Hierarchical segmentation in a directed graph setting which optimizes a graph cut energy

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Department of Radiology, University of Pennsylvania

MIPG Seminar, UPenn, November 1, 2018

< 🗇 🕨

Experiments

Image segmentation in graph cut setting

- Dijkstra algorithm in general setting
- 3 Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT

Image segmentation in graph cut setting

イロト イポト イヨト イヨト

Intro HLOIFT Experiments Image segmentation example 1: CT, cervical spine

OIFT

A slice of an original 3D image

Intro DA OIFT HLOIFT Experiments Sur Image segmentation example 1: CT, cervical spine

A slice of an original 3D image

Surface rendition of segmented three vertebrae, together

Color surface rendition of the segmented three vertebra

Intro DA OIFT HLOIFT Experiments Sur Image segmentation example 1: CT, cervical spine

A slice of an original 3D image

Surface rendition of segmented three vertebrae, together

Color surface rendition of the segmented three vertebra

Intro OIFT HLOIFT Experiments Summary Example 2: CT, thoracic-abdominal axial cross section

INPUT

Figure: right lung $(\overline{O_1})$, liver (O_2) , heart (O_3) , left lung (O_4) , aorta (O_5) and the thoracic-abdominal region (O_6) .

K. Chris Ciesielski

Hierarchical segmentation in directed graph

Intro DA OIFT HLOIFT Experiments Image segmentation — formal setting

• An *image* is a map f from a set V (of spels) into \mathbb{R}^k

The value f(c) represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.

- Segmentation problem: Given an image f: V → ℝ^k,
 find a "desired" family {O₁,..., O_M} of subsets of V.
- We will assume the objects are indicated by disjoint sets S_i of seeds, imposing that S_i ⊂ O_i.

・ロット (雪) () () () ()

Intro DA OIFT HLOIFT Experiments Image segmentation — formal setting

• An *image* is a map f from a set V (of spels) into \mathbb{R}^k

The value f(c) represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.

- Segmentation problem: Given an image f: V → ℝ^k,
 find a "desired" family {O₁,..., O_M} of subsets of V.
- We will assume the objects are indicated by disjoint sets S_i of seeds, imposing that S_i ⊂ O_i.

・ロット (雪) () () () ()

Intro DA OIFT HLOIFT Experiments Image segmentation — formal setting

• An *image* is a map f from a set V (of spels) into \mathbb{R}^k

The value f(c) represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.

- Segmentation problem: Given an image f: V → ℝ^k,
 find a "desired" family {O₁,..., O_M} of subsets of V.
- We will assume the objects are indicated by disjoint sets S_i of seeds, imposing that S_i ⊂ O_i.

くロト (過) (目) (日)

OIFT

Intro

An image, with intensity Its graph $G = \langle V, E \rangle$, Object *O* and its graph map $f: V \to \mathbb{R}^k$ with some edge weights cut edges c(O) in bold

- Vertices v ∈ V are image pixels. Direct edges: all ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).
- Edge weights: $w(\langle c, d \rangle) =$ some function of f(c) f(d).
- Graph cut of *O*: $c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}$. Only in one direction

Experiments

<ロ> (四) (四) (三) (三) (三)

・ロン ・聞 と ・ ヨ と ・ ヨ と …

Experiments

An image, with intensity map $f: V \to \mathbb{R}^k$

y Its graph $G = \langle V, E \rangle$, Object *O* and its graph with some edge weights cut edges c(O) in bold

- Vertices v ∈ V are image pixels. Direct edges: all ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).
- Edge weights: $w(\langle c, d \rangle) =$ some function of f(c) f(d).
- Graph cut of *O*: $c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}.$

3

・ロン ・聞 と ・ ヨ と ・ ヨ と …

Experiments

An image, with intensity map $f: V \to \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, Object O and its gr with some edge weights cut edges c(O) in I

- Vertices v ∈ V are image pixels. Direct edges: all ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).
- Edge weights: $w(\langle c, d \rangle) =$ some function of f(c) f(d).
- Graph cut of *O*: $c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}.$

2

・ロト ・ 理 ト ・ ヨ ト ・

Experiments

An image, with intensity map $f: V \to \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, Object *O* and its graph with some edge weights cut edges c(O) in bold

 Vertices v ∈ V are image pixels. Direct edges: all ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).

• Edge weights: $w(\langle c, d \rangle) =$ some function of f(c) - f(d).

• Graph cut of $O: c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}.$

3

・ロン ・四 と ・ ヨン ・ ヨン

Experiments

Summary

An image, with intensity map $f: V \to \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, Object *O* and its graph with some edge weights cut edges c(O) in bold

 Vertices v ∈ V are image pixels. Direct edges: all ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).

• Edge weights: $w(\langle c, d \rangle) =$ some function of f(c) - f(d).

• Graph cut of $O: c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}.$

Intro OIFT HLOIFT Image, its graph, and graph cut

Experiments

An image, with intensity map $f: V \to \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, Object O and its graph cut edges c(O) in bold with some edge weights

- Vertices $v \in V$ are image pixels. Direct edges: all $\langle c, d \rangle, \langle d, c \rangle \in E$, with $c, d \in V$ nearby (e.g. 4 adjacency).
- Edge weights: $w(\langle c, d \rangle) =$ some function of f(c) f(d).

ъ

ヘロン 人間 とくほ とくほ とう

Experiments

An image, with intensity map $f: V \to \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, Object *O* and its graph with some edge weights cut edges c(O) in bold

- Vertices $v \in V$ are image pixels. Direct edges: all $\langle c, d \rangle, \langle d, c \rangle \in E$, with $c, d \in V$ nearby (e.g. 4 adjacency).
- Edge weights: $w(\langle c, d \rangle)$ = some function of f(c) f(d).

• Graph cut of *O*: $c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}$. Only in one direction

◆□ > ◆□ > ◆豆 > ◆豆 > →

Experiments

An image, with intensity map $f: V \to \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, Object *O* and its graph with some edge weights cut edges c(O) in bold

- Vertices $v \in V$ are image pixels. Direct edges: all $\langle c, d \rangle, \langle d, c \rangle \in E$, with $c, d \in V$ nearby (e.g. 4 adjacency).
- Edge weights: $w(\langle c, d \rangle)$ = some function of f(c) f(d).
- Graph cut of *O*: $c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}$. Only in one direction

Experiments

An image, with intensity map $f: V \to \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, Object *O* and its graph with some edge weights cut edges c(O) in bold

- Vertices $v \in V$ are image pixels. Direct edges: all $\langle c, d \rangle, \langle d, c \rangle \in E$, with $c, d \in V$ nearby (e.g. 4 adjacency).
- Edge weights: $w(\langle c, d \rangle)$ = some function of f(c) f(d).
- Graph cut of $O: c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}.$ Only in one directio

Experiments

An image, with intensity map $f: V \to \mathbb{R}^k$

Its graph $G = \langle V, E \rangle$, Object *O* and its graph with some edge weights cut edges c(O) in bold

- Vertices $v \in V$ are image pixels. Direct edges: all $\langle c, d \rangle, \langle d, c \rangle \in E$, with $c, d \in V$ nearby (e.g. 4 adjacency).
- Edge weights: $w(\langle c, d \rangle)$ = some function of f(c) f(d).
- Graph cut of $O: c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}.$ Only in one direction!

