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Image segmentation example 1: CT, cervical spine

A slice of an original 3D image Surface rendition of segmented
three vertebrae, together

Color surface rendition of the segmented three vertebra
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Example 2: CT, thoracic-abdominal axial cross section
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Figure: right lung (O1), liver (O2), heart (O3), left lung (O4), aorta (O5)
and the thoracic-abdominal region (O6).

OUTPUT
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Image segmentation — formal setting

An image is a map f from a set V (of spels) into Rk

The value f (c) represents image intensity at c, a
k -dimensional vector each component of which indicates a
measure of some aspect of the signal, like color.

Segmentation problem: Given an image f : V → Rk ,

find a “desired” family {O1, . . . ,OM} of subsets of V .

We will assume the objects are indicated by disjoint sets Si
of seeds, imposing that Si ⊂ Oi .
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Image, its graph, and graph cut

An image, with intensity
map f : V → Rk
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Object O and its graph
cut edges c(O) in bold

Vertices v ∈ V are image pixels. Direct edges: all
〈c,d〉, 〈d , c〉 ∈ E , with c,d ∈ V nearby (e.g. 4 adjacency).

Edge weights: w(〈c,d〉) = some function of f (c)− f (d).

Graph cut of O: c(O) = {〈c,d〉 ∈ E : c ∈ O & d /∈ O}.
Only in one direction!
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Graph cut measures: `p-norms, 1 ≤ p ≤ ∞

Assuming 〈c,d〉 ∈ E ⇐⇒ 〈d , c〉 ∈ E and w(〈c,d〉) ≥ 0

`p-norm of c(O) is defined as

εp(O)
def
= ‖w � c(O)‖p =


(∑

e∈c(O) w(e)p
)1/p

if p <∞
maxe∈c(O) w(e) if p =∞.

Standard analysis fact: ‖w‖p →p→∞ ‖w‖∞ for any map w .
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Known algorithms minimizing `p-norms of graph cut

p = 1: Minimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm minimizes ε1.

p =∞: Minimization solved by (versions of) Dijkstra algorithm.

ε∞ minimized objects are returned by the algorithms:
Power Watershed, PW [C. Couprie et al, 2011]
Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC,
Image Foresting Transform, IFT, [Ciesielski, Udupa,
Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

Fact: Inclusion-minimal `p-normed minimized delineations
converge, as p →∞ to `∞-normed minimized delineation.

This talk’s Main Algorithm, HLOIFT, minimizes `∞-norm of cut
K. Chris Ciesielski Hierarchical segmentation in directed graph 6 of 30
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Outline

1 Image segmentation in graph cut setting

2 Dijkstra algorithm in general setting

3 Oriented IFT and graph cut optimization

4 HLOIFT: Hierarchical Layered OIFT algorithm

5 Experimental results for HLOIFT

6 Summary
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Intro DA OIFT HLOIFT Experiments Summary

Paths and Optimal Path Forest OPF

Fix directed graph G = 〈V ,E〉 (with edge weight map w)

Path (in G): p = 〈v0, . . . , v`〉 s.t. 〈vj , vj+1〉 ∈ E for j < `;

p is from S ⊂ V to v ∈ V when v0 ∈ S and v` = v ;

p ŵ = 〈v0, . . . , v`,w〉; ΠG – all paths in G.

Path cost function: any map ψ : ΠG → R.

A path p (from S ⊂ V ) to v is ψ-optimal provided

ψ(p) = max{ψ(q) : q is a path (from S) to v}.

Jarník-Prim-Dijkstra algorithm DA for ψ and S ⊂ V tries to
find (S-rooted) forest, OPF, composed of ψ-optimal paths.

HLOIFT is a DA for appropriate path cost map and graph.
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p ŵ = 〈v0, . . . , v`,w〉; ΠG – all paths in G.

Path cost function: any map ψ : ΠG → R.

