Monster

Bonus

1

Differentiability versus continuity: Restriction and extension theorems and monstrous examples

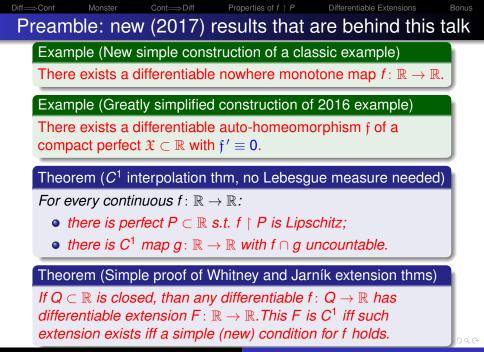
#### Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University MIPG, Department of Radiology, University of Pennsylvania

Based on survey written with Juan B. Seoane–Sepúlveda Talk 1 of special session on Different levels of smoothness: Restriction, extension, and covering theorem

Summer Symposium in Real Analysis XLII, The White Nights Symposium, Saint-Petersburg, Russia, June 10, 2018

Krzysztof Chris Ciesielski



Krzysztof Chris Ciesielski

Smooth restriction, extension, and covering theorems

# No familiarity with Lebesgue measure is needed to follow any proof behind this talk

Krzysztof Chris Ciesielski

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



1 Continuity from differentiability: classical results

- 2 Continuity from differentiability: newer results
- Oifferentiability from continuity: differentiable restrictions
- 4 Properties of differentiable maps on perfect  $P \subset \mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems





Continuity from differentiability: classical results

- 2 Continuity from differentiability: newer results
- 3 Differentiability from continuity: differentiable restrictions
- 4 Properties of differentiable maps on perfect  $P \subset \mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems
- 6 Bonus: Russian connection

Clearly, if  $F \colon \mathbb{R} \to \mathbb{R}$  is differentiable, then F is continuous.

For differentiable  $G \colon \mathbb{C} \to \mathbb{C}$ , G' is continuous (due to Cauchy.)

However, F' need not be continuous, e.g., for

$$F(x) := \begin{cases} x^2 \sin \left(x^{-1}\right) & \text{ for } x \neq 0, \\ 0 & \text{ for } x = 0. \end{cases}$$

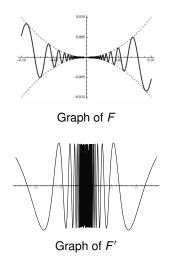
**True question:** To what extend f = F' must be continuous?

Bonus

Diff $\Rightarrow$  Cont Monster Cont $\Rightarrow$  Diff Properties of  $f \upharpoonright P$  Differentiable Extensions Bonus About  $F(x) = x^2 \sin(x^{-1})$ 



This *F* appeared already in the 1881 paper of Vito Volterra (1860-1940)



Diff⇒Cont

Cont⇒⇒D

Properties of  $f \upharpoonright P$ 

Bonus

## To what extend f = F' must be continuous?



Monstei

Jean-Gaston Darboux (1842-1917)

### Theorem (Darboux 1875)

Any derivative  $f : \mathbb{R} \to \mathbb{R}$  has the intermediate value property (IVP), that is, for every a < b and y between f(a) and f(b) there exists an  $x \in [a, b]$  with f(x) = y.

Since then, maps with IVP are called Darboux functions.

## Baire result

Monster



René-Louis Baire (1874-1932)

#### Theorem (1899 dissertation of Baire)

The derivative of any differentiable  $F : \mathbb{R} \to \mathbb{R}$  is Baire class one, that is, it is a pointwise limit of continuous functions. In particular, the set of points of continuity of F' (as for any Baire class one function) is a dense  $G_{\delta}$ -set.

## Proof of previous theorem and a characterization

$$F'(x) = \lim_{n \to \infty} F_n(x)$$
, with  $F_n(x) := \frac{f(x+1/n) - f(x)}{1/n}$  continuous.

For any  $g \colon \mathbb{R} \to \mathbb{R}$ ,  $C_g := \{x \colon g \text{ is continuous at } x\}$  is a  $G_{\delta}$ -set:  $C_g := \bigcap_{n=1}^{\infty} V_n$ , where the open sets  $V_n$  are defined as

Properties of  $f \upharpoonright P$ 

$$V_n := \bigcup_{\delta > 0} \{ x \in \mathbb{R} \colon |g(s) - f(g)| < 1/n \text{ for all } s, t \in (x - \delta, x + \delta) \}.$$

If  $g = \lim_{n \to \infty} g_n$ ,  $g_n \colon \mathbb{R} \to \mathbb{R}$  continuous, then  $C_g$  contains a dense  $G_{\delta}$ -set  $G := \bigcap_{n=1}^{\infty} \bigcup_{N=1}^{\infty} U_N^n$ , where each  $U_N^n$  is the interior of the closed set

$$\{x \in \mathbb{R} \colon |f_k(x) - f_m(x)| \le 1/n \text{ for all } m, k \ge N\}.$$

Theorem

Diff ⇒ Cont

Monster

Let  $G \subset \mathbb{R}$ .

