 2^\omega\to\mathbb{R}$ is embedding and $\sigma\colon 2^\omega\to 2^\omega$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s_i = 1 \text{ for all } i < \omega, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, s_{k+2}, \ldots \rangle & \text{if } s_k = 0 \& s_i = 1 \text{ for } i < k. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Definition of \mathfrak{f} with $\mathfrak{f}' \equiv 0$, Monster # 2

 $\mathfrak{f}=h\circ\sigma\circ h^{-1},$ where $h\colon 2^\omega\to\mathbb{R}$ is embedding and $\sigma\colon 2^\omega\to 2^\omega$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s_i = 1 \text{ for all } i < \omega, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, s_{k+2}, \ldots \rangle & \text{if } s_k = 0 \& s_i = 1 \text{ for } i < k. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Definition of \mathfrak{f} with $\mathfrak{f}' \equiv 0$, Monster # 2

 $\mathfrak{f}=h\circ\sigma\circ h^{-1},$ where $h\colon 2^\omega\to\mathbb{R}$ is embedding and $\sigma\colon 2^\omega\to 2^\omega$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s_i = 1 \text{ for all } i < \omega, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, s_{k+2}, \ldots \rangle & \text{if } s_k = 0 \& s_i = 1 \text{ for } i < k. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Definition of \mathfrak{f} with $\mathfrak{f}'\equiv 0$, Monster # 2

 $\mathfrak{f}=h\circ\sigma\circ h^{-1},$ where $h\colon 2^\omega\to\mathbb{R}$ is embedding and $\sigma\colon 2^\omega\to 2^\omega$ is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s_i = 1 \text{ for all } i < \omega, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, s_{k+2}, \ldots \rangle & \text{if } s_k = 0 \& s_i = 1 \text{ for } i < k. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where $N(s \mid 0) = 1$ and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$

= $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2$.

Proof of $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,

$$3^{-(n+1)N(s|n)} < |h(s) - h(t)| < 3 \cdot 3^{-(n+1)N(s|n)}$$

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

$$0 < |h(s) - h(t)| < \delta$$
 implies $n = \min\{i < \omega : s_i \neq t_i\} > k$. Then

$$\frac{|f(h(s)) - f(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \upharpoonright n)}}{3^{-(n+1)N(s \upharpoonright n)}} = 3 \cdot 3^{-(n+1)}.$$

So f'(h(s)) = 0, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ .

Diff ⇒ Cont

Proof of $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

Def: $h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$,

Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then

$$3^{-(n+1)N(s \upharpoonright n)} < |h(s) - h(t)| < 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$$

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$

Proof of $\mathfrak{f}'\equiv 0$.

To see f'(h(s)) = 0: pick $k < \omega$ from (a) and $\delta > 0$ s.t.

$$0 < |h(s) - h(t)| < \delta$$
 implies $n = \min\{i < \omega : s_i \neq t_i\} > k$. Then

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \restriction n)}}{3^{-(n+1)N(s \restriction n)}} = 3 \cdot 3^{-(n+1)}.$$

So
$$f'(h(s)) = 0$$
, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ . \square

Diff ⇒ Cont

Proof of $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,

Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then

$$3^{-(n+1)N(s \upharpoonright n)} \le |h(s) - h(t)| \le 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$$

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

$$0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega \colon s_i \neq t_i\} > k. \text{ Then }$$

$$\frac{|f(h(s)) - f(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \upharpoonright n)}}{3^{-(n+1)N(s \upharpoonright n)}} = 3 \cdot 3^{-(n+1)}.$$

So f'(h(s)) = 0, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ .

Diff ⇒ Cont

Proof of $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \nmid n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$

 $3^{-(n+1)N(s \upharpoonright n)} \le |h(s) - h(t)| \le 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Proof of $\mathfrak{f}'\equiv 0$.

To see f'(h(s)) = 0: pick $k < \omega$ from (a) and $\delta > 0$ s.t.

$$0<|h(s)-h(t)|<\delta$$
 implies $n=\min\{i<\omega\colon s_i\neq t_i\}>k$. Then

$$\frac{|f(h(s)) - f(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \restriction n)}}{3^{-(n+1)N(s \restriction n)}} = 3 \cdot 3^{-(n+1)}.$$

So f'(h(s)) = 0, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ . \square

Proof of $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for
$$s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$$
.

Proof of $\mathfrak{f}' \equiv 0$.

To see f'(h(s)) = 0: pick $k < \omega$ from (a) and $\delta > 0$ s.t.

$$0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega \colon s_i \neq t_i\} > k. \text{ Then}$$

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \restriction n)}}{3^{-(n+1)N(s \restriction n)}} = 3 \cdot 3^{-(n+1)}.$$

So f'(h(s)) = 0, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ . \square

Proof of $f' \equiv 0$ for $f = h \circ \sigma \circ h^{-1}$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$.