A path p (from S ⊂ V ) to v is ψ-optimal provided

ψ(p) = max{ψ(q) : q is a path (from S) to v}.

Jarník-Prim-Dijkstra algorithm DA for ψ and S ⊂ V tries to
find (S-rooted) forest, OPF, composed of ψ-optimal paths.

HLOIFT is a DA for appropriate path cost map and graph.

K. Chris Ciesielski Hierarchical segmentation in directed graph 7 of 30



Intro DA OIFT HLOIFT Experiments Summary

Paths and Optimal Path Forest OPF

Fix directed graph G = 〈V ,E〉 (with edge weight map w)

Path (in G): p = 〈v0, . . . , v`〉 s.t. 〈vj , vj+1〉 ∈ E for j < `;

p is from S ⊂ V to v ∈ V when v0 ∈ S and v` = v ;
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Intro DA OIFT HLOIFT Experiments Summary

Dijkstra Algorithm, DA, aiming to find ψ-optimal forest

Data: G = 〈V ,E〉 and a path cost map ψ : ΠG → R
Result: an array π[ ] of paths, aiming for being ψ-optimal

1 foreach v ∈ V do π[v ]← 〈v〉
2 Q ← V
3 while Q 6= ∅ do
4 remove an element w of maxu∈Q ψ(π[u]) from Q
5 foreach x such that 〈w , x〉 ∈ E do
6 if ψ(π[x ]) < ψ(π[w ]̂ x) then π[x ]← π[w ]̂ x

DA is very efficient: quasi-linear w.r.t. the size of the graph.
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Intro DA OIFT HLOIFT Experiments Summary

For what path cost ψ DA works properly?

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018]

correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If w is an edge weight map for undirected graph G = 〈V ,E〉,
then DA works properly for:

FC/IFT: ψmin(〈v0, . . . , v`〉) = min1≤j≤` w(vj−1, vj) for ` > 0

ψmin(〈v0〉) =∞ if v0 ∈ S, ψmin(〈v0〉) = −∞ if v0 /∈ S

ψsum(〈v0, . . . , v`〉) = −
∑

1≤j≤` w(vj−1, vj) for ` > 0

ψsum(〈v0〉) =∞ if v0 ∈ S, ψsum(〈v0〉) = −∞ if v0 /∈ S

HLOIFT uses DA with ψmin and oriented w , a problem!
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Intro DA OIFT HLOIFT Experiments Summary

DA with oriented variant of ψmin

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with i th object Oi having its oriented weights wi and

ψ∗min(〈v0, . . . , v`〉) = min1≤j≤` wi(vj−1, vj) with v0 a seed of Oi .

Theorem (Ciesielski, Herman, Kong, 2016)
For ψ∗min as above

The output of DA is completely robust under (unaffected
by) small (within CORE sets) seed changes.
The output of DA has a nice characterization in terms of
path strength competition.

However, for ψ∗min, the forest returned by DA need not be
optimal. Also, in general, no minimality of a cut for ψ∗min.
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1 Image segmentation in graph cut setting
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Intro DA OIFT HLOIFT Experiments Summary

ψ∗min for which DA returns delineation with optimal cut

Let ψ?
min denotes ψ∗min in object/background setting such that

w1(c,d) = w0(d , c) for all 〈c,d〉 ∈ E .

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)
If object O is an output of DA run with ψ?

min, then the graph cut

c(O) = {〈c,d〉 ∈ E : c ∈ O & d /∈ O}

minimizes the `∞ norm ε∞(O)
def
= max〈c,d〉∈c(O) w1(c,d) among

all objects satisfying the constrains.

Assumption w1(c,d) = w0(d , c) is needed to ensure that
incorporating 〈c,d〉 in a path from either object or background
influences the path strength the same way.
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Intro DA OIFT HLOIFT Experiments Summary

Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with ψ∗min? Close, but formally not.

