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Notation

Dn: is the class of all n-times differentiable f : R→ R

Cn: all f ∈ Dn with continuous n th derivative f (n)

For perfect P ⊂ R, a Dn map f : P → R, and a ∈ P let
T n

a f (x) denote the n-th degree Taylor polynomial of f at a:

T n
a f (x) :=

n∑
i=0

f (i)(a)

i!
(x − a)i

and the “n th quotient” map qn
f : P2 → R is given by

qn
f (a,b) :=


T n

b f (b)− T n
a f (b)

(b − a)n if a 6= b,

0 if a = b.
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Whitney’s Extension Theorem for one variable

qn
f (a,b) :=

T n
b f (b)−T n

a f (b)
(b−a)n

Theorem (Case P ⊂ R of theorem of Whitney 1934)
Let P ⊂ R be perfect, n ∈ N, and f : P → R.

There exists a Cn extension f̄ : R→ R of f if, and only if,

(Wn) f is Cn and qn−i
f (i) : P2 → R is continuous for every i ≤ n.

Necessity of (Wn) is clear, as f̄ satisfies it.

Sufficiency is not easy, even in the simple case of P ⊂ R.

Our submitted paper with Seoane–Sepúlveda contains a
detailed 4-page proof of this sufficiency.
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Higher order of Jarník’s Extension Theorem?
Open Problem
Is there an analogous characterization of functions f : P → R,
where P ⊂ R is perfect, that admit Dn extensions f̄ : R→ R?

Any f admitting Dn extension f̄ : R→ R must satisfy

(Vn): f is Dn and (Wn−1) from Whitney’s Extension Theorem

For n = 1, (Vn) is sufficient, by Jarník’s Extension Theorem.

For n = 2, (Vn) is not sufficient (C is the Cantor ternary set):

Example (Ciesielski & Seoane–Sepúlveda, 2018)

There exists a C1 function f : R→ R such that f ′ � C ≡ 0 and for
no perfect set P ⊂ C there is a C2 extension f̄ : R→ R of f � P.
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About Generalized Ulam-Zahorski Problem

For F ,G ⊂ RR, usually F ( G, it is the statement

UZ(G,F): ∀g ∈ G ∃f ∈ F with uncountable f ∩ g.

Zahorski 1948, solving 1940 problem of Ulam: ¬UZ(C0, analytic)

Zahorski asked: does UZ(C0,C∞) hold?

What about UZ(G,F) for other classes of differentiable maps?

Agronsky, Bruckner, Laczkovich, Preiss 1985: UZ(C0,C1) holds

Olevskiı̌ 1994: UZ(C1,C2) holds, but ¬UZ(C0,C2) & ¬UZ(C2,C3),

solving all UZ(Cn,Cm) problems.
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Strong Dn-Cn interpolation theorem

Theorem (Ciesielski and Seoane–Sepúlveda, 2018)

For every n ∈ N, perfect P ⊂ R, and Dn map f : R→ R there is
a Cn map g : R→ R for which [f = g] ∩ P is uncountable.
In particular, UZ(Dn,Cn) holds.

Proof: Short but a bit tricky.

Using Whitney’s Extension Theorem.

Special case of a result discussed latter.
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All UZ(G,F) problems for F ,G ∈ D =
⋃

n<ω{Dn,Cn}

Corollary
For every n ∈ N with n ≥ 2:
(a) C1 is the smallest F ∈ D for which UZ(C0,F) holds.
(b) If F ∈ D is the smallest for which UZ(D1,F) holds, then
F ∈ {C1,C2}.

(c) C2 is the smallest F ∈ D for which UZ(C1,F) holds.
(d) Cn is the smallest F ∈ D for which UZ(Dn,F) holds.
(e) Cn is the smallest F ∈ D for which UZ(Cn,F) holds.

Proof.

(a) By previous theorem UZ(C0,D2) implies UZ(C0,C2).
Since ¬UZ(C0,C2), then so is ¬UZ(C0,D2).
Arguments for (b)-(e) are similar.

