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DA Thm 1 DA* [FSL] Remarks Summary

Dijkstra Algorithm, DA: Why should you care?

DA discovered: V. Jarník 1930, R. Prim 1957, E. Dijkstra 1959
to find minimum spanning tree for a weighted undirected graph.

It is one of the fastest algorithms used in image
precessing, including image segmentation:

(essentially) linear time with respect to image size

It is the power engine behind

Fuzzy Connectedness, FC, segmentation software

Can be used to find Watershed transform

Usable in boundary tracking, morphological
reconstructions, fast binary morphology, shape description,
clustering, and classification
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Q: In what other situations DA can be used?

Q was investigated in the paper

[FSL] Falcão, Stolfi, and Lotufo, IFT, TPAMI, 2004

They found “sufficient” conditions for DA to be usable

I started search for necessary and sufficient conditions

Indeed, I found such conditions

In the process, I found also that

“sufficient” conditions in [FSL] are not sufficient!

(Practical conclusions from [FSL] seem to be intact.)
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DA Thm 1 DA* [FSL] Remarks Summary

What’s ahead: Talk’s outline

1 The algorithm

2 Characterization Theorem for DA

3 DA*: a slight modification of DA

4 What is in [FSL] paper

5 Final Remarks

6 Summary
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DA Thm 1 DA* [FSL] Remarks Summary

Definitions and notation needed for DA

G = 〈V ,E〉 – finite directed graph

(Applications and our examples use simple grids.)

Path (in G): p = 〈v0, . . . , v`〉, 〈vj , vj+1〉 ∈ E for j < `;

from S ⊂ V to v ∈ V when v0 ∈ S and v` = v ;

p ŵ = 〈v0, . . . , v`,w〉; ΠG – all paths in G.

Path cost function: a map ψ from ΠG to 〈[−∞,∞],� 〉,

� is either ≤ or ≥.

DA for ψ tries to find, for every v ∈ V , the ψ-minimizer:

ψ(v) = �-min{ψ(p) : p is a path to v}
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Examples of path cost functions ψ

G = 〈V ,E〉 and non-empty S ⊂ V are fixed

Fuzzy connectedness: given affinity map ψ : E → [0,1],

seeks for maximizers (i.e., �-minimizers with � being ≥):

ψmin(〈v0, . . . , v`〉) = min1≤j≤`ψ(vj−1, vj) for ` > 0

ψmin(〈v0〉) = 1 if v0 ∈ S, ψmin(〈v0〉) = 0 if v0 /∈ S

Shortest path (classic DA): given distance ωE : E → [0,∞),

ψsum(〈v0, . . . , v`〉) =
∑

1≤j≤` ωE (vj−1, vj) for ` > 0

ψsum(〈v0〉) = 0 if v0 ∈ S, ψsum(〈v0〉) =∞ if v0 /∈ S

seeks for minimizers (i.e., �-minimizers with � being ≤)
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DA Thm 1 DA* [FSL] Remarks Summary

Yet another example of a path cost function ψ

The last value: given a map ωV : V → [0,∞),

ψlast(〈v0, . . . , v`〉) = ωV (v`) for ` > 0

ψlast(〈v0〉) = ωV (v0) if v0 ∈ S, ψlast(〈v0〉) =∞ if v0 /∈ S

seeks for minimizers (i.e., �-minimizers with � being ≤)

Its applications are concerned with a particular case of the
riverbed boundary tracking and can be used to support
connectivity constraints in region-based image segmentation.
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DA Thm 1 DA* [FSL] Remarks Summary

Dijkstra Algorithm, DA, aiming to find ψ-optimal map

Data: G = 〈V ,E〉 and ψ from ΠG to 〈[−∞,∞],�〉
Result: an array σ[ ], aiming for being ψ-optimal map
Additional: an array π[ ] of paths, such that, at any time,

for any v ∈ V , π[v ] is a path to v with σ[v ] = ψ(π[v ])

1 foreach v ∈ V do π[v]← 〈v〉; σ[v]← ψ(π[v]) /* init. */
2 H← V

3 while H 6= ∅ do /* the main loop */
4 remove an element w of arg � -minu∈H σ[u] from H
5 foreach x such that 〈w, x〉 ∈ E do
6 σ′ ← ψ(π[w]̂ x)
7 if σ[x] � σ′ then σ[x]← σ′; π[x]← π[w]̂ x