Assuming $\langle \boldsymbol{c}, \boldsymbol{d} \rangle \in \boldsymbol{E} \iff \langle \boldsymbol{d}, \boldsymbol{c} \rangle \in \boldsymbol{E}$ and $\boldsymbol{w}(\langle \boldsymbol{c}, \boldsymbol{d} \rangle) \geq 0$

 ℓ_p -norm of c(O) is defined as

$$\varepsilon_{p}(O) \stackrel{\text{def}}{=} \|w \upharpoonright c(O)\|_{p} = \begin{cases} \left(\sum_{e \in c(O)} w(e)^{p}\right)^{1/p} & \text{if } p < \infty \\ \max_{e \in c(O)} w(e) & \text{if } p = \infty. \end{cases}$$

Standard analysis fact: $||w||_{\rho} \rightarrow_{\rho \rightarrow \infty} ||w||_{\infty}$ for any map *w*.

ヘロト 人間 ト ヘヨト ヘヨト

Assuming $\langle c, d \rangle \in E \iff \langle d, c \rangle \in E$ and $w(\langle c, d \rangle) \ge 0$ ℓ_p -norm of c(O) is defined as

$$\varepsilon_{\rho}(O) \stackrel{\text{def}}{=} \|w \upharpoonright c(O)\|_{\rho} = \begin{cases} \left(\sum_{e \in c(O)} w(e)^{\rho}\right)^{1/\rho} & \text{if } \rho < \infty \\ \max_{e \in c(O)} w(e) & \text{if } \rho = \infty. \end{cases}$$

Standard analysis fact: $||w||_{\rho} \rightarrow_{\rho \rightarrow \infty} ||w||_{\infty}$ for any map *w*.

ヘロト 人間 ト ヘヨト ヘヨト

Assuming $\langle c, d \rangle \in E \iff \langle d, c \rangle \in E$ and $w(\langle c, d \rangle) \ge 0$ ℓ_p -norm of c(O) is defined as

$$\varepsilon_{p}(O) \stackrel{\text{def}}{=} \|w \upharpoonright c(O)\|_{p} = \begin{cases} \left(\sum_{e \in c(O)} w(e)^{p}\right)^{1/p} & \text{if } p < \infty \\ \max_{e \in c(O)} w(e) & \text{if } p = \infty. \end{cases}$$

Standard analysis fact: $||w||_{\rho} \rightarrow_{\rho \rightarrow \infty} ||w||_{\infty}$ for any map *w*.

ヘロト 人間 ト ヘヨト ヘヨト

Assuming $\langle c, d \rangle \in E \iff \langle d, c \rangle \in E$ and $w(\langle c, d \rangle) \ge 0$ ℓ_p -norm of c(O) is defined as

$$\varepsilon_{p}(O) \stackrel{\text{def}}{=} \|w \upharpoonright c(O)\|_{p} = \begin{cases} \left(\sum_{e \in c(O)} w(e)^{p}\right)^{1/p} & \text{if } p < \infty \\ \max_{e \in c(O)} w(e) & \text{if } p = \infty. \end{cases}$$

Standard analysis fact: $||w||_{p} \rightarrow_{p \rightarrow \infty} ||w||_{\infty}$ for any map *w*.

・ 同 ト ・ 国 ト ・ 国 ト …

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $p_{correct}$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $p_{correct}$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $\ell_{correct}$, $\ell_{correct$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $p_{correct}$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $p_{correct}$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $\ell_{correct}$, $\ell_{correct$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $\ell_{correct}$, $\ell_{correct$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $\ell_{correct}$, $\ell_{correct$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, por $p_{correct}$, $\ell_{correct}$, $\ell_{correct$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes $\ell_{correct}$, $\rho_{correct}$, $\rho_{$

- p = 1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes ε_1 .
- $p = \infty$: Minimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal ℓ_p -normed minimized delineations converge, as $p \to \infty$ to ℓ_{∞} -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes ℓ_{∞} -norm of cut

Image segmentation in graph cut setting

- Dijkstra algorithm in general setting
- Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT

6 Summary

イロト イポト イヨト イヨト
DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

- Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;
- Path cost function: any map $\psi \colon \Pi_{C} \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to
- HLOIFT is a DA for appropriate path cost map and graph. 三) 三 のへの

DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

• Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;

- Path cost function: any map $\psi \colon \Pi_{C} \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to
- HLOIFT is a DA for appropriate path cost map and graph. 三) 三 のへの

DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

• Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;

p is from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$;

- Path cost function: any map $\psi \colon \Pi_{C} \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to
- HLOIFT is a DA for appropriate path cost map and graph. 三) 三 のへの

DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

• Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;

p is from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$;

 $p^{\mathbf{w}} = \langle \mathbf{v}_0, \dots, \mathbf{v}_{\ell}, \mathbf{w} \rangle; \quad \Pi_G - \text{all paths in } G.$

- Path cost function: any map $\psi \colon \Pi_{C} \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to
- HLOIFT is a DA for appropriate path cost map and graph. 三) 三 のへの

DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

• Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;

p is from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$;

 $p^{\hat{}}w = \langle v_0, \dots, v_{\ell}, w \rangle; \quad \Pi_G - \text{all paths in } G.$

- Path cost function: any map $\psi \colon \Pi_{C} \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to
- HLOIFT is a DA for appropriate path cost map and graph. 三) 三 のへの

DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

• Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;

p is from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$;

 $p^{\hat{}}w = \langle v_0, \dots, v_{\ell}, w \rangle;$ Π_G – all paths in G.

- Path cost function: any map $\psi \colon \Pi_G \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to
- HLOIFT is a DA for appropriate path cost map and graph. 三) 三 のへの

DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

• Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;

p is from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$;

 $p^{\hat{}}w = \langle v_0, \ldots, v_{\ell}, w \rangle;$ Π_G – all paths in G.

- Path cost function: any map $\psi \colon \Pi_G \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

 $\psi(p) = \max\{\psi(q) : q \text{ is a path (from S) to } v\}.$

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to
- HLOIFT is a DA for appropriate path cost map and graph. 三) 三 のへの

DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

• Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;

p is from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_{\ell} = v$;

 $p^{\hat{}}w = \langle v_0, \dots, v_{\ell}, w \rangle; \quad \Pi_G - \text{all paths in } G.$

- Path cost function: any map $\psi \colon \Pi_G \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

 $\psi(p) = \max\{\psi(q) : q \text{ is a path (from S) to } v\}.$

• Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to find (S-rooted) forest, OPF, composed of ψ -optimal paths.