Proof of $\mathfrak{f}'\equiv 0$.

To see f'(h(s)) = 0: pick $k < \omega$ from (a) and $\delta > 0$ s.t. $0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega : s_i \neq t_i\} > k. \text{ Then,}$

$$\frac{|f(h(s)) - f(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \restriction n)}}{3^{-(n+1)N(s \restriction n)}} = 3 \cdot 3^{-(n+1)}$$

Proof of $\mathfrak{f}' \equiv 0$ for $\mathfrak{f} = h \circ \sigma \circ h^{-1}$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$.

Proof of $\mathfrak{f}' \equiv 0$.

Diff ⇒ Cont

To see $\mathfrak{f}'(h(s)) = 0$: pick $k < \omega$ from (a) and $\delta > 0$ s.t. $0 < |h(s) - h(t)| < \delta$ implies $n = \min\{i < \omega : s_i \neq t_i\} > k$. Then,

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \leq \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \mid n)}}{3^{-(n+1)N(s \mid n)}} = 3 \cdot 3^{-(n+1)}.$$

So f'(h(s)) = 0, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ .

Differentiable Extensions

Proof of $f' \equiv 0$ for $f = h \circ \sigma \circ h^{-1}$

Def:
$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)}$$
,
Fact: If $s \neq t \in 2^{\omega}$ and $n = \min\{i < \omega : s_i \neq t_i\}$, then $3^{-(n+1)N(s \upharpoonright n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s \upharpoonright n)}$.

Also (a):
$$\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1 \text{ for all } n > k$$

as it fails only for $s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$.

Proof of $\mathfrak{f}'\equiv 0$.

To see f'(h(s)) = 0: pick $k < \omega$ from (a) and $\delta > 0$ s.t. $0 < |h(s) - h(t)| < \delta \text{ implies } n = \min\{i < \omega : s_i \neq t_i\} > k. \text{ Then,}$

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \leq \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \restriction n)}}{3^{-(n+1)N(s \restriction n)}} = 3 \cdot 3^{-(n+1)}.$$

So f'(h(s)) = 0, as $3 \cdot 3^{-(n+1)}$ is arbitrarily small for small δ .

Dynamical system f

Every orbit $\{x, f(x), f^2(x), \ldots\}$ of f is dense in \mathfrak{X} .

So, f is a minimal dynamical system. Must it be?

Theorem (KC & JJ 2016: YES, essentially)

If $f: X \to X$ is onto, PC, and X is infinite compact, then there is a perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamical system,

Dynamical system f

Every orbit $\{x, f(x), f^2(x), \ldots\}$ of f is dense in \mathfrak{X} .

So, f is a minimal dynamical system. Must it be?

Theorem (KC & JJ 2016: YES, essentially)

If $f: X \to X$ is onto, PC, and X is infinite compact, then there is a perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamical system,

Every orbit $\{x, \mathfrak{f}(x), \mathfrak{f}^2(x), \ldots\}$ of \mathfrak{f} is dense in \mathfrak{X} .

So, f is a minimal dynamical system. Must it be?

Theorem (KC & JJ 2016: YES, essentially)

If $f: X \to X$ is onto, PC, and X is infinite compact, then there is a perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamical system,

Dynamical system f

Every orbit $\{x, f(x), f^2(x), \ldots\}$ of f is dense in \mathfrak{X} .

So, f is a minimal dynamical system. Must it be?

Theorem (KC & JJ 2016: YES, essentially)

If $f: X \to X$ is onto, PC, and X is infinite compact, then there is a perfect $P \subset X$ s.t. $f \upharpoonright P$ is a minimal dynamical system,

Outline

- 1 Continuity from differentiability: classical results
- Continuity from differentiability: newer results
- 3 Differentiability from continuity: differentiable restrictions
- 4 Properties of differentiable maps on perfect $P \subset \mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems

For J = (a, a + h) let $I_J = [a + h/3, a + 2h/3]$, middle third of J.

For closed $Q \subset \mathbb{R}$ and $f \colon Q \to \mathbb{R}$ let

 $\hat{Q} = Q \cup \bigcup \{I_J : J \text{ is a bounded connected component of } \mathbb{R} \setminus Q\},$

 $ar{f} \colon \mathbb{R} o \mathbb{R}$ — "the" linear interpolation of f, $\hat{f} = ar{f} \upharpoonright \hat{Q}$.

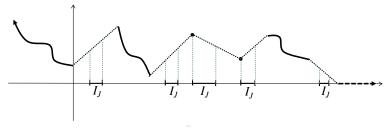


Figure: The linear interpolation f of f, represented by thick curves.