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 7/26
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Outline

1 The algorithm

2 Characterization Theorem for DA

3 DA*: a slight modification of DA

4 What is in [FSL] paper

5 Final Remarks

6 Summary
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DA Thm 1 DA* [FSL] Remarks Summary

Special paths

For fixed ψ : ΠG → R, a path p = 〈v0, . . . , v`〉 ∈ ΠG to v :

is ψ-optimal if it is �-minimal, that is, provided ψ(p) � ψ(q)
for any other path q ∈ ΠG to v ;
is hereditarily ψ-optimal provided every initial segment
〈v0, . . . , vk 〉, k ≤ `, of p is ψ-optimal;
is monotone provided ψ(〈v0, . . . , vi〉) � ψ(〈v0, . . . , vj〉)
whenever 0 ≤ i ≤ j ≤ `;
is hereditarily ψ-optimal monotone, HOM, provided it is
both hereditarily ψ-optimal and monotone;
has the replacement property provided
ψ(〈v0, . . . , vi〉) = ψ(q v̂i) for every i ∈ {1, . . . , `} and every
HOM path q ∈ ΠG to vi−1.
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DA Thm 1 DA* [FSL] Remarks Summary

Examples: for FC cost ψmin with S = {s}
ψmin(〈v0, . . . , v`〉) = min1≤j≤` ψ(vj−1, vj) for ` > 0

●●

● ●

s

a'

a

b

.7

.6

.7.6

●

c.4

〈s,a,b〉 is hereditarily ψmin-optimal

〈s,a′,b〉 is not ψmin-optimal

〈s,a,b, c〉 is hereditarily ψmin-optimal

〈s,a′,b, c〉 is ψmin-optimal but not hereditarily

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 9/26
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DA Thm 1 DA* [FSL] Remarks Summary

Facts related to special paths

For costs ψmin, ψsum, and ψpeak there is a map f s.t.

(I) ψ(p v̂) = f (ψ(p),a, v) for any path p to a and edge 〈a, v〉.

Any ψ-optimal path has replacement property if ψ satisfies (I).

ψmin, ψsum, and ψpeak have strong replacement property:

(R*) ψ(〈v0, . . . , v`〉) � ψ(q v̂`) all paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

For ψmin, ψsum, ψpeak , and ψdif : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψmin, ψsum, and ψpeak , every v admits HOM path
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 10/26



DA Thm 1 DA* [FSL] Remarks Summary

Facts related to special paths

For costs ψmin, ψsum, and ψpeak there is a map f s.t.

(I) ψ(p v̂) = f (ψ(p),a, v) for any path p to a and edge 〈a, v〉.

Any ψ-optimal path has replacement property if ψ satisfies (I).

ψmin, ψsum, and ψpeak have strong replacement property:

(R*) ψ(〈v0, . . . , v`〉) � ψ(q v̂`) all paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

For ψmin, ψsum, ψpeak , and ψdif : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψmin, ψsum, and ψpeak , every v admits HOM path
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 10/26



DA Thm 1 DA* [FSL] Remarks Summary

Facts related to special paths

For costs ψmin, ψsum, and ψpeak there is a map f s.t.

(I) ψ(p v̂) = f (ψ(p),a, v) for any path p to a and edge 〈a, v〉.

Any ψ-optimal path has replacement property if ψ satisfies (I).

ψmin, ψsum, and ψpeak have strong replacement property:

(R*) ψ(〈v0, . . . , v`〉) � ψ(q v̂`) all paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

For ψmin, ψsum, ψpeak , and ψdif : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψmin, ψsum, and ψpeak , every v admits HOM path
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 10/26



DA Thm 1 DA* [FSL] Remarks Summary

Facts related to special paths

For costs ψmin, ψsum, and ψpeak there is a map f s.t.

(I) ψ(p v̂) = f (ψ(p),a, v) for any path p to a and edge 〈a, v〉.

Any ψ-optimal path has replacement property if ψ satisfies (I).

ψmin, ψsum, and ψpeak have strong replacement property:

(R*) ψ(〈v0, . . . , v`〉) � ψ(q v̂`) all paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

For ψmin, ψsum, ψpeak , and ψdif : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψmin, ψsum, and ψpeak , every v admits HOM path
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 10/26



DA Thm 1 DA* [FSL] Remarks Summary

Facts related to special paths

For costs ψmin, ψsum, and ψpeak there is a map f s.t.