 HLOIFT is a DA for appropriate path cost map and graph. 5 9 Q Q

DA

• Fix directed graph $G = \langle V, E \rangle$ (with edge weight map w)

HLOIFT

Experiments

• Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle$ s.t. $\langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$;

p is from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_{\ell} = v$;

 $p^{\hat{}}w = \langle v_0, \dots, v_{\ell}, w \rangle; \quad \Pi_G - \text{all paths in } G.$

- Path cost function: any map $\psi \colon \Pi_G \to \mathbb{R}$.
- A path p (from $S \subset V$) to v is ψ -optimal provided

 $\psi(p) = \max\{\psi(q) : q \text{ is a path (from S) to } v\}.$

- Jarník-Prim-Dijkstra algorithm DA for ψ and $S \subset V$ tries to find (S-rooted) forest, OPF, composed of ψ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

Data: $G = \langle V, E \rangle$ and a path cost map $\psi \colon \Pi_G \to \mathbb{R}$ **Result**: an array $\pi[]$ of paths, aiming for being ψ -optimal

```
1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle

2 Q \leftarrow V

3 while Q \neq \emptyset do

4 remove an element w of \max_{u \in Q} \psi(\pi[u]) from Q

5 foreach x such that \langle w, x \rangle \in E do

6 \int \psi(\pi[x]) < \psi(\pi[w]^{x}) then \pi[x] \leftarrow \pi[w]^{x}
```

DA is very efficient: quasi-linear w.r.t. the size of the graph.

ヘロト 人間 ト ヘヨト ヘヨト

Data: $G = \langle V, E \rangle$ and a path cost map $\psi : \Pi_G \to \mathbb{R}$ **Result**: an array $\pi[]$ of paths, aiming for being ψ -optimal

1 foreach $v \in V$ do $\pi[v] \leftarrow \langle v \rangle$

```
2 Q \leftarrow V
```

```
3 while Q \neq \emptyset do
```

remove an element w of $\max_{u \in Q} \psi(\pi[u])$ from Q

```
foreach x such that \langle w, x \rangle \in E do
```

```
if \psi(\pi[x]) < \psi(\pi[w]\hat{x}) then \pi[x] \leftarrow \pi[w]\hat{x}
```

DA is very efficient: quasi-linear w.r.t. the size of the graph.

ヘロア 人間 アメヨア 人口 ア

Data: $G = \langle V, E \rangle$ and a path cost map $\psi \colon \Pi_G \to \mathbb{R}$ **Result**: an array $\pi[]$ of paths, aiming for being ψ -optimal

1 foreach $v \in V$ do $\pi[v] \leftarrow \langle v \rangle$

2
$$Q \leftarrow l$$

- $\mathbf{3}$ while $\mathbf{Q} \neq \emptyset$ do
- 4 **remove** an element *w* of $\max_{u \in Q} \psi(\pi[u])$ from *Q* 5 **foreach** *x* such that $\langle w, x \rangle \in E$ **do** 6 **if** $\psi(\pi[x]) < \psi(\pi[w]^{x})$ then $\pi[x] \leftarrow \pi[w]^{x}$

DA is very efficient: quasi-linear w.r.t. the size of the graph.

くロト (過) (目) (日)

Data: $G = \langle V, E \rangle$ and a path cost map $\psi : \Pi_G \to \mathbb{R}$ **Result**: an array $\pi[]$ of paths, aiming for being ψ -optimal

1 foreach $v \in V$ do $\pi[v] \leftarrow \langle v \rangle$

$$2 \ Q \leftarrow 1$$

6

- ${\mathfrak s}$ while ${\boldsymbol Q} \neq \emptyset$ do
- 4 **remove** an element *w* of $\max_{u \in Q} \psi(\pi[u])$ from *Q*
- 5 foreach x such that $\langle w, x \rangle \in E$ do
 - if $\psi(\pi[x]) < \psi(\pi[w]^{x})$ then $\pi[x] \leftarrow \pi[w]^{x}$

DA is very efficient: quasi-linear w.r.t. the size of the graph.

ヘロト ヘ戸ト ヘヨト ヘヨト

Data: $G = \langle V, E \rangle$ and a path cost map $\psi : \Pi_G \to \mathbb{R}$ **Result**: an array $\pi[]$ of paths, aiming for being ψ -optimal

1 foreach $v \in V$ do $\pi[v] \leftarrow \langle v \rangle$

$$2 \ Q \leftarrow 1$$

6

- ${\mathfrak s}$ while ${\boldsymbol Q} \neq \emptyset$ do
- 4 **remove** an element *w* of $\max_{u \in Q} \psi(\pi[u])$ from *Q*
- 5 foreach x such that $\langle w, x \rangle \in E$ do
 - if $\psi(\pi[x]) < \psi(\pi[w]^{x})$ then $\pi[x] \leftarrow \pi[w]^{x}$

DA is very efficient: quasi-linear w.r.t. the size of the graph.

< ロ > < 同 > < 臣 > < 臣 > -

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018]

correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If w is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- HLOIFT uses DA with ψ_{\min} and oriented *w*, a problem!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If w is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- HLOIFT uses DA with ψ_{\min} and oriented *w*, a problem!

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If *w* is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- HLOIFT uses DA with ψ_{\min} and oriented *w*, a problem!

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Summary

= 990

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If *w* is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \in S, \quad \psi_{\text{sum}}(\langle v_0 \rangle) = -\infty \text{ if } v_0 \notin S$
- HLOIFT uses DA with ψ_{\min} and oriented *w*, a problem!

・ロト ・ 理 ト ・ ヨ ト ・

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If *w* is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$. $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- HLOIFT uses DA with ψ_{\min} and oriented *w*, a problem!

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Summary

= 990

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If *w* is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- HLOIFT uses DA with ψ_{\min} and oriented *w*, a problem!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If *w* is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j) \text{ for } \ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \in S, \quad \psi_{\text{sum}}(\langle v_0 \rangle) = -\infty \text{ if } v_0 \notin I$
- HLOIFT uses DA with ψ_{\min} and oriented *w*, a problem!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If *w* is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- HLOIFT uses DA with ψ_{\min} and oriented *w*, a problem!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If *w* is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_{\ell} \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- HLOIFT uses DA with ψ_{min} and oriented w, a problem!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

9 of 30

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If *w* is an edge weight map for undirected graph $G = \langle V, E \rangle$, then DA works properly for:

- FC/IFT: $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_{\ell} \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$ for $\ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$ if $v_0 \in S$, $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$ if $v_0 \notin S$
- HLOIFT uses DA with ψ_{min} and oriented w, a problem!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Intro DA OIFT HLOIFT Experiments Summary DA with oriented variant of ψ_{\min}

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object O_i having its oriented weights w_i and

 $\psi^*_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w_i(v_{j-1}, v_j)$ with v_0 a seed of O_i .

Theorem (Ciesielski, Herman, Kong, 2016)

For ψ^*_{\min} as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ_{\min}^* , the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ_{\min}^* .

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object O_i having its oriented weights w_i and

Experiments

 $\psi^*_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w_i(v_{j-1}, v_j)$ with v_0 a seed of O_i .

Theorem (Ciesielski, Herman, Kong, 2016)

For ψ^*_{\min} as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ_{\min}^* , the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ_{\min}^* .

OIFT

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object O_i having its oriented weights w_i and

HLOIFT

Experiments

 $\psi^*_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w_i(v_{j-1}, v_j) \text{ with } v_0 \text{ a seed of } O_i.$

Theorem (Ciesielski, Herman, Kong, 2016)

For ψ^*_{\min} as above

DA

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ_{\min}^* , the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ_{\min}^* .

