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Ext Thms
Outline

0 Extensions to n-times differentiable functions
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Ext Thms
Notation

D" is the class of all n-times differentiable f: R — R
C": all f € D" with continuous nth derivative (")

Forperfect PC R,aD"map f: P —» R,and a € P let
T2f(x) denote the n-th degree Taylor polynomial of f at a:

TIf(x) = En: f(i).(a) (x —a)’

i=0

and the “nth quotient” map g7': P? — R is given by

TJf(b) — TZf(b) .
q?(a,b):{ b if a b,

(b—a)"
0 if a=b.
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Ext Thms

Whitney’s Extension Theorem for one variable

Tl f(b)—TZf(b
q;’(aa b) = 5 ((b)ia)n ( )

Theorem (Case P C R of theorem of Whitney 1934)

Let P C R be perfect, ne N, and f: P — R.

There exists a C" extension f: R — R of f if, and only if

(Wp) f is C" and q;’(g’ : P2 — R is continuous for every i < n.

Necessity of (W,) is clear, as f satisfies it.
Sufficiency is not easy, even in the simple case of P C R.

Our submitted paper with Seoane—Sepulveda contains a
detailed 4-page proof of this sufficiency.
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Ext Thms

Higher order of Jarnik’s Extension Theorem?

Open Problem

Is there an analogous characterization of functions f: P — R,
where P C R is perfect, that admit D" extensions f: R — R?

Any f admitting D" extension f: R — R must satisfy
(Vn): fis D" and (W,,_4) from Whitney’s Extension Theorem

For n =1, (V,) is sufficient, by Jarnik’s Extension Theorem.

For n =2, (V) is not sufficient (€ is the Cantor ternary set):

Example (Ciesielski & Seoane—Sepulveda,

There exists a C' function f: R — R such that ' | € = 0 and for
no perfect set P C ¢ there is a C? extension f: R — R of f | P.
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Interpolations
QOutline

e Generalized Ulam-Zahorski interpolation problem
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Interpolations

About Generalized Ulam-Zahorski Problem

For F,G c RR, usually F C G, it is the statement
UZ(G, F): Vg € G 3f € F with uncountable f N g.

Zahorski 1948, solving 1940 problem of Ulam: — UZ(CP, analytic)
Zahorski asked: does UZ(C°, C>) hold?

What about UZ(G, F) for other classes of differentiable maps?
Agronsky, Bruckner, Laczkovich, Preiss 1985: UZ(C°, C') holds
Olevskii 1994: UZ(C', C?) holds, but = UZ(C°, C?) & —UZ(C?, C?),
solving all UZ(C", C™) problems.
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Strong D"-C" interpolation theorem

Theorem (Ciesielski and Seoane—Sepulveda,

Forevery n e N, perfect P C R, and D" map f: R — R there is
aC" map g: R — R for which [f = g] N P is uncountable.
In particular, UZ(D", C") holds.

Proof: Short but a bit tricky.
Using Whitney’s Extension Theorem.

Special case of a result discussed latter.
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Interpolations

AllUZ(gG, F) problems for 7,G e D = | J,_{D",C"}

Corollary

Forevery n e N withn > 2:

(a) C" is the smallest F € D for which UZ(C°, F) holds.

(b) If F € D is the smallest for which UZ(D', F) holds, then
F e {C!, C?}.

(c) C? is the smallest F € D for which UZ(C', F) holds.

(d) C"is the smallest F € D for which UZ(D", F) holds.

(e) C"is the smallest F € D for which UZ(C", F) holds.

(a) By previous theorem UZ(C°, D?) implies UZ(C?, C?).
Since - UZ(CP, C?), then so is - UZ(CP, D?).
Arguments for (b)-(e) are similar. O

Krzysztof Chris Ciesielski Higher level differentiability 6



Interpolations

Remaining Ulam-Zahorski interpolation problem

Open Problem
Does UZ(D', D?) hold?

Notice, that if UZ(D', D?) holds, then so does UZ(D', C?).
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Main Thm
Outline

9 SC: Simultaneous Small Coverings by smooth functions
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Main Thm

The main covering theorem

A C* Bwill mean “B\ A has cardinality < wq.”

CPArism is @ simple part of the covering property axiom CPA
consistent with ZFC.