(I) ψ(p v̂) = f (ψ(p),a, v) for any path p to a and edge 〈a, v〉.

Any ψ-optimal path has replacement property if ψ satisfies (I).

ψmin, ψsum, and ψpeak have strong replacement property:

(R*) ψ(〈v0, . . . , v`〉) � ψ(q v̂`) all paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

For ψmin, ψsum, ψpeak , and ψdif : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψmin, ψsum, and ψpeak , every v admits HOM path
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 10/26



DA Thm 1 DA* [FSL] Remarks Summary

Facts related to special paths

For costs ψmin, ψsum, and ψpeak there is a map f s.t.

(I) ψ(p v̂) = f (ψ(p),a, v) for any path p to a and edge 〈a, v〉.

Any ψ-optimal path has replacement property if ψ satisfies (I).

ψmin, ψsum, and ψpeak have strong replacement property:

(R*) ψ(〈v0, . . . , v`〉) � ψ(q v̂`) all paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

For ψmin, ψsum, ψpeak , and ψdif : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψmin, ψsum, and ψpeak , every v admits HOM path
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 10/26



DA Thm 1 DA* [FSL] Remarks Summary

Facts related to special paths

For costs ψmin, ψsum, and ψpeak there is a map f s.t.

(I) ψ(p v̂) = f (ψ(p),a, v) for any path p to a and edge 〈a, v〉.

Any ψ-optimal path has replacement property if ψ satisfies (I).

ψmin, ψsum, and ψpeak have strong replacement property:

(R*) ψ(〈v0, . . . , v`〉) � ψ(q v̂`) all paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

For ψmin, ψsum, ψpeak , and ψdif : (M) any path is monotone

(M) and (R*) imply that every v admits HOM path

So, for ψmin, ψsum, and ψpeak , every v admits HOM path
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 10/26



DA Thm 1 DA* [FSL] Remarks Summary

The theorem for DA
Theorem

Let ψ : ΠG → [−∞,∞] be a path cost function. If
(E) for every v ∈ V there exists an HOM path to v with the

replacement property,
then σ[ ] returned by DA is guaranteed to be ψ-optimal;

π[ ] returned by DA: π[v ] = 〈v0, . . . , v`〉 is HO path to v;
π[vi ] = 〈v0, . . . , vi〉 for every i ∈ {0, . . . , `}.

Conversely, if
(M) ψ(q) � ψ(p) for every path p and its initial segment q,

then σ[ ] returned by DA cannot be ψ-optimal,

unless for every v there is a hereditarily ψ-optimal path to v.

ψlast satisfies (E) but is not monotone!
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 11/26
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DA Thm 1 DA* [FSL] Remarks Summary

Corollary: Characterization Theorem

Corollary

If ψ : ΠG → R satisfies (M) and

(R) ψ(p) = ψ(q v̂) for every HOM p = 〈v0, . . . , v`〉 & q to v`−1,

then σ[ ] returned by DA is the ψ-optimal map if, and only if,

for every v ∈ V there exists a hereditarily ψ-optimal path to v.

PROOF. (E) follows from (M) and (R).

The rest follows from Theorem.
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DA Thm 1 DA* [FSL] Remarks Summary

Practical consequences

Corollary

ψsum, ψmin, and ψpeak satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

ψ(〈v0, . . . , v`〉) = ψ(q v̂`) for all optimal paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

So, (E) holds.
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DA Thm 1 DA* [FSL] Remarks Summary

Practical consequences

Corollary

ψsum, ψmin, and ψpeak satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

ψ(〈v0, . . . , v`〉) = ψ(q v̂`) for all optimal paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

So, (E) holds.

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 13/26



DA Thm 1 DA* [FSL] Remarks Summary

Practical consequences

Corollary

ψsum, ψmin, and ψpeak satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

ψ(〈v0, . . . , v`〉) = ψ(q v̂`) for all optimal paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

So, (E) holds.