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object O_i having its oriented weights w_i and

Experiments

 $\psi^*_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w_i(v_{j-1}, v_j) \text{ with } v_0 \text{ a seed of } O_i.$

Theorem (Ciesielski, Herman, Kong, 2016)

For ψ^*_{\min} as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ_{\min}^* , the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ_{\min}^* .

코어 세 코어

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object O_i having its oriented weights w_i and

Experiments

 $\psi^*_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w_i(v_{j-1}, v_j) \text{ with } v_0 \text{ a seed of } O_i.$

Theorem (Ciesielski, Herman, Kong, 2016)

For ψ^*_{\min} as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ_{\min}^* , the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ_{\min}^* .

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object O_i having its oriented weights w_i and

Experiments

 $\psi^*_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w_i(v_{j-1}, v_j) \text{ with } v_0 \text{ a seed of } O_i.$

Theorem (Ciesielski, Herman, Kong, 2016)

For ψ^*_{\min} as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ_{\min}^* , the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ_{\min}^* .

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object O_i having its oriented weights w_i and

Experiments

 $\psi^*_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w_i(v_{j-1}, v_j) \text{ with } v_0 \text{ a seed of } O_i.$

Theorem (Ciesielski, Herman, Kong, 2016)

For ψ^*_{\min} as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ_{\min}^* , the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ_{\min}^* .

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object O_i having its oriented weights w_i and

Experiments

 $\psi^*_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w_i(v_{j-1}, v_j) \text{ with } v_0 \text{ a seed of } O_i.$

Theorem (Ciesielski, Herman, Kong, 2016)

For ψ^*_{\min} as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

However, for ψ^*_{\min} , the forest returned by DA need not be optimal. Also, in general, no minimality of a cut for ψ^*_{\min} .

イロト イポト イヨト イヨト

10 of 30

Intro DA OIFT HLOIFT Experiments Summary ψ^*_{\min} for which DA returns delineation with optimal cut

Let ψ^{\star}_{\min} denotes ψ^{*}_{\min} in object/background setting such that

 $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$.

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object O is an output of DA run with ψ^*_{min} , then the graph cut

 $c(O) = \{ \langle c, d \rangle \in E \colon c \in O \& d \notin O \}$

minimizes the ℓ_{∞} norm $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$ among all objects satisfying the constrains.

Assumption $w_1(c, d) = w_0(d, c)$ is needed to ensure that incorporating $\langle c, d \rangle$ in a path from either object or background influences the path strength the same way.

・ロト ・ 理 ト ・ ヨ ト ・

Intro DA OIFT HLOIFT Experiments Summary ψ^*_{\min} for which DA returns delineation with optimal cut

Let ψ^{\star}_{\min} denotes ψ^{*}_{\min} in object/background setting such that

 $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$.

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object O is an output of DA run with ψ^*_{min} , then the graph cut

 $c(O) = \{ \langle c, d \rangle \in E \colon c \in O \& d \notin O \}$

minimizes the ℓ_{∞} norm $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$ among all objects satisfying the constrains.

Assumption $w_1(c, d) = w_0(d, c)$ is needed to ensure that incorporating $\langle c, d \rangle$ in a path from either object or background influences the path strength the same way.

・ロト ・ 理 ト ・ ヨ ト ・

Intro DA OIFT HLOIFT Experiments Summary ψ^*_{\min} for which DA returns delineation with optimal cut

Let ψ^{\star}_{\min} denotes ψ^{*}_{\min} in object/background setting such that

 $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$.

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object O is an output of DA run with ψ^{\star}_{min} , then the graph cut

 $\textit{c(O)} = \{ \langle \textit{c}, \textit{d} \rangle \in \textit{E} \colon \textit{c} \in \textit{O} \And \textit{d} \notin \textit{O} \}$

minimizes the ℓ_{∞} norm $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$ among all objects satisfying the constrains.

Assumption $w_1(c, d) = w_0(d, c)$ is needed to ensure that incorporating $\langle c, d \rangle$ in a path from either object or background influences the path strength the same way.

・ロト ・ 理 ト ・ ヨ ト ・
Intro DA OIFT HLOIFT Experiments Summary ψ^*_{\min} for which DA returns delineation with optimal cut

Let ψ^{\star}_{\min} denotes ψ^{*}_{\min} in object/background setting such that

 $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$.

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object O is an output of DA run with ψ^{\star}_{min} , then the graph cut

 $\boldsymbol{c}(\boldsymbol{O}) = \{ \langle \boldsymbol{c}, \boldsymbol{d} \rangle \in \boldsymbol{E} \colon \boldsymbol{c} \in \boldsymbol{O} \And \boldsymbol{d} \notin \boldsymbol{O} \}$

minimizes the ℓ_{∞} norm $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$ among all objects satisfying the constrains.

Assumption $w_1(c, d) = w_0(d, c)$ is needed to ensure that incorporating $\langle c, d \rangle$ in a path from either object or background influences the path strength the same way.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Intro DA OIFT HLOIFT Experiments Summary ψ^*_{\min} for which DA returns delineation with optimal cut

Let ψ^{\star}_{\min} denotes ψ^{*}_{\min} in object/background setting such that

 $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$.

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object O is an output of DA run with ψ^{\star}_{min} , then the graph cut

 $\boldsymbol{c}(\boldsymbol{O}) = \{ \langle \boldsymbol{c}, \boldsymbol{d} \rangle \in \boldsymbol{E} \colon \boldsymbol{c} \in \boldsymbol{O} \And \boldsymbol{d} \notin \boldsymbol{O} \}$

minimizes the ℓ_{∞} norm $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$ among all objects satisfying the constrains.

Assumption $w_1(c, d) = w_0(d, c)$ is needed to ensure that incorporating $\langle c, d \rangle$ in a path from either object or background influences the path strength the same way.

・ロト ・ 理 ト ・ ヨ ト ・

Is OIFT a DA run with ψ^*_{\min} ? Close, but formally not.

Assume that $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$ and let

 $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell)$ when $\ell > 0$ and v_0 a seed of O_i .

 $\psi_{\text{last}}(\langle v_0 \rangle) = \infty$ when v_0 a seed and $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$ otherwise.

Definition

OIFT is a DA run with ψ_{last} as above.

Theorem (preliminary result: OIFT as DA with $\psi^*_{\sf min}$)

Is OIFT a DA run with $\psi^*_{\min}?$ Close, but formally not.

Assume that $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$ and let

 $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell)$ when $\ell > 0$ and v_0 a seed of O_i .

 $\psi_{\text{last}}(\langle v_0 \rangle) = \infty$ when v_0 a seed and $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$ otherwise.

Definition

OIFT is a DA run with ψ_{last} as above.

Theorem (preliminary result: OIFT as DA with $\psi^*_{\sf min}$)

Is OIFT a DA run with ψ^*_{\min} ? Close, but formally not.

Assume that $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$ and let

 $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell)$ when $\ell > 0$ and v_0 a seed of O_i .

 $\psi_{\text{last}}(\langle v_0 \rangle) = \infty$ when v_0 a seed and $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$ otherwise.

Definition

OIFT is a DA run with ψ_{last} as above.

Theorem (preliminary result: OIFT as DA with $\psi^*_{\sf min}$)

Is OIFT a DA run with ψ^*_{\min} ? Close, but formally not.

