Path-value functions for which Dijkstra's algorithm returns optimal mapping

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Department of Radiology, University of Pennsylvania

Based on a joint work with Alexandre Xavier Falcão and Paulo A. V. Miranda, published JMIV 60(7), September, 2018

Department of Mathematics, CoSy, Uppsala University, Sweden, September 11, 2018

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

• It is one of the fastest algorithms used in image precessing, including image segmentation:

(essentially) linear time with respect to image size

• It is the power engine behind

• Fuzzy Connectedness, FC, segmentation software

- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind

• Fuzzy Connectedness, FC, segmentation software

- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959 to find minimum spanning tree for a weighted undirected graph.

- It is one of the fastest algorithms used in image precessing, including image segmentation: (essentially) linear time with respect to image size
- It is the power engine behind
 - Fuzzy Connectedness, FC, segmentation software
- Can be used to find Watershed transform
- Usable in boundary tracking, morphological reconstructions, fast binary morphology, shape description, clustering, and classification

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, *IFT*, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable
- I started search for necessary and sufficient conditions
- Indeed, I found such conditions
- In the process, I found also that

"sufficient" conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)

イロト イポト イヨト イヨ

DA'

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, *IFT*, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable
- I started search for necessary and sufficient conditions
- Indeed, I found such conditions

Thm 1

• In the process, I found also that

"sufficient" conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)

< 回 > < 三 > < 三

Remarks

DA'

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, *IFT*, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable

[FSL]

Remarks

Summary

- I started search for necessary and sufficient conditions
- Indeed, I found such conditions

Thm 1

• In the process, I found also that

"sufficient" conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)

< 回 > < 三 > < 三

DA'

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, IFT, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable

[FSL]

Remarks

Summary

- I started search for necessary and sufficient conditions
- Indeed, I found such conditions

Thm 1

• In the process, I found also that

"sufficient" conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)

< 回 > < 三 > < 三

DA'

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, IFT, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable

[FSL]

Remarks

Summary

- I started search for necessary and sufficient conditions
- Indeed, I found such conditions

Thm 1

• In the process, I found also that

"sufficient" conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)

< 回 > < 回 > < 回

DA'

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, IFT, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable

[FSL]

Remarks

Summary

- I started search for necessary and sufficient conditions
- Indeed, I found such conditions

Thm 1

• In the process, I found also that

"sufficient" conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)

< 回 > < 回 > < 回

DA'

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, IFT, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable

[FSL]

Remarks

Summary

- I started search for necessary and sufficient conditions
- Indeed, I found such conditions

Thm 1

• In the process, I found also that

"sufficient" conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣

DA'

- Q was investigated in the paper
 [FSL] Falcão, Stolfi, and Lotufo, IFT, TPAMI, 2004
- They found "sufficient" conditions for DA to be usable

[FSL]

Remarks

Summary

- I started search for necessary and sufficient conditions
- Indeed, I found such conditions
- In the process, I found also that

"sufficient" conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)

- Characterization Theorem for DA
- 3 DA*: a slight modification of DA

5 Final Remarks

- 2 Characterization Theorem for DA
- DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks

イロト イポト イヨト イヨ

DA Thm 1 DA* [FSL] R Definitions and notation needed for DA

• $G = \langle V, E \rangle$ – finite directed graph

(Applications and our examples use simple grids.)

• Path (in G):
$$p = \langle v_0, \dots, v_\ell \rangle$$
, $\langle v_j, v_{j+1} \rangle \in E$ for $j < \ell$;
from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$;
 $p \circ w = \langle v_0, \dots, v_\ell, w \rangle$; Π_G – all paths in G .

Path cost function: a map ψ from Π_G to ⟨[−∞,∞], ≤ ⟩,
 ≤ is either ≤ or ≥.

• DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

$$\psi(\mathbf{v}) = \preceq -\min\{\psi(\mathbf{p}) \colon \mathbf{p} \text{ is a path to } \mathbf{v}\}$$

イロト イポト イヨト イヨト

DA Thm 1 DA* [FSL] Remarks
Definitions and notation needed for DA

- G = (V, E) finite directed graph
 (Applications and our examples use simple grids.)
- *Path (in G)*: $p = \langle v_0, \dots, v_\ell \rangle$, $\langle v_j, v_{j+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$; $p^w = \langle v_0, \dots, v_\ell, w \rangle$; Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to ⟨[−∞,∞], ≤ ⟩,
 ≤ is either ≤ or ≥.
- DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

$$\psi(\mathbf{v}) = \preceq -\min\{\psi(\mathbf{p}) : \mathbf{p} \text{ is a path to } \mathbf{v}\}$$

イロト イポト イヨト イヨト 一日

Definitions and notation needed for DA

- Path (in G): $p = \langle v_0, \dots, v_\ell \rangle$, $\langle v_j, v_{j+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$; $p^{\wedge}w = \langle v_0, \dots, v_\ell, w \rangle$; Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to ⟨[−∞,∞], ≤ ⟩,
 ≤ is either ≤ or ≥.
- DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

$$\psi(\mathbf{v}) = \preceq -\min\{\psi(\mathbf{p}) : \mathbf{p} \text{ is a path to } \mathbf{v}\}$$

イロト イポト イヨト イヨト

Definitions and notation needed for DA

- *Path (in G)*: $p = \langle v_0, ..., v_\ell \rangle$, $\langle v_j, v_{j+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_\ell = v$; $p \hat{v} = \langle v_0, ..., v_\ell, w \rangle$; Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to ⟨[−∞,∞], ≤ ⟩,
 ≤ is either ≤ or ≥.

• DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

 $\psi(\mathbf{v}) = \preceq -\min\{\psi(\mathbf{p}) : \mathbf{p} \text{ is a path to } \mathbf{v}\}$

イロン 不良 とくほう 不良 とうほ

DA' [FSL] Definitions and notation needed for DA

DA

Thm 1

- Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle, \langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_{\ell} = v$; $p^{\hat{}} w = \langle v_0, \dots, v_{\ell}, w \rangle;$ Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to $\langle [-\infty,\infty], \preceq \rangle$,

• DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

$$\psi(\mathbf{v}) = \preceq -\min\{\psi(\mathbf{p}) : \mathbf{p} \text{ is a path to } \mathbf{v}\}$$

イロト 不得 とくほと くほとう

DA' [FSL] Definitions and notation needed for DA

DA

Thm 1

- Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle, \langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_{\ell} = v$; $p^{\hat{}}w = \langle v_0, \dots, v_{\ell}, w \rangle;$ Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to $\langle [-\infty, \infty], \prec \rangle$,

• DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

イロン 不良 とくほう 不良 とうほ

DA' [FSL] Remarks Definitions and notation needed for DA

DA

Thm 1

- Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle, \langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_{\ell} = v$; $p \hat{w} = \langle v_0, \dots, v_\ell, w \rangle;$ Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to $\langle [-\infty,\infty], \preceq \rangle$,

• DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

DA' Remarks Definitions and notation needed for DA

DA

Thm 1

- Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle, \langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_{\ell} = v$; $p \hat{w} = \langle v_0, \dots, v_\ell, w \rangle;$ Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to $\langle [-\infty,\infty], \preceq \rangle$, \prec is either < or >.

• DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

DA' Definitions and notation needed for DA

DA

Thm 1

- Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle, \langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_{\ell} = v$; $p \hat{w} = \langle v_0, \dots, v_\ell, w \rangle;$ Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to $\langle [-\infty,\infty], \preceq \rangle$, \prec is either < or >.

• DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

$$\psi(\mathbf{v}) = \preceq -\min\{\psi(\mathbf{p}) \colon \mathbf{p} \text{ is a path to } \mathbf{v}\}$$

イロト イポト イヨト イヨト

Remarks

DA' Definitions and notation needed for DA

DA

Thm 1

- Path (in G): $p = \langle v_0, \ldots, v_\ell \rangle, \langle v_i, v_{i+1} \rangle \in E$ for $j < \ell$; from $S \subset V$ to $v \in V$ when $v_0 \in S$ and $v_{\ell} = v$; $p \hat{w} = \langle v_0, \dots, v_\ell, w \rangle;$ Π_G – all paths in G.
- Path cost function: a map ψ from Π_G to $\langle [-\infty,\infty], \preceq \rangle$, \prec is either < or >.

• DA for ψ tries to find, for every $v \in V$, the ψ -minimizer:

$$\psi(\mathbf{v}) = \preceq -\min\{\psi(\mathbf{p}) : \mathbf{p} \text{ is a path to } \mathbf{v}\}$$

イロト イポト イヨト イヨト

Remarks

DA

 $G = \langle V, E \rangle$ and non-empty $S \subset V$ are fixed

DA'

• Fuzzy connectedness: given affinity map $\psi: E \rightarrow [0, 1]$,

• Shortest path (classic DA): given distance $\omega_F \colon E \to [0, \infty)$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Examples of path cost functions ψ

 $\textit{G} = \langle \textit{V}, \textit{E} \rangle$ and non-empty $\textit{S} \subset \textit{V}$ are fixed

- Fuzzy connectedness: given affinity map ψ: E → [0, 1], seeks for maximizers (i.e., ≺-minimizers with ≺ being ≥):
 ψ_{min}(⟨v₀,..., v_ℓ⟩) = min_{1≤j≤ℓ}ψ(v_{j-1}, v_j) for ℓ > 0
 ψ_{min}(⟨v₀⟩) = 1 if v₀ ∈ S, ψ_{min}(⟨v₀⟩) = 0 if v₀ ∉ S
- Shortest path (classic DA): given distance $\omega_E \colon E \to [0, \infty)$, $\psi_{sum}(\langle v_0, \dots, v_\ell \rangle) = \sum_{1 \le j \le \ell} \omega_E(v_{j-1}, v_j) \text{ for } \ell > 0$ $\psi_{sum}(\langle v_0 \rangle) = 0 \text{ if } v_0 \in S, \quad \psi_{sum}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

イロン 不良 とくほう 不良 とうせい

DA

 $G = \langle V, E \rangle$ and non-empty $S \subset V$ are fixed

DA'