Krzysztof Chris Ciesielski Higher level differentiability 6



Ext Thms Interpolations Main Thm Reduction Fprism Theorem A Problems

Remaining Ulam-Zahorski interpolation problem

Open Problem

Does UZ(D1,D2) hold?

Notice, that if UZ(D1,D2) holds, then so does UZ(D1,C2).
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The main covering theorem

A ⊂? B will mean “B \ A has cardinality ≤ ω1.”

CPAprism is a simple part of the covering property axiom CPA
consistent with ZFC.

Theorem (Ciesielski and Seoane–Sepúlveda 2018)

CPAprism implies that for every ν ∈ ω ∪ {∞} there exists a family
Fν ⊂ Cν(R) of cardinality ω1 < c such that

(i) g ⊂?
⋃
Fν for every g ∈ Dν(R).

Moreover, for n ∈ {0,1}, and only such n, we also have
(ii) g ⊂?

⋃
Fn for every g ∈ Dn(X ), where X ⊂ R is arbitrary.

What remains of this talk revolves around this theorem.

Krzysztof Chris Ciesielski Higher level differentiability 8



Ext Thms Interpolations Main Thm Reduction Fprism Theorem A Problems

No (obvious) expansions of the Main Theorem

Main Theorem states that: For n < ω & k < 2, CPAprism implies

In = I(Dn,Cn): ∃Fn ∈ [Cn(R)]<c ∀g ∈ Dn(R) g ⊂?
⋃
Fn

I∗k : ∃Fk ∈ [Ck (R)]<c ∀X ⊂ R ∀g ∈ Dk (X ) g ⊂?
⋃
Fk

This cannot be expanded, as

Fact: I(Cn−1,Dn) is false for all n ∈ N.

Proof: For n = 1, there is g1 ∈ “D1(R)”⊂ C0(R) with g′1 =∞ on
a perfect P; so |[f = g] ∩ P| ≤ ω for every f ∈ D0(R).
For n = 2 use g2 =

∫
g1, etc. . . . .

Fact: I∗k is false for k > 1.

Proof: Put k = 2 and C—the Cantor ternary set. There is
(simple) f ∈ C1(R) such that g � C ∈ D2(C) and |[f = g]∩C| < ω
for every f ∈ D2(R). So, g � C contradicts I∗2 .
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Main Theorem for n = 0: independence of ZFC

Main Theorem for n = 0 can be stated as: CPAprism implies

I0: ∃F0 ∈ [C0(R)]<c ∀g ∈ C0(R) g ⊂?
⋃
F0

What I0 means:

Few functions from F0 cover? every continuous function
Few functions from F0 cover? every level R× {y}
⊂? in I0 cannot be ⊂, as F0 cannot cover R2

I0 =⇒ cov(Meager) < c
Proof: Pick y ∈ R \

⋃
f∈F0

f [Q] and put g = R× {y}.
Then R is a union of |F0|-many nowhere dense sets [f = g]
and |g \

⋃
F0|-many singletons, while |F0|+ |g \

⋃
F0| < c.

So, I0 contradicts CH and MA.
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I0 and the size of c
Fact (Proved for this talk. Not in the papers. Known?)

I0 =⇒ ∃F0 ∈ [RR]<c ∀y ∈ R R× {y} ⊂?
⋃
F0 =⇒ c = |F0|+

Proof: Let κ = |F0|+ and assume c > κ. Put B = R2 \
⋃
F0,

By = {x : 〈x , y〉 ∈ B}, and note that |By | < c for all y ∈ R.

Claim: There is Y ∈ [R]κ with |
⋃

y∈Y By | < c.

Proof. If cof(c) > κ, then any Y ∈ [R]κ works. If cof(c) ≤ κ,
choose cofinal L ∈ [c]κ; there is λ ∈ L with
Zλ = {y ∈ R : |By | ≤ λ} of cardinality > κ. (Otherwise
c = |

⋃
λ∈L Zλ| ≤ κ.) Then any Y ∈ [Zλ]κ works.