Assume that w1(c,d) = w0(d , c) for all 〈c,d〉 ∈ E and let

ψlast(〈v0, . . . , v`〉) = wi(v`−1, v`) when ` > 0 and v0 a seed of Oi .

ψlast(〈v0〉) =∞ when v0 a seed and ψlast(〈v0〉) = −∞ otherwise.

Definition
OIFT is a DA run with ψlast as above.

Theorem (preliminary result: OIFT as DA with ψ∗min)

Any output of OIFT is an output of a particular implementation
of DA with ψ∗min.
Thus, a graph cut of any object returned by OIFT minimizes the
`∞ norm among all objects satisfying the constrains.

K. Chris Ciesielski Hierarchical segmentation in directed graph 12 of 30



Intro DA OIFT HLOIFT Experiments Summary

Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with ψ∗min? Close, but formally not.

Assume that w1(c,d) = w0(d , c) for all 〈c,d〉 ∈ E and let

ψlast(〈v0, . . . , v`〉) = wi(v`−1, v`) when ` > 0 and v0 a seed of Oi .

ψlast(〈v0〉) =∞ when v0 a seed and ψlast(〈v0〉) = −∞ otherwise.

Definition
OIFT is a DA run with ψlast as above.

Theorem (preliminary result: OIFT as DA with ψ∗min)

Any output of OIFT is an output of a particular implementation
of DA with ψ∗min.
Thus, a graph cut of any object returned by OIFT minimizes the
`∞ norm among all objects satisfying the constrains.

K. Chris Ciesielski Hierarchical segmentation in directed graph 12 of 30



Intro DA OIFT HLOIFT Experiments Summary

Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with ψ∗min? Close, but formally not.

Assume that w1(c,d) = w0(d , c) for all 〈c,d〉 ∈ E and let

ψlast(〈v0, . . . , v`〉) = wi(v`−1, v`) when ` > 0 and v0 a seed of Oi .

ψlast(〈v0〉) =∞ when v0 a seed and ψlast(〈v0〉) = −∞ otherwise.

Definition
OIFT is a DA run with ψlast as above.

Theorem (preliminary result: OIFT as DA with ψ∗min)

Any output of OIFT is an output of a particular implementation
of DA with ψ∗min.
Thus, a graph cut of any object returned by OIFT minimizes the
`∞ norm among all objects satisfying the constrains.

K. Chris Ciesielski Hierarchical segmentation in directed graph 12 of 30



Intro DA OIFT HLOIFT Experiments Summary

Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with ψ∗min? Close, but formally not.

Assume that w1(c,d) = w0(d , c) for all 〈c,d〉 ∈ E and let

ψlast(〈v0, . . . , v`〉) = wi(v`−1, v`) when ` > 0 and v0 a seed of Oi .

ψlast(〈v0〉) =∞ when v0 a seed and ψlast(〈v0〉) = −∞ otherwise.

Definition
OIFT is a DA run with ψlast as above.

Theorem (preliminary result: OIFT as DA with ψ∗min)

Any output of OIFT is an output of a particular implementation
of DA with ψ∗min.
Thus, a graph cut of any object returned by OIFT minimizes the
`∞ norm among all objects satisfying the constrains.

K. Chris Ciesielski Hierarchical segmentation in directed graph 12 of 30



Intro DA OIFT HLOIFT Experiments Summary

Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with ψ∗min? Close, but formally not.

Assume that w1(c,d) = w0(d , c) for all 〈c,d〉 ∈ E and let

ψlast(〈v0, . . . , v`〉) = wi(v`−1, v`) when ` > 0 and v0 a seed of Oi .

ψlast(〈v0〉) =∞ when v0 a seed and ψlast(〈v0〉) = −∞ otherwise.

Definition
OIFT is a DA run with ψlast as above.

Theorem (preliminary result: OIFT as DA with ψ∗min)

Any output of OIFT is an output of a particular implementation
of DA with ψ∗min.
Thus, a graph cut of any object returned by OIFT minimizes the
`∞ norm among all objects satisfying the constrains.

