Higher level differentiability: Generalized Ulam-Zahorski problem and small coverings by smooth maps

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based on survey written with Juan B. Seoane–Sepúlveda Talk 2 of special session on Different levels of smoothness: Restriction, extension, and covering theorem

Summer Symposium in Real Analysis XLII, The White Nights Symposium, Saint-Petersburg, Russia, June 11, 2018

Krzysztof Chris Ciesielski

Higher level differentiability

 D^n : is the class of all *n*-times differentiable $f : \mathbb{R} \to \mathbb{R}$

 C^n : all $f \in D^n$ with continuous *n* th derivative $f^{(n)}$

For perfect $P \subset \mathbb{R}$, a D^n map $f \colon P \to \mathbb{R}$, and $a \in P$ let $T_a^n f(x)$ denote the *n*-th degree Taylor polynomial of *f* at *a*:

$$T_a^n f(x) := \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$$

and the "*n*th quotient" map $q_f^n \colon P^2 \to \mathbb{R}$ is given by

$$q_f^n(a,b) := \begin{cases} \frac{T_b^n f(b) - T_a^n f(b)}{(b-a)^n} & \text{if } a \neq b, \\ 0 & \text{if } a = b. \end{cases}$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Ext Thms Main Thm Reduction Theorem A Problems $\mathcal{F}_{\text{prism}}$ Whitney's Extension Theorem for one variable $q_{f}^{n}(a,b) := \frac{T_{b}^{n}f(b) - T_{a}^{n}f(b)}{(b-a)^{n}}$ Theorem (Case $P \subset \mathbb{R}$ of theorem of Whitney 1934) Let $P \subset \mathbb{R}$ be perfect, $n \in \mathbb{N}$, and $f : P \to \mathbb{R}$. There exists a C^n extension $\overline{f} : \mathbb{R} \to \mathbb{R}$ of f if, and only if, (W_n) f is C^n and $q_{t(i)}^{n-i}: P^2 \to \mathbb{R}$ is continuous for every $i \leq n$.

Necessity of (W_n) is clear, as \overline{f} satisfies it.

Sufficiency is not easy, even in the simple case of $P \subset \mathbb{R}$.

Our submitted paper with Seoane–Sepúlveda contains a detailed 4-page proof of this sufficiency.

イロン 不良 とくほう 不良 とうほ

Krzysztof Chris Ciesielski

3

2

 Ext Thms
 Interpolations
 Main Thm
 Reduction
 \mathcal{F}_{prism} Theorem A
 Problems

 About Generalized Ulam-Zahorski Problem

For $\mathcal{F}, \mathcal{G} \subset \mathbb{R}^{\mathbb{R}}$, usually $\mathcal{F} \subsetneq \mathcal{G}$, it is the statement

 $\mathsf{UZ}(\mathcal{G},\mathcal{F})$: $\forall g \in \mathcal{G} \exists f \in \mathcal{F}$ with uncountable $f \cap g$.

Zahorski 1948, solving 1940 problem of Ulam: $\neg UZ(C^0, analytic)$ Zahorski asked: does $UZ(C^0, C^\infty)$ hold?

What about $UZ(\mathcal{G}, \mathcal{F})$ for other classes of differentiable maps?

Agronsky, Bruckner, Laczkovich, Preiss 1985: $UZ(C^0, C^1)$ holds Olevskii 1994: $UZ(C^1, C^2)$ holds, but $\neg UZ(C^0, C^2) \& \neg UZ(C^2, C^3)$, solving all $UZ(C^n, C^m)$ problems.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

4

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Theorem A Problems Strong D^n - C^n interpolation theorem

Theorem (Ciesielski and Seoane–Sepúlveda, 2018)

For every $n \in \mathbb{N}$, perfect $P \subset \mathbb{R}$, and D^n map $f : \mathbb{R} \to \mathbb{R}$ there is a C^n map $g : \mathbb{R} \to \mathbb{R}$ for which $[f = g] \cap P$ is uncountable. In particular, $UZ(D^n, C^n)$ holds.