Now, by Claim, there are x0 ∈ R \
⋃

y∈Y By and
y0 ∈ Y \ {f (x0) : f ∈ F0}. Then 〈x0, y0〉 /∈ B ∪

⋃
F0 = R2, a

contradiction.
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Families Fn for n > 0

In: ∃Fn ∈ [Cn(R)]<c ∀g ∈ Dn(R) g ⊂?
⋃
Fn

Clearly In implies

Jn: ∀g ∈ Dn(R) ∃Fg ∈ [Cn(R)]<c s.t . g ⊂
⋃
Fg

CPAprism =⇒ Jn was first “proved” by KC & Pawlikowski [CPA
book]

For n > 1 their proof was incorrect!

Thus, the proof from submitted paper is the first correct one.
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Main Theorem via three key theorems

Theorem (A)

CPAprism implies that for every ν ∈ ω ∪ {∞} and every compact
interval I = [a,b] ⊂ R there exists a family F I

ν ⊂ Cν(R) of
cardinality ω1 < c such that g ⊂?

⋃
F I
ν for every g ∈ Cν(I).

Theorem (B)

CPAprism implies that for every n ∈ N and g ∈ Dn(R) there exists
a family Fg ⊂ Cn(R) of cardinality ω1 < c such that g ⊂

⋃
Fg .

Theorem (C)

CPAprism implies that for every n ∈ {0,1} and g ∈ Dn(X ) with
X ⊂ R there exists a family Fg ⊂ Cn(R) of cardinality ω1 < c
such that g ⊂

⋃
Fg .
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Proof of Main Theorem from Theorems A-C

Fix ν ∈ ω ∪ {∞}. Put Fν =
⋃∞

n=1F
[−n,n]
ν , with F [−n,n]

ν from Thm A.

Choose a g ∈ Dν(X ) such that X ⊂ R and X = R unless ν < 2.

We need to show that g ⊂?
⋃
Fν .

There is an Fg ∈ [Cν(R)]≤ω1 such that g ⊂
⋃
Fg .

For ν < 2 follows from Thm C,
for ν =∞ this is justified by Fg = {g} ⊂ D∞(R) = C∞(R),
while for the remaining cases this follows from Thm B.

For each n ∈ N and f ∈ Fg we have
f � [−n,n] ⊂?

⋃
F [−n,n]
ν ⊂

⋃
Fν . So, we have needed

g ⊂
⋃
Fg =

⋃
f∈Fg

∞⋃
n=1

f � [−n,n] ⊂?
⋃
Fν
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Borel extensions of maps from Dν(X ), X ⊂ R arbitrary

Theorem (KC & Seoane–Sepúlveda 2018; known earlier?)

Let X ⊂ R be with no isolated points and ν ∈ ω ∪ {∞}.
For every g ∈ Dν(X ) there exist Borel B ⊃ X and ḡ ∈ Dν(B)
extending g.

Proof based on the lemmas. (Known for X = R.)

Lemma (KC & Seoane–Sepúlveda 2018; known earlier?)

For every X ⊂ R with no isolated points and g ∈ C(X ) the set
Dif(g) of points of differentiability of g is an Fσδ subset of X .

Lemma (KC & Seoane–Sepúlveda 2018; known earlier?)

For every X ⊂ R with no isolated points and g ∈ C(X ) if
f ∈ D1(X ), then the derivative f ′ : X → R is of Baire class 2.
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Proof of Theorem C

∀n < 2, X ⊂ R, g ∈ Dn(X ) ∃ Fg ∈ [Cn(R)]≤ω1 with g ⊂
⋃
Fg .

Proof.
Fix n < 2, X ⊂ R, g ∈ Dn(X ).
We can assume that that X has no isolated points.
Then, there exist Borel B ⊃ X and ḡ ∈ Dν(B) extending g.
By CPAprism, see [CPA book], there exists a family P of
cardinality ≤ ω1 of compact subsets of B such that B =

⋃
P.

For every P ∈ P, we have ḡ � P ∈ Dn(P) and
there exists an extension gP ∈ Dn(R) of ḡ � P

—by Tietze (for n = 0) or Jarník (for n = 1) extension theorem.
So, by Theorem B, there is FP ∈ [Cn(R)]≤ω1 with gP ⊂

⋃
FP .