For J = (a, a + h) let $I_J = [a + h/3, a + 2h/3]$, middle third of J.

For closed $Q \subset \mathbb{R}$ and $f \colon Q \to \mathbb{R}$ let

 $\hat{Q} = Q \cup \bigcup \{I_J : J \text{ is a bounded connected component of } \mathbb{R} \setminus Q\},$

 $ar f\colon \mathbb R o\mathbb R$ — "the" linear interpolation of $f,\, \hat f=ar f \restriction \hat Q$.

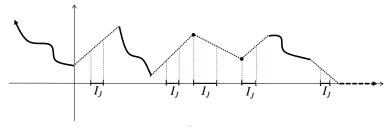


Figure: The linear interpolation f of f, represented by thick curves.

For J = (a, a + h) let $I_J = [a + h/3, a + 2h/3]$, middle third of J.

For closed $Q \subset \mathbb{R}$ and $f \colon Q \to \mathbb{R}$ let

 $\hat{Q} = Q \cup \bigcup \{I_J : J \text{ is a bounded connected component of } \mathbb{R} \setminus Q\},$

 $\overline{f} \colon \mathbb{R} \to \mathbb{R}$ — "the" linear interpolation of f, $\widehat{f} = \overline{f} \upharpoonright \widehat{Q}$.

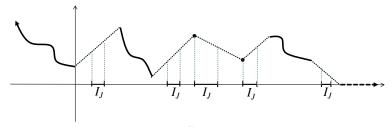


Figure: The linear interpolation *f* of *f*, represented by thick curves.

For J = (a, a + h) let $I_J = [a + h/3, a + 2h/3]$, middle third of J.

For closed $Q \subset \mathbb{R}$ and $f \colon Q \to \mathbb{R}$ let

 $\hat{Q} = Q \cup \bigcup \{I_J \colon J \text{ is a bounded connected component of } \mathbb{R} \setminus Q\},$

 $\overline{f}: \mathbb{R} \to \mathbb{R}$ — "the" linear interpolation of f, $\hat{f} = \overline{f} \upharpoonright \hat{Q}$.

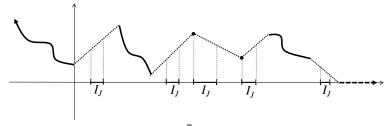


Figure: The linear interpolation \bar{f} of f, represented by thick curves.

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné, přičemž z<mark>ůstává zachována derivabilita funkce* (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.</mark>

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f : Q \to \mathbb{R}$ has differentiable extension $F : \mathbb{R} \to \mathbb{R}$.

Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné,* přičemž zůstává zachována derivabilita funkce (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné,* přičemž zůstává zachována derivabilita funkce (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

Theorem (Jarník 1923)

If $Q \subset \mathbb{R}$ is perfect, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

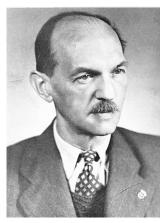
Proved in:

V. Jarník, *O rozšíření definičního oboru funkcí jedné proměnné,* přičemž zůstává zachována derivabilita funkce (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, *Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction* (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.

iiff \Longrightarrow Cont Monster Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ **Differentiable Extensions**

Vojtěch Jarník and Hassler Whitney



Vojtěch Jarník (1897–1970)

Hassler Whitney (1907-1989)

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \mid \hat{Q}$ is continuously differentiable.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f \colon Q \to \mathbb{R}$ has differentiable extension $F \colon \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \upharpoonright \hat{Q}$ is continuously differentiable.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \upharpoonright \hat{Q}$ is continuously differentiable.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \upharpoonright \hat{Q}$ is continuously differentiable.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If $Q \subset \mathbb{R}$ is closed, than any differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$. This F is C^1 iff such extension exists iff $\hat{f} = \bar{f} \upharpoonright \hat{Q}$ is continuously differentiable.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985: C^1 interpolation theorem)

For every continuous $f: \mathbb{R} \to \mathbb{R}$ there is C^1 map $g: \mathbb{R} \to \mathbb{R}$ with $f \cap g$ uncountable.

Proof of Corollary: We proved that there is perfect $Q \subset \mathbb{R}$ s.t. the quotient map of $h = f \upharpoonright Q$ is uniformly continuous.

Our proof of Jarník and Whitney thms (for perfect Q)

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then f is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of \bar{f} : $F = \bar{f} + g$:

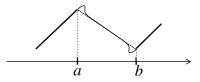


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

Details: elementary. Require some checking.

Our proof of Jarník and Whitney thms (for perfect Q)

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of f: F = f + g:

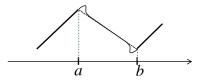


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

Details: elementary. Require some checking.