Proof: Short but a bit tricky.

Using Whitney's Extension Theorem.

Special case of a result discussed latter.

< 回 > < 回 > < 回 > .

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Theorem A Problems All UZ(\mathcal{G}, \mathcal{F}) problems for $\mathcal{F}, \mathcal{G} \in \mathbb{D} = \bigcup_{n < \omega} \{D^n, C^n\}$

Corollary

For every $n \in \mathbb{N}$ with $n \geq 2$:

- (a) C^1 is the smallest $\mathcal{F} \in \mathbb{D}$ for which $UZ(C^0, \mathcal{F})$ holds.
- (b) If $\mathcal{F} \in \mathbb{D}$ is the smallest for which $UZ(D^1, \mathcal{F})$ holds, then $\mathcal{F} \in \{C^1, C^2\}$.
- (c) C^2 is the smallest $\mathcal{F} \in \mathbb{D}$ for which $UZ(C^1, \mathcal{F})$ holds.
- (d) C^n is the smallest $\mathcal{F} \in \mathbb{D}$ for which $UZ(D^n, \mathcal{F})$ holds.
- (e) C^n is the smallest $\mathcal{F} \in \mathbb{D}$ for which $UZ(C^n, \mathcal{F})$ holds.

Proof.

(a) By previous theorem $UZ(C^0, D^2)$ implies $UZ(C^0, C^2)$. Since $\neg UZ(C^0, C^2)$, then so is $\neg UZ(C^0, D^2)$. Arguments for (b)-(e) are similar.

ヘロト ヘ戸ト ヘヨト ヘヨト

 Ext Thms
 Interpolations
 Main Thm
 Reduction
 \mathcal{F}_{prism} Theorem A
 Problems

 Remaining Ulam-Zahorski interpolation problem

Open Problem

Does $UZ(D^1, D^2)$ hold?

Notice, that if $UZ(D^1, D^2)$ holds, then so does $UZ(D^1, C^2)$.

 $A \subset^* B$ will mean " $B \setminus A$ has cardinality $\leq \omega_1$."

CPA_{prism} is a simple part of the covering property axiom CPA consistent with ZFC.

Theorem (Ciesielski and Seoane–Sepúlveda 2018)

CPA_{prism} implies that for every $\nu \in \omega \cup \{\infty\}$ there exists a family $\mathcal{F}_{\nu} \subset C^{\nu}(\mathbb{R})$ of cardinality $\omega_{1} < \mathfrak{c}$ such that (i) $g \subset^{\star} \bigcup \mathcal{F}_{\nu}$ for every $g \in D^{\nu}(\mathbb{R})$. Moreover, for $n \in \{0, 1\}$, and only such n, we also have (ii) $g \subset^{\star} \bigcup \mathcal{F}_{n}$ for every $g \in D^{n}(X)$, where $X \subset \mathbb{R}$ is arbitrary.

What remains of this talk revolves around this theorem.

ヘロン ヘアン ヘビン ヘビン

Ext ThmsInterpolationsMain ThmReduction \mathcal{F}_{prism} Theorem ANo (obvious) expansions of the Main Theorem

Main Theorem states that: For $n < \omega \& k < 2$, CPA_{prism} implies $I_n = I(D^n, C^n)$: $\exists \mathcal{F}_n \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \quad \forall g \in D^n(\mathbb{R}) \quad g \subset^* \bigcup \mathcal{F}_n$ I_k^* : $\exists \mathcal{F}_k \in [C^k(\mathbb{R})]^{<\mathfrak{c}} \quad \forall X \subset \mathbb{R} \quad \forall g \in D^k(X) \quad g \subset^* \bigcup \mathcal{F}_k$

This cannot be expanded, as

Fact: $I(C^{n-1}, D^n)$ is false for all $n \in \mathbb{N}$.