- Fuzzy connectedness: given affinity map $\psi: E \to [0, 1]$, seeks for maximizers (i.e., \prec -minimizers with \prec being >): $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le i \le \ell} \psi(v_{i-1}, v_i) \quad \text{for } \ell > 0$
- Shortest path (classic DA): given distance $\omega_F \colon E \to [0, \infty)$,

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

DA

 $G = \langle V, E \rangle$ and non-empty $S \subset V$ are fixed

DA'

- Fuzzy connectedness: given affinity map $\psi: E \to [0, 1]$, seeks for maximizers (i.e., \prec -minimizers with \prec being >): $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le i \le \ell} \psi(v_{i-1}, v_i) \quad \text{for } \ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = 1$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = 0$ if $v_0 \notin S$
- Shortest path (classic DA): given distance $\omega_F \colon E \to [0, \infty)$,

イロン 不良 とくほう 不良 とうせい

DA

 $G = \langle V, E \rangle$ and non-empty $S \subset V$ are fixed

DA'

- Fuzzy connectedness: given affinity map $\psi: E \to [0, 1]$, seeks for maximizers (i.e., \prec -minimizers with \prec being >): $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le i \le \ell} \psi(v_{i-1}, v_i) \quad \text{for } \ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = 1$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = 0$ if $v_0 \notin S$
- Shortest path (classic DA): given distance $\omega_F \colon E \to [0, \infty)$,

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ
Thm 1 [FSL] Examples of path cost functions ψ

DA

 $G = \langle V, E \rangle$ and non-empty $S \subset V$ are fixed

DA'

- Fuzzy connectedness: given affinity map $\psi: E \to [0, 1]$, seeks for maximizers (i.e., \prec -minimizers with \prec being >): $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le i \le \ell} \psi(v_{i-1}, v_i) \quad \text{for } \ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = 1$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = 0$ if $v_0 \notin S$
- Shortest path (classic DA): given distance $\omega_F \colon E \to [0, \infty)$, $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = \sum_{1 \le i \le \ell} \omega_E(v_{i-1}, v_i) \text{ for } \ell > 0$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Remarks

Thm 1 [FSL] Examples of path cost functions ψ

DA

 $G = \langle V, E \rangle$ and non-empty $S \subset V$ are fixed

DA'

- Fuzzy connectedness: given affinity map $\psi: E \to [0, 1]$, seeks for maximizers (i.e., \leq -minimizers with \leq being \geq): $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le i \le \ell} \psi(v_{i-1}, v_i) \quad \text{for } \ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = 1$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = 0$ if $v_0 \notin S$
- Shortest path (classic DA): given distance $\omega_F \colon E \to [0, \infty)$, $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = \sum_{1 \le j \le \ell} \omega_E(v_{j-1}, v_j) \text{ for } \ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = 0 \text{ if } v_0 \in S, \quad \psi_{\text{sum}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$

イロン 不良 とくほう 不良 とうせい

Thm 1 [FSL] Examples of path cost functions ψ

DA

 $G = \langle V, E \rangle$ and non-empty $S \subset V$ are fixed

DA'

- Fuzzy connectedness: given affinity map $\psi: E \to [0, 1]$, seeks for maximizers (i.e., \prec -minimizers with \prec being >): $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \le i \le \ell} \psi(v_{i-1}, v_i) \quad \text{for } \ell > 0$ $\psi_{\min}(\langle v_0 \rangle) = 1$ if $v_0 \in S$, $\psi_{\min}(\langle v_0 \rangle) = 0$ if $v_0 \notin S$
- Shortest path (classic DA): given distance $\omega_F \colon E \to [0, \infty)$, $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = \sum_{1 \le i \le \ell} \omega_E(v_{i-1}, v_i) \text{ for } \ell > 0$ $\psi_{\text{sum}}(\langle v_0 \rangle) = 0 \text{ if } v_0 \in S, \quad \psi_{\text{sum}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Remarks

More examples of path cost functions ψ

- Watershed transform: given altitude map $\omega_V \colon V \to [0, \infty)$,
 - $\psi_{\text{peak}}(\langle v_0, \dots, v_\ell \rangle) = \max_{1 \le j \le \ell} \{h(v_0), \omega_V(v_j)\} \text{ for } \ell > 0$ $\psi_{\text{peak}}(\langle v_0 \rangle) = h(v_0) \text{ for some } h, h(v_0) \ge \omega_V(v_0) \text{ for } v_0 \in V$ seeks for minimizers (i.e., \prec -minimizers with \prec being \le)
- Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{dif}}(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le j \le \ell} \omega_V(v_j) - \min_{0 \le j \le \ell} \omega_V(v_j)$ for $\ell > 0$ $\psi_{\text{dif}}(\langle v_0 \rangle) = 0$ if $v_0 \in S$, $\psi_{\text{dif}}(\langle v_0 \rangle) = \infty$ if $v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

イロト イポト イヨト イヨト

More examples of path cost functions ψ

- Watershed transform: given altitude map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{peak}}(\langle v_0, \dots, v_\ell \rangle) = \max_{1 \le j \le \ell} \{h(v_0), \omega_V(v_j)\} \text{ for } \ell > 0$ $\psi_{\text{peak}}(\langle v_0 \rangle) = h(v_0) \text{ for some } h, h(v_0) \ge \omega_V(v_0) \text{ for } v_0 \in V$ seeks for minimizers (i.e., \prec -minimizers with \prec being <)
- Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{dif}}(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le j \le \ell} \omega_V(v_j) - \min_{0 \le j \le \ell} \omega_V(v_j)$ for $\ell > 0$ $\psi_{\text{dif}}(\langle v_0 \rangle) = 0$ if $v_0 \in S$, $\psi_{\text{dif}}(\langle v_0 \rangle) = \infty$ if $v_0 \notin S$

seeks for minimizers (i.e., \preceq -minimizers with \preceq being \leq)

イロト イポト イヨト イヨト

More examples of path cost functions ψ

- Watershed transform: given altitude map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{peak}}(\langle v_0, \dots, v_\ell \rangle) = \max_{1 \le j \le \ell} \{h(v_0), \omega_V(v_j)\}$ for $\ell > 0$ $\psi_{\text{peak}}(\langle v_0 \rangle) = h(v_0)$ for some h, $h(v_0) \ge \omega_V(v_0)$ for $v_0 \in V$ seeks for minimizers (i.e., \prec -minimizers with \prec being <)
- Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{dif}}(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le j \le \ell} \omega_V(v_j) - \min_{0 \le j \le \ell} \omega_V(v_j)$ for $\ell > 0$ $\psi_{\text{dif}}(\langle v_0 \rangle) = 0$ if $v_0 \in S$, $\psi_{\text{dif}}(\langle v_0 \rangle) = \infty$ if $v_0 \notin S$

seeks for minimizers (i.e., \preceq -minimizers with \preceq being \leq)

イロト イポト イヨト イヨト

- Watershed transform: given altitude map ω_V: V → [0,∞),
 ψ_{peak}(⟨v₀,..., v_ℓ⟩) = max_{1≤j≤ℓ}{h(v₀), ω_V(v_j)} for ℓ > 0
 ψ_{peak}(⟨v₀⟩) = h(v₀) for some h, h(v₀) ≥ ω_V(v₀) for v₀ ∈ V
 seeks for minimizers (i.e., ≺-minimizers with ≺ being <)
- Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{dif}}(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le j \le \ell} \omega_V(v_j) - \min_{0 \le j \le \ell} \omega_V(v_j)$ for $\ell > 0$ $\psi_{\text{dif}}(\langle v_0 \rangle) = 0$ if $v_0 \in S$, $\psi_{\text{dif}}(\langle v_0 \rangle) = \infty$ if $v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

イロト 不得 とくほと くほとう

• Watershed transform: given altitude map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{peak}}(\langle v_0, \dots, v_\ell \rangle) = \max_{1 \le j \le \ell} \{h(v_0), \omega_V(v_j)\}$ for $\ell > 0$ $\psi_{\text{peak}}(\langle v_0 \rangle) = h(v_0)$ for some h, $h(v_0) \ge \omega_V(v_0)$ for $v_0 \in V$

seeks for minimizers (i.e., \preceq -minimizers with \preceq being \leq)

• Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$,

$$\begin{split} \psi_{\mathrm{dif}}(\langle v_0, \dots, v_{\ell} \rangle) &= \max_{0 \leq j \leq \ell} \omega_{V}(v_j) - \min_{0 \leq j \leq \ell} \omega_{V}(v_j) \text{ for } \ell > 0 \\ \psi_{\mathrm{dif}}(\langle v_0 \rangle) &= 0 \text{ if } v_0 \in S, \quad \psi_{\mathrm{dif}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S \end{split}$$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

イロン 不得 とくほ とくほ とうほ

- Watershed transform: given altitude map ω_V: V → [0,∞),
 ψ_{peak}(⟨v₀,..., v_ℓ⟩) = max_{1≤j≤ℓ}{h(v₀), ω_V(v_j)} for ℓ > 0
 ψ_{peak}(⟨v₀⟩) = h(v₀) for some h, h(v₀) ≥ ω_V(v₀) for v₀ ∈ V
 seeks for minimizers (i.e., ≺-minimizers with ≺ being <)
- Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{dif}}(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le j \le \ell} \omega_V(v_j) - \min_{0 \le j \le \ell} \omega_V(v_j)$ for $\ell > 0$ $\psi_{\text{dif}}(\langle v_0 \rangle) = 0$ if $v_0 \in S$, $\psi_{\text{dif}}(\langle v_0 \rangle) = \infty$ if $v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- Watershed transform: given altitude map ω_V: V → [0,∞),
 ψ_{peak}(⟨v₀,..., v_ℓ⟩) = max_{1≤j≤ℓ}{h(v₀), ω_V(v_j)} for ℓ > 0
 ψ_{peak}(⟨v₀⟩) = h(v₀) for some h, h(v₀) ≥ ω_V(v₀) for v₀ ∈ V
 seeks for minimizers (i.e., ≺-minimizers with ≺ being <)
- Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{dif}}(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le j \le \ell} \omega_V(v_j) - \min_{0 \le j \le \ell} \omega_V(v_j)$ for $\ell > 0$ $\psi_{\text{dif}}(\langle v_0 \rangle) = 0$ if $v_0 \in S$, $\psi_{\text{dif}}(\langle v_0 \rangle) = \infty$ if $v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- Watershed transform: given altitude map ω_V: V → [0,∞),
 ψ_{peak}(⟨v₀,..., v_ℓ⟩) = max_{1≤j≤ℓ}{h(v₀), ω_V(v_j)} for ℓ > 0
 ψ_{peak}(⟨v₀⟩) = h(v₀) for some h, h(v₀) ≥ ω_V(v₀) for v₀ ∈ V
 seeks for minimizers (i.e., ≺-minimizers with ≺ being <)
- Barrier Distance transform: given map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{dif}}(\langle v_0, \dots, v_\ell \rangle) = \max_{0 \le j \le \ell} \omega_V(v_j) - \min_{0 \le j \le \ell} \omega_V(v_j)$ for $\ell > 0$ $\psi_{\text{dif}}(\langle v_0 \rangle) = 0$ if $v_0 \in S$, $\psi_{\text{dif}}(\langle v_0 \rangle) = \infty$ if $v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The theorem of a path cost function ψ

