# Hierarchical segmentation in a directed graph setting which optimizes a graph cut energy

#### Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Department of Radiology, University of Pennsylvania

Centre for Image Analysis, Uppsala University, Sweden, September 10, 2018



#### Outline

- Image segmentation in graph cut setting
- Dijkstra algorithm in general setting
- Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT
- Summary



#### Outline

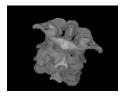
- Image segmentation in graph cut setting
- Dijkstra algorithm in general setting
- Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT
- 6 Summary



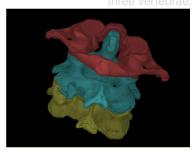
## Image segmentation example 1: CT, cervical spine



A slice of an original 3D image



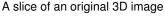
Surface rendition of segmented

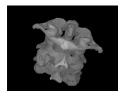


Color surface rendition of the segmented three vertebra

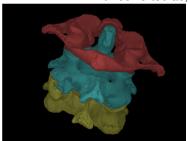
#### Image segmentation example 1: CT, cervical spine





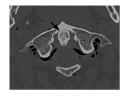


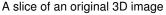
Surface rendition of segmented three vertebrae, together

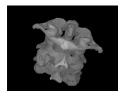


Color surface rendition of the segmented three vertebra

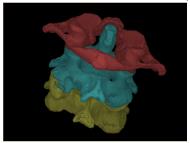
#### Image segmentation example 1: CT, cervical spine







Surface rendition of segmented three vertebrae, together



Color surface rendition of the segmented three vertebra

#### Example 2: CT, thoracic-abdominal axial cross section

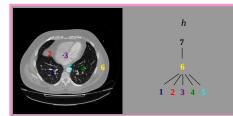
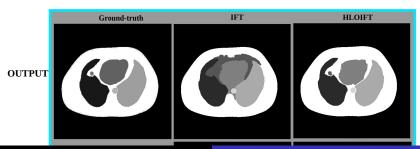


Figure: right lung  $(O_1)$ , liver  $(O_2)$ , heart  $(O_3)$ , left lung  $(O_4)$ , aorta  $(O_5)$  and the thoracic-abdominal region  $(O_6)$ .



INPUT

#### Image segmentation — formal setting

- An *image* is a map f from a set V (of spels) into ℝ<sup>k</sup>
   The value f(c) represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.
- Segmentation problem: Given an image  $f: V \to \mathbb{R}^k$ , find a "desired" family  $\{O_1, \ldots, O_M\}$  of subsets of V.
- We will assume the objects are indicated by disjoint sets  $S_i$  of seeds, imposing that  $S_i \subset O_i$ .

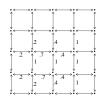
#### Image segmentation — formal setting

- An *image* is a map f from a set V (of spels) into ℝ<sup>k</sup>
   The value f(c) represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.
- Segmentation problem: Given an image  $f: V \to \mathbb{R}^k$ , find a "desired" family  $\{O_1, \ldots, O_M\}$  of subsets of V.
- We will assume the objects are indicated by disjoint sets S<sub>i</sub> of seeds, imposing that S<sub>i</sub> ⊂ O<sub>i</sub>.

#### Image segmentation — formal setting

- An *image* is a map f from a set V (of spels) into ℝ<sup>k</sup>
   The value f(c) represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.
- Segmentation problem: Given an image  $f: V \to \mathbb{R}^k$ , find a "desired" family  $\{O_1, \ldots, O_M\}$  of subsets of V.
- We will assume the objects are indicated by disjoint sets S<sub>i</sub> of seeds, imposing that S<sub>i</sub> ⊂ O<sub>i</sub>.







An image, with intens map  $f: V \to \mathbb{R}^k$ 

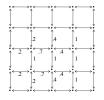
Its graph  $G = \langle V, E \rangle$ , Cowith some edge weights of

Object O and its graph cut edges c(O) in bold

- Vertices v ∈ V are image pixels. Direct edges: all
   ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle) = \text{some function of } f(c) f(d)$ .
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E: c \in O \& d \notin O\}.$  Only in one directio









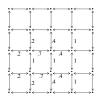
An image, with intensity map  $f: V \to \mathbb{R}^k$ 

Its graph  $G = \langle V, E \rangle$ , Object O and its graph with some edge weights cut edges c(O) in bole

- Vertices v ∈ V are image pixels. Direct edges: all
   ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle) = \text{some function of } f(c) f(d)$ .
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E: c \in O \& d \notin O\}.$  Only in one directio









An image, with intensity map  $f: V \to \mathbb{R}^k$ 

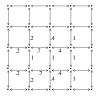
Its graph  $G = \langle V, E \rangle$ , with some edge weights

Object O and its graph cut edges c(O) in bold

- Vertices v ∈ V are image pixels. Direct edges: all
   ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle) = \text{some function of } f(c) f(d)$ .
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E: c \in O \& d \notin O\}.$  Only in one directio









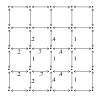
An image, with intensity map  $f: V \to \mathbb{R}^k$ 

Its graph  $G = \langle V, E \rangle$ , with some edge weights

Object O and its graph cut edges c(O) in bold

- Vertices v ∈ V are image pixels. Direct edges: all
   ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle) = \text{some function of } f(c) f(d)$ .
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E: c \in O \& d \notin O\}.$ Only in one direction





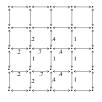


An image, with intensity map  $f: V \to \mathbb{R}^k$ 

Its graph  $G = \langle V, E \rangle$ , with some edge weights

- Vertices v ∈ V are image pixels. Direct edges: all
   ⟨c, d⟩, ⟨d, c⟩ ∈ E, with c, d ∈ V nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle) = \text{some function of } f(c) f(d)$ .
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E: c \in O \& d \notin O\}.$  Only in one directio





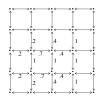


An image, with intensity map  $f: V \to \mathbb{R}^k$ 

Its graph  $G = \langle V, E \rangle$ , with some edge weights

- Vertices  $v \in V$  are image pixels. Direct edges: all  $\langle c, d \rangle, \langle d, c \rangle \in E$ , with  $c, d \in V$  nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle) = \text{some function of } f(c) f(d)$ .
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E: c \in O \& d \notin O\}.$  Only in one directio





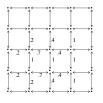


An image, with intensity map  $f: V \to \mathbb{R}^k$ 

Its graph  $G = \langle V, E \rangle$ , with some edge weights

- Vertices  $v \in V$  are image pixels. Direct edges: all  $\langle c, d \rangle, \langle d, c \rangle \in E$ , with  $c, d \in V$  nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle)$  = some function of f(c) f(d).
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E: c \in O \& d \notin O\}.$  Only in one directio





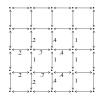


An image, with intensity map  $f: V \to \mathbb{R}^k$ 

Its graph  $G = \langle V, E \rangle$ , Objewith some edge weights cut e

- Vertices  $v \in V$  are image pixels. Direct edges: all  $\langle c, d \rangle, \langle d, c \rangle \in E$ , with  $c, d \in V$  nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle)$  = some function of f(c) f(d).
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E : c \in O \& d \notin O\}.$  Only in one directic







An image, with intensity map  $f: V \to \mathbb{R}^k$ 

Its graph  $G = \langle V, E \rangle$ , with some edge weights

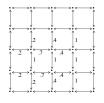
Object O and its graph cut edges c(O) in bold

- Vertices  $v \in V$  are image pixels. Direct edges: all  $\langle c, d \rangle$ ,  $\langle d, c \rangle \in E$ , with  $c, d \in V$  nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle)$  = some function of f(c) f(d).
- Graph cut of *O*:  $c(O) = \{ \langle c, d \rangle \in E : c \in O \& d \notin O \}.$

Only in one direction!









An image, with intensity map  $f: V \to \mathbb{R}^k$ 

Its graph  $G = \langle V, E \rangle$ , with some edge weights

Object O and its graph cut edges c(O) in bold

- Vertices  $v \in V$  are image pixels. Direct edges: all  $\langle c, d \rangle, \langle d, c \rangle \in E$ , with  $c, d \in V$  nearby (e.g. 4 adjacency).
- Edge weights:  $w(\langle c, d \rangle)$  = some function of f(c) f(d).
- Graph cut of  $O: c(O) = \{\langle c, d \rangle \in E: c \in O \& d \notin O\}.$  Only in one direction!