Proof: For n = 1, there is $g_1 \in "D^1(\mathbb{R})" \subset C^0(\mathbb{R})$ with $g'_1 = \infty$ on a perfect P; so $|[f = g] \cap P| \le \omega$ for every $f \in D^0(\mathbb{R})$. For n = 2 use $g_2 = \int g_1$, etc. ...

Fact: l_k^* is false for k > 1.

Proof: Put k = 2 and \mathfrak{C} —the Cantor ternary set. There is (simple) $f \in C^1(\mathbb{R})$ such that $g \upharpoonright \mathfrak{C} \in D^2(\mathfrak{C})$ and $|[f = g] \cap \mathfrak{C}| < \omega$ for every $f \in D^2(\mathbb{R})$. So, $g \upharpoonright \mathfrak{C}$ contradicts I_2^* .

9

Problems

Ext ThmsInterpolationsMain ThmReduction \mathcal{F}_{prism} Theorem AProblemsMain Theorem for n = 0: independence of ZFC

Main Theorem for n = 0 can be stated as: CPA_{prism} implies

 $\emph{I}_0 \text{: } \exists \mathcal{F}_0 \in [\emph{C}^0(\mathbb{R})]^{<\mathfrak{c}} \ \forall g \in \emph{C}^0(\mathbb{R}) \ g \subset^\star \bigcup \mathcal{F}_0$

What I_0 means:

- Few functions from \mathcal{F}_0 cover* **every** continuous function
- Few functions from \mathcal{F}_0 cover* **every** level $\mathbb{R} \times \{y\}$
- \subset^* in I_0 cannot be \subset , as \mathcal{F}_0 cannot cover \mathbb{R}^2
- $\int_0 \Longrightarrow \operatorname{cov}(\operatorname{Meager}) < \mathfrak{c}$ Proof: Pick $y \in \mathbb{R} \setminus \bigcup_{f \in \mathcal{F}_0} f[\mathbb{Q}]$ and put $g = \mathbb{R} \times \{y\}$. Then \mathbb{R} is a union of $|\mathcal{F}_0|$ -many nowhere dense sets [f = g]and $|g \setminus \bigcup \mathcal{F}_0|$ -many singletons, while $|\mathcal{F}_0| + |g \setminus \bigcup \mathcal{F}_0| < \mathfrak{c}$.
- So, *I*₀ contradicts CH and MA.

<ロ> (四) (四) (三) (三) (三) (三)

Proof: Let $\kappa = |\mathcal{F}_0|^+$ and assume $\mathfrak{c} > \kappa$. Put $B = \mathbb{R}^2 \setminus \bigcup \mathcal{F}_0$, $B^y = \{x \colon \langle x, y \rangle \in B\}$, and note that $|B^y| < \mathfrak{c}$ for all $y \in \mathbb{R}$.

Claim: There is $Y \in [\mathbb{R}]^{\kappa}$ with $|\bigcup_{y \in Y} B^{y}| < \mathfrak{c}$.

Proof. If $\operatorname{cof}(\mathfrak{c}) > \kappa$, then any $Y \in [\mathbb{R}]^{\kappa}$ works. If $\operatorname{cof}(\mathfrak{c}) \leq \kappa$, choose cofinal $L \in [\mathfrak{c}]^{\kappa}$; there is $\lambda \in L$ with $Z_{\lambda} = \{y \in \mathbb{R} : |B^{y}| \leq \lambda\}$ of cardinality $> \kappa$. (Otherwise $\mathfrak{c} = |\bigcup_{\lambda \in L} Z_{\lambda}| \leq \kappa$.) Then any $Y \in [Z_{\lambda}]^{\kappa}$ works.

Now, by Claim, there are $x_0 \in \mathbb{R} \setminus \bigcup_{y \in Y} B^y$ and $y_0 \in Y \setminus \{f(x_0) \colon f \in \mathcal{F}_0\}$. Then $\langle x_0, y_0 \rangle \notin B \cup \bigcup \mathcal{F}_0 = \mathbb{R}^2$, a contradiction.