Then, Fg =
⋃

P∈P FP is as needed, since

g ⊂ ḡ =
⋃

P∈P
ḡ � P ⊂

⋃
P∈P

gP ⊂
⋃

P∈P

⋃
FP =

⋃
Fg .
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Restriction theorems expressed in density language

Perf(X )—all P ⊂ X homeomorphic to C.

1). Theorem on Dn-Cn interpolation: For any f ∈ Dn(R) the
family

Ef := {Q ∈ Perf(R) : f � Q is extendable to g ∈ Cn(R)}

is Perf(R)-dense: every P ∈ Perf(R) contains a Q ∈ Ef .

2) For n = 1 and f ∈ C0(R), Ef is not Perf(R)-dense.

We need more structure: sets P ∈ Perf(R) of positive measure;
then Q ∈ En

f contained in P can have also positive measure.

3) To prove Theorem C and state CPAprism we need the notion
of Fprism-density, where sets P ∈ Perf(R) come with more
structure, and “good” Q ∈ En

f contained in P retain part of it.
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Fprism-density and CPAprism

Based on a family P of perfect subsets of Cα, 0 < α < ω1,
containing all cubes

∏
ξ<α Pξ, Pξ ∈ Perf(C).

(P—all sets f [Cα], where f : Cα → Cα is continuous 1-1 s.t.

f (x) � ξ = f (y) � ξ ⇔ x � ξ = y � ξ for all ξ < α and x , y ∈ Cα.

This definition will not be used in this talk.)

Prism in X—any P ∈ Perf(X ) with (implicit) continuous injection
h from an E ∈ P onto P.
Subprism of a prism P given by h : E → P—any Q = h[E ′], with
E ′ ∈ P, E ′ ⊂ E .
E ⊂ Perf(X ) is Fprism-dense provided for every prism P in
Perf(X ) there exists a subprism Q of P with Q ∈ E .

CPAprism: c = ω2 and for every Polish space X and every
Fprism-dense family E ⊂ Perf(X ) there is
E0 ∈ [E ]≤ω1 with X ⊂?

⋃
E0.
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Proof of Theorem B

Th B: CPAprism ⇒ ∀n ∈ N, f ∈ Dn(R) ∃Ff ∈ [Cn(R)]≤ω1 f ⊂
⋃
Ff .

Proposition (discussed in the next slide)

E := {Q ∈ Perf(R) : f � Q is extendable to gQ ∈ Cn(R)}
is Fprism-dense for every f ∈ Dn(R).

Proof of Theorem B.
By CPAprism used with X = R and Fprism-dense E

there is an E0 ∈ [E ]≤ω1 with R ⊂?
⋃
E0.

Then F̂f = {gQ : Q ∈ E0} has cardinality ≤ ω1 and f ⊂?
⋃
F̂f .

An extension Ff of F̂f by ω1 constant maps gives f ⊂
⋃
Ff .
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Sketch of the proof of Proposition

Ef = {Q : f � Q is extendable to gQ ∈ Cn(R)} is Fprism-dense.

Proof.

Fix a prism P and define symmetric ϕn
f : P2 \∆→ R as

ϕn
f (a,b) =

∑n
k=0 |q

n−k
f (k) (a,b)|+

∑n
k=0 |q

n−k
f (k) (b,a)|.

By lemma from [CPA book] there is a subprism Q of P such
that ϕn

f : Q2 \∆→ [−∞,∞] is uniformly continuous.
So, it has a continuous extension to Q2. This extension is 0 on
the diagonal, as f ∈ Dn(R). (This is proved with two lemmas.)
So, f � Q satisfies assumptions of Whitney’s Extension thm.
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Polish space structures we need

Th A: CPAprism ⇒ ∀ν ≤ ω ∃F I
ν ∈ [Cν(R)]≤ω1 ∀g ∈ Cν(I) g ⊂?

⋃
F I
ν .

Why Cν(I) rather than Cν(R) or Dν(R)?