Assuming  $\langle c, d \rangle \in E \iff \langle d, c \rangle \in E$  and  $w(\langle c, d \rangle) \geq 0$ 

 $\ell_p$ -norm of c(O) is defined as

$$arepsilon_{
ho}(O) \stackrel{ ext{def}}{=} \| w \mid c(O) \|_{
ho} = egin{cases} \left( \sum_{e \in c(O)} w(e)^{
ho} 
ight)^{1/
ho} & ext{if } 
ho < \infty \ \max_{e \in c(O)} w(e) & ext{if } 
ho = \infty \end{cases}$$

Standard analysis fact:  $||w||_p \to_{p\to\infty} ||w||_\infty$  for any map w.

Assuming  $\langle c, d \rangle \in E \iff \langle d, c \rangle \in E$  and  $w(\langle c, d \rangle) \geq 0$  $\ell_p$ -norm of c(O) is defined as

$$\varepsilon_p(O) \stackrel{\mathrm{def}}{=} \|w \upharpoonright c(O)\|_p = \begin{cases} \left(\sum_{e \in c(O)} w(e)^p\right)^{1/p} & \text{if } p < \infty \\ \max_{e \in c(O)} w(e) & \text{if } p = \infty \end{cases}$$

Standard analysis fact:  $||w||_p \to_{p\to\infty} ||w||_\infty$  for any map w.

Assuming  $\langle c, d \rangle \in E \iff \langle d, c \rangle \in E$  and  $w(\langle c, d \rangle) \geq 0$   $\ell_{\rho}$ -norm of c(O) is defined as

$$\varepsilon_{p}(O) \stackrel{\mathrm{def}}{=} \| \mathbf{w} \mid c(O) \|_{p} = \begin{cases} \left( \sum_{e \in c(O)} w(e)^{p} \right)^{1/p} & \text{if } p < \infty \\ \max_{e \in c(O)} w(e) & \text{if } p = \infty. \end{cases}$$

Standard analysis fact:  $||w||_p \to_{p\to\infty} ||w||_\infty$  for any map w.

Assuming  $\langle c,d \rangle \in E \iff \langle d,c \rangle \in E$  and  $w(\langle c,d \rangle) \geq 0$   $\ell_p$ -norm of c(O) is defined as

$$\varepsilon_{p}(O) \stackrel{\mathrm{def}}{=} \| w \upharpoonright c(O) \|_{p} = \begin{cases} \left( \sum_{e \in c(O)} w(e)^{p} \right)^{1/p} & \text{if } p < \infty \\ \max_{e \in c(O)} w(e) & \text{if } p = \infty. \end{cases}$$

Standard analysis fact:  $\|\mathbf{w}\|_p \to_{p\to\infty} \|\mathbf{w}\|_{\infty}$  for any map  $\mathbf{w}$ .

# Known algorithms minimizing $\ell_p$ -norms of graph cut

p = 1: Minimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .

 $p=\infty$ : Minimization solved by (versions of) Dijkstra algorithm.

 $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_{\infty}$ -normed minimized delineation.

# Known algorithms minimizing $\ell_p$ -norms of graph cut

p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .

 $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falção, Miranda, 2012].

p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_{\infty}$ -normed minimized delineation.

## Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC,

 $p = \infty$ : Minimization solved by (versions of) Dijkstra algorithm.

p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_{\infty}$ -normed minimized delineation.

# Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011]

 $p = \infty$ : Minimization solved by (versions of) Dijkstra algorithm.

- Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].
- p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_\infty$ -normed minimized delineation.

## Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm.

  Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $p=\infty$ : Minimization solved by (versions of) Dijkstra algorithm.  $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].
  - p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_\infty$ -normed minimized delineation.

# Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $p=\infty$ : Minimization solved by (versions of) Dijkstra algorithm.  $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].
  - p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_{\infty}$ -normed minimized delineation.

# Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $p=\infty$ : Minimization solved by (versions of) Dijkstra algorithm.  $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].
  - p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_\infty$ -normed minimized delineation.

## Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $p=\infty$ : Minimization solved by (versions of) Dijkstra algorithm.  $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].
  - p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_\infty$ -normed minimized delineation.

## Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $p=\infty$ : Minimization solved by (versions of) Dijkstra algorithm.  $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].
  - p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_\infty$ -normed minimized delineation.

# Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $p=\infty$ : Minimization solved by (versions of) Dijkstra algorithm.  $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].
  - p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_{\infty}$ -normed minimized delineation.

## Known algorithms minimizing $\ell_p$ -norms of graph cut

- p=1: Minimization solved by classic min-cut/max-flow algorithm. Graph Cut, GC, delineation algorithm minimizes  $\varepsilon_1$ .
- $p=\infty$ : Minimization solved by (versions of) Dijkstra algorithm.  $\varepsilon_{\infty}$  minimized objects are returned by the algorithms: Power Watershed, PW [C. Couprie *et al*, 2011] Relative Fuzzy Connectedness, RFC, Iterative RFC, Image Foresting Transform, IFT, [Ciesielski, Udupa, Falcão, Miranda, 2012].
  - p = 2: Random Walker, RW, algorithm [Grady, 2006].

**Fact:** Inclusion-minimal  $\ell_p$ -normed minimized delineations converge, as  $p \to \infty$  to  $\ell_\infty$ -normed minimized delineation.

This talk's Main Algorithm, HLOIFT, minimizes  $\ell_{\infty}$ -norm of cut

#### Outline

- Image segmentation in graph cut setting
- Dijkstra algorithm in general setting
- 3 Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT
- 6 Summary



- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G -$  all paths in G.
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q): q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for  $\psi$  and  $S \subset V$  tries to find (S-rooted) forest, OPF, composed of  $\psi$ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G \text{all paths in } G$ .
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q): q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for  $\psi$  and  $S \subset V$  tries to find (S-rooted) forest, OPF, composed of  $\psi$ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G \text{all paths in } G$ .
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q): q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for  $\psi$  and  $S \subset V$  tries to find (*S*-rooted) forest, OPF, composed of  $\psi$ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

7 of 30

- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G \text{all paths in } G$ .
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q): q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for  $\psi$  and  $S \subset V$  tries to find (S-rooted) forest, OPF, composed of  $\psi$ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G -$  all paths in G.
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q): q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for  $\psi$  and  $S \subset V$  tries to find (S-rooted) forest, OPF, composed of  $\psi$ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G$  all paths in G.
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q): q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for  $\psi$  and  $S \subset V$  tries to find (S-rooted) forest, OPF, composed of  $\psi$ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G -$  all paths in G.
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q) : q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for  $\psi$  and  $S \subset V$  tries to find (*S*-rooted) forest, OPF, composed of  $\psi$ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G -$  all paths in G.
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q) : q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for  $\psi$  and  $S \subset V$  tries to find (S-rooted) forest, OPF, composed of  $\psi$ -optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

- Fix directed graph  $G = \langle V, E \rangle$  (with edge weight map w)
- Path (in G):  $p = \langle v_0, \dots, v_\ell \rangle$  s.t.  $\langle v_j, v_{j+1} \rangle \in E$  for  $j < \ell$ ; p is from  $S \subset V$  to  $v \in V$  when  $v_0 \in S$  and  $v_\ell = v$ ;  $p \hat{\ } w = \langle v_0, \dots, v_\ell, w \rangle$ ;  $\Pi_G -$  all paths in G.
- Path cost function: any map  $\psi \colon \Pi_G \to \mathbb{R}$ .
- A path p (from  $S \subset V$ ) to v is  $\psi$ -optimal provided

$$\psi(p) = \max\{\psi(q) : q \text{ is a path (from } S) \text{ to } v\}.$$

- Jarník-Prim-Dijkstra algorithm DA for ψ and S ⊂ V tries to find (S-rooted) forest, OPF, composed of ψ-optimal paths.
- HLOIFT is a DA for appropriate path cost map and graph.