Theorem (Ciesielski and Seoane—Sepulveda )

CPA,ism Implies that for every v € w U {oo} there exists a family
F, C C¥(R) of cardinality w1 < ¢ such that

(i) g c* U F, forevery g € D'(R).
Moreover, for n € {0,1}, and only such n, we also have
(i) g c* U Fn forevery g € D"(X), where X C R is arbitrary.

<

What remains of this talk revolves around this theorem.
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Main Thm

No (obvious) expansions of the Main Theorem

Main Theorem states that: For n < w & k < 2, CPA i, implies
In=1(D",C"): 3F, € [C"(R)]<° Vg e D"(R) g C* U Fn
[r: 3Fk € [CK(R)]<® VX C R Vg e DK(X) g c* UF«

This cannot be expanded, as
Fact: /(C"~1,D") is false for all n € N.

Proof: For n= 1, there is gy € “D'(R)’C C°(R) with g} = co on
a perfect P; so |[f = g] N P| < w for every f € D(R).
Forn=2use g = [ g1, etc. ... 0.

Fact: /; is false for k > 1.

Proof: Put k = 2 and ¢—the Cantor ternary set. There is
(simple) f € C'(R) suchthat g | € € D?(¢) and |[f = g]N €| < w
for every f € D?(R). So, g | ¢ contradicts /3. O
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Main Thm

Main Theorem for n = 0: independence of ZFC

Main Theorem for n = 0 can be stated as: CPAsm implies
lo: 3Fy € [CO(R)]<* Vg € CO(R) g c* JFo
What Iy means:

@ Few functions from Fy cover* every continuous function
@ Few functions from F, cover* every level R x {y}
@ C*in Iy cannot be , as Fy cannot cover R?
@ /[y = cov(Meager) < ¢
Proof: Pick y € R\ Uz, f[Q] and put g = R x {y}.
Then R is a union of | Fy|-many nowhere dense sets [f = g]
and |g \ U Fol-many singletons, while | Fo| + [g \ U Fol < ¢.
@ So, Iy contradicts CH and MA.
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Main Thm
Ir and the size of ¢

Fact (Proved for this talk. Not in the papers. Known?)

lh = 3Fp € [RR]<c Vye R R x {y} (. U]:o = = ’foﬁ

Proof: Let x = |Fp|™ and assume ¢ > . Put B =R?\ | Fo,
BY = {x: (x,y) € B}, and note that |BY| < cfor all y € R.

Claim: There is Y € [R]" with [, oy B'| <.

Proof. If cof(c) > k, then any Y € [R]* works. If cof(¢) < &,
choose cofinal L € [¢]"; there is A € L with

Z, ={y € R: |BY| < \} of cardinality > . (Otherwise

¢ =|Uxer & < s.) Thenany Y € [2)]" works. O

Now, by Claim, there are xo € R\ U,y B and
Vo€ Y\ {f(x): f € Fo}. Then (xo, %) ¢ BUlJFo =R? a
contradiction.
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Main Thm
Families F, forn > 0

In: 3F, € [C"(R)]<¢ Vge D"(R) g C* U Fn
Clearly I, implies
Jn: Vg € D"(R) 3F4 € [C"(R)]<“ s.t. g C U Fyg

CPA prism = Jp was first “proved” by KC & Pawlikowski [CPA
book]

For n > 1 their proof was incorrect!

Thus, the proof from submitted paper is the first correct one.
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Reduction

Outline
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Reduction
Main Theorem via three key theorems

Theorem (A)

CPA,ism Implies that for every v € w U {oo} and every compact
interval | = [a, b] C R there exists a family F! c C"(R) of
cardinality wy < ¢ such that g c* |J F! for every g € C¥(l).

Theorem (B)

CPA,ism implies that for every n € N and g € D"(R) there exists
a family 74 c C"(R) of cardinality wy < ¢ such that g C | Fg.

CPAyism iImplies that for every n € {0,1} and g € D"(X) with
X C R there exists a family F4 C C"(R) of cardinality wy < ¢
such that g c | Fg.
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Proof of Main Theorem from Theorems A-C

Fix v € wU {oo}. Put 7, = U, 7L with ZL™ from Thm A.
Choose a g € D¥(X) such that X C Rand X =R unless v < 2.
We need to show that g c* (J 7.