There exists a derivative f with  $C_f = G$  iff G is a dense  $G_{\delta}$ .

Krzysztof Chris Ciesielski

Differentiable Extensions

Bonus



Continuity from differentiability: classical results

- 2 Continuity from differentiability: newer results
- 3 Differentiability from continuity: differentiable restrictions
- 4 Properties of differentiable maps on perfect  $P \subset \mathbb{R}$
- 5 Differentiable extensions: Jarník and Whitney theorems
- 6 Bonus: Russian connection

・ 同 ト ・ 臣 ト ・ 臣

 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f ↾ P
 Differentiable Extensions
 Bonus

 Fixed point property
 Theorem (Relatively new)

If  $f = f_n \circ \cdots \circ f_1$ , where each  $f_i : [0, 1] \rightarrow [0, 1]$  is a derivative, then f has a fixed point.

For n = 1: easy exercise, as h(x) = f(x) - x is Darboux.

For n = 2: proved independently in 2001 by Csörnyei, O'Neil & Preiss and by Elekes, Keleti & Prokaj.

For arbitrary *n*: Szuca 2003.

Open Problem Must *f* as in the theorem have connected graph?

Yes for n = 1. Positive answer would imply the theorem.

★ E ► ★ E ►

 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f ↑ P
 Differentiable Extensions
 Bonus

 Baire classification of composition of the derivatives.

Let  $f = f_n \circ \cdots \circ f_1$ , where each  $f_i$  is a derivative.

Then f is Darboux.

Any Darboux Baire class one map has connected graph.

A natural question: must f be of Baire class 1? NO

Theorem (*Andy* Bruckner and K. Ciesielski 2018)

There exist derivatives  $\varphi, \gamma \colon [-1, 1] \to [-1, 1]$  such that their composition  $\psi := \varphi \circ \gamma$  is not of Baire class one.

We use  $\gamma(x) := \cos(x^{-1})$  and  $\varphi$  Pompeiu's map, see below.

**Problem** (could be easy) Find derivatives  $f_i$  such that  $f = f_n \circ \cdots \circ f_1$  is of Baire class not lower than *n*.

 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f ↾ P
 Differentiable Extensions
 Bonus

 Differentiable monster (# 1)

Example (Köpcke 1887-1890; Denjoy 1915; Katznelson & Stromberg 1974; Weil 1976; Aron, Gurariy & Seoane-Sepúlveda 2005; and many others)

There is differentiable  $f \colon \mathbb{R} \to \mathbb{R}$  which is nowhere monotone.

Note that

- Differentiable f is a monster iff f' attains on every interval both positive and negative values.
- So, the derivative f' of a differentiable monster is discontinuous on the dense set Z<sup>c</sup> = {x : f'(x) ≠ 0}.

Simple construction of a differentiable monster follows.

Monster

Differentiable Extensions

## Arnaud Denjoy and Dimitrie Pompeiu



Arnaud Denjoy (1884–1974)



Dimitrie Pompeiu (1873–1954)

- ∢ ≣ → -

ъ

 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f | P
 Differentiable Extensions
 Bonus

 A variant of Pompeiu function, of 1907
 1907
 1907
 1907
 1907

Fix  $r \in (0, 1)$  and  $\mathbb{Q} = \{q_i : i \in \mathbb{N}\}$  such that  $|q_i| \le i$  for all  $i \in \mathbb{N}$ .

Lemma (KC; small variation of Pompeiu's result)

(i) g(x) = ∑<sub>i=1</sub><sup>∞</sup> r<sup>i</sup>(x - q<sub>i</sub>)<sup>1/3</sup> is continuous, "differentiable," strictly increasing, onto R, with g'(q) = ∞ for all q ∈ Q.
(ii) h = g<sup>-1</sup>: R ≯ R is everywhere differentiable with h' ≥ 0 and Z = {x ∈ R : h'(x) = 0} being a dense G<sub>δ</sub>-set.
(iii) Z<sup>c</sup> = R \ Z is also dense in R.