7 of 30

```
Data: G = \langle V, E \rangle and a path cost map \psi \colon \Pi_G \to \mathbb{R}

Result: an array \pi[] of paths, aiming for being \psi-optimal
```

```
Q \ Q \leftarrow V
Q \ \text{while } Q \neq \emptyset \ \text{do}
Q \ \text{remove an element } w \ \text{of } \max_{u \in Q} \psi(\pi[u]) \ \text{from } Q
Q \ \text{for each } x \ \text{such that } \langle w, x \rangle \in E \ \text{do}
Q \ \text{if } \psi(\pi[x]) < \psi(\pi[w]^{\hat{}}x) \ \text{then } \pi[x] \leftarrow \pi[w]^{\hat{}}x
```

DA is very efficient: quasi-linear w.r.t. the size of the graph.

```
Data: G = \langle V, E \rangle and a path cost map \psi \colon \Pi_G \to \mathbb{R}

Result: an array \pi[] of paths, aiming for being \psi-optimal

1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle
2 Q \leftarrow V
3 while Q \neq \emptyset do
4 remove an element w of \max_{u \in Q} \psi(\pi[u]) from Q
5 foreach x such that \langle w, x \rangle \in E do
6 if \psi(\pi[x]) < \psi(\pi[w]^x) then \pi[x] \leftarrow \pi[w]^x
```

DA is very efficient: quasi-linear w.r.t. the size of the graph.



```
Data: G = \langle V, E \rangle and a path cost map \psi \colon \Pi_G \to \mathbb{R}

Result: an array \pi[] of paths, aiming for being \psi-optimal

1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle

2 Q \leftarrow V

3 while Q \neq \emptyset do

4 remove an element w of \max_{u \in Q} \psi(\pi[u]) from Q

5 foreach x such that \langle w, x \rangle \in E do

6 if \psi(\pi[x]) < \psi(\pi[w]^x) then \pi[x] \leftarrow \pi[w]^x
```

DA is very efficient: quasi-linear w.r.t. the size of the graph.

```
Data: G = \langle V, E \rangle and a path cost map \psi : \Pi_G \to \mathbb{R}
  Result: an array \pi[] of paths, aiming for being \psi-optimal
1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle
2 Q ← V
3 while Q \neq \emptyset do
       remove an element w of \max_{u \in Q} \psi(\pi[u]) from Q
       foreach x such that \langle w, x \rangle \in E do
            if \psi(\pi[x]) < \psi(\pi[w]^x then \pi[x] \leftarrow \pi[w]^x
```

5

6

```
Data: G = \langle V, E \rangle and a path cost map \psi : \Pi_G \to \mathbb{R}
  Result: an array \pi[] of paths, aiming for being \psi-optimal
1 foreach v \in V do \pi[v] \leftarrow \langle v \rangle
2 Q ← V
3 while Q \neq \emptyset do
       remove an element w of \max_{u \in Q} \psi(\pi[u]) from Q
       foreach x such that \langle w, x \rangle \in E do
            if \psi(\pi[x]) < \psi(\pi[w]^x then \pi[x] \leftarrow \pi[w]^x
```

DA is very efficient: quasi-linear w.r.t. the size of the graph.

5

6

#### Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018]

correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If w is an edge weight map for undirected graph  $G = \langle V, E \rangle$ , then DA works properly for:

• FC/IFT: 
$$\psi_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$$
 for  $\ell > 0$   
 $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$ 

• 
$$\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$$
 for  $\ell > 0$   
 $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$ 



Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If w is an edge weight map for undirected graph  $G = \langle V, E \rangle$ , then DA works properly for:

• FC/IFT: 
$$\psi_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$$
 for  $\ell > 0$   
 $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$ 

• 
$$\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$$
 for  $\ell > 0$   
 $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$ 



Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If w is an edge weight map for undirected graph  $G = \langle V, E \rangle$ , then DA works properly for:

• FC/IFT: 
$$\psi_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$$
 for  $\ell > 0$   
 $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$ 

• 
$$\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$$
 for  $\ell > 0$   
 $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$ 



Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

If w is an edge weight map for undirected graph  $G = \langle V, E \rangle$ , then DA works properly for:

• FC/IFT: 
$$\psi_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$$
 for  $\ell > 0$   
 $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$ 

• 
$$\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$$
 for  $\ell > 0$   
 $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$ 



Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

- FC/IFT:  $\psi_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- HLOIFT uses DA with  $\psi_{\min}$  and oriented w, a problem!



Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

- FC/IFT:  $\psi_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- HLOIFT uses DA with  $\psi_{\min}$  and oriented w, a problem!

Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

- FC/IFT:  $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \le j \le \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- HLOIFT uses DA with  $\psi_{\min}$  and oriented w, a problem!



Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

- FC/IFT:  $\psi_{\min}(\langle v_0, \dots, v_\ell \rangle) = \min_{1 \le j \le \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- HLOIFT uses DA with  $\psi_{\min}$  and oriented w, a problem!



Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

- FC/IFT:  $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- HLOIFT uses DA with  $\psi_{\min}$  and oriented w, a problem!



Studied in JMIV paper [Ciesielski, Falcão, Miranda, Sept. 2018] correcting errors of TPAMI paper [Falcão, Stolfi, Lotufo, 2004].

- FC/IFT:  $\psi_{\min}(\langle v_0, \dots, v_{\ell} \rangle) = \min_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\min}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\min}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- $\psi_{\text{sum}}(\langle v_0, \dots, v_\ell \rangle) = -\sum_{1 \leq j \leq \ell} w(v_{j-1}, v_j)$  for  $\ell > 0$  $\psi_{\text{sum}}(\langle v_0 \rangle) = \infty$  if  $v_0 \in S$ ,  $\psi_{\text{sum}}(\langle v_0 \rangle) = -\infty$  if  $v_0 \notin S$
- HLOIFT uses DA with  $\psi_{\min}$  and oriented w, a problem!



### DA with oriented variant of $\psi_{\mathsf{min}}$

### In JMIV paper [Ciesielski, Herman, Kong, 2016]

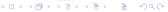
we studied DA with ith object  $O_i$  having its oriented weights  $w_i$  and

$$\psi^*_{\mathsf{min}}(\langle v_0, \dots, v_\ell \rangle) = \mathsf{min}_{1 \leq j \leq \ell} \, \mathbf{w}_i(v_{j-1}, v_j) \, \mathsf{with} \, \, v_0 \, \, \mathsf{a} \, \, \mathsf{seed} \, \, \mathsf{of} \, \, \mathcal{O}_i.$$

#### Theorem (Ciesielski, Herman, Kong, 2016)

For  $\psi_{\mathsf{min}}^*$  as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.



## DA with oriented variant of $\psi_{\mathsf{min}}$

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object  $O_i$  having its oriented weights  $w_i$  and

$$\psi^*_{\min}(\langle v_0,\ldots,v_\ell\rangle) = \min_{1\leq j\leq \ell} w_i(v_{j-1},v_j)$$
 with  $v_0$  a seed of  $O_i$ .

#### Theorem (Ciesielski, Herman, Kong, 2016)

For  $\psi_{\mathsf{min}}^*$  as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.



## DA with oriented variant of $\psi_{\mathsf{min}}$

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object  $O_i$  having its oriented weights  $w_i$  and

$$\psi_{\min}^*(\langle v_0,\dots,v_\ell\rangle)=\min_{1\leq j\leq \ell} {\color{red} \mathbf{w}_i(v_{j-1},v_j)} \text{ with } v_0 \text{ a seed of } O_i.$$

#### Theorem (Ciesielski, Herman, Kong, 2016)

For  $\psi_{\mathsf{min}}^*$  as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

## DA with oriented variant of $\psi_{\mathsf{min}}$

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object  $O_i$  having its oriented weights  $w_i$  and

$$\psi_{\min}^*(\langle v_0,\ldots,v_\ell\rangle)=\min_{1\leq j\leq \ell} {\color{red} \mathbf{w}_i(v_{j-1},v_j)} \text{ with } v_0 \text{ a seed of } O_i.$$

#### Theorem (Ciesielski, Herman, Kong, 2016)

#### For $\psi_{\min}^*$ as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

## DA with oriented variant of $\psi_{\mathsf{min}}$

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object  $O_i$  having its oriented weights  $w_i$  and

$$\psi_{\min}^*(\langle v_0,\ldots,v_\ell\rangle)=\min_{1\leq j\leq \ell} {\color{red} \mathbf{w}_i(v_{j-1},v_j)} \text{ with } v_0 \text{ a seed of } O_i.$$

#### Theorem (Ciesielski, Herman, Kong, 2016)

For  $\psi_{\min}^*$  as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

## DA with oriented variant of $\psi_{\mathsf{min}}$

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object  $O_i$  having its oriented weights  $w_i$  and

$$\psi_{\min}^*(\langle v_0,\ldots,v_\ell\rangle)=\min_{1\leq j\leq \ell} {\color{red} \mathbf{w}_i(v_{j-1},v_j)} \text{ with } v_0 \text{ a seed of } O_i.$$

#### Theorem (Ciesielski, Herman, Kong, 2016)

For  $\psi_{\min}^*$  as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

## DA with oriented variant of $\psi_{\mathsf{min}}$

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object  $O_i$  having its oriented weights  $w_i$  and

$$\psi_{\min}^*(\langle v_0,\ldots,v_\ell\rangle)=\min_{1\leq j\leq \ell} {\color{red} \mathbf{w}_i(v_{j-1},v_j)} \text{ with } v_0 \text{ a seed of } O_i.$$

#### Theorem (Ciesielski, Herman, Kong, 2016)

For  $\psi_{\min}^*$  as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

## DA with oriented variant of $\psi_{\mathsf{min}}$

In JMIV paper [Ciesielski, Herman, Kong, 2016]

we studied DA with *i*th object  $O_i$  having its oriented weights  $w_i$  and

$$\psi_{\min}^*(\langle v_0,\ldots,v_\ell\rangle)=\min_{1\leq j\leq \ell} {\color{red} \mathbf{w}_i(v_{j-1},v_j)} \text{ with } v_0 \text{ a seed of } O_i.$$

### Theorem (Ciesielski, Herman, Kong, 2016)

For  $\psi_{\min}^*$  as above

- The output of DA is completely robust under (unaffected by) small (within CORE sets) seed changes.
- The output of DA has a nice characterization in terms of path strength competition.