K. Chris Ciesielski Hierarchical segmentation in directed graph 12 of 30



Intro DA OIFT HLOIFT Experiments Summary

Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with ψ∗min? Close, but formally not.

Assume that w1(c,d) = w0(d , c) for all 〈c,d〉 ∈ E and let

ψlast(〈v0, . . . , v`〉) = wi(v`−1, v`) when ` > 0 and v0 a seed of Oi .

ψlast(〈v0〉) =∞ when v0 a seed and ψlast(〈v0〉) = −∞ otherwise.

Definition
OIFT is a DA run with ψlast as above.

Theorem (preliminary result: OIFT as DA with ψ∗min)

Any output of OIFT is an output of a particular implementation
of DA with ψ∗min.
Thus, a graph cut of any object returned by OIFT minimizes the
`∞ norm among all objects satisfying the constrains.

K. Chris Ciesielski Hierarchical segmentation in directed graph 12 of 30



Intro DA OIFT HLOIFT Experiments Summary

Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with ψ∗min? Close, but formally not.

Assume that w1(c,d) = w0(d , c) for all 〈c,d〉 ∈ E and let

ψlast(〈v0, . . . , v`〉) = wi(v`−1, v`) when ` > 0 and v0 a seed of Oi .

ψlast(〈v0〉) =∞ when v0 a seed and ψlast(〈v0〉) = −∞ otherwise.

Definition
OIFT is a DA run with ψlast as above.

Theorem (preliminary result: OIFT as DA with ψ∗min)

Any output of OIFT is an output of a particular implementation
of DA with ψ∗min.
Thus, a graph cut of any object returned by OIFT minimizes the
`∞ norm among all objects satisfying the constrains.

K. Chris Ciesielski Hierarchical segmentation in directed graph 12 of 30



Intro DA OIFT HLOIFT Experiments Summary

Some properties of OIFT

Can incorporate image brightness increase/decrease in
weight function. If we like to favor transitions from bright to
dark pixels when passing from object to the background,
we can define, for some α ∈ (0,1),

w1(c,d) =

{
(1− α)e−‖f (c)−f (d)‖ if ‖f (c)‖ > ‖f (d)‖
(1 + α)e−‖f (c)−f (d)‖ otherwise.

Can incorporate shape constraints like geodesic star
convexity [Mansilla, Jackowski, Miranda, 2013], geodesic
band constraints [Braz, Miranda, 2014], Hedgehog Shape
Prior, and other to be explored.
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Intro DA OIFT HLOIFT Experiments Summary

HLOIFT: input and output

HLOIFT is, essentially, OIFT algorithm run on a modified graph.

Input: Image, a tree representing inclusion/exclusion relations
between the objects we seek, seeds representing the objects;
ρ ≥ 0 giving minimal distance between boundaries of objects.

INPUT

. Image

. Set of seeds

. Tree of Relations (h) 

. Layer digraph construction

. Setup of Inter-Layer connections

. Energy optimization

HLOIFT OUTPUT

. Labeled image 
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Intro DA OIFT HLOIFT Experiments Summary

Forming HLOIFT’s graph

Let f : V → Rk be an (n-dimensional) image containing objects
O1, . . . ,Om,Om+1 = V . A hierarchy tree is indicated by a parent
map h, with h(i) = j meaning that Oj is a parent of Oi .

For every i ∈ L = {1, . . . ,m} let 〈V ,Ei ,wi〉 be an edge
weighted graph associated with image f and object Oi . The
edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as 〈L × V ,E ,w〉, where its
restriction to i th object layer, 〈{i} × V ,E i ,w i〉, is an isomorphic
copy of 〈V ,Ei ,wi〉.

We still need to define inter-layer edges and their weights on
the HLOIFT graph N = L × V .

Let p : N → V be a projection, p(i , c) = c.
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For every i ∈ L = {1, . . . ,m} let 〈V ,Ei ,wi〉 be an edge
weighted graph associated with image f and object Oi . The
edges and weights can include other constrains, like shape.