There is an Fy € [C*(R)]=“* such that g C | Fy.

For v < 2 follows from Thm C,

for v = oo this is justified by 7y = {g} € D*(R) = C*(R),

while for the remaining cases this follows from Thm B.

Foreach ne Nand f € 745 we have
f1[=n n c*JF, ™™ c (JF,. So, we have needed

gcJr=U Ufrl=nncJrm

feFg n=1
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Reduction

Borel extensions of maps from D”(X), X C R arbitrary

Theorem (KC & Seoane—Sepulveda ; Known earlier?)

Let X C R be with no isolated points and v € w U {oo}.
For every g € D(X) there exist Borel B > X and g € D¥(B)
extending g.

Proof based on the lemmas. (Known for X = R.)

Lemma (KC & Seoane—Sepulveda ; known earlier?)

For every X C R with no isolated points and g € C(X) the set
Dif(g) of points of differentiability of g is an F,s subset of X.

Lemma (KC & Seoane—Sepulveda ; known earlier?)

For every X C R with no isolated points and g € C(X) if
f € D'(X), then the derivative f': X — R is of Baire class 2.
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Reduction

Proof of Theorem C

Vn<2, X CR, ge D"(X) 3 Fy € [C"(R)]=*1 with g C |J Fy.

Proof.

Fixn<2, X CR, ge D"(X).

We can assume that that X has no isolated points.

Then, there exist Borel B > X and g € D”(B) extending g.
By CPA,;ism, see [CPA book], there exists a family P of
cardinality < wq of compact subsets of B such that B = P.
For every P € P, we have g | P € D"(P) and

@ there exists an extension gp € D"(R) of g | P

—by Tietze (for n = 0) or Jarnik (for n = 1) extension theorem.
So, by Theorem B, there is Fp € [C"(R)]=* with gp C | Fp.
Then, Fg = Upcp Fp is as needed, since

gcag=JgrPpclJoec JUUrr=UU7%.

pPeP pPeP pPeP
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Outline

e SC: Restriction theorems, prism density, and CPA,ism
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Fprism

Restriction theorems expressed in density language

Perf(X)—all P ¢ X homeomorphic to €.

1). Theorem on D"-C" interpolation: For any f € D"(R) the
family

& :={Q e Perf(R): f | Qis extendable to g € C"(R)}
is Perf(R)-dense: every P € Perf(R) contains a Q € &;.
2) For n=1and f € C%(R), & is not Perf(R)-dense.

We need more structure: sets P € Perf(R) of positive measure;
then Q € &7 contained in P can have also positive measure.

3) To prove Theorem C and state CPA;sm We need the notion
of Fprsm-density, where sets P € Perf(R) come with more
structure, and “good” Q € &£/ contained in P retain part of it.
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Forism-density and CPA ism

Based on a family P of perfect subsets of €%, 0 < o < wy,
containing all cubes [ [, P¢, P € Perf(&).
(P—all sets f[€“], where f: €% — €“ is continuous 1-1 s.t.

f(X)1€E=1fy) 1€ & xE=y & forall§ <aandx,y e €.

This definition will not be used in this talk.)

Prism in X—any P € Perf(X) with (implicit) continuous injection
hfroman E € P onto P.

Subprism of a prism P given by h: E — P—any Q = h[E’], with
E' P, E' C E.

£ C Perf(X) is Fprism-dense provided for every prism P in
Perf(X) there exists a subprism Q of P with Q € €.

CPApism: ¢ = wp and for every Polish space X and every
Fprism-dense family £ C Perf(X) there is
& € [E]=%r with X c* | &.
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Proof of Theorem B

Th B: CPAprisrn =VneN, fe DH(R) dFs € [C”(R)]SM fc Uf"f

Proposition (discussed in the next slide)

& :={Q e Perf(R): f | Qis extendable to gg € C"(R)}
is Fprism-dense for every f € D"(R).

Proof of Theorem B.
By CPApism Used with X = R and Fpism-dense &£

there is an & € [£]= with R c* | &.
Then F; = {gq: Q € &} has cardinality < wy and f c* | F7.

An extension F; of F; by wy constant maps gives f C UF. O
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Sketch of the proof of Proposition

& ={Q: f] Qis extendable to gq € C"(R)} is Fprism-dense.