#### Outline

- Image segmentation in graph cut setting
- Dijkstra algorithm in general setting
- 3 Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- Experimental results for HLOIFT
- Summary



# $\psi_{\mathrm{min}}^*$ for which DA returns delineation with optimal cut

Let  $\psi_{\min}^*$  denotes  $\psi_{\min}^*$  in object/background setting such that

$$w_1(c,d) = w_0(d,c)$$
 for all  $\langle c,d \rangle \in E$ .

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object O is an output of DA run with  $\psi^\star_{\mathsf{min}}$  , then the graph cut

$$c(\mathcal{O}) = \{\langle c, d \rangle \in E \colon c \in \mathcal{O} \& d \notin \mathcal{O} \}$$

minimizes the  $\ell_{\infty}$  norm  $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$  among all objects satisfying the constrains.

Assumption  $w_1(c, d) = w_0(d, c)$  is needed to ensure that incorporating  $\langle c, d \rangle$  in a path from either object or background influences the path strength the same way.



# $\psi_{\min}^*$ for which DA returns delineation with optimal cut

Let  $\psi_{\min}^{\star}$  denotes  $\psi_{\min}^{*}$  in object/background setting such that

$$w_1(c,d) = w_0(d,c)$$
 for all  $\langle c,d \rangle \in E$ .

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted

If object O is an output of DA run with  $\psi^\star_{\mathsf{min}}$ , then the graph cut

$$c(O) = \{\langle c, d \rangle \in E \colon c \in O \& d \notin O\}$$

minimizes the  $\ell_{\infty}$  norm  $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$  among all objects satisfying the constrains.

Assumption  $w_1(c, d) = w_0(d, c)$  is needed to ensure that incorporating  $\langle c, d \rangle$  in a path from either object or background influences the path strength the same way.



# $\psi_{\mathrm{min}}^*$ for which DA returns delineation with optimal cut

Let  $\psi_{\min}^{\star}$  denotes  $\psi_{\min}^{\star}$  in object/background setting such that

$$w_1(c,d) = w_0(d,c)$$
 for all  $\langle c,d \rangle \in E$ .

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted) If object O is an output of DA run with  $\psi_{\min}^{\star}$ , then the graph cut

$$c(O) = \{\langle c, d \rangle \in E \colon c \in O \& d \notin O\}$$

minimizes the  $\ell_{\infty}$  norm  $\varepsilon_{\infty}(O) \stackrel{\text{der}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$  among all objects satisfying the constrains.

Assumption  $w_1(c, d) = w_0(d, c)$  is needed to ensure that incorporating  $\langle c, d \rangle$  in a path from either object or background influences the path strength the same way.

# $\psi_{\min}^*$ for which DA returns delineation with optimal cut

Let  $\psi_{\min}^{\star}$  denotes  $\psi_{\min}^{*}$  in object/background setting such that

$$w_1(c,d) = w_0(d,c)$$
 for all  $\langle c,d \rangle \in E$ .

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object O is an output of DA run with  $\psi_{\min}^{\star}$ , then the graph cut

$$c(O) = \{\langle c, d \rangle \in E \colon c \in O \& d \notin O\}$$

minimizes the  $\ell_{\infty}$  norm  $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$  among all objects satisfying the constrains.

Assumption  $w_1(c, d) = w_0(d, c)$  is needed to ensure that incorporating  $\langle c, d \rangle$  in a path from either object or background influences the path strength the same way.

# $\psi_{\min}^*$ for which DA returns delineation with optimal cut

Let  $\psi_{\min}^{\star}$  denotes  $\psi_{\min}^{*}$  in object/background setting such that

$$w_1(c,d) = w_0(d,c)$$
 for all  $\langle c,d \rangle \in E$ .

Theorem (preliminary; & Leon, Ciesielski, Miranda, submitted)

If object O is an output of DA run with  $\psi_{\min}^{\star}$ , then the graph cut

$$c(O) = \{\langle c, d \rangle \in E \colon c \in O \& d \notin O\}$$

minimizes the  $\ell_{\infty}$  norm  $\varepsilon_{\infty}(O) \stackrel{\text{def}}{=} \max_{\langle c,d \rangle \in c(O)} w_1(c,d)$  among all objects satisfying the constrains.

Assumption  $w_1(c, d) = w_0(d, c)$  is needed to ensure that incorporating  $\langle c, d \rangle$  in a path from either object or background influences the path strength the same way.

### Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with  $\psi_{\min}^*$ ? Close, but formally not.

Assume that  $w_1(c,d) = w_0(d,c)$  for all  $\langle c,d \rangle \in E$  and let

$$\psi_{ ext{last}}(\langle v_0,\dots,v_\ell
angle)=w_i(v_{\ell-1},v_\ell)$$
 when  $\ell>0$  and  $v_0$  a seed of  $O_i$ .

$$\psi_{
m last}(\langle 
u_0
angle)=\infty$$
 when  $u_0$  a seed and  $\psi_{
m last}(\langle 
u_0
angle)=-\infty$  otherwise

#### Definition

OIFT is a DA run with  $\psi_{\text{last}}$  as above.

### Theorem (preliminary result: OIFT as DA with $\psi^*_{\mathsf{min}}$ )

Any output of OIFT is an output of a particular implementation of DA with  $\psi_{\min}^*$ .

### Oriented Image Foresting Transform algorithm OIFT

### Is OIFT a DA run with $\psi_{\min}^*$ ? Close, but formally not.

Assume that  $w_1(c,d) = w_0(d,c)$  for all  $\langle c,d \rangle \in E$  and let

$$\psi_{ ext{last}}(\langle v_0,\dots,v_\ell
angle)=w_i(v_{\ell-1},v_\ell)$$
 when  $\ell>0$  and  $v_0$  a seed of  $O_i$ .

$$\psi_{\text{last}}(\langle v_0 \rangle) = \infty$$
 when  $v_0$  a seed and  $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$  otherwise

#### Definition

OIFT is a DA run with  $\psi_{\text{last}}$  as above.

### Theorem (preliminary result: OIFT as DA with $\psi^*_{\mathsf{min}}$ )

Any output of OIFT is an output of a particular implementation of DA with  $\psi_{\min}^*$ .

### Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with  $\psi_{\min}^*$ ? Close, but formally not.

Assume that  $w_1(c,d)=w_0(d,c)$  for all  $\langle c,d\rangle\in E$  and let

$$\psi_{\text{last}}(\langle v_0,\ldots,v_\ell\rangle)=w_i(v_{\ell-1},v_\ell)$$
 when  $\ell>0$  and  $v_0$  a seed of  $O_i$ .

 $\psi_{
m last}(\langle 
u_0
angle)=\infty$  when  $u_0$  a seed and  $\psi_{
m last}(\langle 
u_0
angle)=-\infty$  otherwise

#### Definitior

OIFT is a DA run with  $\psi_{\text{last}}$  as above.

### Theorem (preliminary result: OIFT as DA with $\psi_{ ext{min}}^*$ )

Any output of OIFT is an output of a particular implementation of DA with  $\psi_{\min}^*$ .

### Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with  $\psi_{\min}^*$ ? Close, but formally not.

Assume that  $w_1(c,d)=w_0(d,c)$  for all  $\langle c,d\rangle\in E$  and let

$$\psi_{\text{last}}(\langle v_0,\ldots,v_\ell\rangle)=w_i(v_{\ell-1},v_\ell)$$
 when  $\ell>0$  and  $v_0$  a seed of  $O_i$ .

$$\psi_{\text{last}}(\langle v_0 \rangle) = \infty$$
 when  $v_0$  a seed and  $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$  otherwise.