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 13/26



DA Thm 1 DA* [FSL] Remarks Summary

Practical consequences

Corollary

ψsum, ψmin, and ψpeak satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

ψ(〈v0, . . . , v`〉) = ψ(q v̂`) for all optimal paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

So, (E) holds.

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 13/26



DA Thm 1 DA* [FSL] Remarks Summary

Practical consequences

Corollary

ψsum, ψmin, and ψpeak satisfy (E).

DA works correctly for these functions.

PROOF. (R*) implies:

ψ(〈v0, . . . , v`〉) = ψ(q v̂`) for all optimal paths
〈v0, . . . , v`〉 and q to v`−1 with ψ(〈v0, . . . , v`−1〉) � ψ(q).

So, (E) holds.

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 13/26
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Another consequence

●●
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s

b
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Corollary

DA need not return optimal map for Barrier Distance ψdif .

PROOF. No hereditarily ψdif -optimal path from S = {s} to d .

As ψdif satisfies (M), the result follows from the Theorem.
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DA Thm 1 DA* [FSL] Remarks Summary

Outline

1 The algorithm

2 Characterization Theorem for DA

3 DA*: a slight modification of DA

4 What is in [FSL] paper

5 Final Remarks

6 Summary
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DA Thm 1 DA* [FSL] Remarks Summary

Problems with DA for general path costs

Consider graph s ←→ a

Put ψ(〈s〉) = .2, ψ(p) = 0 for any other path from s, and

ψ(p) = 0 for p from a. For minimization, we get

There is no HOM path for any v ∈ V , since 〈v〉 is suboptimal.

ψ satisfies (R), in void, since there are no HO paths.

DA returns a non-trivial circular path: DA terminates with
π[a] = 〈s,a〉 and the cycle π[s] = 〈s,a, s〉.

This contradicts Lemma 2 from [FSL]
DA returns optimal σ[ ]

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 15/26
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DA Thm 1 DA* [FSL] Remarks Summary

DA*, which cannot return cycles for any ψ

Algorithm 1: DA*, aiming to find the ψ-optimal map
Data: G = 〈V ,E〉 and ψ from ΠG to 〈[−∞,∞],�〉
Result: an array σ[ ], aiming for being ψ-optimal map
Additional: an array π[ ] of paths, such that, at any time,

for any v ∈ V , π[v ] is a path to v with σ[v ] = ψ(π[v ])

1 foreach v ∈ V do π[v]← 〈v〉; σ[v]← ψ(π[v]) /* init. */
2 H← V

3 while H 6= ∅ do /* the main loop */
4 remove an element w of arg � -minu∈H σ[u] from H
5 foreach x such that 〈w, x〉 ∈ E and x ∈ H do
6 σ′ ← ψ(π[w]̂ x)
7 if σ[x] � σ′ then σ[x]← σ′; π[x]← π[w]̂ x
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DA Thm 1 DA* [FSL] Remarks Summary

Main Theorem for DA*: no cycles

Theorem

Let ψ : ΠG → [−∞,∞] be a path cost function.
If π[ ] is returned by DA*, then, for every v ∈ V,
π[v ] = 〈v0 . . . , v`〉 is a path to v with no repetitions such
that π[vi ] = 〈v0 . . . , vi〉 for every i ∈ {0, . . . , `}.

If (E) holds, then σ[ ] returned by DA* is guaranteed to be
the ψ-optimal map. Moreover, the returned map π[ ]
consists of hereditary ψ-optimal paths.

Conversely, σ[ ] returned by DA* cannot be ψ-optimal,
unless for every v ∈ V there exists a HOM path to v.
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DA Thm 1 DA* [FSL] Remarks Summary

Smooth functions from [FSL]

A path cost map ψ is a smooth function provided

for any v there exists ψ-optimal p to v s.t. either p = 〈v〉, or

p = q v̂ , where q is a path to w , 〈w , v〉 is an edge, and

C1. ψ(q) � ψ(p),

C2. q is ψ-optimal,

C3. for any ψ-optimal path r to w , ψ(r v̂) = ψ(p).

It is claimed (incorrectly) in [FSL] that for smooth ψ
DA must return ψ-optimal map σ[ ].

There is no proof of this in [FSL]. Instead, authors claim
(without proof) that C1-C3 imply stronger properties C1*-C3*
and proceed to prove that they imply DA’s good behavior.