Proof.
Fix a prism P and define symmetric ¢f: P2\ A — R as

@?(aa b) = ZZ:O |qf(;)k(av b)| + ZZ:O |qf(;)k(ba a)|

By lemma from [CPA book] there is a subprism Q of P such
that of: Q% \ A — [—o0, 0] is uniformly continuous.

So, it has a continuous extension to Q2. This extension is 0 on
the diagonal, as f € D"(R). (This is proved with two lemmas.)
So, f | Q satisfies assumptions of Whitney’s Extension thm. [
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Theorem A

Outline

@ sC: Proof of Theorem A
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Theorem A
Polish space structures we need

Th A: CPAism = Vv < w 3F, € [CY(R)]=%1 Vg € C¥(I) g c* U F..
Why C”(/) rather than C¥(R) or D*(R)?

C”(R) and D¥(RR) are not Polish, C”(/) is, with metric

p(f,g) =D _|If — g

i<v

We use CPA,ism With Polish space / x C¥(/)

Krzysztof Chris Ciesielski Higher level differentiability



Theorem A
i /
Family 7,

Th A: CPAign = Vv < w 3F! € [CY(R)]=*1 Vg € C(I) g c* U F..

Lemma (From [CPA book])

Eo .= {P € Perf(I x C(I)): eithermy | Pormy | Pis 1-to-1}

Is Fprism-dense.

S0, by CPApism, there is £ € [E9]=%1 with [ x C(I) c* JE.

fPeF:={Pe&:m | Pis1-to-1}, then P € C(m[P], C(]))
and fp: m[P] — R defined as fp(x) = P(x)(x) is continuous, so
extendable to fp € C(R).

Claim: 7} := {fp: P € F} is as needed.
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Theorem A

Fi = {fr: P € F} satisfies Theorem A for n = 0

Eo = {P € Perf(/ x C(I)): eithermy [ Pormp [ Pis 1-to-1}

E e [&)=r with Ix C() c*UE, F={P€&: m | Pis 1-to-1}
Fix g € C(/). Need g c* |J FJ. Note that / x {g} c* [J 7.

Fix x € Is.t. (x,9) € UF} and P € F} with (x,g) € P.

It is enough to show that (x, g(x)) € fp, as fp C ?p.

Indeed, fp(x) = P(x)(x) = g(x), as P(x) =g by (x,g) € P.

So, g I m[(I x {g}) "UF] C UF, as needed. O

Krzysztof Chris Ciesielski Higher level differentiability 23



Theorem A
Theorem A forv >0

fp with P € & need not to have C" extension.
We need

Lemma (with proof similar to one needed for Theorem C)

Eoo ={P € &: ifm | Pis 1-1, then 3f» € C°(R) extending fp

s.t.Vn < w either ) = +o0 or fp € C"(R)}

IS Fprism-dense.

Fact For P € £, and g € C"(I), if g N fp is uncountable,
then f» € C"(R) and g N fo C* fp.

Pr. If Q € Perf(P) & g = fp on Q, then, on Q, f,(,”) =g # +0.
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Theorem A
Proof of Theorem A, general case

Eoo C & I8 Fprism-dense and forany P € £ and g € C"(/),
if g N fp is uncountable, then f> € C"(R) and g N fp C* fp.

BY CPA prism, there is € € [Ex]=%1 with | x C(I) c* J€E.

Put F:={Pe&:m | Pis 1-to-1}, F} .= {fp: P € F}, and
Fl={fp € C"(R): P € F}.

Fix g € C¥(I). Need g c* |J F!. Indeed

gt Jgnfecr |J gnfec|JF.

pee ?Pefll/
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Problems

Outline

Q Open problems
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Problems

Open problems (from both lectures)

@ Letf="fyo---0of, whereeach f;: [0,1] — [0,1] isa
derivative. Must f have a connected graph?

@ Characterize, forn > 1, allmaps f: P — R, wherg PcRis
closed (or just perfect), that admit D" extensions f: R — R.

@ D'-D? interpolation problem: Does every f € D' (R) admits
g € D?(R) with uncountable f N g? This is equivalent to

D'-C? interpolation problem.
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That is all!

Thank you for your attention!
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