• The last value: given a map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = \omega_V(v_\ell) \text{ for } \ell > 0$ $\psi_{\text{last}}(\langle v_0 \rangle) = \omega_V(v_0) \text{ if } v_0 \in S, \quad \psi_{\text{last}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

Its applications are concerned with a particular case of the riverbed boundary tracking and can be used to support connectivity constraints in region-based image segmentation.

イロト イポト イヨト イヨト

• The last value: given a map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = \omega_V(v_\ell) \text{ for } \ell > 0$ $\psi_{\text{last}}(\langle v_0 \rangle) = \omega_V(v_0) \text{ if } v_0 \in S, \quad \psi_{\text{last}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

Its applications are concerned with a particular case of the riverbed boundary tracking and can be used to support connectivity constraints in region-based image segmentation.

イロト イポト イヨト イヨ

• The last value: given a map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = \omega_V(v_\ell) \text{ for } \ell > 0$ $\psi_{\text{last}}(\langle v_0 \rangle) = \omega_V(v_0) \text{ if } v_0 \in S, \quad \psi_{\text{last}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$

seeks for minimizers (i.e., \leq -minimizers with \leq being \leq)

Its applications are concerned with a particular case of the riverbed boundary tracking and can be used to support connectivity constraints in region-based image segmentation.

イロト イポト イヨト イヨト

• The last value: given a map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = \omega_V(v_\ell) \text{ for } \ell > 0$ $\psi_{\text{last}}(\langle v_0 \rangle) = \omega_V(v_0) \text{ if } v_0 \in S, \quad \psi_{\text{last}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$

seeks for minimizers (i.e., $\preceq\text{-minimizers}$ with \preceq being $\leq)$

Its applications are concerned with a particular case of the riverbed boundary tracking and can be used to support connectivity constraints in region-based image segmentation.

・ロン ・ 同 と ・ ヨ と ・ ヨ と

• The last value: given a map $\omega_V \colon V \to [0, \infty)$, $\psi_{\text{last}}(\langle v_0, \dots, v_{\ell} \rangle) = \omega_V(v_{\ell}) \text{ for } \ell > 0$ $\psi_{\text{last}}(\langle v_0 \rangle) = \omega_V(v_0) \text{ if } v_0 \in S, \quad \psi_{\text{last}}(\langle v_0 \rangle) = \infty \text{ if } v_0 \notin S$

seeks for minimizers (i.e., \preceq -minimizers with \preceq being \leq)

Its applications are concerned with a particular case of the riverbed boundary tracking and can be used to support connectivity constraints in region-based image segmentation.

ヘロン 人間 とくほ とくほ とう

DA Thm 1 DA* [FSL] Remarks Summary Dijkstra Algorithm, DA, aiming to find ψ -optimal map

Data: $G = \langle V, E \rangle$ and ψ from Π_G to $\langle [-\infty, \infty], \preceq \rangle$ **Result**: an array $\sigma[]$, aiming for being ψ -optimal map **Additional**: an array $\pi[]$ of paths, such that, at any time, for any $v \in V$, $\pi[v]$ is a path to v with $\sigma[v] = \psi(\pi[v])$ **1** foreach $v \in V$ do $\pi[v] \leftarrow \langle v \rangle$; $\sigma[v] \leftarrow \psi(\pi[v]) / *$ init. */**2** $H \leftarrow V$

3 while $H \neq \emptyset$ do /* the main loop */4 remove an element w of arg $\preceq -\min_{u \in H} \sigma[u]$ from H 5 foreach x such that $\langle w, x \rangle \in E$ do 6 $\sigma' \leftarrow \psi(\pi[w]^{\chi})$ 7 if $\sigma[x] \succ \sigma'$ then $\sigma[x] \leftarrow \sigma'; \pi[x] \leftarrow \pi[w]^{\chi}$

イロト イポト イヨト イヨト

DA Thm 1 DA* [FSL] Remarks Summary Dijkstra Algorithm, DA, aiming to find ψ -optimal map

Data: $G = \langle V, E \rangle$ and ψ from Π_G to $\langle [-\infty, \infty], \preceq \rangle$ **Result**: an array $\sigma[]$, aiming for being ψ -optimal map **Additional**: an array $\pi[]$ of paths, such that, at any time, for any $v \in V$, $\pi[v]$ is a path to v with $\sigma[v] = \psi(\pi[v])$ **1 foreach** $v \in V$ **do** $\pi[v] \leftarrow \langle v \rangle$; $\sigma[v] \leftarrow \psi(\pi[v])$ /* **init**. */

2 $\mathsf{H} \leftarrow V$

```
a while H \neq \emptyset do /* the main loop */

remove an element w of arg \preceq -\min_{u \in H} \sigma[u] from H

foreach x such that \langle w, x \rangle \in E do

\sigma' \leftarrow \psi(\pi[w]^{x})

if \sigma[x] \succ \sigma' then \sigma[x] \leftarrow \sigma'; \pi[x] \leftarrow \pi[w]^{x}
```

ヘロン 人間 とくほ とくほ とう

DA Thm 1 DA* [FSL] Remarks Summary Dijkstra Algorithm, DA, aiming to find ψ -optimal map

Data: $G = \langle V, E \rangle$ and ψ from Π_G to $\langle [-\infty, \infty], \preceq \rangle$ **Result**: an array $\sigma[]$, aiming for being ψ -optimal map **Additional:** an array $\pi[]$ of paths, such that, at any time, for any $v \in V$, $\pi[v]$ is a path to v with $\sigma[v] = \psi(\pi[v])$

1 foreach
$$v \in V$$
 do $\pi[v] \leftarrow \langle v \rangle; \sigma[v] \leftarrow \psi(\pi[v])$ /* init. */
2 $H \leftarrow V$

3 while $H \neq \emptyset$ do /* the main loop */ 4 remove an element w of arg \preceq -min_{$u \in H} <math>\sigma[u]$ from H 5 foreach x such that $\langle w, x \rangle \in E$ do 6 $\sigma' \leftarrow \psi(\pi[w] \chi)$ 7 if $\sigma[x] \succ \sigma'$ then $\sigma[x] \leftarrow \sigma'; \pi[x] \leftarrow \pi[w] \chi$ </sub>

イロト イポト イヨト イヨト

DA Thm 1 DA' [FSL] Remarks Summary Dijkstra Algorithm, DA, aiming to find ψ -optimal map

Data: $G = \langle V, E \rangle$ and ψ from \prod_G to $\langle [-\infty, \infty], \prec \rangle$ **Result**: an array σ [], aiming for being ψ -optimal map **Additional:** an array π [] of paths, such that, at any time, for any $v \in V$, $\pi[v]$ is a path to v with $\sigma[v] = \psi(\pi[v])$ 1 foreach $v \in V$ do $\pi[v] \leftarrow \langle v \rangle; \sigma[v] \leftarrow \psi(\pi[v])$ /* init. */ $2 H \leftarrow V$ 3 while $H \neq \emptyset$ do /* the main loop */ **remove** an element w of arg \leq -min_{$u \in H$} $\sigma[u]$ from H 4 foreach x such that $\langle w, x \rangle \in E$ do 5 $\sigma' \leftarrow \psi(\pi[\mathbf{w}]^{\mathbf{x}})$ if $\sigma[x] \succ \sigma'$ then $\sigma[x] \leftarrow \sigma'$; $\pi[x] \leftarrow \pi[w]^x$

6

7

イロト イポト イヨト イヨト

3 DA*: a slight modification of DA

< 回 > < 三 > <

3

- is ψ-optimal if it is ≤-minimal, that is, provided ψ(p) ≤ ψ(q) for any other path q ∈ Π_G to v;
- is *hereditarily* ψ -*optimal* provided every initial segment $\langle v_0, \ldots, v_k \rangle$, $k \leq \ell$, of *p* is ψ -optimal;
- is *monotone* provided $\psi(\langle v_0, \ldots, v_i \rangle) \preceq \psi(\langle v_0, \ldots, v_j \rangle)$ whenever $0 \le i \le j \le \ell$;
- is *hereditarily* ψ-optimal monotone, HOM, provided it is both hereditarily ψ-optimal and monotone;
- has the replacement property provided
 ψ(⟨v₀,..., v_i⟩) = ψ(q[^]v_i) for every i ∈ {1,..., ℓ} and every
 HOM path q ∈ Π_G to v_{i-1}.