 $I_n: \ \exists \mathcal{F}_n \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ \forall g \in D^n(\mathbb{R}) \ g \subset^{\star} \bigcup \mathcal{F}_n$

Clearly *I_n* implies

 J_n : $\forall g \in D^n(\mathbb{R}) \ \exists \mathcal{F}_g \in [C^n(\mathbb{R})]^{<\mathfrak{c}} \ s.t. \ g \subset \bigcup \mathcal{F}_g$

 $CPA_{prism} \implies J_n$ was first "proved" by KC & Pawlikowski [CPA book]

For n > 1 their proof was incorrect!

Thus, the proof from submitted paper is the first correct one.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Theorem A Problems Main Theorem via three key theorems

Theorem (A)

CPA_{prism} implies that for every $\nu \in \omega \cup \{\infty\}$ and every compact interval $I = [a, b] \subset \mathbb{R}$ there exists a family $\mathcal{F}_{\nu}^{I} \subset C^{\nu}(\mathbb{R})$ of cardinality $\omega_{1} < \mathfrak{c}$ such that $g \subset^{\star} \bigcup \mathcal{F}_{\nu}^{I}$ for every $g \in C^{\nu}(I)$.

Theorem (B)

CPA_{prism} implies that for every $n \in \mathbb{N}$ and $g \in D^n(\mathbb{R})$ there exists a family $\mathcal{F}_g \subset C^n(\mathbb{R})$ of cardinality $\omega_1 < \mathfrak{c}$ such that $g \subset \bigcup \mathcal{F}_g$.

Theorem (C)

CPA_{prism} implies that for every $n \in \{0, 1\}$ and $g \in D^n(X)$ with $X \subset \mathbb{R}$ there exists a family $\mathcal{F}_g \subset C^n(\mathbb{R})$ of cardinality $\omega_1 < \mathfrak{c}$ such that $g \subset \bigcup \mathcal{F}_g$.

ヘロン 人間 とくほ とくほ とう

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Theorem A Problems Proof of Main Theorem from Theorems A-C Problems Problems<

Fix $\nu \in \omega \cup \{\infty\}$. Put $\mathcal{F}_{\nu} = \bigcup_{n=1}^{\infty} \mathcal{F}_{\nu}^{[-n,n]}$, with $\mathcal{F}_{\nu}^{[-n,n]}$ from Thm A.

Choose a $g \in D^{\nu}(X)$ such that $X \subset \mathbb{R}$ and $X = \mathbb{R}$ unless $\nu < 2$.

We need to show that $g \subset^* \bigcup \mathcal{F}_{\nu}$.

There is an $\mathcal{F}_g \in [\mathcal{C}^{\nu}(\mathbb{R})]^{\leq \omega_1}$ such that $g \subset \bigcup \mathcal{F}_g$.

For $\nu < 2$ follows from Thm C, for $\nu = \infty$ this is justified by $\mathcal{F}_g = \{g\} \subset D^{\infty}(\mathbb{R}) = C^{\infty}(\mathbb{R})$, while for the remaining cases this follows from Thm B.

For each $n \in \mathbb{N}$ and $f \in \mathcal{F}_g$ we have $f \upharpoonright [-n, n] \subset^{\star} \bigcup \mathcal{F}_{\nu}^{[-n, n]} \subset \bigcup \mathcal{F}_{\nu}$. So, we have needed

$$g \subset \bigcup \mathcal{F}_g = \bigcup_{f \in \mathcal{F}_g} \bigcup_{n=1}^{f} f \upharpoonright [-n, n] \subset^* \bigcup \mathcal{F}_{\nu}$$

14

Proof based on the lemmas. (Known for $X = \mathbb{R}$.)

Lemma (KC & Seoane–Sepúlveda 2018; known earlier?)

For every $X \subset \mathbb{R}$ with no isolated points and $g \in C(X)$ the set Dif(g) of points of differentiability of g is an $F_{\sigma\delta}$ subset of X.