HLOIFT weighted digraph is defined as 〈L × V ,E ,w〉, where its
restriction to i th object layer, 〈{i} × V ,E i ,w i〉, is an isomorphic
copy of 〈V ,Ei ,wi〉.

We still need to define inter-layer edges and their weights on
the HLOIFT graph N = L × V .

Let p : N → V be a projection, p(i , c) = c.
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Labeling of objects

HLOIFT, being essentially OIFT run on N , returns a single
object O ⊂ N .

It encodes the objects and the background as

Oi = {t ∈ V : (i , t) ∈ O} = p[O ∩ ({i} × V )] & O0 = V \
⋃

i∈LOi .

This indicates how to define inter-layer edges and their weights
to ensure tree-indicated relations.

If seed sets 〈S0, . . . ,Sm〉 in V indicate objects 〈O0, . . . ,Om〉,
then S̄1 =

⋃
i∈L{i} × Si indicates object O in N , while

S̄0 = L × S0 indicatess its complement in N .

Sets S̄0 and S̄1 are used to define ψlast in N .
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Inter-layer edges indicating inclusions

If Oj is the parent of Oi (i.e., h(i) = j),

we add all edges 〈(i , c), (j ,d)〉 with ‖c − d‖ ≤ ρ.

For s = (i , c) and t = (j ,d) we define

w1(s, t) = w0(t , s) =∞ and w0(s, t) = w1(t , s) = −∞.

Layer  j

Layer  i

-∞

∞
ρ=1
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Inter-layer edges indicating exclusions

If Oi and Oj are siblings (i.e., h(i) = h(j) and i 6= j),

we add all edges 〈(i , c), (j ,d)〉 with ‖c − d‖ ≤ ρ.
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Illustration of the inter-layer arc construction

ρ=0

-∞

∞

Layer  i

Layer  j

-∞

Layer  k

-∞

-∞

∞

Figure: Illustration of the inter-layer arc construction, involving three
objects Oi , Oj , and Ok , where Ok is the parent of two sibling objects,
Oi and Oj , i.e., h(i) = h(j) = k .
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HLOIFT Algorithm

Data: Weighted digraph N ; ψlast from image and sets S̄0, S̄1
Result: Array π[ ] of paths, π[t ] being a path from a seed to t

1 foreach t ∈ N do π[t ]← 〈t〉 and S(t)← 0;
2 Q ← S̄0 ∪ S̄1
3 while Q 6= ∅ do
4 remove an element s of maxt∈Q ψlast(π[t ]) from Q
5 S(s)← 1
6 foreach x such that 〈s, x〉 ∈ E and S(x) = 0 do
7 if ψlast(π[x ]) < ψlast(π[s]̂ x) and
8 [π[s] is from S̄1 or s and x are not siblings] then
9 π[x ]← π[s]̂ x

10 if x /∈ Q then insert t in Q

K. Chris Ciesielski Hierarchical segmentation in directed graph 20 of 30



Intro DA OIFT HLOIFT Experiments Summary

HLOIFT Algorithm

Data: Weighted digraph N ; ψlast from image and sets S̄0, S̄1
Result: Array π[ ] of paths, π[t ] being a path from a seed to t

1 foreach t ∈ N do π[t ]← 〈t〉 and S(t)← 0;
2 Q ← S̄0 ∪ S̄1
3 while Q 6= ∅ do
4 remove an element s of maxt∈Q ψlast(π[t ]) from Q
5 S(s)← 1
6 foreach x such that 〈s, x〉 ∈ E and S(x) = 0 do
7 if ψlast(π[x ]) < ψlast(π[s]̂ x) and
8 [π[s] is from S̄1 or s and x are not siblings] then
9 π[x ]← π[s]̂ x