イロト イポト イヨト イヨト

- is ψ-optimal if it is ≤-minimal, that is, provided ψ(p) ≤ ψ(q) for any other path q ∈ Π_G to v;
- is *hereditarily* ψ -*optimal* provided every initial segment $\langle v_0, \ldots, v_k \rangle$, $k \leq \ell$, of *p* is ψ -optimal;
- is *monotone* provided $\psi(\langle v_0, \ldots, v_i \rangle) \preceq \psi(\langle v_0, \ldots, v_j \rangle)$ whenever $0 \le i \le j \le \ell$;
- is *hereditarily* ψ-optimal monotone, HOM, provided it is both hereditarily ψ-optimal and monotone;
- has the replacement property provided
 ψ(⟨v₀,..., v_i⟩) = ψ(q^ˆv_i) for every i ∈ {1,..., ℓ} and every
 HOM path q ∈ Π_G to v_{i-1}.

イロト 不得 とくほ とくほ とう

- is ψ-optimal if it is ≤-minimal, that is, provided ψ(p) ≤ ψ(q) for any other path q ∈ Π_G to v;
- is *hereditarily* ψ -*optimal* provided every initial segment $\langle v_0, \ldots, v_k \rangle$, $k \leq \ell$, of *p* is ψ -optimal;
- is *monotone* provided $\psi(\langle v_0, \ldots, v_i \rangle) \preceq \psi(\langle v_0, \ldots, v_j \rangle)$ whenever $0 \le i \le j \le \ell$;
- is *hereditarily* ψ-optimal monotone, HOM, provided it is both hereditarily ψ-optimal and monotone;
- has the replacement property provided
 ψ(⟨v₀,..., v_i⟩) = ψ(q[^]v_i) for every i ∈ {1,..., ℓ} and ever
 HOM path q ∈ Π_G to v_{i-1}.

<ロ> (四) (四) (三) (三) (三)

- is ψ-optimal if it is ≤-minimal, that is, provided ψ(p) ≤ ψ(q) for any other path q ∈ Π_G to v;
- is *hereditarily* ψ -*optimal* provided every initial segment $\langle v_0, \ldots, v_k \rangle$, $k \leq \ell$, of *p* is ψ -optimal;
- is *monotone* provided $\psi(\langle v_0, \ldots, v_i \rangle) \preceq \psi(\langle v_0, \ldots, v_j \rangle)$ whenever $0 \le i \le j \le \ell$;
- is *hereditarily* ψ-optimal monotone, HOM, provided it is both hereditarily ψ-optimal and monotone;
- has the replacement property provided $\psi(\langle v_0, \dots, v_i \rangle) = \psi(q^{\uparrow}v_i)$ for every $i \in \{1, \dots, \ell\}$ and every HOM path $q \in \Pi_G$ to v_{i-1} .

<ロ> (四) (四) (三) (三) (三)

- is ψ-optimal if it is ≤-minimal, that is, provided ψ(p) ≤ ψ(q) for any other path q ∈ Π_G to v;
- is *hereditarily* ψ -*optimal* provided every initial segment $\langle v_0, \ldots, v_k \rangle$, $k \leq \ell$, of *p* is ψ -optimal;
- is *monotone* provided $\psi(\langle v_0, \ldots, v_i \rangle) \preceq \psi(\langle v_0, \ldots, v_j \rangle)$ whenever $0 \le i \le j \le \ell$;
- is *hereditarily ψ-optimal monotone, HOM*, provided it is both hereditarily ψ-optimal and monotone;
- has the replacement property provided $\psi(\langle v_0, \dots, v_i \rangle) = \psi(q^{\uparrow}v_i)$ for every $i \in \{1, \dots, \ell\}$ and every HOM path $q \in \Pi_G$ to v_{i-1} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- is ψ-optimal if it is ≤-minimal, that is, provided ψ(p) ≤ ψ(q) for any other path q ∈ Π_G to v;
- is *hereditarily* ψ -*optimal* provided every initial segment $\langle v_0, \ldots, v_k \rangle$, $k \leq \ell$, of *p* is ψ -optimal;
- is *monotone* provided $\psi(\langle v_0, \ldots, v_i \rangle) \preceq \psi(\langle v_0, \ldots, v_j \rangle)$ whenever $0 \le i \le j \le \ell$;
- is *hereditarily ψ-optimal monotone, HOM*, provided it is both hereditarily ψ-optimal and monotone;
- has the replacement property provided
 ψ(⟨v₀,..., v_i⟩) = ψ(q^ˆv_i) for every i ∈ {1,..., ℓ} and every
 HOM path q ∈ Π_G to v_{i-1}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $\langle s, a, b \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}', \boldsymbol{b} \rangle$ is not ψ_{\min} -optimal
- $\langle s, a, b, c \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}', \boldsymbol{b}, \boldsymbol{c}
 angle$ is ψ_{min} -optimal but not hereditarily

- $\langle s, a, b \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}', \boldsymbol{b} \rangle$ is not ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle s, a', b, c \rangle$ is ψ_{\min} -optimal but not hereditarily

- $\langle \boldsymbol{s}, \boldsymbol{a}, \boldsymbol{b} \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}', \boldsymbol{b} \rangle$ is not ψ_{\min} -optimal
- $\langle s, a, b, c \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle s, a', b, c \rangle$ is ψ_{\min} -optimal but not hereditarily

- $\langle \boldsymbol{s}, \boldsymbol{a}, \boldsymbol{b} \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}', \boldsymbol{b} \rangle$ is not ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle s, a', b, c \rangle$ is ψ_{min} -optimal but not hereditarily

- $\langle s, a, b \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}', \boldsymbol{b} \rangle$ is not ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \rangle$ is hereditarily ψ_{\min} -optimal
- $\langle \boldsymbol{s}, \boldsymbol{a}', \boldsymbol{b}, \boldsymbol{c} \rangle$ is ψ_{\min} -optimal but not hereditarily

For costs ψ_{\min} , ψ_{sum} , and ψ_{peak} there is a map *f* s.t.

(I) $\psi(p v) = f(\psi(p), a, v)$ for any path *p* to *a* and edge $\langle a, v \rangle$.

Any ψ -optimal path has replacement property if ψ satisfies (I).

 ψ_{\min} , ψ_{sum} , and ψ_{peak} have strong replacement property:

 $\begin{array}{l} (\mathsf{R}^*) \ \psi(\langle v_0, \ldots, v_{\ell} \rangle) \preceq \psi(q^{\wedge} v_{\ell}) \text{ all paths} \\ \langle v_0, \ldots, v_{\ell} \rangle \text{ and } q \text{ to } v_{\ell-1} \text{ with } \psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q). \end{array}$

For ψ_{\min} , ψ_{sum} , ψ_{peak} , and ψ_{dif} : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψ_{\min} , ψ_{sum} , and ψ_{peak} , every v admits HOM path , v_{min} , ψ_{sum} , and ψ_{peak} , every v admits HOM path , v_{min} , ψ_{sum} , $\psi_{$

For costs ψ_{\min} , ψ_{sum} , and ψ_{peak} there is a map *f* s.t.

(I) $\psi(p^v) = f(\psi(p), a, v)$ for any path *p* to *a* and edge $\langle a, v \rangle$.

Any ψ -optimal path has replacement property if ψ satisfies (I).

 ψ_{\min} , ψ_{sum} , and ψ_{peak} have strong replacement property:

 $\begin{array}{l} (\mathsf{R}^*) \ \psi(\langle v_0, \ldots, v_{\ell} \rangle) \preceq \psi(q^{\widehat{}} v_{\ell}) \text{ all paths} \\ \langle v_0, \ldots, v_{\ell} \rangle \text{ and } q \text{ to } v_{\ell-1} \text{ with } \psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q). \end{array}$

For ψ_{\min} , ψ_{sum} , ψ_{peak} , and ψ_{dif} : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψ_{\min} , ψ_{sum} , and ψ_{peak} , every v admits HQM, path , , ,

For costs ψ_{\min} , ψ_{sum} , and ψ_{peak} there is a map *f* s.t.

(I) $\psi(p^v) = f(\psi(p), a, v)$ for any path *p* to *a* and edge $\langle a, v \rangle$.

Any ψ -optimal path has replacement property if ψ satisfies (I).

 $\psi_{\min}, \psi_{\textit{sum}}, \text{ and } \psi_{\textit{peak}}$ have strong replacement property:

 $\begin{array}{l} (\mathsf{R}^*) \ \psi(\langle v_0, \ldots, v_{\ell} \rangle) \preceq \psi(q^{\widehat{}} v_{\ell}) \text{ all paths} \\ \langle v_0, \ldots, v_{\ell} \rangle \text{ and } q \text{ to } v_{\ell-1} \text{ with } \psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q). \end{array}$

For ψ_{\min} , ψ_{sum} , ψ_{peak} , and ψ_{dif} : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψ_{\min} , ψ_{sum} , and ψ_{peak} , every v admits HQM path , , ,

For costs ψ_{\min} , ψ_{sum} , and ψ_{peak} there is a map *f* s.t.

(I) $\psi(p^{v}) = f(\psi(p), a, v)$ for any path *p* to *a* and edge $\langle a, v \rangle$.

Any ψ -optimal path has replacement property if ψ satisfies (I).

 ψ_{\min} , ψ_{sum} , and ψ_{peak} have strong replacement property:

(R*) $\psi(\langle v_0, \ldots, v_{\ell} \rangle) \preceq \psi(q^{\sim}v_{\ell})$ all paths $\langle v_0, \ldots, v_{\ell} \rangle$ and q to $v_{\ell-1}$ with $\psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q)$.

For ψ_{\min} , ψ_{sum} , ψ_{peak} , and ψ_{dif} : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψ_{\min} , ψ_{sum} , and ψ_{peak} , every v admits HQM path z_{min} ,
DA Thm 1 DA* [FSL] Remarks Summary Facts related to special paths

For costs ψ_{\min} , ψ_{sum} , and ψ_{peak} there is a map *f* s.t.

(I) $\psi(p^{v}) = f(\psi(p), a, v)$ for any path *p* to *a* and edge $\langle a, v \rangle$.

Any ψ -optimal path has replacement property if ψ satisfies (I).

 ψ_{\min} , ψ_{sum} , and ψ_{peak} have strong replacement property:

(R*)
$$\psi(\langle v_0, \dots, v_{\ell} \rangle) \preceq \psi(q v_{\ell})$$
 all paths $\langle v_0, \dots, v_{\ell} \rangle$ and q to $v_{\ell-1}$ with $\psi(\langle v_0, \dots, v_{\ell-1} \rangle) \preceq \psi(q)$.