Assume that $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$ and let

 $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell)$ when $\ell > 0$ and v_0 a seed of O_i .

 $\psi_{\text{last}}(\langle v_0 \rangle) = \infty$ when v_0 a seed and $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$ otherwise.

Definition

OIFT is a DA run with ψ_{last} as above.

Theorem (preliminary result: OIFT as DA with $\psi^*_{\sf min}$)

Is OIFT a DA run with $\psi^*_{\min}?$ Close, but formally not.

Assume that $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$ and let

 $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell)$ when $\ell > 0$ and v_0 a seed of O_i .

 $\psi_{\text{last}}(\langle v_0 \rangle) = \infty$ when v_0 a seed and $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$ otherwise.

Definition

OIFT is a DA run with ψ_{last} as above.

Theorem (preliminary result: OIFT as DA with $\psi^*_{\sf min}$)

Is OIFT a DA run with ψ^*_{\min} ? Close, but formally not.

Assume that $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$ and let

 $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell)$ when $\ell > 0$ and v_0 a seed of O_i .

 $\psi_{\text{last}}(\langle v_0 \rangle) = \infty$ when v_0 a seed and $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$ otherwise.

Definition

OIFT is a DA run with ψ_{last} as above.

Theorem (preliminary result: OIFT as DA with ψ^*_{min})

Any output of OIFT is an output of a particular implementation of DA with ψ^*_{\min} .

Thus, a graph cut of any object returned by OIFT minimizes the ℓ_{∞} norm among all objects satisfying the constrains.

Is OIFT a DA run with ψ^*_{\min} ? Close, but formally not.

Assume that $w_1(c,d) = w_0(d,c)$ for all $\langle c,d \rangle \in E$ and let

 $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell) \text{ when } \ell > 0 \text{ and } v_0 \text{ a seed of } O_i.$

 $\psi_{\text{last}}(\langle v_0 \rangle) = \infty$ when v_0 a seed and $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$ otherwise.

Definition

OIFT is a DA run with ψ_{last} as above.

Theorem (preliminary result: OIFT as DA with ψ^*_{min})

 Can incorporate image brightness increase/decrease in weight function. If we like to favor transitions from bright to dark pixels when passing from object to the background, we can define, for some α ∈ (0, 1),

$$w_{1}(c,d) = \begin{cases} (1-\alpha)e^{-\|f(c)-f(d)\|} & \text{if } \|f(c)\| > \|f(d)\|\\ (1+\alpha)e^{-\|f(c)-f(d)\|} & \text{otherwise.} \end{cases}$$

 Can incorporate shape constraints like geodesic star convexity [Mansilla, Jackowski, Miranda, 2013], geodesic band constraints [Braz, Miranda, 2014], Hedgehog Shape Prior, and other to be explored.

 Can incorporate image brightness increase/decrease in weight function. If we like to favor transitions from bright to dark pixels when passing from object to the background, we can define, for some α ∈ (0, 1),

$$w_{1}(c,d) = \begin{cases} (1-\alpha)e^{-\|f(c)-f(d)\|} & \text{if } \|f(c)\| > \|f(d)\|\\ (1+\alpha)e^{-\|f(c)-f(d)\|} & \text{otherwise.} \end{cases}$$

 Can incorporate shape constraints like geodesic star convexity [Mansilla, Jackowski, Miranda, 2013], geodesic band constraints [Braz, Miranda, 2014], Hedgehog Shape Prior, and other to be explored.

Image segmentation in graph cut setting

- Dijkstra algorithm in general setting
- 3 Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT

6 Summary

Input: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects; $\rho \ge 0$ giving minimal distance between boundaries of objects.

Input: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects; $\rho \ge 0$ giving minimal distance between boundaries of objects.

Input: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects; $\rho \ge 0$ giving minimal distance between boundaries of objects.

Input: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects; $\rho \ge 0$ giving minimal distance between boundaries of objects.

Input: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects; $\rho \ge 0$ giving minimal distance between boundaries of objects.

Let $f: V \to \mathbb{R}^k$ be an (*n*-dimensional) image containing objects $O_1, \ldots, O_m, O_{m+1} = V$. A hierarchy tree is indicated by a parent map *h*, with h(i) = j meaning that O_j is a parent of O_i .

For every $i \in \mathcal{L} = \{1, ..., m\}$ let $\langle V, E_i, w_i \rangle$ be an edge weighted graph associated with image *f* and object O_i . The edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as $\langle \mathcal{L} \times V, E, w \rangle$, where its restriction to *i*th object layer, $\langle \{i\} \times V, E^i, w^i \rangle$, is an isomorphic copy of $\langle V, E_i, w_i \rangle$.

We still need to define inter-layer edges and their weights on the HLOIFT graph $\mathcal{N} = \mathcal{L} \times V$.

Let $p: \mathcal{N} \to V$ be a projection, p(i, c) = c.

A D b 4 A b

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Let $f: V \to \mathbb{R}^k$ be an (*n*-dimensional) image containing objects $O_1, \ldots, O_m, O_{m+1} = V$. A hierarchy tree is indicated by a parent map *h*, with h(i) = j meaning that O_j is a parent of O_i .

For every $i \in \mathcal{L} = \{1, ..., m\}$ let $\langle V, E_i, w_i \rangle$ be an edge weighted graph associated with image *f* and object O_i . The edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as $\langle \mathcal{L} \times V, E, w \rangle$, where its restriction to *i*th object layer, $\langle \{i\} \times V, E^i, w^i \rangle$, is an isomorphic copy of $\langle V, E_i, w_i \rangle$.

We still need to define inter-layer edges and their weights on the HLOIFT graph $\mathcal{N} = \mathcal{L} \times V$.

Let $p: \mathcal{N} \to V$ be a projection, p(i, c) = c.

프 🖌 🛪 프 🛌

Let $f: V \to \mathbb{R}^k$ be an (*n*-dimensional) image containing objects $O_1, \ldots, O_m, O_{m+1} = V$. A hierarchy tree is indicated by a parent map *h*, with h(i) = j meaning that O_j is a parent of O_i .

For every $i \in \mathcal{L} = \{1, ..., m\}$ let $\langle V, E_i, w_i \rangle$ be an edge weighted graph associated with image *f* and object O_i . The edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as $\langle \mathcal{L} \times V, E, w \rangle$, where its restriction to *i*th object layer, $\langle \{i\} \times V, E^i, w^i \rangle$, is an isomorphic copy of $\langle V, E_i, w_i \rangle$.

We still need to define inter-layer edges and their weights on the HLOIFT graph $\mathcal{N} = \mathcal{L} \times V$.

Let $p: \mathcal{N} \to V$ be a projection, p(i, c) = c.

프 에 에 프 어

Let $f: V \to \mathbb{R}^k$ be an (*n*-dimensional) image containing objects $O_1, \ldots, O_m, O_{m+1} = V$. A hierarchy tree is indicated by a parent map *h*, with h(i) = j meaning that O_j is a parent of O_i .

For every $i \in \mathcal{L} = \{1, ..., m\}$ let $\langle V, E_i, w_i \rangle$ be an edge weighted graph associated with image *f* and object O_i . The edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as $\langle \mathcal{L} \times V, E, w \rangle$, where its restriction to *i*th object layer, $\langle \{i\} \times V, E^i, w^i \rangle$, is an isomorphic copy of $\langle V, E_i, w_i \rangle$.