Cν(R) and Dν(R) are not Polish, Cν(I) is, with metric

ρ(f ,g) =
∑
i<ν

‖f (i) − g(i)‖∞

We use CPAprism with Polish space I × Cν(I)
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Family F I
0

Th A: CPAprism ⇒ ∀ν ≤ ω ∃F I
ν ∈ [Cν(R)]≤ω1 ∀g ∈ Cν(I) g ⊂?

⋃
F I
ν .

Lemma (From [CPA book])

E0 := {P ∈ Perf(I × C(I)) : either π1 � P or π2 � P is 1-to-1}

is Fprism-dense.

So, by CPAprism, there is E ∈ [E0]≤ω1 with I × C(I) ⊂?
⋃
E .

If P ∈ F := {P ∈ E : π1 � P is 1-to-1}, then P ∈ C(π1[P],C(I))
and fP : π1[P]→ R defined as fP(x) = P(x)(x) is continuous, so
extendable to f̂P ∈ C(R).

Claim: F I
0 := {f̂P : P ∈ F} is as needed.
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F I
0 := {f̂P : P ∈ F} satisfies Theorem A for n = 0

E0 = {P ∈ Perf(I × C(I)) : either π1 � P or π2 � P is 1-to-1}

E ∈ [E0]≤ω1 with I × C(I) ⊂?
⋃
E , F = {P ∈ E : π1 � P is 1-to-1}

Fix g ∈ C(I). Need g ⊂?
⋃
F I

0. Note that I × {g} ⊂?
⋃
F I

0.

Fix x ∈ I s.t. 〈x ,g〉 ∈
⋃
F I

0 and P ∈ F I
0 with 〈x ,g〉 ∈ P.

It is enough to show that 〈x ,g(x)〉 ∈ fP , as fP ⊂ f̂P .

Indeed, fP(x) = P(x)(x) = g(x), as P(x) = g by 〈x ,g〉 ∈ P.

So, g � π1[(I × {g}) ∩
⋃
F ] ⊂

⋃
FI , as needed.
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Theorem A for ν > 0

fP with P ∈ E0 need not to have Cn extension.
We need

Lemma (with proof similar to one needed for Theorem C)

E∞ ={P ∈ E0 : if π1 � P is 1-1, then ∃f̂P ∈ C0(R) extending fP

s.t. ∀n < ω either f (n)P ≡ ±∞ or f̂P ∈ Cn(R)}

is Fprism-dense.

Fact For P ∈ E∞ and g ∈ Cn(I), if g ∩ fP is uncountable,

then f̂P ∈ Cn(R) and g ∩ fP ⊂? f̂P .

Pr. If Q ∈ Perf(P) & g = fP on Q, then, on Q, f (n)P ≡ g(n) 6≡ ±∞.
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Proof of Theorem A, general case

E∞ ⊂ E0 is Fprism-dense and for any P ∈ E∞ and g ∈ Cn(I),
if g ∩ fP is uncountable, then f̂P ∈ Cn(R) and g ∩ fP ⊂? f̂P .

By CPAprism, there is E ∈ [E∞]≤ω1 with I × C(I) ⊂?
⋃
E .

Put F := {P ∈ E : π1 � P is 1-to-1}, F I
0 := {f̂P : P ∈ F}, and

F I
ν := {f̂P ∈ Cν(R) : P ∈ F}.

Fix g ∈ Cν(I). Need g ⊂?
⋃
F I
ν . Indeed

g ⊂?
⋃

P∈E
g ∩ fP ⊂?

⋃
f̂P∈F I

ν

g ∩ f̂P ⊂
⋃
F I
ν .
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5 SC: Restriction theorems, prism density, and CPAprism

6 SC: Proof of Theorem A

7 Open problems
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Open problems (from both lectures)

Let f = fn ◦ · · · ◦ f1, where each fi : [0,1]→ [0,1] is a
derivative. Must f have a connected graph?

Characterize, for n > 1, all maps f : P → R, where P ⊂ R is
closed (or just perfect), that admit Dn extensions f̄ : R→ R.

D1-D2 interpolation problem: Does every f ∈ D1(R) admits
g ∈ D2(R) with uncountable f ∩ g? This is equivalent to

D1-C2 interpolation problem.
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That is all!

Thank you for your attention!
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