Lemma (KC & Seoane–Sepúlveda 2018; known earlier?)

For every $X \subset \mathbb{R}$ with no isolated points and $g \in C(X)$ if $f \in D^1(X)$, then the derivative $f' : X \to \mathbb{R}$ is of Baire class 2.

ヘロン 人間 とくほ とくほう

15

$\forall n < 2, \ X \subset \mathbb{R}, \ g \in D^n(X) \ \exists \ \mathcal{F}_g \in [C^n(\mathbb{R})]^{\leq \omega_1} \text{ with } g \subset \bigcup \mathcal{F}_g.$

Proof.

Fix n < 2, $X \subset \mathbb{R}$, $g \in D^n(X)$.

We can assume that that X has no isolated points. Then, there exist Borel $B \supset X$ and $\overline{g} \in D^{\nu}(B)$ extending g. By CPA_{prism}, see [CPA book], there exists a family \mathcal{P} of cardinality $\leq \omega_1$ of compact subsets of B such that $B = \bigcup \mathcal{P}$. For every $P \in \mathcal{P}$, we have $\overline{g} \upharpoonright P \in D^n(P)$ and

• there exists an extension $g_P \in D^n(\mathbb{R})$ of $ar{g} \upharpoonright P$

—by Tietze (for n = 0) or Jarník (for n = 1) extension theorem. So, by Theorem B, there is $\mathcal{F}_P \in [C^n(\mathbb{R})]^{\leq \omega_1}$ with $g_P \subset \bigcup \mathcal{F}_P$. Then, $\mathcal{F}_g = \bigcup_{P \in \mathcal{P}} \mathcal{F}_P$ is as needed, since

$$g\subset ar{g} = igcup_{P\in\mathcal{P}}ar{g} \upharpoonright P \subset igcup_{P\in\mathcal{P}}g_P \subset igcup_{P\in\mathcal{P}}igcup_{P} = igcup \mathcal{F}_g.$$

Perf(X)—all $P \subset X$ homeomorphic to \mathfrak{C} .

1). Theorem on D^n - C^n interpolation: For any $f \in D^n(\mathbb{R})$ the family

 $\mathcal{E}_f := \{ Q \in \operatorname{Perf}(\mathbb{R}) \colon f \upharpoonright Q \text{ is extendable to } g \in C^n(\mathbb{R}) \}$

is $\operatorname{Perf}(\mathbb{R})$ -dense: every $P \in \operatorname{Perf}(\mathbb{R})$ contains a $Q \in \mathcal{E}_f$.

2) For n = 1 and $f \in C^0(\mathbb{R})$, \mathcal{E}_f is not $Perf(\mathbb{R})$ -dense.

We need more structure: sets $P \in Perf(\mathbb{R})$ of positive measure; then $Q \in \mathcal{E}_{f}^{n}$ contained in *P* can have also positive measure.

3) To prove Theorem C and state CPA_{prism} we need the notion of \mathcal{F}_{prism} -density, where sets $P \in Perf(\mathbb{R})$ come with more structure, and "good" $Q \in \mathcal{E}_f^n$ contained in P retain part of it.

\mathcal{F}_{prism} -density and CPA_{prism}

Interpolations

Ext Thms

Based on a family \mathbb{P} of perfect subsets of \mathfrak{C}^{α} , $0 < \alpha < \omega_1$, containing all cubes $\prod_{\xi < \alpha} P_{\xi}$, $P_{\xi} \in \operatorname{Perf}(\mathfrak{C})$. (\mathbb{P} —all sets $f[\mathfrak{C}^{\alpha}]$, where $f: \mathfrak{C}^{\alpha} \to \mathfrak{C}^{\alpha}$ is continuous 1-1 s.t.

Main Thm

 $f(x) \upharpoonright \xi = f(y) \upharpoonright \xi \iff x \upharpoonright \xi = y \upharpoonright \xi$ for all $\xi < \alpha$ and $x, y \in \mathfrak{C}^{\alpha}$.