We still need to define inter-layer edges and their weights on the HLOIFT graph $\mathcal{N} = \mathcal{L} \times V$.

Let $p: \mathcal{N} \to V$ be a projection, p(i, c) = c.

프 에 에 프 어

Let $f: V \to \mathbb{R}^k$ be an (*n*-dimensional) image containing objects $O_1, \ldots, O_m, O_{m+1} = V$. A hierarchy tree is indicated by a parent map *h*, with h(i) = j meaning that O_j is a parent of O_i .

For every $i \in \mathcal{L} = \{1, ..., m\}$ let $\langle V, E_i, w_i \rangle$ be an edge weighted graph associated with image *f* and object O_i . The edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as $\langle \mathcal{L} \times V, E, w \rangle$, where its restriction to *i*th object layer, $\langle \{i\} \times V, E^i, w^i \rangle$, is an isomorphic copy of $\langle V, E_i, w_i \rangle$.

We still need to define inter-layer edges and their weights on the HLOIFT graph $\mathcal{N} = \mathcal{L} \times V$.

Let $p: \mathcal{N} \to V$ be a projection, p(i, c) = c.

(E) < (E)</p>

Let $f: V \to \mathbb{R}^k$ be an (*n*-dimensional) image containing objects $O_1, \ldots, O_m, O_{m+1} = V$. A hierarchy tree is indicated by a parent map *h*, with h(i) = j meaning that O_j is a parent of O_i .

For every $i \in \mathcal{L} = \{1, ..., m\}$ let $\langle V, E_i, w_i \rangle$ be an edge weighted graph associated with image *f* and object O_i . The edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as $\langle \mathcal{L} \times V, E, w \rangle$, where its restriction to *i*th object layer, $\langle \{i\} \times V, E^i, w^i \rangle$, is an isomorphic copy of $\langle V, E_i, w_i \rangle$.

We still need to define inter-layer edges and their weights on the HLOIFT graph $\mathcal{N} = \mathcal{L} \times V$.

Let $p: \mathcal{N} \to V$ be a projection, p(i, c) = c.

프 에 에 프 어

Let $f: V \to \mathbb{R}^k$ be an (*n*-dimensional) image containing objects $O_1, \ldots, O_m, O_{m+1} = V$. A hierarchy tree is indicated by a parent map *h*, with h(i) = j meaning that O_j is a parent of O_i .

For every $i \in \mathcal{L} = \{1, ..., m\}$ let $\langle V, E_i, w_i \rangle$ be an edge weighted graph associated with image *f* and object O_i . The edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as $\langle \mathcal{L} \times V, E, w \rangle$, where its restriction to *i*th object layer, $\langle \{i\} \times V, E^i, w^i \rangle$, is an isomorphic copy of $\langle V, E_i, w_i \rangle$.

We still need to define inter-layer edges and their weights on the HLOIFT graph $\mathcal{N} = \mathcal{L} \times V$.

Let $p: \mathcal{N} \to V$ be a projection, p(i, c) = c.

Intro DA OIFT HLOIFT Experiments Summary Labeling of objects Summary

HLOIFT, being essentially OIFT run on \mathcal{N} , returns a single object $\mathcal{O} \subset \mathcal{N}$.

It encodes the objects and the background as

 $O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets $\langle S_0, \ldots, S_m \rangle$ in *V* indicate objects $\langle O_0, \ldots, O_m \rangle$, then $\overline{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$ indicates object *O* in \mathcal{N} , while $\overline{S}_0 = \mathcal{L} \times S_0$ indicatess its complement in \mathcal{N} .

Sets \bar{S}_0 and \bar{S}_1 are used to define ψ_{last} in \mathcal{N} .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Intro DA OIFT HLOIFT Experiments Summary Labeling of objects Summary

HLOIFT, being essentially OIFT run on \mathcal{N} , returns a single object $\mathcal{O} \subset \mathcal{N}$.

It encodes the objects and the background as

 $O_i = \{t \in V : (i, t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets $\langle S_0, \ldots, S_m \rangle$ in *V* indicate objects $\langle O_0, \ldots, O_m \rangle$, then $\overline{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$ indicates object *O* in \mathcal{N} , while $\overline{S}_0 = \mathcal{L} \times S_0$ indicatess its complement in \mathcal{N} .

Sets \bar{S}_0 and \bar{S}_1 are used to define ψ_{last} in \mathcal{N} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

16 of 30

Intro DA OIFT HLOIFT Experiments Summary Labeling of objects

HLOIFT, being essentially OIFT run on \mathcal{N} , returns a single object $\mathcal{O} \subset \mathcal{N}$.

It encodes the objects and the background as

 $O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets $\langle S_0, \ldots, S_m \rangle$ in *V* indicate objects $\langle O_0, \ldots, O_m \rangle$, then $\overline{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$ indicates object *O* in \mathcal{N} , while $\overline{S}_0 = \mathcal{L} \times S_0$ indicatess its complement in \mathcal{N} .

Sets \bar{S}_0 and \bar{S}_1 are used to define ψ_{last} in \mathcal{N} .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Intro DA OIFT HLOIFT Experiments Summary Labeling of objects Summary

HLOIFT, being essentially OIFT run on \mathcal{N} , returns a single object $\mathcal{O} \subset \mathcal{N}$.

It encodes the objects and the background as

 $O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets $\langle S_0, \ldots, S_m \rangle$ in *V* indicate objects $\langle O_0, \ldots, O_m \rangle$, then $\overline{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$ indicates object *O* in \mathcal{N} , while $\overline{S}_0 = \mathcal{L} \times S_0$ indicatess its complement in \mathcal{N} .

Sets \bar{S}_0 and \bar{S}_1 are used to define ψ_{last} in \mathcal{N} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

HLOIFT, being essentially OIFT run on \mathcal{N} , returns a single object $\mathcal{O} \subset \mathcal{N}$.

It encodes the objects and the background as

 $O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets $\langle S_0, \ldots, S_m \rangle$ in *V* indicate objects $\langle O_0, \ldots, O_m \rangle$, then $\overline{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$ indicates object *O* in \mathcal{N} , while $\overline{S}_0 = \mathcal{L} \times S_0$ indicatess its complement in \mathcal{N} .

Sets \bar{S}_0 and \bar{S}_1 are used to define ψ_{last} in \mathcal{N} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

HLOIFT, being essentially OIFT run on \mathcal{N} , returns a single object $\mathcal{O} \subset \mathcal{N}$.

It encodes the objects and the background as

 $O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets $\langle S_0, \ldots, S_m \rangle$ in *V* indicate objects $\langle O_0, \ldots, O_m \rangle$, then $\overline{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$ indicates object *O* in \mathcal{N} , while $\overline{S}_0 = \mathcal{L} \times S_0$ indicatess its complement in \mathcal{N} .

Sets \bar{S}_0 and \bar{S}_1 are used to define ψ_{last} in \mathcal{N} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Intro DA OIFT HLOIFT Experiments Summary
Inter-layer edges indicating inclusions

If O_j is the parent of O_i (i.e., h(i) = j),

we add all edges $\langle (i, c), (j, d) \rangle$ with $||c - d|| \leq \rho$.