#### Definition

OIFT is a DA run with  $\psi_{\text{last}}$  as above.

#### Theorem (preliminary result: OIFT as DA with $\psi_{\mathsf{min}}^*$ )

Any output of OIFT is an output of a particular implementation of DA with  $\psi_{\min}^*$ .

## Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with  $\psi_{\min}^*$ ? Close, but formally not.

Assume that  $w_1(c,d)=w_0(d,c)$  for all  $\langle c,d\rangle\in E$  and let

$$\psi_{\text{last}}(\langle v_0, \dots, v_\ell \rangle) = w_i(v_{\ell-1}, v_\ell)$$
 when  $\ell > 0$  and  $v_0$  a seed of  $O_i$ .

$$\psi_{\text{last}}(\langle v_0 \rangle) = \infty$$
 when  $v_0$  a seed and  $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$  otherwise.

#### Definition

**OIFT** is a DA run with  $\psi_{\text{last}}$  as above.

### Theorem (preliminary result: OIFT as DA with $\psi_{\scriptscriptstyle \mathsf{min}}^*$ )

Any output of OIFT is an output of a particular implementation of DA with  $\psi_{\min}^*$ .

### Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with  $\psi_{\min}^*$ ? Close, but formally not.

Assume that  $w_1(c,d)=w_0(d,c)$  for all  $\langle c,d\rangle\in E$  and let

$$\psi_{\text{last}}(\langle v_0,\ldots,v_\ell\rangle)=w_i(v_{\ell-1},v_\ell)$$
 when  $\ell>0$  and  $v_0$  a seed of  $O_i$ .

$$\psi_{\text{last}}(\langle v_0 \rangle) = \infty$$
 when  $v_0$  a seed and  $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$  otherwise.

#### Definition

**OIFT** is a DA run with  $\psi_{\text{last}}$  as above.

### Theorem (preliminary result: OIFT as DA with $\psi_{\min}^*$ )

Any output of OIFT is an output of a particular implementation of DA with  $\psi_{\min}^*$ .

### Oriented Image Foresting Transform algorithm OIFT

Is OIFT a DA run with  $\psi_{\min}^*$ ? Close, but formally not.

Assume that  $w_1(c,d) = w_0(d,c)$  for all  $\langle c,d \rangle \in E$  and let

$$\psi_{\text{last}}(\langle v_0,\ldots,v_\ell\rangle)=w_i(v_{\ell-1},v_\ell)$$
 when  $\ell>0$  and  $v_0$  a seed of  $O_i$ .

$$\psi_{\text{last}}(\langle v_0 \rangle) = \infty$$
 when  $v_0$  a seed and  $\psi_{\text{last}}(\langle v_0 \rangle) = -\infty$  otherwise.

#### Definition

OIFT is a DA run with  $\psi_{\text{last}}$  as above.

### Theorem (preliminary result: OIFT as DA with $\psi_{\min}^*$ )

Any output of OIFT is an output of a particular implementation of DA with  $\psi_{\min}^*$ .

### Some properties of OIFT

• Can incorporate image brightness increase/decrease in weight function. If we like to favor transitions from bright to dark pixels when passing from object to the background, we can define, for some  $\alpha \in (0,1)$ ,

$$w_1(c,d) = \begin{cases} (1-\alpha)e^{-\|f(c)-f(d)\|} & \text{if } \|f(c)\| > \|f(d)\| \\ (1+\alpha)e^{-\|f(c)-f(d)\|} & \text{otherwise.} \end{cases}$$

 Can incorporate shape constraints like geodesic star convexity [Mansilla, Jackowski, Miranda, 2013], geodesic band constraints [Braz, Miranda, 2014], Hedgehog Shape Prior, and other to be explored.



# Some properties of OIFT

• Can incorporate image brightness increase/decrease in weight function. If we like to favor transitions from bright to dark pixels when passing from object to the background, we can define, for some  $\alpha \in (0,1)$ ,

$$w_1(c,d) = \begin{cases} (1-\alpha)e^{-\|f(c)-f(d)\|} & \text{if } \|f(c)\| > \|f(d)\| \\ (1+\alpha)e^{-\|f(c)-f(d)\|} & \text{otherwise.} \end{cases}$$

 Can incorporate shape constraints like geodesic star convexity [Mansilla, Jackowski, Miranda, 2013], geodesic band constraints [Braz, Miranda, 2014], Hedgehog Shape Prior, and other to be explored.



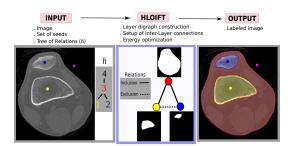
### **Outline**

- Image segmentation in graph cut setting
- Dijkstra algorithm in general setting
- Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT
- Summary



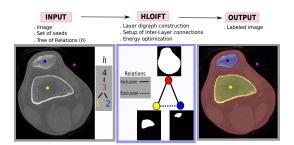
### HLOIFT is, essentially, OIFT algorithm run on a modified graph.

**Input**: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects;  $\rho \geq 0$  giving minimal distance between boundaries of objects.



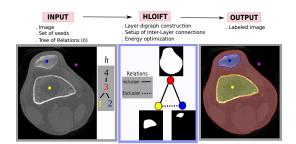
HLOIFT is, essentially, OIFT algorithm run on a modified graph.

**Input**: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects;  $\rho \ge 0$  giving minimal distance between boundaries of objects.



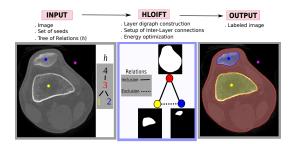
HLOIFT is, essentially, OIFT algorithm run on a modified graph.

**Input**: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects;  $\rho \ge 0$  giving minimal distance between boundaries of objects.



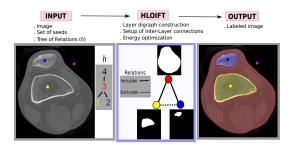
HLOIFT is, essentially, OIFT algorithm run on a modified graph.

**Input**: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects;  $\rho > 0$  giving minimal distance between boundaries of objects.



HLOIFT is, essentially, OIFT algorithm run on a modified graph.

**Input**: Image, a tree representing inclusion/exclusion relations between the objects we seek, seeds representing the objects;  $\rho \geq 0$  giving minimal distance between boundaries of objects.



Let  $f: V \to \mathbb{R}^k$  be an (n-dimensional) image containing objects  $O_1, \ldots, O_m, O_{m+1} = V$ . A hierarchy tree is indicated by a parent map h, with h(i) = j meaning that  $O_i$  is a parent of  $O_i$ .

For every  $i \in \mathcal{L} = \{1, ..., m\}$  let  $\langle V, E_i, w_i \rangle$  be an edge weighted graph associated with image f and object  $O_i$ . The edges and weights can include other constrains, like shape.

**HLOIFT** weighted digraph is defined as  $\langle \mathcal{L} \times V, E, w \rangle$ , where its restriction to *i*th object layer,  $\langle \{i\} \times V, E^i, w^i \rangle$ , is an isomorphic copy of  $\langle V, E_i, w_i \rangle$ .

We still need to define inter-layer edges and their weights on the HLOIFT graph  $\mathcal{N} = \mathcal{L} \times V$ .



Let  $f: V \to \mathbb{R}^k$  be an (n-dimensional) image containing objects  $O_1, \ldots, O_m, O_{m+1} = V$ . A hierarchy tree is indicated by a parent map h, with h(i) = j meaning that  $O_j$  is a parent of  $O_i$ .

For every  $i \in \mathcal{L} = \{1, ..., m\}$  let  $\langle V, E_i, w_i \rangle$  be an edge weighted graph associated with image f and object  $O_i$ . The edges and weights can include other constrains, like shape.

**HLOIFT** weighted digraph is defined as  $\langle \mathcal{L} \times V, E, w \rangle$ , where its restriction to *i*th object layer,  $\langle \{i\} \times V, E^i, w^i \rangle$ , is an isomorphic copy of  $\langle V, E_i, w_i \rangle$ .

We still need to define inter-layer edges and their weights on the HLOIFT graph  $\mathcal{N} = \mathcal{L} \times V$ .



Let  $f: V \to \mathbb{R}^k$  be an (n-dimensional) image containing objects  $O_1, \ldots, O_m, O_{m+1} = V$ . A hierarchy tree is indicated by a parent map h, with h(i) = j meaning that  $O_j$  is a parent of  $O_i$ .