Reduction

 $\mathcal{F}_{\text{prism}}$

Theorem A

Problems

This definition will not be used in this talk.)

Prism in X—any $P \in Perf(X)$ with (implicit) continuous injection *h* from an $E \in \mathbb{P}$ onto *P*.

Subprism of a prism P given by $h: E \to P$ —any Q = h[E'], with $E' \in \mathbb{P}, E' \subset E$.

 $\mathcal{E} \subset \operatorname{Perf}(X)$ is $\mathcal{F}_{\operatorname{prism}}$ -dense provided for every prism *P* in $\operatorname{Perf}(X)$ there exists a subprism *Q* of *P* with $Q \in \mathcal{E}$.

CPA_{prism}: $\mathfrak{c} = \omega_2$ and for every Polish space X and every $\mathcal{F}_{\text{prism}}$ -dense family $\mathcal{E} \subset \text{Perf}(X)$ there is $\mathcal{E}_0 \in [\mathcal{E}]^{\leq \omega_1}$ with $X \subset^* \bigcup \mathcal{E}_0$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Theorem A Problems Proof of Theorem B

Th B: CPA_{prism} $\Rightarrow \forall n \in \mathbb{N}, f \in D^n(\mathbb{R}) \exists \mathcal{F}_f \in [C^n(\mathbb{R})]^{\leq \omega_1} f \subset \bigcup \mathcal{F}_f.$

Proposition (discussed in the next slide)

 $\mathcal{E} := \{ Q \in \operatorname{Perf}(\mathbb{R}) \colon f \restriction Q \text{ is extendable to } g_Q \in C^n(\mathbb{R}) \}$ is $\mathcal{F}_{\operatorname{prism}}$ -dense for every $f \in D^n(\mathbb{R})$.

Proof of Theorem B.

By $\operatorname{CPA}_{\operatorname{prism}}$ used with $X = \mathbb{R}$ and $\mathcal{F}_{\operatorname{prism}}$ -dense \mathcal{E}

there is an $\mathcal{E}_0 \in [\mathcal{E}]^{\leq \omega_1}$ with $\mathbb{R} \subset^* \bigcup \mathcal{E}_0$.

Then $\hat{\mathcal{F}}_f = \{g_Q \colon Q \in \mathcal{E}_0\}$ has cardinality $\leq \omega_1$ and $f \subset^* \bigcup \hat{\mathcal{F}}_f$.

An extension \mathcal{F}_f of $\hat{\mathcal{F}}_f$ by ω_1 constant maps gives $f \subset \bigcup \mathcal{F}_f$.

・ロト ・ 理 ト ・ ヨ ト ・

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Theorem A Sketch of the proof of Proposition

 $\mathcal{E}_f = \{ Q \colon f \upharpoonright Q \text{ is extendable to } g_Q \in C^n(\mathbb{R}) \} \text{ is } \mathcal{F}_{\text{prism}}\text{-dense.}$

Proof.

Fix a prism *P* and define symmetric $\varphi_f^n \colon P^2 \setminus \Delta \to \mathbb{R}$ as

$$\varphi_{f}^{n}(a,b) = \sum_{k=0}^{n} |q_{f^{(k)}}^{n-k}(a,b)| + \sum_{k=0}^{n} |q_{f^{(k)}}^{n-k}(b,a)|.$$

By lemma from [CPA book] there is a subprism Q of P such that $\varphi_f^n : Q^2 \setminus \Delta \to [-\infty, \infty]$ is uniformly continuous. So, it has a continuous extension to Q^2 . This extension is 0 on the diagonal, as $f \in D^n(\mathbb{R})$. (This is proved with two lemmas.) So, $f \upharpoonright Q$ satisfies assumptions of Whitney's Extension thm.