Our proof of Jarník and Whitney thms (for perfect Q)

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of \bar{f} : $F = \bar{f} + g$:

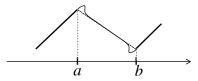


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

Details: elementary. Require some checking.

ff \Longrightarrow Cont Monster Cont \Longrightarrow Diff Properties of $f \upharpoonright P$ Differentiable Extensions

Our proof of Jarník and Whitney thms (for perfect Q)

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of \bar{f} : $F = \bar{f} + g$:

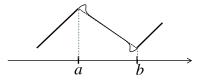


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

Details: elementary. Require some checking.

Our proof of Jarník and Whitney thms (for perfect Q)

Differentiable $f: Q \to \mathbb{R}$ has differentiable extension $F: \mathbb{R} \to \mathbb{R}$.

Proposition (Linear interpolation almost works)

If $f: Q \to \mathbb{R}$ is differentiable, then \overline{f} is differentiable at any $x \in \mathbb{R}$ which is not an end-point of a connected component of $\mathbb{R} \setminus Q$.

The right extension: Small modification of \bar{f} : $F = \bar{f} + g$:

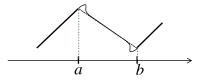


Figure: A format of the graph (thin continuous curve) of $F = \overline{f} + g$ on a component (a, b) of $\mathbb{R} \setminus Q$. Thick segments: parts of the graph of f

Details: elementary. Require some checking.

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such F can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2015)

For every closed set $P \subseteq \mathbb{R}$ and differentiable $f : P \to \mathbb{R}$, there exists a differentiable extension $F : \mathbb{R} \to \mathbb{R}$ of f such that F is nowhere monotone on $\mathbb{R} \setminus P$. In particular, if P is nowhere dense in \mathbb{R} , then \hat{f} is monotone on no interval.

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f \colon X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such F can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

For every closed set $P \subseteq \mathbb{R}$ and differentiable $f : P \to \mathbb{R}$, there exists a differentiable extension $F : \mathbb{R} \to \mathbb{R}$ of f such that F is nowhere monotone on $\mathbb{R} \setminus P$. In particular, if P is nowhere dense in \mathbb{R} , then \hat{f} is monotone on no interval.

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such F can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

For every closed set $P \subseteq \mathbb{R}$ and differentiable $f : P \to \mathbb{R}$, there exists a differentiable extension $F : \mathbb{R} \to \mathbb{R}$ of f such that F is nowhere monotone on $\mathbb{R} \setminus P$. In particular, if P is nowhere dense in \mathbb{R} , then \hat{f} is monotone on no interval.

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such *F* can be bad? Yes, very bad!

Гheorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

For every closed set $P \subseteq \mathbb{R}$ and differentiable $f: P \to \mathbb{R}$, there exists a differentiable extension $F: \mathbb{R} \to \mathbb{R}$ of f such that F is nowhere monotone on $\mathbb{R} \setminus P$. In particular, if P is nowhere dense in \mathbb{R} , then \hat{f} is monotone on no interval.

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such F can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

For every closed set $P \subseteq \mathbb{R}$ and differentiable $f: P \to \mathbb{R}$, there exists a differentiable extension $F: \mathbb{R} \to \mathbb{R}$ of f such that F is nowhere monotone on $\mathbb{R} \setminus P$. In particular, if P is nowhere dense in \mathbb{R} , then \hat{f} is monotone on no interval.

By Jarník's theorem, our $\mathfrak{f} \colon \mathfrak{X} \to \mathfrak{X}$ can be extended to differentiable $F \colon \mathbb{R} \to \mathbb{R}$. Can such F be C^1 ?

Theorem (KC & JJ 2016: No)

If $f: X \to \mathbb{R}$ is differentiable with |f'| < 1 on X and f has a C^1 extension, then $X \nsubseteq f[X]$.

Can such F can be bad? Yes, very bad!

Theorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

For every closed set $P \subseteq \mathbb{R}$ and differentiable $f: P \to \mathbb{R}$, there exists a differentiable extension $F: \mathbb{R} \to \mathbb{R}$ of f such that F is nowhere monotone on $\mathbb{R} \setminus P$. In particular, if P is nowhere dense in \mathbb{R} , then \hat{f} is monotone on no interval.

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F \colon \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1)

such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as
$$#1 + #2 = #3$$

Proof

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F: \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1) such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as #1 + #2 = #3

Proof

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F: \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1) such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as
$$#1 + #2 = #3$$

Proof

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F: \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1) such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as
$$#1 + #2 = #3$$

Proof

Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function $F: \mathbb{R} \to \mathbb{R}$ (i.e., Monster #1) such that $F \upharpoonright \mathfrak{X} = \mathfrak{f}$ (i.e., Monster #2).

So #3, as #1 + #2 = #3

Proof.

That is all!

Thank you for your attention!

That is all!

Thank you for your attention!