For s = (i, c) and t = (j, d) we define

 $w_1(s,t) = w_0(t,s) = \infty$ and $w_0(s,t) = w_1(t,s) = -\infty$.

Intro DA OIFT HLOIFT Experiments Summary
Inter-layer edges indicating inclusions

If O_j is the parent of O_i (i.e., h(i) = j),

we add all edges $\langle (i, c), (j, d) \rangle$ with $||c - d|| \leq \rho$.

For s = (i, c) and t = (j, d) we define

 $w_1(s,t) = w_0(t,s) = \infty$ and $w_0(s,t) = w_1(t,s) = -\infty$.

Intro DA OIFT HLOIFT Experiments Summary
Inter-layer edges indicating inclusions

If O_j is the parent of O_i (i.e., h(i) = j),

we add all edges $\langle (i, c), (j, d) \rangle$ with $||c - d|| \leq \rho$.

For s = (i, c) and t = (j, d) we define

 $w_1(s,t) = w_0(t,s) = \infty$ and $w_0(s,t) = w_1(t,s) = -\infty$.

Intro DA OIFT HLOIFT Experiments Summary Inter-layer edges indicating exclusions

If O_i and O_j are siblings (i.e., h(i) = h(j) and $i \neq j$),

we add all edges $\langle (i, c), (j, d) \rangle$ with $||c - d|| \leq \rho$.

For s = (i, c) and t = (j, d) we define

 $w_1(s,t)=w_0(t,s)=w_0(s,t)=w_1(t,s)=\infty.$

Intro DA OIFT HLOIFT Experiments Summary Inter-layer edges indicating exclusions

If O_i and O_j are siblings (i.e., h(i) = h(j) and $i \neq j$),

we add all edges $\langle (i, c), (j, d) \rangle$ with $||c - d|| \leq \rho$.

For s = (i, c) and t = (j, d) we define

 $w_1(s,t) = w_0(t,s) = w_0(s,t) = w_1(t,s) = \infty.$

Intro DA OIFT HLOIFT Experiments Summary Inter-layer edges indicating exclusions

If O_i and O_j are siblings (i.e., h(i) = h(j) and $i \neq j$),

we add all edges $\langle (i, c), (j, d) \rangle$ with $||c - d|| \leq \rho$.

For s = (i, c) and t = (j, d) we define

 $w_1(s,t)=w_0(t,s)=w_0(s,t)=w_1(t,s)=\infty.$

Intro DA OIFT HLOIFT Experiments Illustration of the inter-layer arc construction

Figure: Illustration of the inter-layer arc construction, involving three objects O_i , O_j , and O_k , where O_k is the parent of two sibling objects, O_i and O_j , i.e., h(i) = h(j) = k.

Summary

foreach $t \in \mathcal{N}$ do $\pi[t] \leftarrow \langle t \rangle$ and $S(t) \leftarrow 0$; **remove** an element s of $\max_{t \in O} \psi_{\text{last}}(\pi[t])$ from Q foreach x such that $(s, x) \in E$ and S(x) = 0 do if $\psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]^{x})$ and

<ロ> <問> <問> < 回> < 回> < □> < □> <

1 foreach $t \in \mathcal{N}$ do $\pi[t] \leftarrow \langle t \rangle$ and $S(t) \leftarrow 0$;

```
2 Q \leftarrow \overline{S}_0 \cup \overline{S}_1
```

```
remove an element s of \max_{t \in Q} \psi_{\text{last}}(\pi[t]) from Q
S(s) \leftarrow 1
```

```
foreach x such that \langle s, x \rangle \in E and S(x) = 0 do
```

```
if \psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]^x) and [\pi[s] is from \bar{S}_1 or s and x are not siblings.
```

```
\pi[\mathbf{X}] \leftarrow \pi[\mathbf{S}]^{\hat{\mathbf{X}}}
```

```
if x \notin Q then insert t in Q
```

ヘロト 人間 ト ヘヨト ヘヨト

- 1 foreach $t \in \mathcal{N}$ do $\pi[t] \leftarrow \langle t \rangle$ and $S(t) \leftarrow 0$;
- 2 $Q \leftarrow \bar{\mathcal{S}}_0 \cup \bar{\mathcal{S}}_1$
- 3 while $Q \neq \emptyset$ do
- 4 **remove** an element *s* of $\max_{t \in Q} \psi_{\text{last}}(\pi[t])$ from *Q* 5 $S(s) \leftarrow 1$ 6 foreach *x* such that $\langle s, x \rangle \in F$ and S(x) = 0 do

```
foreach x such that \langle s, x \rangle \in E and S(x) = 0 do

if \psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]^{\hat{x}}) and

[\pi[s] \text{ is from } \overline{S}_1 \text{ or } s \text{ and } x \text{ are not siblings}] then

\pi[x] \leftarrow \pi[s]^{\hat{x}}

if x \notin Q then insert t in Q
```

ヘロト ヘアト ヘビト ヘビト

э.

- 1 foreach $t \in \mathcal{N}$ do $\pi[t] \leftarrow \langle t \rangle$ and $S(t) \leftarrow 0$;
- $\mathbf{2} \ \mathbf{Q} \leftarrow \bar{\mathcal{S}}_0 \cup \bar{\mathcal{S}}_1$

6

- 3 while $Q \neq \emptyset$ do
- 4 **remove** an element *s* of $\max_{t \in Q} \psi_{\text{last}}(\pi[t])$ from *Q* 5 $S(s) \leftarrow 1$

```
foreach x such that (s, x) \in E and S(x) = 0 do
```

 $\psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s] x)$ and $[\pi[s] \text{ is from } \overline{S}_1 \text{ or } s \text{ and } x \text{ are not siblings}]$ then $\pi[x] \leftarrow \pi[s]^{\hat{x}}$ if $x \notin Q$ then insert *t* in Q

<ロ> <問> <問> < 回> < 回> < □> < □> <

- 1 foreach $t \in \mathcal{N}$ do $\pi[t] \leftarrow \langle t \rangle$ and $S(t) \leftarrow 0$;
- 2 $Q \leftarrow \overline{S}_0 \cup \overline{S}_1$

7

8

- 3 while $Q \neq \emptyset$ do
- **remove** an element s of $\max_{t \in Q} \psi_{\text{last}}(\pi[t])$ from Q 4 $S(s) \leftarrow 1$ 5 6

```
foreach x such that (s, x) \in E and S(x) = 0 do
```

```
if \psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]^{x}) and
         \pi[s] is from \overline{S}_1 or s and x are not siblings] then
 \pi[x] \leftarrow \pi[s]^{\hat{x}}
if x \notin Q then insert t in Q
```

・ 同 ト ・ 国 ト ・ 国 ト …

- 1 foreach $t \in \mathcal{N}$ do $\pi[t] \leftarrow \langle t \rangle$ and $S(t) \leftarrow 0$;
- $\mathbf{2} \ \mathbf{Q} \leftarrow \bar{\mathcal{S}}_0 \cup \bar{\mathcal{S}}_1$