ヘロト ヘワト ヘビト ヘビト

Problems

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Theorem A Problems Polish space structures we need

Th A: $CPA_{prism} \Rightarrow \forall \nu \leq \omega \exists \mathcal{F}_{\nu}^{I} \in [C^{\nu}(\mathbb{R})]^{\leq \omega_{1}} \forall g \in C^{\nu}(I) \ g \subset^{\star} \bigcup \mathcal{F}_{\nu}^{I}$. Why $C^{\nu}(I)$ rather than $C^{\nu}(\mathbb{R})$ or $D^{\nu}(\mathbb{R})$? $C^{\nu}(\mathbb{R})$ and $D^{\nu}(\mathbb{R})$ are not Polish, $C^{\nu}(I)$ is, with metric

$$\rho(f, g) = \sum_{i < \nu} \|f^{(i)} - g^{(i)}\|_{\infty}$$

We use $ext{CPA}_{ ext{prism}}$ with Polish space $I imes extsf{C}^{
u}(I)$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Th A: $\operatorname{CPA}_{\operatorname{prism}} \Rightarrow \forall \nu \leq \omega \ \exists \mathcal{F}'_{\nu} \in [\mathcal{C}^{\nu}(\mathbb{R})]^{\leq \omega_1} \ \forall g \in \mathcal{C}^{\nu}(I) \ g \subset^{\star} \bigcup \mathcal{F}'_{\nu}.$

Lemma (From [CPA book])

 $\mathcal{E}_0 := \{ P \in \operatorname{Perf}(I \times C(I)) : \text{ either } \pi_1 \upharpoonright P \text{ or } \pi_2 \upharpoonright P \text{ is 1-to-1} \}$

is \mathcal{F}_{prism} -dense.

So, by CPA_{prism}, there is $\mathcal{E} \in [\mathcal{E}_0]^{\leq \omega_1}$ with $I \times C(I) \subset^* \bigcup \mathcal{E}$.

If $P \in \mathcal{F} := \{P \in \mathcal{E} : \pi_1 \upharpoonright P \text{ is 1-to-1}\}$, then $P \in C(\pi_1[P], C(I))$ and $f_P : \pi_1[P] \to \mathbb{R}$ defined as $f_P(x) = P(x)(x)$ is continuous, so extendable to $\hat{f}_P \in C(\mathbb{R})$.

Claim: $\mathcal{F}'_0 := {\hat{f}_P : P \in \mathcal{F}}$ is as needed.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ext Thms Interpolations Main Thm Reduction $\mathcal{F}_{\text{prism}}$ Theorem A Problems $\mathcal{F}_0^l := \{ \hat{f}_P \colon P \in \mathcal{F} \}$ satisfies Theorem A for n = 0

 $\mathcal{E}_0 = \{ P \in \operatorname{Perf}(I \times C(I)) : \text{ either } \pi_1 \upharpoonright P \text{ or } \pi_2 \upharpoonright P \text{ is 1-to-1} \}$ $\mathcal{E} \in [\mathcal{E}_0]^{\leq \omega_1}$ with $I \times \mathcal{C}(I) \subset^* \bigcup \mathcal{E}, \mathcal{F} = \{P \in \mathcal{E} : \pi_1 \upharpoonright P \text{ is } 1\text{-to-}1\}$ Fix $g \in C(I)$. Need $g \subset^* \bigcup \mathcal{F}'_0$. Note that $I \times \{g\} \subset^* \bigcup \mathcal{F}'_0$. Fix $x \in I$ s.t. $\langle x, g \rangle \in \bigcup \mathcal{F}'_0$ and $P \in \mathcal{F}'_0$ with $\langle x, g \rangle \in P$. It is enough to show that $\langle x, g(x) \rangle \in f_P$, as $f_P \subset f_P$. Indeed, $f_P(x) = P(x)(x) = g(x)$, as P(x) = g by $\langle x, g \rangle \in P$. So, $g \upharpoonright \pi_1[(I \times \{g\}) \cap \bigcup \mathcal{F}] \subset \bigcup \mathcal{F}_I$, as needed.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 f_P with $P \in \mathcal{E}_0$ need not to have C^n extension. We need