10 if x /∈ Q then insert t in Q

K. Chris Ciesielski Hierarchical segmentation in directed graph 20 of 30



Intro DA OIFT HLOIFT Experiments Summary

HLOIFT Algorithm

Data: Weighted digraph N ; ψlast from image and sets S̄0, S̄1
Result: Array π[ ] of paths, π[t ] being a path from a seed to t

1 foreach t ∈ N do π[t ]← 〈t〉 and S(t)← 0;
2 Q ← S̄0 ∪ S̄1
3 while Q 6= ∅ do
4 remove an element s of maxt∈Q ψlast(π[t ]) from Q
5 S(s)← 1
6 foreach x such that 〈s, x〉 ∈ E and S(x) = 0 do
7 if ψlast(π[x ]) < ψlast(π[s]̂ x) and
8 [π[s] is from S̄1 or s and x are not siblings] then
9 π[x ]← π[s]̂ x

10 if x /∈ Q then insert t in Q

K. Chris Ciesielski Hierarchical segmentation in directed graph 20 of 30



Intro DA OIFT HLOIFT Experiments Summary

HLOIFT Algorithm

Data: Weighted digraph N ; ψlast from image and sets S̄0, S̄1
Result: Array π[ ] of paths, π[t ] being a path from a seed to t

1 foreach t ∈ N do π[t ]← 〈t〉 and S(t)← 0;
2 Q ← S̄0 ∪ S̄1
3 while Q 6= ∅ do
4 remove an element s of maxt∈Q ψlast(π[t ]) from Q
5 S(s)← 1
6 foreach x such that 〈s, x〉 ∈ E and S(x) = 0 do
7 if ψlast(π[x ]) < ψlast(π[s]̂ x) and
8 [π[s] is from S̄1 or s and x are not siblings] then
9 π[x ]← π[s]̂ x

10 if x /∈ Q then insert t in Q

K. Chris Ciesielski Hierarchical segmentation in directed graph 20 of 30



Intro DA OIFT HLOIFT Experiments Summary

HLOIFT Algorithm

Data: Weighted digraph N ; ψlast from image and sets S̄0, S̄1
Result: Array π[ ] of paths, π[t ] being a path from a seed to t

1 foreach t ∈ N do π[t ]← 〈t〉 and S(t)← 0;
2 Q ← S̄0 ∪ S̄1
3 while Q 6= ∅ do
4 remove an element s of maxt∈Q ψlast(π[t ]) from Q
5 S(s)← 1
6 foreach x such that 〈s, x〉 ∈ E and S(x) = 0 do
7 if ψlast(π[x ]) < ψlast(π[s]̂ x) and
8 [π[s] is from S̄1 or s and x are not siblings] then
9 π[x ]← π[s]̂ x

10 if x /∈ Q then insert t in Q

K. Chris Ciesielski Hierarchical segmentation in directed graph 20 of 30



Intro DA OIFT HLOIFT Experiments Summary

HLOIFT Algorithm

Data: Weighted digraph N ; ψlast from image and sets S̄0, S̄1
Result: Array π[ ] of paths, π[t ] being a path from a seed to t

1 foreach t ∈ N do π[t ]← 〈t〉 and S(t)← 0;
2 Q ← S̄0 ∪ S̄1
3 while Q 6= ∅ do
4 remove an element s of maxt∈Q ψlast(π[t ]) from Q
5 S(s)← 1
6 foreach x such that 〈s, x〉 ∈ E and S(x) = 0 do
7 if ψlast(π[x ]) < ψlast(π[s]̂ x) and
8 [π[s] is from S̄1 or s and x are not siblings] then
9 π[x ]← π[s]̂ x

10 if x /∈ Q then insert t in Q

K. Chris Ciesielski Hierarchical segmentation in directed graph 20 of 30
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Correctness of HLOIFT