6

7

8

9

10

- 3 while $Q \neq \emptyset$ do
- 4 **remove** an element *s* of $\max_{t \in Q} \psi_{\text{last}}(\pi[t])$ from *Q* 5 $S(s) \leftarrow 1$

```
foreach x such that (s, x) \in E and S(x) = 0 do
```

```
if \psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]^{x}) and

[\pi[s] \text{ is from } \overline{S}_{1} \text{ or } s \text{ and } x \text{ are not siblings] then}

\pi[x] \leftarrow \pi[s]^{x}

if x \notin Q then insert t in Q
```

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Leon, Ciesielski, Miranda, submitted)

OIFT

An object O returned by HLOIFT generates objects $\langle O_0, \ldots, O_m \rangle$ which are consistent with the seeds $\langle S_0, \ldots, S_m \rangle$ and the hierarchy indicated by h. Moreover, the graph cut c(O) associated with O minimizes its ℓ_{∞} norm among all such objects, where $c(O) = \{\langle s, t \rangle \in F : s \in O \ \& t \notin O \ \& s and t are not siblings\}$

HLOIFT

Experiments

 $\cup \quad \{ \langle \boldsymbol{s}, \boldsymbol{t} \rangle \in \boldsymbol{E} \colon \boldsymbol{s}, \boldsymbol{t} \in \boldsymbol{O} \ \& \ \boldsymbol{s} \ \textit{and} \ \boldsymbol{t} \ \textit{are siblings} \}.$

ヘロト ヘアト ヘビト ヘビト

Summary

Theorem (Leon, Ciesielski, Miranda, submitted)

OIFT

An object O returned by HLOIFT generates objects $\langle O_0, \ldots, O_m \rangle$ which are consistent with the seeds $\langle S_0, \ldots, S_m \rangle$ and the hierarchy indicated by h. Moreover, the graph cut c(O) associated with O minimizes its ℓ_{∞} norm among all such objects, where

HLOIFT

Experiments

 $c(O) = \{ \langle s, t \rangle \in E : s \in O \& t \notin O \& s \text{ and } t \text{ are not siblings} \} \\ \cup \{ \langle s, t \rangle \in E : s, t \in O \& s \text{ and } t \text{ are siblings} \}.$

ヘロト ヘアト ヘビト ヘビト

Summary

Theorem (Leon, Ciesielski, Miranda, submitted)

OIFT

An object O returned by HLOIFT generates objects $\langle O_0, \ldots, O_m \rangle$ which are consistent with the seeds $\langle S_0, \ldots, S_m \rangle$ and the hierarchy indicated by h. Moreover, the graph cut c(O) associated with O minimizes its ℓ_{∞} norm among all such objects, where

HLOIFT

Experiments

Summary

 $c(O) = \{ \langle s, t \rangle \in E : s \in O \& t \notin O \& s \text{ and } t \text{ are not siblings} \} \\ \cup \{ \langle s, t \rangle \in E : s, t \in O \& s \text{ and } t \text{ are siblings} \}.$

Image segmentation in graph cut setting

- Dijkstra algorithm in general setting
- 3 Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT

6 Summary

イロト イポト イヨト イヨト

Figure: Example of two object segmentation by HLOIFT, where O_2 is parent of O_1 . Each object has different high-level priors –db: polarity from dark to bright pixels, bd: polarity from bright to dark pixels and g: geodesic star convexity prior. We used $\rho = 1.5$. Only two seeds.

ヘロト ヘ戸ト ヘヨト ヘヨト

22 of 30

Input image

 $\rho = 2$

Figure: Example showing how changing the ρ value from 0 to 2 can improve the archaeological fragment segmentation by HLOIFT, avoiding a result with touching objects.

Figure: Knee segmentation composed of three objects in a CT image. (a-b) Result by IFT where the O_1 is mixing bright & dark boundaries. (c-d) An improved result is obtained by HLOIFT with boundary polarity from bright to dark pixels, requiring fewer seeds.

Figure: Talus (O_1) and calcaneus (O_2) segmentation. The two objects are sibling objects. For HLOIFT, we used $\rho = 0$, the geodesic star convexity and boundary polarity ($\alpha = -0.75$).

< 1[™] →

DA OIFT HLOIFT Experiments Summary Exper. #5: CT, thoracic-abdominal axial cross section

INPUT

Figure: right lung $(\overline{O_1})$, liver (O_2) , heart (O_3) , left lung (O_4) , aorta (O_5) and the thoracic-abdominal region (O_6) .

K. Chris Ciesielski

Hierarchical segmentation in directed graph

(a)

(b)

(C)

Figure: Flower segmentation in two objects, the central part in cyan and the petals in yellow, using the inclusion relation. (a) The input image. (b) Result by the min-cut/max-flow algorithm in layered graphs. (c) Result by HLOIFT.

DA OIFT HLOIFT Experiments Efficiency: HLOIFT versus min-cut/max-flow

Image size (pixels)	Time of HLOIFT (ms)	Time of min-cut/max-flow (ms)
380 × 320	114.65	323.61
760 imes 640	488.62	1,798.91
1520 imes 1280	1,823.55	19,021.71

The running times for the flower segmentation by HLOIFT and the min-cut/max-flow algorithm in layered graphs using different image sizes.

Summary

- HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT

イロト 不得 とくほと くほう

28 of 30

Intro	DA	OIFT	HLOIFT	Experiments	Summary
Sum	mary				

- We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.
- We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.
- We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.
- We proved that the output of HLOIFT minimizes appropriate graph cut energy.

イロト イポト イヨト イヨト

Intro	DA	OIFT	HLOIFT	Experiments	Summary
Sum	mary				

- We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.
- We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.
- We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.
- We proved that the output of HLOIFT minimizes appropriate graph cut energy.

Intro	DA	OIFT	HLOIFT	Experiments	Summary
Sum	mary				

- We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.
- We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.
- We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.
- We proved that the output of HLOIFT minimizes appropriate graph cut energy.

Intro	DA	OIFT	HLOIFT	Experiments	Summary
Sum	mary				

- We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.
- We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.
- We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.
- We proved that the output of HLOIFT minimizes appropriate graph cut energy.

- K.C. Ciesielski, J.K. Udupa, A.X. Falcão, P.A.V. Miranda, "Fuzzy Connectedness image segmentation in Graph Cut formulation," J. Math. Imaging Vision 44(3) (2012), 375-398
- K.C. Ciesielski, A.X. Falcão, P.A.V. Miranda, "Path-value functions for which Dijkstra's algorithm returns optimal mapping," J. Math. Imaging Vision 60(7) (2018), 1025-1036
- K.C. Ciesielski, Gabor T. Herman, T. Yung Kong, "General Theory of Fuzzy Connectedness Segmentations," J. Math. Imaging Visionn 55(3) (2016), 304-342;
- L.M.C. Leon, K.C. Ciesielski, P.A.V. Miranda, "Efficient Hierarchical Multi-Object Segmentation in Layered Graph," (2018), submitted.

ヘロト 人間 ト ヘヨト ヘヨト

э.

30 of 30

Intro DA OIFT HLOIFT Experiments Summary

Thank you for your attention!

ъ

★ E → ★ E →

< 🗇 🕨