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 18/26
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DA Thm 1 DA* [FSL] Remarks Summary

Properties C1*-C3*: hereditary versions of C1-C3

For any v there exists a ψ-optimal path p = 〈v0, . . . , v`〉 to v
s.t. for any k ∈ {0, . . . , `− 1}

C1*. ψ(〈v0, . . . , vk 〉) � ψ(p),

C2*. 〈v0, . . . , vk 〉 is ψ-optimal,

C3*. for any ψ-optimal path q to vk , ψ(q 〈̂vk+1, . . . , v`〉) = ψ(p).

C1*&C2* means that p is an HOM path

C3* is close to our (R), demanding that

ψ(q v̂k+1) = ψ(〈v0, . . . , vk+1〉)

Q. Why did I bother, when [FSL] contains proof that C1*-C3*
are sufficient?

A. The proof in [FSL], using C1*-C3*, is incorrect!
K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 19/26
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DA Thm 1 DA* [FSL] Remarks Summary

C1-C3 does not imply C1*-C3*

Example

Graph: {0, . . . ,5} × {0, . . . ,5} with 4-adjacency.

Seed: s = 〈0,0〉. Problem: minimization, i.e., � is ≤.

If s appears in p = 〈v0, . . . , v`〉 only as v0:
ψ(p) = ` when ` ≤ 3; ψ(p) = 0 otherwise.

ψ(p) = 100 for all other paths p.

ψ(v) = 0 for every v

C1-C3 are satisfied (by any path of length ≥ 5)

C1*-C2* are not satisfied (only s admits HOM path)

for any v adjacent to s, DA returns a suboptimal value 1.

K. Chris Ciesielski Path costs for which Dijkstra algorithm works correctly 20/26
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C1*-C3* do not imply good behavior of DA or DA*

● ●

●

s s'
●

a'a

●b

●

b' Red paths have cost 1

Blue path has cost 0

S = {s, s′}; maximization problem (i.e., � is ≥)
ψ(p) = 1 for any p from S of the form (ψ(p) = 0 otherwise):

to a v ∈ {s, s′,a,a′} or having repeated vertices;
〈 . . . ,a′,b′,b〉, 〈s,a,a′,b′〉, 〈 . . . ,a,b,b′〉, or 〈s′,a′,a,b〉.

C1*-C3* satisfied: by 〈s,a,a′,b′,b〉 and 〈s′,a′,a,b,b′〉
May terminate with suboptimal σ: Starting with 〈s,a〉 and 〈s′,a′〉
May terminate with optimal σ: Starting with 〈s,a,a′〉
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Stronger example: σ cannot be optimal
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DA Thm 1 DA* [FSL] Remarks Summary

Final tune-ups

If ψ, like ψmin, ψsum, and ψpeak , satisfies

(I) ψ(p v̂) = f (ψ(p),a,b) for any path p to a and edge 〈a,b〉,

then, in DA and DA*, there is no need to store paths in π[ ].
The similar trick can be used for ψdif .

If ψ satisfies (M), “x ∈ H” in line 5 of DA* is redundant.

For such ψ it makes sense to replace, both in DA and DA*,
the condition in line 5 with “x such that 〈w, x〉 ∈ E and x ∈ H,”
to avoid unnecessary compution of ψ(π[w]̂ x).
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DA Thm 1 DA* [FSL] Remarks Summary

Is the replacement requirement necessary?

●

● ●

s

s'

x
●

b'

b●

S = {s, s′}; maximization problem (i.e., � is ≥)
ψ(p) = 1 for any p from S of the form (ψ(p) = 0 otherwise):

〈s, x ,b,b′〉, 〈s′, x ,b′,b〉, and their initial segments.
b and b′ admits no optimal path with the replacement property.
DA and DA* return optimal maps:
with π[b] = 〈s′, x ,b′,b〉 or π[b′] = 〈s, x ,b,b′〉.
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DA Thm 1 DA* [FSL] Remarks Summary

Summary

For some classes of path cost functions ψ, we found a
necessary and sufficient conditions on ψ, for Dijkstra
algorithm to return correct optimizer.

We identified the errors in the [FSL] paper and shown how
these errors can be patched.

We showed how our characterization theorem can be used
for some practically used path cost functions.

The application of these characterization theorem to other
path cost functions is currently investigated.
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Thank you for your attention!
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