For ψ_{\min} , ψ_{sum} , ψ_{peak} , and ψ_{dif} : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψ_{\min} , ψ_{sum} , and ψ_{peak} , every v admits HOM path , , ,

DA Thm 1 DA* [FSL] Remarks Summary Facts related to special paths

For costs ψ_{\min} , ψ_{sum} , and ψ_{peak} there is a map *f* s.t.

(I) $\psi(p^{v}) = f(\psi(p), a, v)$ for any path *p* to *a* and edge $\langle a, v \rangle$.

Any ψ -optimal path has replacement property if ψ satisfies (I).

 ψ_{\min} , ψ_{sum} , and ψ_{peak} have strong replacement property:

$$\begin{array}{l} (\mathsf{R}^*) \ \psi(\langle v_0, \ldots, v_{\ell} \rangle) \preceq \psi(q^{\widehat{}} v_{\ell}) \text{ all paths} \\ \langle v_0, \ldots, v_{\ell} \rangle \text{ and } q \text{ to } v_{\ell-1} \text{ with } \psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q). \end{array}$$

For ψ_{\min} , ψ_{sum} , ψ_{peak} , and ψ_{dif} : (M) any path is monotone

(M) and (R^{*}) imply that every v admits HOM path

So, for ψ_{\min} , ψ_{sum} , and ψ_{peak} , every v admits HOM path

DA Thm 1 DA* [FSL] Remarks Summary Facts related to special paths

For costs ψ_{\min} , ψ_{sum} , and ψ_{peak} there is a map *f* s.t.

(I) $\psi(p^{v}) = f(\psi(p), a, v)$ for any path *p* to *a* and edge $\langle a, v \rangle$.

Any ψ -optimal path has replacement property if ψ satisfies (I).

 ψ_{\min} , ψ_{sum} , and ψ_{peak} have strong replacement property:

$$\begin{array}{l} (\mathsf{R}^*) \ \psi(\langle v_0, \ldots, v_{\ell} \rangle) \preceq \psi(q^{\widehat{}} v_{\ell}) \text{ all paths} \\ \langle v_0, \ldots, v_{\ell} \rangle \text{ and } q \text{ to } v_{\ell-1} \text{ with } \psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q). \end{array}$$

For ψ_{\min} , ψ_{sum} , ψ_{peak} , and ψ_{dif} : (M) any path is monotone

(M) and (R^*) imply that every v admits HOM path

So, for ψ_{\min} , ψ_{sum} , and ψ_{peak} , every v admits HOM path

Thm 1 DA' Remarks Summarv The theorem for DA Theorem Let $\psi \colon \Pi_G \to [-\infty, \infty]$ be a path cost function. If (E) for every $v \in V$ there exists an HOM path to v with the replacement property. then $\sigma[$ returned by **DA** is guaranteed to be ψ -optimal;

$\psi_{ m last}$ satisfies (E) but is not monotone!

Thm 1 DA' Remarks Summarv The theorem for **DA** Theorem Let $\psi \colon \Pi_G \to [-\infty, \infty]$ be a path cost function. If (E) for every $v \in V$ there exists an HOM path to v with the replacement property. then $\sigma[$ returned by **DA** is guaranteed to be ψ -optimal; π [] returned by **DA**: π [v] = $\langle v_0, \ldots, v_\ell \rangle$ is HO path to v;

Thm 1 DA' Remarks Summary The theorem for **DA** Theorem Let $\psi \colon \Pi_G \to [-\infty, \infty]$ be a path cost function. If (E) for every $v \in V$ there exists an HOM path to v with the replacement property. then $\sigma[$ returned by **DA** is guaranteed to be ψ -optimal; π [] returned by **DA**: π [v] = $\langle v_0, \ldots, v_\ell \rangle$ is HO path to v; $\pi[\mathbf{v}_i] = \langle \mathbf{v}_0, \ldots, \mathbf{v}_i \rangle$ for every $i \in \{0, \ldots, \ell\}$.

unless for every v there is a hereditarily ψ -optimal path to v.

p_{last} satisfies (E) but is not monotone!

The theorem for DA Theorem Let $\psi: \Pi_G \rightarrow [-\infty, \infty]$ be a path cost function. If

(E) for every $v \in V$ there exists an HOM path to v with the replacement property,

then σ [] returned by **DA** is guaranteed to be ψ -optimal;

 $\pi[] \text{ returned by } \mathbf{DA}: \pi[v] = \langle v_0, \dots, v_\ell \rangle \text{ is HO path to } v; \\ \pi[v_i] = \langle v_0, \dots, v_i \rangle \text{ for every } i \in \{0, \dots, \ell\}.$

Conversely, if

(M) $\psi(q) \preceq \psi(p)$ for every path p and its initial segment q,

then σ [] returned by **DA cannot be** ψ -optimal,

unless for every v there is a hereditarily ψ -optimal path to v.

$\psi_{ m last}$ satisfies (E) but is not monotone!

DA Thm 1 DA* [FSL] Remarks Summary The theorem for DA Theorem

Let $\psi\colon \Pi_G\to [-\infty,\infty]$ be a path cost function. If

(E) for every $v \in V$ there exists an HOM path to v with the replacement property,

then σ [] returned by **DA** is guaranteed to be ψ -optimal;

 $\pi[] \text{ returned by } \mathbf{DA}: \pi[v] = \langle v_0, \dots, v_\ell \rangle \text{ is HO path to } v; \\ \pi[v_i] = \langle v_0, \dots, v_i \rangle \text{ for every } i \in \{0, \dots, \ell\}.$

Conversely, if

(M) $\psi(q) \preceq \psi(p)$ for every path p and its initial segment q,

then σ [] returned by **DA cannot be** ψ -optimal,

unless for every v there is a hereditarily ψ -optimal path to v.

$\psi_{ m last}$ satisfies (E) but is not monotone!

The theorem for DA Theorem Let $\psi: \Pi_G \rightarrow [-\infty, \infty]$ be a path cost function. If

(E) for every $v \in V$ there exists an HOM path to v with the replacement property,

then σ [] returned by **DA** is guaranteed to be ψ -optimal;

 $\pi[] \text{ returned by } \mathbf{DA}: \pi[v] = \langle v_0, \dots, v_\ell \rangle \text{ is HO path to } v; \\ \pi[v_i] = \langle v_0, \dots, v_i \rangle \text{ for every } i \in \{0, \dots, \ell\}.$

Conversely, if

(M) $\psi(q) \preceq \psi(p)$ for every path p and its initial segment q,

then σ [] returned by **DA cannot be** ψ -optimal,

unless for every v there is a hereditarily ψ -optimal path to v.

ψ_{last} satisfies (E) but is not monotone!

ヘロト ヘアト ヘビト ヘ

Corollary

If $\psi \colon \Pi_G \to \mathbb{R}$ satisfies (M) and (R) $\psi(p) = \psi(q^{\circ}v)$ for every HOM $p = \langle v_0, \dots, v_{\ell} \rangle$ & q to $v_{\ell-1}$, then $\sigma[]$ returned by **DA** is the ψ -optimal map if, and only if, for every $v \in V$ there exists a hereditarily ψ -optimal path to v.

PROOF. (E) follows from (M) and (R).

The rest follows from Theorem.

イロン イボン イヨン イヨ

Corollary

If $\psi \colon \Pi_G \to \mathbb{R}$ satisfies (M) and (R) $\psi(p) = \psi(q^{\gamma}v)$ for every HOM $p = \langle v_0, \dots, v_{\ell} \rangle$ & q to $v_{\ell-1}$, then $\sigma[]$ returned by DA is the ψ -optimal map if, and only if, for every $v \in V$ there exists a hereditarily ψ -optimal path to v.

PROOF. (E) follows from (M) and (R).

The rest follows from Theorem.

イロト イヨト イヨト イ

Corollary

If $\psi \colon \Pi_G \to \mathbb{R}$ satisfies (M) and (R) $\psi(p) = \psi(q^{\circ}v)$ for every HOM $p = \langle v_0, \dots, v_{\ell} \rangle$ & q to $v_{\ell-1}$, then $\sigma[]$ returned by **DA** is the ψ -optimal map if, and only if, for every $v \in V$ there exists a hereditarily ψ -optimal path to v.

PROOF. (E) follows from (M) and (R).

The rest follows from Theorem.

< □ > < 同 > < 三 > <

Corollary

If $\psi : \Pi_G \to \mathbb{R}$ satisfies (M) and (R) $\psi(p) = \psi(q^{\circ}v)$ for every HOM $p = \langle v_0, \dots, v_{\ell} \rangle$ & q to $v_{\ell-1}$, then $\sigma[]$ returned by **DA** is the ψ -optimal map if, and only if, for every $v \in V$ there exists a hereditarily ψ -optimal path to v.

PROOF. (E) follows from (M) and (R).

The rest follows from Theorem.

< □ > < 同 > < 三 > <

Corollary

If $\psi : \Pi_G \to \mathbb{R}$ satisfies (M) and (R) $\psi(p) = \psi(q^{\gamma}v)$ for every HOM $p = \langle v_0, \dots, v_{\ell} \rangle$ & q to $v_{\ell-1}$, then $\sigma[]$ returned by **DA** is the ψ -optimal map if, and only if, for every $v \in V$ there exists a hereditarily ψ -optimal path to v.

PROOF. (E) follows from (M) and (R).

The rest follows from Theorem.

< ロ > < 同 > < 三 >

Corollary

 ψ_{sum} , ψ_{min} , and ψ_{peak} satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

• $\psi(\langle v_0, \ldots, v_{\ell} \rangle) = \psi(q^{\uparrow} v_{\ell})$ for all optimal paths $\langle v_0, \ldots, v_{\ell} \rangle$ and *q* to $v_{\ell-1}$ with $\psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q)$.

So, (E) holds.