Theorem (Leon, Ciesielski, Miranda, submitted)
An object O returned by HLOIFT generates objects
〈O0, . . . ,Om〉 which are consistent with the seeds 〈S0, . . . ,Sm〉
and the hierarchy indicated by h.
Moreover, the graph cut c(O) associated with O minimizes its
`∞ norm among all such objects, where

c(O) = {〈s, t〉 ∈ E : s ∈ O & t /∈ O & s and t are not siblings}
∪ {〈s, t〉 ∈ E : s, t ∈ O & s and t are siblings}.
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Outline

1 Image segmentation in graph cut setting

2 Dijkstra algorithm in general setting

3 Oriented IFT and graph cut optimization

4 HLOIFT: Hierarchical Layered OIFT algorithm

5 Experimental results for HLOIFT

6 Summary
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Experiment #1

 

(a) (b) (c) (d) (e)
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OUTPUT
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g  ,  O2

 
- O1

bd, O2
bd 

- O1
bd ,  O2

g+bd

- O1
db  , O2
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db , O2
g+db - O1

g+db , O2

3

Figure: Example of two object segmentation by HLOIFT, where O2 is
parent of O1. Each object has different high-level priors –db: polarity
from dark to bright pixels, bd: polarity from bright to dark pixels and g:
geodesic star convexity prior. We used ρ = 1.5. Only two seeds.
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Experiment #2

Input image ρ = 0 ρ = 2

Figure: Example showing how changing the ρ value from 0 to 2 can
improve the archaeological fragment segmentation by HLOIFT,
avoiding a result with touching objects.
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Experiment #3

(a) (b)

(c) (d)

Figure: Knee segmentation composed of three objects in a CT image.
(a-b) Result by IFT where the O1 is mixing bright & dark boundaries.
(c-d) An improved result is obtained by HLOIFT with boundary
polarity from bright to dark pixels, requiring fewer seeds.
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Experiment #4

INPUT OUTPUT

Figure: Talus (O1) and calcaneus (O2) segmentation. The two objects
are sibling objects. For HLOIFT, we used ρ = 0, the geodesic star
convexity and boundary polarity (α = −0.75).
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Exper. #5: CT, thoracic-abdominal axial cross section

1 2 3 4 5

6

h

INPUT

7

1

2 3

45 6

Figure: right lung (O1), liver (O2), heart (O3), left lung (O4), aorta (O5)
and the thoracic-abdominal region (O6).

OUTPUT
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Experiment #6

(a) (b) (c)

Figure: Flower segmentation in two objects, the central part in cyan
and the petals in yellow, using the inclusion relation. (a) The input
image. (b) Result by the min-cut/max-flow algorithm in layered
graphs. (c) Result by HLOIFT.
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Efficiency: HLOIFT versus min-cut/max-flow

Image size (pixels) Time of HLOIFT (ms) Time of min-cut/max-flow (ms)

380× 320 114.65 323.61
760× 640 488.62 1,798.91

1520× 1280 1,823.55 19,021.71

The running times for the flower segmentation by HLOIFT and
the min-cut/max-flow algorithm in layered graphs using different
image sizes.
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Summary

We described efficient multi-object segmentation algorithm
HLOIFT, which can use orientation, hierarchical relations
between objects, and high-level priors for each object.

We placed HLOIFT within a general framework of FC/IFT,
which allows us to conclude its provable robustness on
seed placements.

We proved that the objects returned by HLOIFT are
consistent with seeds placement and given hierarchy.

We proved that the output of HLOIFT minimizes
appropriate graph cut energy.
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Credits
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K.C. Ciesielski, A.X. Falcão, P.A.V. Miranda, “Path-value
functions for which Dijkstra’s algorithm returns optimal
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Thank you for your attention!

K. Chris Ciesielski Hierarchical segmentation in directed graph 30 of 30


	Image segmentation in graph cut setting
	Dijkstra algorithm in general setting
	Oriented IFT and graph cut optimization
	HLOIFT: Hierarchical Layered OIFT algorithm
	Experimental results for HLOIFT
	Summary