For every  $i \in \mathcal{L} = \{1, ..., m\}$  let  $\langle V, E_i, w_i \rangle$  be an edge weighted graph associated with image f and object  $O_i$ . The edges and weights can include other constrains, like shape.

**HLOIFT** weighted digraph is defined as  $\langle \mathcal{L} \times V, E, w \rangle$ , where its restriction to *i*th object layer,  $\langle \{i\} \times V, E^i, w^i \rangle$ , is an isomorphic copy of  $\langle V, E_i, w_i \rangle$ .

We still need to define inter-layer edges and their weights on the HLOIFT graph  $\mathcal{N} = \mathcal{L} \times V$ .



Let  $f: V \to \mathbb{R}^k$  be an (n-dimensional) image containing objects  $O_1, \ldots, O_m, O_{m+1} = V$ . A hierarchy tree is indicated by a parent map h, with h(i) = j meaning that  $O_j$  is a parent of  $O_i$ .

For every  $i \in \mathcal{L} = \{1, \dots, m\}$  let  $\langle V, E_i, w_i \rangle$  be an edge weighted graph associated with image f and object  $O_i$ . The edges and weights can include other constrains, like shape.

**HLOIFT** weighted digraph is defined as  $\langle \mathcal{L} \times V, E, w \rangle$ , where its restriction to *i*th object layer,  $\langle \{i\} \times V, E^i, w^i \rangle$ , is an isomorphic copy of  $\langle V, E_i, w_i \rangle$ .

We still need to define inter-layer edges and their weights on the HLOIFT graph  $\mathcal{N} = \mathcal{L} \times V$ .



Let  $f: V \to \mathbb{R}^k$  be an (n-dimensional) image containing objects  $O_1, \ldots, O_m, O_{m+1} = V$ . A hierarchy tree is indicated by a parent map h, with h(i) = j meaning that  $O_i$  is a parent of  $O_i$ .

For every  $i \in \mathcal{L} = \{1, \dots, m\}$  let  $\langle V, E_i, w_i \rangle$  be an edge weighted graph associated with image f and object  $O_i$ . The edges and weights can include other constrains, like shape.

**HLOIFT** weighted digraph is defined as  $\langle \mathcal{L} \times V, E, w \rangle$ , where its restriction to *i*th object layer,  $\langle \{i\} \times V, E^i, w^i \rangle$ , is an isomorphic copy of  $\langle V, E_i, w_i \rangle$ .

We still need to define inter-layer edges and their weights on the HLOIFT graph  $\mathcal{N} = \mathcal{L} \times V$ .



Let  $f: V \to \mathbb{R}^k$  be an (n-dimensional) image containing objects  $O_1, \ldots, O_m, O_{m+1} = V$ . A hierarchy tree is indicated by a parent map h, with h(i) = j meaning that  $O_i$  is a parent of  $O_i$ .

For every  $i \in \mathcal{L} = \{1, \dots, m\}$  let  $\langle V, E_i, w_i \rangle$  be an edge weighted graph associated with image f and object  $O_i$ . The edges and weights can include other constrains, like shape.

**HLOIFT** weighted digraph is defined as  $\langle \mathcal{L} \times V, E, w \rangle$ , where its restriction to *i*th object layer,  $\langle \{i\} \times V, E^i, w^i \rangle$ , is an isomorphic copy of  $\langle V, E_i, w_i \rangle$ .

We still need to define inter-layer edges and their weights on the HLOIFT graph  $\mathcal{N} = \mathcal{L} \times V$ .



Let  $f: V \to \mathbb{R}^k$  be an (n-dimensional) image containing objects  $O_1, \ldots, O_m, O_{m+1} = V$ . A hierarchy tree is indicated by a parent map h, with h(i) = j meaning that  $O_j$  is a parent of  $O_i$ .

For every  $i \in \mathcal{L} = \{1, \dots, m\}$  let  $\langle V, E_i, w_i \rangle$  be an edge weighted graph associated with image f and object  $O_i$ . The edges and weights can include other constrains, like shape.

**HLOIFT** weighted digraph is defined as  $\langle \mathcal{L} \times V, E, w \rangle$ , where its restriction to *i*th object layer,  $\langle \{i\} \times V, E^i, w^i \rangle$ , is an isomorphic copy of  $\langle V, E_i, w_i \rangle$ .

We still need to define inter-layer edges and their weights on the HLOIFT graph  $\mathcal{N} = \mathcal{L} \times V$ .



**HLOIFT**, being essentially OIFT run on  $\mathcal{N}$ , returns a single object  $O \subset \mathcal{N}$ .

It encodes the objects and the background as

$$O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in I} O_i.$$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets  $\langle S_0, \dots, S_m \rangle$  in V indicate objects  $\langle O_0, \dots, O_m \rangle$ , then  $\bar{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$  indicates object O in  $\mathcal{N}$ , while  $\bar{S}_0 = \mathcal{L} \times S_0$  indicatess its complement in  $\mathcal{N}$ .

Sets  $\bar{\mathcal{S}}_0$  and  $\bar{\mathcal{S}}_1$  are used to define  $\psi_{\text{last}}$  in  $\mathcal{N}$ .



**HLOIFT**, being essentially OIFT run on  $\mathcal{N}$ , returns a single object  $O \subset \mathcal{N}$ .

It encodes the objects and the background as

$$O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets  $\langle S_0, \dots, S_m \rangle$  in V indicate objects  $\langle O_0, \dots, O_m \rangle$ , then  $\bar{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$  indicates object O in  $\mathcal{N}$ , while  $\bar{S}_0 = \mathcal{L} \times S_0$  indicatess its complement in  $\mathcal{N}$ .



**HLOIFT**, being essentially OIFT run on  $\mathcal{N}$ , returns a single object  $O \subset \mathcal{N}$ .

It encodes the objects and the background as

$$O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets  $\langle S_0, \dots, S_m \rangle$  in V indicate objects  $\langle O_0, \dots, O_m \rangle$ , then  $\bar{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$  indicates object O in  $\mathcal{N}$ , while  $\bar{S}_0 = \mathcal{L} \times S_0$  indicatess its complement in  $\mathcal{N}$ .



**HLOIFT**, being essentially OIFT run on  $\mathcal{N}$ , returns a single object  $O \subset \mathcal{N}$ .

It encodes the objects and the background as

$$O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets  $\langle S_0, \dots, S_m \rangle$  in V indicate objects  $\langle O_0, \dots, O_m \rangle$ , then  $\bar{S}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times S_i$  indicates object O in  $\mathcal{N}$ , while  $\bar{S}_0 = \mathcal{L} \times S_0$  indicatess its complement in  $\mathcal{N}$ .



**HLOIFT**, being essentially OIFT run on  $\mathcal{N}$ , returns a single object  $O \subset \mathcal{N}$ .

It encodes the objects and the background as

$$O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets  $\langle \mathcal{S}_0, \dots, \mathcal{S}_m \rangle$  in V indicate objects  $\langle \mathcal{O}_0, \dots, \mathcal{O}_m \rangle$ , then  $\bar{\mathcal{S}}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times \mathcal{S}_i$  indicates object O in  $\mathcal{N}$ , while  $\bar{\mathcal{S}}_0 = \mathcal{L} \times \mathcal{S}_0$  indicatess its complement in  $\mathcal{N}$ .



### Labeling of objects

**HLOIFT**, being essentially OIFT run on  $\mathcal{N}$ , returns a single object  $O \subset \mathcal{N}$ .

It encodes the objects and the background as

$$O_i = \{t \in V : (i,t) \in O\} = p[O \cap (\{i\} \times V)] \& O_0 = V \setminus \bigcup_{i \in \mathcal{L}} O_i.$$

This indicates how to define inter-layer edges and their weights to ensure tree-indicated relations.

If seed sets  $\langle \mathcal{S}_0, \dots, \mathcal{S}_m \rangle$  in V indicate objects  $\langle \mathcal{O}_0, \dots, \mathcal{O}_m \rangle$ , then  $\bar{\mathcal{S}}_1 = \bigcup_{i \in \mathcal{L}} \{i\} \times \mathcal{S}_i$  indicates object O in  $\mathcal{N}$ , while  $\bar{\mathcal{S}}_0 = \mathcal{L} \times \mathcal{S}_0$  indicatess its complement in  $\mathcal{N}$ .

Sets  $\bar{\mathcal{S}}_0$  and  $\bar{\mathcal{S}}_1$  are used to define  $\psi_{\text{last}}$  in  $\mathcal{N}$ .