Corollary

 ψ_{sum} , ψ_{min} , and ψ_{peak} satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

• $\psi(\langle v_0, \ldots, v_{\ell} \rangle) = \psi(q^{\uparrow} v_{\ell})$ for all optimal paths $\langle v_0, \ldots, v_{\ell} \rangle$ and *q* to $v_{\ell-1}$ with $\psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q)$.

So, (E) holds.

Corollary

 ψ_{sum} , ψ_{min} , and ψ_{peak} satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

• $\psi(\langle v_0, \ldots, v_{\ell} \rangle) = \psi(q^{\uparrow} v_{\ell})$ for all optimal paths $\langle v_0, \ldots, v_{\ell} \rangle$ and *q* to $v_{\ell-1}$ with $\psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q)$.

So, (E) holds.

イロト イポト イヨト イヨト

-

Corollary

 ψ_{sum} , ψ_{min} , and ψ_{peak} satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

• $\psi(\langle v_0, \ldots, v_{\ell} \rangle) = \psi(q v_{\ell})$ for all optimal paths $\langle v_0, \ldots, v_{\ell} \rangle$ and q to $v_{\ell-1}$ with $\psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q)$.

So, (E) holds.

イロト イポト イヨト イヨト

1

Corollary

 ψ_{sum} , ψ_{min} , and ψ_{peak} satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

• $\psi(\langle v_0, \ldots, v_{\ell} \rangle) = \psi(q v_{\ell})$ for all optimal paths $\langle v_0, \ldots, v_{\ell} \rangle$ and q to $v_{\ell-1}$ with $\psi(\langle v_0, \ldots, v_{\ell-1} \rangle) \preceq \psi(q)$.

So, (E) holds.

DA Thm 1 DA* [FSL] Remarks Summary Another consequence

Corollary

DA need not return optimal map for Barrier Distance ψ_{dif} .

PROOF. No hereditarily ψ_{dif} -optimal path from $S = \{s\}$ to d. As ψ_{dif} satisfies (M), the result follows from the Theorem.

Corollary

DA need not return optimal map for Barrier Distance ψ_{dif} .

PROOF. No hereditarily ψ_{dif} -optimal path from $S = \{s\}$ to d. As ψ_{dif} satisfies (M), the result follows from the Theorem.

ヘロト 人間 ト ヘヨト ヘヨト

Corollary

DA need not return optimal map for Barrier Distance ψ_{dif} .

PROOF. No hereditarily ψ_{dif} -optimal path from $S = \{s\}$ to d.

As ψ_{dif} satisfies (M), the result follows from the Theorem.

ヘロン 人間 とくほ とくほ とう

3

Corollary

DA need not return optimal map for Barrier Distance ψ_{dif} .

PROOF. No hereditarily ψ_{dif} -optimal path from $S = \{s\}$ to d.

As ψ_{dif} satisfies (M), the result follows from the Theorem.

・ 同 ト ・ ヨ ト ・ ヨ ト …

DA*: a slight modification of DA

5 Final Remarks

Consider graph $s \leftrightarrow a$

Put $\psi(\langle s \rangle) = .2$, $\psi(p) = 0$ for any other path from *s*, and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal.

 ψ satisfies (R), in void, since there are no HO paths.

DA returns a non-trivial circular path: **DA** terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL] **DA** returns optimal σ []

イロト イポト イヨト イヨト

Consider graph $s \leftrightarrow a$

Put $\psi(\langle s \rangle) = .2$, $\psi(p) = 0$ for any other path from *s*, and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal. ψ satisfies (R), in void, since there are no HO paths. **DA** returns a non-trivial circular path: **DA** terminates with

This contradicts Lemma 2 from [FSL] **DA** returns optimal σ []

イロト イポト イヨト イヨト

Consider graph $s \leftrightarrow a$

Put $\psi(\langle s \rangle) = .2$, $\psi(p) = 0$ for any other path from *s*, and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal. ψ satisfies (R), in void, since there are no HO paths. **DA** returns a non-trivial circular path: **DA** terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL] **DA** returns optimal σ []

イロト イポト イヨト イヨト

Consider graph $s \leftrightarrow a$

Put $\psi(\langle s \rangle) = .2$, $\psi(p) = 0$ for any other path from *s*, and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal. ψ satisfies (R), in void, since there are no HO paths. DA returns a non-trivial circular path: DA terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL] **DA** returns optimal σ []

ヘロン 人間 とくほ とくほ とう

Consider graph $s \leftrightarrow a$

Put $\psi(\langle s \rangle) = .2$, $\psi(p) = 0$ for any other path from *s*, and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal. ψ satisfies (R), in void, since there are no HO paths.

DA returns a non-trivial circular path: **DA** terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL] **DA** returns optimal σ []

イロト イポト イヨト イヨト 三日

Consider graph $s \leftrightarrow a$

Put $\psi(\langle s \rangle) = .2$, $\psi(p) = 0$ for any other path from *s*, and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal.

 ψ satisfies (R), in void, since there are no HO paths.

DA returns a non-trivial circular path: **DA** terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL] **DA** returns optimal σ []

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Consider graph $s \leftrightarrow a$

Put $\psi(\langle s \rangle) = .2$, $\psi(p) = 0$ for any other path from *s*, and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal.

 ψ satisfies (R), in void, since there are no HO paths.

DA returns a non-trivial circular path: **DA** terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL] **DA** returns optimal σ []

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Consider graph $s \leftrightarrow a$

Put $\psi(\langle s \rangle) = .2$, $\psi(p) = 0$ for any other path from *s*, and

 $\psi(p) = 0$ for p from a. For minimization, we get

There is no HOM path for any $v \in V$, since $\langle v \rangle$ is suboptimal.

 ψ satisfies (R), in void, since there are no HO paths.

DA returns a non-trivial circular path: **DA** terminates with $\pi[a] = \langle s, a \rangle$ and the cycle $\pi[s] = \langle s, a, s \rangle$.

This contradicts Lemma 2 from [FSL] **DA** returns optimal σ []

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

DA Thm 1 DA* [FSL] Remarks DA*, which cannot return cycles for any ψ

Algorithm 1: DA^{*}, aiming to find the ψ -optimal map **Data**: $G = \langle V, E \rangle$ and ψ from Π_G to $\langle [-\infty, \infty], \preceq \rangle$ **Result**: an array $\sigma[]$, aiming for being ψ -optimal map **Additional:** an array $\pi[]$ of paths, such that, at any time, for any $v \in V$, $\pi[v]$ is a path to v with $\sigma[v] = \psi(\pi[v])$

1 foreach $v \in V$ do $\pi[v] \leftarrow \langle v \rangle; \sigma[v] \leftarrow \psi(\pi[v])$ /* init. */ 2 H $\leftarrow V$

3 while $H \neq \emptyset$ do /* the main loop */ 4 remove an element w of arg $\leq -\min_{u \in H} \sigma[u]$ from H 5 foreach x such that $\langle w, x \rangle \in E$ and $x \in H$ do 6 $\sigma' \leftarrow \psi(\pi[w]^{x})$ 7 $\int \sigma[x] \succ \sigma'$ then $\sigma[x] \leftarrow \sigma'; \pi[x] \leftarrow \pi[w]^{x}$

イロト イポト イヨト イヨト

Main Theorem for DA*: no cycles

Theorem

Let $\psi \colon \Pi_G \to [-\infty, \infty]$ be a path cost function.

DA'

- If π[] is returned by DA*, then, for every v ∈ V, π[v] = ⟨v₀..., v_ℓ⟩ is a path to v with no repetitions such that π[v_i] = ⟨v₀..., v_i⟩ for every i ∈ {0,...,ℓ}.
- If (E) holds, then σ[] returned by DA* is guaranteed to be the ψ-optimal map. Moreover, the returned map π[] consists of hereditary ψ-optimal paths.
- Conversely, σ[] returned by DA* cannot be ψ-optimal, unless for every v ∈ V there exists a HOM path to v.

ヘロト ヘヨト ヘヨト

Main Theorem for DA*: no cycles

Theorem

Thm 1

Let $\psi \colon \Pi_G \to [-\infty, \infty]$ be a path cost function.

DA'

- If π[] is returned by DA*, then, for every v ∈ V, π[v] = ⟨v₀..., v_ℓ⟩ is a path to v with no repetitions such that π[v_i] = ⟨v₀..., v_i⟩ for every i ∈ {0,...,ℓ}.
- If (E) holds, then σ[] returned by DA* is guaranteed to be the ψ-optimal map. Moreover, the returned map π[] consists of hereditary ψ-optimal paths.
- Conversely, σ[] returned by DA* cannot be ψ-optimal, unless for every v ∈ V there exists a HOM path to v.

ヘロト ヘアト ヘヨト ヘ

Remarks

Main Theorem for DA*: no cycles

Theorem

Thm 1

Let $\psi \colon \Pi_G \to [-\infty, \infty]$ be a path cost function.

DA'

- If π[] is returned by DA*, then, for every v ∈ V, π[v] = ⟨v₀..., v_ℓ⟩ is a path to v with no repetitions such that π[v_i] = ⟨v₀..., v_i⟩ for every i ∈ {0,...,ℓ}.
- If (E) holds, then σ[] returned by DA* is guaranteed to be the ψ-optimal map. Moreover, the returned map π[] consists of hereditary ψ-optimal paths.
- Conversely, σ[] returned by DA* cannot be ψ-optimal, unless for every v ∈ V there exists a HOM path to v.

< ロ > < 同 > < 三 >

Remarks

- 2 Characterization Theorem for DA
- 3 DA*: a slight modification of DA

5 Final Remarks

イロト イポト イヨト イヨ

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q^v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\psi(q) \preceq \psi(p)$,
- C2. q is ψ -optimal,
- C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ **DA** must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior.

Remarks

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q^v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\psi(q) \preceq \psi(p)$,
- C2. q is ψ -optimal,
- C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ **DA** must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior, **a**, **b**

Remarks

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q \hat{v}$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

C1. $\psi(q) \preceq \psi(p)$,

C2. q is ψ -optimal,

C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ **DA** must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior.