Lemma (with proof similar to one needed for Theorem C)

 $\mathcal{E}_{\infty} = \{ P \in \mathcal{E}_{0} : \text{ if } \pi_{1} \upharpoonright P \text{ is 1-1, then } \exists \hat{f}_{P} \in C^{0}(\mathbb{R}) \text{ extending } f_{P} \\ \text{s.t. } \forall n < \omega \text{ either } f_{P}^{(n)} \equiv \pm \infty \text{ or } \hat{f}_{P} \in C^{n}(\mathbb{R}) \}$

is \mathcal{F}_{prism} -dense.

Fact For $P \in \mathcal{E}_{\infty}$ and $g \in C^n(I)$, if $g \cap f_P$ is uncountable,

then $\hat{f}_P \in C^n(\mathbb{R})$ and $g \cap f_P \subset^{\star} \hat{f}_P$.

Pr. If $Q \in \operatorname{Perf}(P)$ & $g = f_P$ on Q, then, on Q, $f_P^{(n)} \equiv g^{(n)} \neq \pm \infty$.

★ 臣 ▶ ★ 臣 ▶ 二 臣 …

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Proof of Theorem A, general case Image: Case</

 $\mathcal{E}_{\infty} \subset \mathcal{E}_{0}$ is $\mathcal{F}_{\text{prism}}$ -dense and for any $P \in \mathcal{E}_{\infty}$ and $g \in C^{n}(I)$, if $g \cap f_{P}$ is uncountable, then $\hat{f}_{P} \in C^{n}(\mathbb{R})$ and $g \cap f_{P} \subset^{\star} \hat{f}_{P}$.

By CPA_{prism}, there is $\mathcal{E} \in [\mathcal{E}_{\infty}]^{\leq \omega_1}$ with $I \times C(I) \subset^* \bigcup \mathcal{E}$.

Put $\mathcal{F} := \{ P \in \mathcal{E} : \pi_1 \upharpoonright P \text{ is 1-to-1} \}, \mathcal{F}'_0 := \{ \hat{f}_P : P \in \mathcal{F} \}, \text{ and }$

 $\mathcal{F}^{l}_{\nu} := \{ \hat{f}_{\mathcal{P}} \in \mathcal{C}^{\nu}(\mathbb{R}) \colon \mathcal{P} \in \mathcal{F} \}.$

Fix $g \in \mathcal{C}^{
u}(I)$. Need $g \subset^{\star} \bigcup \mathcal{F}_{
u}^{I}$. Indeed

$$g\subset^{\star}igcup_{P\in\mathcal{E}}g\cap f_{P}\subset^{\star}igcup_{\hat{f}_{P}\in\mathcal{F}_{\nu}^{I}}g\cap \hat{f}_{P}\subset\bigcup\mathcal{F}_{\nu}^{I}.$$

Theorem A

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Problems

Ext Thms Interpolations Main Thm Reduction \mathcal{F}_{prism} Theorem A Open problems (from both lectures)

- Let f = f_n · · · f₁, where each f_i: [0, 1] → [0, 1] is a derivative. Must f have a connected graph?
- Characterize, for n > 1, all maps f: P → ℝ, where P ⊂ ℝ is closed (or just perfect), that admit Dⁿ extensions f̄: ℝ → ℝ.
- D^1 - D^2 interpolation problem: Does every $f \in D^1(\mathbb{R})$ admits $g \in D^2(\mathbb{R})$ with uncountable $f \cap g$? This is equivalent to D^1 - C^2 interpolation problem.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Problems

Ext Thms	Interpolations	Main Thm	Reduction	$\mathcal{F}_{\mathrm{prism}}$	Theorem A	Problems

That is all!

Thank you for your attention!

Krzysztof Chris Ciesielski

Higher level differentiability 27

프 🖌 🛪 프 🛌

э