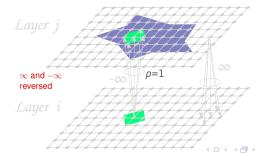


# Inter-layer edges indicating inclusions

If  $O_i$  is the parent of  $O_i$  (i.e., h(i) = j),

we add all edges  $\langle (i, c), (j, d) \rangle$  with  $||c - d|| \leq \rho$ .

$$w_1(s,t) = w_0(t,s) = \infty$$
 and  $w_0(s,t) = w_1(t,s) = -\infty$ 

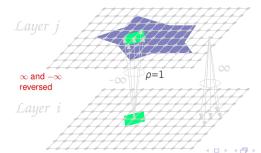


### Inter-layer edges indicating inclusions

If  $O_i$  is the parent of  $O_i$  (i.e., h(i) = j),

we add all edges  $\langle (i, c), (j, d) \rangle$  with  $||c - d|| \leq \rho$ .

$$w_1(s,t) = w_0(t,s) = \infty$$
 and  $w_0(s,t) = w_1(t,s) = -\infty$ .



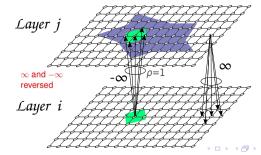
### Inter-layer edges indicating inclusions

If  $O_i$  is the parent of  $O_i$  (i.e., h(i) = j),

we add all edges  $\langle (i, c), (j, d) \rangle$  with  $||c - d|| \leq \rho$ .

For s = (i, c) and t = (j, d) we define

$$w_1(s,t) = w_0(t,s) = \infty$$
 and  $w_0(s,t) = w_1(t,s) = -\infty$ .



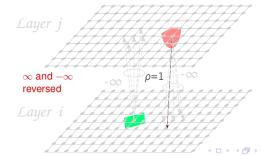
4 € ► € 40 Q (~

### Inter-layer edges indicating exclusions

If  $O_i$  and  $O_j$  are siblings (i.e., h(i) = h(j) and  $i \neq j$ ),

we add all edges  $\langle (i, c), (j, d) \rangle$  with  $||c - d|| \leq \rho$ .

$$w_1(s, t) = w_0(t, s) = w_0(s, t) = w_1(t, s) = \infty$$

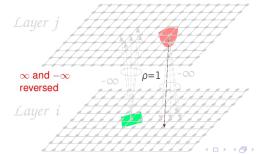


### Inter-layer edges indicating exclusions

If  $O_i$  and  $O_j$  are siblings (i.e., h(i) = h(j) and  $i \neq j$ ),

we add all edges  $\langle (i, c), (j, d) \rangle$  with  $||c - d|| \leq \rho$ .

$$w_1(s,t) = w_0(t,s) = w_0(s,t) = w_1(t,s) = \infty.$$

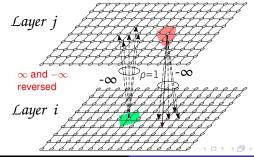


### Inter-layer edges indicating exclusions

If  $O_i$  and  $O_j$  are siblings (i.e., h(i) = h(j) and  $i \neq j$ ),

we add all edges  $\langle (i, c), (j, d) \rangle$  with  $||c - d|| \leq \rho$ .

$$w_1(s,t) = w_0(t,s) = w_0(s,t) = w_1(t,s) = \infty.$$



## Illustration of the inter-layer arc construction

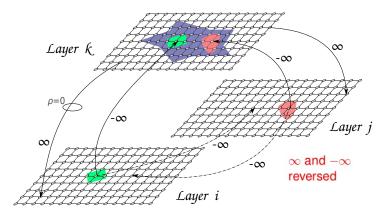


Figure: Illustration of the inter-layer arc construction, involving three objects  $O_i$ ,  $O_j$ , and  $O_k$ , where  $O_k$  is the parent of two sibling objects,  $O_i$  and  $O_i$ , i.e., h(i) = h(j) = k.



**Data**: Weighted digraph  $\mathcal{N}$ ;  $\psi_{\text{last}}$  from image and sets  $\bar{\mathcal{S}}_0$ ,  $\bar{\mathcal{S}}_1$  **Result**: Array  $\pi[]$  of paths,  $\pi[t]$  being a path from a seed to t

```
1 foreach t \in \mathcal{N} do \pi[t] \leftarrow \langle t \rangle and S(t) \leftarrow 0;

2 Q \leftarrow \bar{S}_0 \cup \bar{S}_1

3 while Q \neq \emptyset do

4 remove an element s of \max_{t \in Q} \psi_{\text{last}}(\pi[t]) from Q

5 S(s) \leftarrow 1

6 foreach x such that \langle s, x \rangle \in E and S(x) = 0 do

7 if \psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s] \hat{x}) and

8 [\pi[s] \text{ is from } \bar{S}_1 \text{ or } s \text{ and } x \text{ are not siblings]} then

9 \pi[x] \leftarrow \pi[s] \hat{x}

1 if x \notin Q then insert t in Q
```

**Data**: Weighted digraph  $\mathcal{N}$ ;  $\psi_{\text{last}}$  from image and sets  $\bar{\mathcal{S}}_0$ ,  $\bar{\mathcal{S}}_1$ **Result**: Array  $\pi[]$  of paths,  $\pi[t]$  being a path from a seed to tforeach  $t \in \mathcal{N}$  do  $\pi[t] \leftarrow \langle t \rangle$  and  $S(t) \leftarrow 0$ ; 2  $Q \leftarrow \bar{\mathcal{S}}_0 \cup \bar{\mathcal{S}}_1$ **remove** an element s of  $\max_{t \in Q} \psi_{last}(\pi[t])$  from Q foreach x such that  $\langle s, x \rangle \in E$  and S(x) = 0 do if  $\psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]^x)$  and

4

```
Data: Weighted digraph \mathcal{N}; \psi_{\text{last}} from image and sets \bar{\mathcal{S}}_0, \bar{\mathcal{S}}_1
   Result: Array \pi[] of paths, \pi[t] being a path from a seed to t
1 foreach t \in \mathcal{N} do \pi[t] \leftarrow \langle t \rangle and S(t) \leftarrow 0;
2 Q \leftarrow \bar{\mathcal{S}}_0 \cup \bar{\mathcal{S}}_1
3 while Q \neq \emptyset do
         remove an element s of \max_{t \in Q} \psi_{\text{last}}(\pi[t]) from Q
         S(s) \leftarrow 1
         foreach x such that \langle s, x \rangle \in E and S(x) = 0 do
               if \psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]^x) and
```

4

5

```
Data: Weighted digraph \mathcal{N}; \psi_{\text{last}} from image and sets \bar{\mathcal{S}}_0, \bar{\mathcal{S}}_1
   Result: Array \pi[] of paths, \pi[t] being a path from a seed to t
1 foreach t \in \mathcal{N} do \pi[t] \leftarrow \langle t \rangle and S(t) \leftarrow 0;
2 Q \leftarrow \bar{\mathcal{S}}_0 \cup \bar{\mathcal{S}}_1
3 while Q \neq \emptyset do
         remove an element s of \max_{t \in Q} \psi_{\text{last}}(\pi[t]) from Q
         S(s) \leftarrow 1
         foreach x such that \langle s, x \rangle \in E and S(x) = 0 do
```

5

```
Data: Weighted digraph \mathcal{N}; \psi_{\text{last}} from image and sets \bar{\mathcal{S}}_0, \bar{\mathcal{S}}_1
   Result: Array \pi[] of paths, \pi[t] being a path from a seed to t
1 foreach t \in \mathcal{N} do \pi[t] \leftarrow \langle t \rangle and S(t) \leftarrow 0;
2 Q \leftarrow \bar{\mathcal{S}}_0 \cup \bar{\mathcal{S}}_1
3 while Q \neq \emptyset do
         remove an element s of \max_{t \in Q} \psi_{\text{last}}(\pi[t]) from Q
         S(s) \leftarrow 1
         foreach x such that \langle s, x \rangle \in E and S(x) = 0 do
               if \psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]\hat{x}) and
                        [\pi[s] \text{ is from } \bar{S}_1 \text{ or s and } x \text{ are not siblings}]  then
                \pi[x] \leftarrow \pi[s]^x
if x \notin Q then insert t in Q
```

4

5

6

8

```
Data: Weighted digraph \mathcal{N}; \psi_{\text{last}} from image and sets \bar{\mathcal{S}}_0, \bar{\mathcal{S}}_1
   Result: Array \pi[] of paths, \pi[t] being a path from a seed to t
1 foreach t \in \mathcal{N} do \pi[t] \leftarrow \langle t \rangle and S(t) \leftarrow 0;
2 Q \leftarrow \bar{\mathcal{S}}_0 \cup \bar{\mathcal{S}}_1
3 while Q \neq \emptyset do
        remove an element s of \max_{t \in Q} \psi_{\text{last}}(\pi[t]) from Q
        S(s) \leftarrow 1
        foreach x such that \langle s, x \rangle \in E and S(x) = 0 do
              if \psi_{\text{last}}(\pi[x]) < \psi_{\text{last}}(\pi[s]\hat{x}) and
                      [\pi[s]] is from \bar{S}_1 or s and x are not siblings] then
                \pi[x] \leftarrow \pi[s]^x
                if x \notin Q then insert t in Q
```

#### Correctness of HLOIFT

#### Theorem (Leon, Ciesielski, Miranda, submitted)

An object O returned by HLOIFT generates objects  $\langle O_0, \ldots, O_m \rangle$  which are consistent with the seeds  $\langle S_0, \ldots, S_m \rangle$  and the hierarchy indicated by h.