Remarks

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q \hat{v}$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

C1. $\psi(q) \preceq \psi(p)$,

C2. q is ψ -optimal,

C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ **DA** must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior.

Remarks

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q^v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\psi(q) \preceq \psi(p)$,
- C2. q is ψ -optimal,

C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ DA must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior.

Remarks

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q^v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\psi(q) \preceq \psi(p)$,
- C2. q is ψ -optimal,
- C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ **DA** must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior.

Remarks

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q^v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\psi(q) \preceq \psi(p)$,
- C2. q is ψ -optimal,
- C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ DA must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good be having a second sec

Remarks

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q^v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\psi(q) \preceq \psi(p)$,
- C2. q is ψ -optimal,
- C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ DA must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior, **a**, **b**

Remarks

A path cost map ψ is a smooth function provided

for any v there exists ψ -optimal p to v s.t. either $p = \langle v \rangle$, or

 $p = q^v$, where q is a path to w, $\langle w, v \rangle$ is an edge, and

- C1. $\psi(q) \preceq \psi(p)$,
- C2. q is ψ -optimal,
- C3. for any ψ -optimal path *r* to *w*, $\psi(r v) = \psi(p)$.

It is claimed (incorrectly) in [FSL] that for smooth ψ DA must return ψ -optimal map σ [].

There is no proof of this in [FSL]. Instead, authors claim (without proof) that C1-C3 imply stronger properties C1*-C3* and proceed to prove that they imply **DA**'s good behavior.

Remarks

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

- C1*. $\psi(\langle v_0,\ldots,v_k\rangle) \leq \psi(p),$
- C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,
- C3*. for any ψ -optimal path q to v_k , $\psi(q \langle v_{k+1}, \ldots, v_{\ell} \rangle) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q^{\mathsf{v}}_{k+1}) = \psi(\langle v_0, \ldots, v_{k+1} \rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

C1*. $\psi(\langle v_0, \ldots, v_k \rangle) \preceq \psi(p)$,

C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,

C3*. for any ψ -optimal path q to v_k , $\psi(q \langle v_{k+1}, \ldots, v_{\ell} \rangle) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q^{\mathsf{v}}_{k+1}) = \psi(\langle v_0, \ldots, v_{k+1} \rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

- C1*. $\psi(\langle v_0,\ldots,v_k\rangle) \leq \psi(\rho),$
- C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,

C3*. for any ψ -optimal path q to v_k , $\psi(q \langle v_{k+1}, \ldots, v_{\ell} \rangle) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q^{\mathsf{v}}_{k+1}) = \psi(\langle v_0, \ldots, v_{k+1} \rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

- C1*. $\psi(\langle v_0, \ldots, v_k \rangle) \leq \psi(\rho)$,
- C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,
- C3*. for any ψ -optimal path q to v_k , $\psi(q(v_{k+1}, \ldots, v_{\ell})) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q^{\mathsf{v}}_{k+1}) = \psi(\langle v_0, \ldots, v_{k+1} \rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

- C1*. $\psi(\langle v_0, \ldots, v_k \rangle) \preceq \psi(p)$,
- C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,
- C3*. for any ψ -optimal path q to v_k , $\psi(q(v_{k+1}, \ldots, v_{\ell})) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q^{\mathsf{v}}_{k+1}) = \psi(\langle v_0, \ldots, v_{k+1} \rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

- C1*. $\psi(\langle v_0, \ldots, v_k \rangle) \preceq \psi(p)$,
- C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,
- C3*. for any ψ -optimal path q to v_k , $\psi(q \langle v_{k+1}, \ldots, v_{\ell} \rangle) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q^{\mathbf{v}_{k+1}}) = \psi(\langle v_0, \ldots, v_{k+1} \rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

- C1*. $\psi(\langle v_0, \ldots, v_k \rangle) \leq \psi(\rho)$,
- C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,
- C3*. for any ψ -optimal path q to v_k , $\psi(q(v_{k+1}, \ldots, v_{\ell})) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q^{\mathbf{v}}_{k+1}) = \psi(\langle v_0, \ldots, v_{k+1} \rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

For any v there exists a ψ -optimal path $p = \langle v_0, \dots, v_\ell \rangle$ to v s.t. for any $k \in \{0, \dots, \ell - 1\}$

- C1*. $\psi(\langle v_0, \ldots, v_k \rangle) \preceq \psi(p)$,
- C2*. $\langle v_0, \ldots, v_k \rangle$ is ψ -optimal,
- C3*. for any ψ -optimal path q to v_k , $\psi(q(v_{k+1}, \ldots, v_{\ell})) = \psi(p)$.

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

$$\psi(q^{\mathbf{v}_{k+1}}) = \psi(\langle v_0, \ldots, v_{k+1} \rangle)$$

Q. Why did I bother, when [FSL] contains proof that C1*-C3* are sufficient?

C1-C3 does not imply C1*-C3*

Example

Graph: $\{0, \ldots, 5\} \times \{0, \ldots, 5\}$ with 4-adjacency. Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., $\leq is \leq$. If *s* appears in $p = \langle v_0, \ldots, v_\ell \rangle$ only as v_0 : $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise. $\psi(p) = 100$ for all other paths *p*.

•
$$\psi(\mathbf{v}) = \mathbf{0}$$
 for every \mathbf{v}

- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)
- for any v adjacent to s, **DA** returns a suboptimal value 1.

イロト イポト イヨト イヨト

Remarks

C1-C3 does not imply C1*-C3*

Example

Graph: $\{0,\ldots,5\}\times\{0,\ldots,5\}$ with 4-adjacency.

Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., \leq is \leq .

If *s* appears in $p = \langle v_0, \dots, v_\ell \rangle$ only as v_0 : $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise.

 $\psi(p) = 100$ for all other paths p.

- $\psi(\mathbf{v}) = \mathbf{0}$ for every \mathbf{v}
- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)
- for any *v* adjacent to *s*, **DA** returns a suboptimal value 1.

イロト イポト イヨト イヨ

Remarks

Example

Graph: $\{0, ..., 5\} \times \{0, ..., 5\}$ with 4-adjacency. Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., \preceq is \leq . If *s* appears in $p = \langle v_0, ..., v_\ell \rangle$ only as v_0 :

 $\psi(\rho) = 100$ for all other paths ρ

•
$$\psi(\mathbf{v}) = \mathbf{0}$$
 for every \mathbf{v}

- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)
- for any *V* adjacent to *s*, **DA** returns a suboptimal value 1.

イロト イポト イヨト イヨト

Example

Graph: $\{0, \ldots, 5\} \times \{0, \ldots, 5\}$ with 4-adjacency. Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., $\leq is \leq$. If *s* appears in $p = \langle v_0, \ldots, v_\ell \rangle$ only as v_0 : $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise. $\psi(p) = 100$ for all other paths *p*.

- $\psi(v) = 0$ for every v
- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)
- for any *v* adjacent to *s*, **DA** returns a suboptimal value 1.

イロト イポト イヨト イヨト

Example

Graph: $\{0, \ldots, 5\} \times \{0, \ldots, 5\}$ with 4-adjacency. Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., $\leq is \leq$. If *s* appears in $p = \langle v_0, \ldots, v_\ell \rangle$ only as v_0 : $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise. $\psi(p) = 100$ for all other paths *p*.

- $\psi(v) = 0$ for every v
- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)
- for any *v* adjacent to *s*, **DA** returns a suboptimal value 1.

イロト イポト イヨト イヨト

Example

Graph: $\{0, \ldots, 5\} \times \{0, \ldots, 5\}$ with 4-adjacency. Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., $\leq is \leq$. If *s* appears in $p = \langle v_0, \ldots, v_\ell \rangle$ only as v_0 : $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise. $\psi(p) = 100$ for all other paths *p*.

- $\psi(\mathbf{v}) = \mathbf{0}$ for every \mathbf{v}
- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)
- for any *v* adjacent to *s*, **DA** returns a suboptimal value 1.

イロト イポト イヨト イヨト

Example

Graph: $\{0, \ldots, 5\} \times \{0, \ldots, 5\}$ with 4-adjacency. Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., $\leq is \leq$. If *s* appears in $p = \langle v_0, \ldots, v_\ell \rangle$ only as v_0 : $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise. $\psi(p) = 100$ for all other paths *p*.

•
$$\psi(\mathbf{v}) = \mathbf{0}$$
 for every \mathbf{v}

- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)

• for any *v* adjacent to *s*, **DA** returns a suboptimal value 1.

イロト イポト イヨト イヨト

Example

Graph: $\{0, \ldots, 5\} \times \{0, \ldots, 5\}$ with 4-adjacency. Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., $\leq is \leq$. If *s* appears in $p = \langle v_0, \ldots, v_\ell \rangle$ only as v_0 : $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise. $\psi(p) = 100$ for all other paths *p*.

- $\psi(\mathbf{v}) = \mathbf{0}$ for every \mathbf{v}
- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)

• for any v adjacent to s, **DA** returns a suboptimal value 1.

イロト イポト イヨト イヨト

Example

Graph: $\{0, \ldots, 5\} \times \{0, \ldots, 5\}$ with 4-adjacency. Seed: $s = \langle 0, 0 \rangle$. Problem: minimization, i.e., $\leq is \leq$. If *s* appears in $p = \langle v_0, \ldots, v_\ell \rangle$ only as v_0 : $\psi(p) = \ell$ when $\ell \leq 3$; $\psi(p) = 0$ otherwise. $\psi(p) = 100$ for all other paths *p*.

•
$$\psi(\mathbf{v}) = \mathbf{0}$$
 for every \mathbf{v}

- C1-C3 are satisfied (by any path of length \geq 5)
- C1*-C2* are not satisfied (only *s* admits HOM path)
- for any *v* adjacent to *s*, **DA** returns a suboptimal value 1.