Moreover, the graph cut c(O) associated with O minimizes its  $\ell_{\infty}$  norm among all such objects, where

```
c(O) = \{ \langle s, t \rangle \in E : s \in O \& t \notin O \& s \text{ and } t \text{ are not siblings} \}
\cup \{ \langle s, t \rangle \in E : s, t \in O \& s \text{ and } t \text{ are siblings} \}.
```

#### Correctness of HLOIFT

#### Theorem (Leon, Ciesielski, Miranda, submitted)

An object O returned by HLOIFT generates objects  $\langle O_0, \ldots, O_m \rangle$  which are consistent with the seeds  $\langle S_0, \ldots, S_m \rangle$  and the hierarchy indicated by h.

Moreover, the graph cut c(O) associated with O minimizes its  $\ell_{\infty}$  norm among all such objects, where

```
c(O) = \{ \langle s, t \rangle \in E \colon s \in O \& t \notin O \& s \text{ and } t \text{ are not siblings} \} 
\cup \{ \langle s, t \rangle \in E \colon s, t \in O \& s \text{ and } t \text{ are siblings} \}.
```

#### Correctness of HLOIFT

#### Theorem (Leon, Ciesielski, Miranda, submitted)

An object O returned by HLOIFT generates objects  $\langle O_0, \ldots, O_m \rangle$  which are consistent with the seeds  $\langle S_0, \ldots, S_m \rangle$  and the hierarchy indicated by h.

Moreover, the graph cut c(O) associated with O minimizes its  $\ell_{\infty}$  norm among all such objects, where

```
c(O) = \{ \langle s, t \rangle \in E \colon s \in O \& t \notin O \& s \text{ and } t \text{ are not siblings} \} 
\cup \{ \langle s, t \rangle \in E \colon s, t \in O \& s \text{ and } t \text{ are siblings} \}.
```

#### **Outline**

- Image segmentation in graph cut setting
- Dijkstra algorithm in general setting
- Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- 5 Experimental results for HLOIFT
- Summary



#### Experiment #1

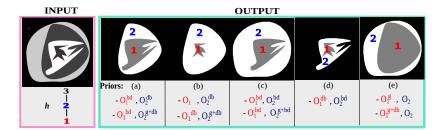


Figure: Example of two object segmentation by HLOIFT, where  $O_2$  is parent of  $O_1$ . Each object has different high-level priors –db: polarity from dark to bright pixels, bd: polarity from bright to dark pixels and g: geodesic star convexity prior. We used  $\rho = 1.5$ . Only two seeds.

### Experiment #2

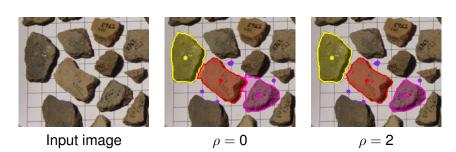


Figure: Example showing how changing the  $\rho$  value from 0 to 2 can improve the archaeological fragment segmentation by HLOIFT, avoiding a result with touching objects.

### Experiment #3

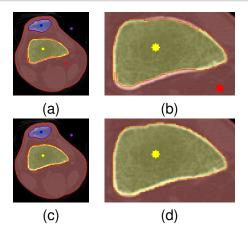


Figure: Knee segmentation composed of three objects in a CT image. (a-b) Result by IFT where the  $O_1$  is mixing bright & dark boundaries. (c-d) An improved result is obtained by HLOIFT with boundary polarity from bright to dark pixels, requiring fewer seeds.

#### Experiment #4

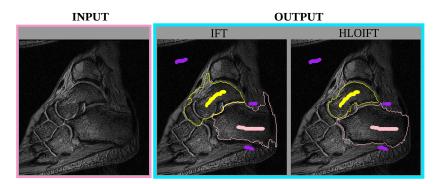


Figure: Talus  $(O_1)$  and calcaneus  $(O_2)$  segmentation. The two objects are sibling objects. For HLOIFT, we used  $\rho = 0$ , the geodesic star convexity and boundary polarity ( $\alpha = -0.75$ ).

### Exper. #5: CT, thoracic-abdominal axial cross section

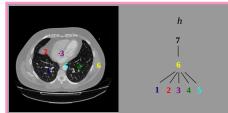
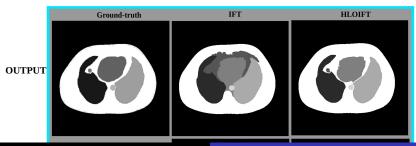


Figure: right lung  $(O_1)$ , liver  $(O_2)$ , heart  $(O_3)$ , left lung  $(O_4)$ , aorta  $(O_5)$  and the thoracic-abdominal region  $(O_6)$ .



INPUT

### Experiment #6

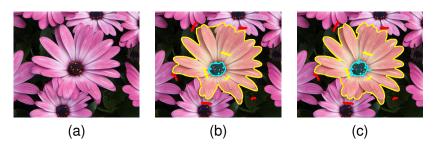


Figure: Flower segmentation in two objects, the central part in cyan and the petals in yellow, using the inclusion relation. (a) The input image. (b) Result by the min-cut/max-flow algorithm in layered graphs. (c) Result by HLOIFT.

## Efficiency: HLOIFT versus min-cut/max-flow

| Image size (pixels) | Time of HLOIFT (ms) | Time of min-cut/max-flow (ms) |
|---------------------|---------------------|-------------------------------|
| 380 × 320           | 114.65              | 323.61                        |
| 760 × 640           | 488.62              | 1,798.91                      |
| 1520 × 1280         | 1,823.55            | 19,021.71                     |

The running times for the flower segmentation by HLOIFT and the min-cut/max-flow algorithm in layered graphs using different image sizes.

#### Outline

- Image segmentation in graph cut setting
- Dijkstra algorithm in general setting
- Oriented IFT and graph cut optimization
- 4 HLOIFT: Hierarchical Layered OIFT algorithm
- Experimental results for HLOIFT
- 6 Summary



- We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.
- We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.
- We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.
- We proved that the output of HLOIFT minimizes appropriate graph cut energy.



- We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.
- We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.
- We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.
- We proved that the output of HLOIFT minimizes appropriate graph cut energy.



- We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.
- We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.
- We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.
- We proved that the output of HLOIFT minimizes appropriate graph cut energy.



- We described efficient multi-object segmentation algorithm HLOIFT, which can use orientation, hierarchical relations between objects, and high-level priors for each object.
- We placed HLOIFT within a general framework of FC/IFT, which allows us to conclude its provable robustness on seed placements.
- We proved that the objects returned by HLOIFT are consistent with seeds placement and given hierarchy.
- We proved that the output of HLOIFT minimizes appropriate graph cut energy.



#### Credits

- K.C. Ciesielski, J.K. Udupa, A.X. Falcão, P.A.V. Miranda, "Fuzzy Connectedness image segmentation in Graph Cut formulation," J. Math. Imaging Vision 44(3) (2012), 375-398
- K.C. Ciesielski, A.X. Falcão, P.A.V. Miranda, "Path-value functions for which Dijkstra's algorithm returns optimal mapping," J. Math. Imaging Vision 60(7) (2018), 1025-1036
- K.C. Ciesielski, Gabor T. Herman, T. Yung Kong, "General Theory of Fuzzy Connectedness Segmentations," J. Math. Imaging Visionn 55(3) (2016), 304-342;
- L.M.C. Leon, K.C. Ciesielski, P.A.V. Miranda, "Efficient Hierarchical Multi-Object Segmentation in Layered Graph," (2018), submitted.

# Thank you for your attention!