・ロト ・ 同ト ・ ヨト ・ ヨト

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \dots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \dots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle, \langle s, a, a', b' \rangle, \langle \ldots, a, b, b' \rangle, \text{ or } \langle s', a', a, b \rangle.$

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

 $S = \{s, s'\}$; maximization problem (i.e., $\leq is \geq$) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$ May terminate with suboptimal σ : Starting with $\langle s, a \rangle$ and $\langle s' \rangle$

May terminate with optimal σ : Starting with $\langle s, a, a' \rangle$

 $S = \{s, s'\}$; maximization problem (i.e., $\leq is \geq$) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

 $S = \{s, s'\}$; maximization problem (i.e., $\leq is \geq$) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

 $S = \{s, s'\}$; maximization problem (i.e., $\leq is \geq$) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

C1*-C3* satisfied: by $\langle s, a, a', b', b \rangle$ and $\langle s', a', a, b, b' \rangle$

[FSL] Remarks Stronger example: σ cannot be optimal

 $\psi(p) = 1$ for any p from $\{s, s'\}$ of the form $(\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle, \langle s, a, a', b' \rangle, \langle \ldots, a, b, b' \rangle, \text{ or } \langle s', a', a, b \rangle.$

• $\langle \ldots, a', c', c \rangle, \langle s', a', c' \rangle, \langle \ldots, a, c, c' \rangle, \text{ or } \langle s, a, c \rangle.$
Stronger example: σ cannot be optimal

 $\psi(p) = 1$ for any p from $\{s, s'\}$ of the form $(\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

• $\langle \ldots, a', c', c \rangle, \langle s', a', c' \rangle, \langle \ldots, a, c, c' \rangle, \text{ or } \langle s, a, c \rangle.$

Stronger example: σ cannot be optimal

 $\psi(p) = 1$ for any p from $\{s, s'\}$ of the form $(\psi(p) = 0$ otherwise):

• to a $v \in \{s, s', a, a'\}$ or having repeated vertices;

• $\langle \ldots, a', b', b \rangle$, $\langle s, a, a', b' \rangle$, $\langle \ldots, a, b, b' \rangle$, or $\langle s', a', a, b \rangle$.

• $\langle \ldots, a', c', c \rangle, \langle s', a', c' \rangle, \langle \ldots, a, c, c' \rangle, \text{ or } \langle s, a, c \rangle.$

Stronger example: σ cannot be optimal

 $\psi(p) = 1$ for any p from $\{s, s'\}$ of the form $(\psi(p) = 0$ otherwise):

to a v ∈ {s, s', a, a'} or having repeated vertices;
⟨..., a', b', b⟩, ⟨s, a, a', b'⟩, ⟨..., a, b, b'⟩, or ⟨s', a', a, b⟩.
⟨..., a', c', c⟩, ⟨s', a', c'⟩, ⟨..., a, c, c'⟩, or ⟨s, a, c⟩.

- 1 The algorithm
- 2 Characterization Theorem for DA
- 3 DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks

(I) $\psi(p^{\nu}) = f(\psi(p), a, b)$ for any path *p* to *a* and edge $\langle a, b \rangle$,

then, in **DA** and **DA**^{*}, there is no need to store paths in π []. The similar trick can be used for ψ_{dif} .

If ψ satisfies (M), "x \in H" in line 5 of **DA*** is redundant.

For such ψ it makes sense to replace, both in **DA** and **DA**^{*}, the condition in line 5 with "x such that $\langle w, x \rangle \in E$ and $x \in H$," to avoid unnecessary compution of $\psi(\pi[w]^x)$.

(I) $\psi(p^v) = f(\psi(p), a, b)$ for any path *p* to *a* and edge $\langle a, b \rangle$,

then, in **DA** and **DA**^{*}, there is no need to store paths in π []. The similar trick can be used for ψ_{dif} .

If ψ satisfies (M), "x \in H" in line 5 of **DA*** is redundant.

For such ψ it makes sense to replace, both in **DA** and **DA**^{*}, the condition in line 5 with "x such that $\langle w, x \rangle \in E$ and $x \in H$," to avoid unnecessary compution of $\psi(\pi[w]^x)$.

(I) $\psi(p^v) = f(\psi(p), a, b)$ for any path *p* to *a* and edge $\langle a, b \rangle$,

then, in **DA** and **DA**^{*}, there is no need to store paths in π []. The similar trick can be used for ψ_{dif} .

If ψ satisfies (M), "x \in H" in line 5 of **DA*** is redundant.

For such ψ it makes sense to replace, both in **DA** and **DA**^{*}, the condition in line 5 with "x such that $\langle w, x \rangle \in E$ and $x \in H$," to avoid unnecessary compution of $\psi(\pi[w]^x)$.

イロト イ理ト イヨト イヨト

(I) $\psi(p^v) = f(\psi(p), a, b)$ for any path *p* to *a* and edge $\langle a, b \rangle$,

then, in **DA** and **DA**^{*}, there is no need to store paths in π []. The similar trick can be used for ψ_{dif} .

If ψ satisfies (M), "x \in H" in line 5 of **DA*** is redundant.

For such ψ it makes sense to replace, both in **DA** and **DA**^{*}, the condition in line 5 with "x such that $\langle w, x \rangle \in E$ and $x \in H$," to avoid unnecessary compution of $\psi(\pi[w]^x)$.

イロト イ理ト イヨト イヨト

(I) $\psi(p^v) = f(\psi(p), a, b)$ for any path *p* to *a* and edge $\langle a, b \rangle$,

then, in **DA** and **DA**^{*}, there is no need to store paths in π []. The similar trick can be used for ψ_{dif} .

If ψ satisfies (M), "x \in H" in line 5 of **DA*** is redundant.

For such ψ it makes sense to replace, both in **DA** and **DA**^{*}, the condition in line 5 with "x such that $\langle w, x \rangle \in E$ and $x \in H$," to avoid unnecessary compution of $\psi(\pi[w]^x)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

(I) $\psi(p^v) = f(\psi(p), a, b)$ for any path *p* to *a* and edge $\langle a, b \rangle$,

then, in **DA** and **DA**^{*}, there is no need to store paths in π []. The similar trick can be used for ψ_{dif} .

If ψ satisfies (M), "x \in H" in line 5 of **DA*** is redundant.

For such ψ it makes sense to replace, both in **DA** and **DA**^{*}, the condition in line 5 with "x such that $\langle w, x \rangle \in E$ and $x \in H$," to avoid unnecessary compution of $\psi(\pi[w]^x)$.

DA'

Thm 1

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

with $\pi[b] = \langle s', x, b', b \rangle$ or $\pi[b'] = \langle s, x, b, b' \rangle_{\Box}$

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) w(p) = 1 for any p from S of the form w(p) = 0 otherwise

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

b and *b*' admits no optimal path with the replacement property. **DA** and **DA*** return optimal maps:

with $\pi[b] = \langle s', x, b', b \rangle$ or $\pi[b'] = \langle s, x, b, b' \rangle_{\Box}$, $\langle B \rangle$, $\langle B \rangle$

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

b and *b*' admits no optimal path with the replacement property. **DA** and **DA*** return optimal maps:

with $\pi[b] = \langle s', x, b', b \rangle$ or $\pi[b'] = \langle s, x, b, b' \rangle_{radius}$, where $\pi[b] = \langle s', x, b', b \rangle$ or $\pi[b'] = \langle s, x, b, b' \rangle_{radius}$.

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

b and *b*' admits no optimal path with the replacement property. **DA** and **DA*** return optimal maps:

with $\pi[b] = \langle s', x, b', b \rangle$ or $\pi[b'] = \langle s, x, b, b' \rangle_{radius}$

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

b and *b*' admits no optimal path with the replacement property. **DA** and **DA*** return optimal maps:

with $\pi[b] = \langle s', x, b', b \rangle$ or $\pi[b'] = \langle s, x, b, b' \rangle_{\Box}$, $\langle s \rangle$,

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

b and *b*' admits no optimal path with the replacement property. **DA** and **DA** * return optimal maps:

 $S = \{s, s'\}$; maximization problem (i.e., \leq is \geq) $\psi(p) = 1$ for any p from S of the form ($\psi(p) = 0$ otherwise):

• $\langle s, x, b, b' \rangle$, $\langle s', x, b', b \rangle$, and their initial segments.

b and *b*' admits no optimal path with the replacement property. **DA** and **DA** * return optimal maps:

with $\pi[b] = \langle s', x, b', b \rangle$ or $\pi[b'] = \langle s, x, b, b' \rangle_{restriction}$

- 1 The algorithm
- 2 Characterization Theorem for DA
- 3 DA*: a slight modification of DA
- What is in [FSL] paper
- 5 Final Remarks

- For some classes of path cost functions ψ, we found a necessary and sufficient conditions on ψ, for Dijkstra algorithm to return correct optimizer.
- We identified the errors in the [FSL] paper and shown how these errors can be patched.
- We showed how our characterization theorem can be used for some practically used path cost functions.
- The application of these characterization theorem to other path cost functions is currently investigated.

ヘロト ヘアト ヘビト ヘビ

- For some classes of path cost functions ψ, we found a necessary and sufficient conditions on ψ, for Dijkstra algorithm to return correct optimizer.
- We identified the errors in the [FSL] paper and shown how these errors can be patched.
- We showed how our characterization theorem can be used for some practically used path cost functions.
- The application of these characterization theorem to other path cost functions is currently investigated.

- For some classes of path cost functions ψ, we found a necessary and sufficient conditions on ψ, for Dijkstra algorithm to return correct optimizer.
- We identified the errors in the [FSL] paper and shown how these errors can be patched.
- We showed how our characterization theorem can be used for some practically used path cost functions.
- The application of these characterization theorem to other path cost functions is currently investigated.

(日)

- For some classes of path cost functions ψ, we found a necessary and sufficient conditions on ψ, for Dijkstra algorithm to return correct optimizer.
- We identified the errors in the [FSL] paper and shown how these errors can be patched.
- We showed how our characterization theorem can be used for some practically used path cost functions.
- The application of these characterization theorem to other path cost functions is currently investigated.

DA	Thm 1	DA*	[FSL]	Remarks	Summary

Thank you for your attention!