**Pr.** (i) Continuity follows from  $|g(x)| \leq \sum_{i=1}^{\infty} r^i (|x| + i + 1)$ . Differentiability requires  $g'(x) = \sum_{i=1}^{\infty} r^i \frac{1}{3} \frac{1}{(x-q_i)^{2/3}}$ . Easy when series  $= \infty$ . Other case follows from  $0 < \frac{\psi_i(y) - \psi_i(x)}{y-x} \leq 6\psi'_i(x)$ .

(ii) and (iii) easily follow from (i).

 Diff
 Cont
 Monster
 Cont
 Diff
 Properties of f | P
 Differentiable Extensions
 Bonus

 New simple construction of a differentiable monster

**Lemma** There is a strictly increasing differentiable  $h: \mathbb{R} \to \mathbb{R}$  with  $Z = \{x \in \mathbb{R}: h'(x) = 0\}$  being a dense  $G_{\delta}$ -set.

Theorem (KC 2017)

If *h* is as in Lemma, then f(x) = h(x - t) - h(x) is a differentiable monster for any typical  $t \in \mathbb{R}$ .

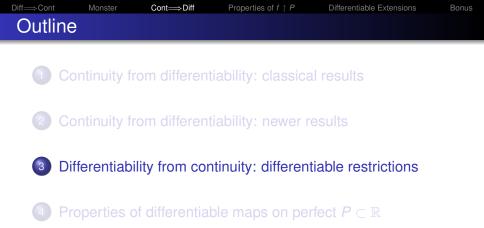
**Pr.** Let  $D \subset \mathbb{R} \setminus Z$  be countable dense. So, h' > 0 on D.

Any *t* in residual  $G = \bigcap_{d \in D} ((-d + Z) \cap (d - Z))$  works.

Clearly *f* is differentiable with f'(x) = h'(x - t) - h'(x).

f' > 0 on t + D: f'(t + d) = h'(d) - h'(t + d) = h'(d) > 0, as  $t + d \in Z$ .

f' < 0 on D: f'(d) = h'(d - t) - h'(d) = -h'(d) < 0, as  $d - t \in Z$ .



- 5 Differentiable extensions: Jarník and Whitney theorems
- 6 Bonus: Russian connection

Diff ⇒ Cont Monster Cont ⇒ Diff Properties of  $f \upharpoonright P$ **Differentiable Extensions** Bonus How much differentiability continuous map must have None? Example (Weierstrass 1886; Bolzano, unpublished, 1822) There exists continuous  $F : \mathbb{R} \to \mathbb{R}$  differentiable at no point. Deierstraf Bernard Bolzano (1781-1848) Karl Weierstrass (1815–1897) Krzysztof Chris Ciesielski Smooth restriction, extension, and covering theorems 14





Teiji Takagi (1875–1960)



Bartel van der Waerden (1903–1996)



$$F(x) = \sum_{n=0}^{\infty} 4^n \min\{|x - \frac{k}{8^n}| \colon k \in \mathbb{Z}\}$$

Weierstrass' Monster of Takagi from 1903, and van der Waerden, from 1930 

 Diff
 Monster
 Cont
 Diff
 Properties of  $f \upharpoonright P$  Differentiable Extensions
 Borus

 Differentiable restriction theorem

 Some differentiability after all!

 Theorem (Laczkovich 1984)

 For every continuous  $f: \mathbb{R} \to \mathbb{R}$  there is perfect  $Q \subset \mathbb{R}$  such that  $f \upharpoonright Q$  is differentiable.

#### Remark

There are continuous  $f : \mathbb{R} \to \mathbb{R}$  such that  $f \upharpoonright Q$  can be differentiable only when Q is both first category and meager.

### Proof.

Let  $f = (f_1, f_2) : [0, 1] \rightarrow [0, 1]^2$  be the classical (ternary-like) Peano curve. Ciesielski and Larson proved in 1991 that  $f_1$  is nowhere approximately and  $\mathcal{I}$ -approximately differentiable. So it is as in the remark. Diff ⇒Cont

Monster

Properties of  $f \upharpoonright P$ 

17

## New proof of differentiable restriction theorem

**Goal:** If  $f \colon \mathbb{R} \to \mathbb{R}$  is cont, then  $f \upharpoonright Q$  is diff. for some perfect Q.

Theorem (With new (2017/18) simple proof, by KC)

For every continuous increasing  $f : [a, b] \to \mathbb{R}$  there is perfect P such that  $f \upharpoonright P$  is Lipschitz.

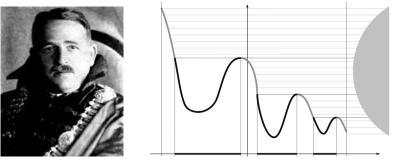
Proof based on the following results, due to Riesz:

Lemma (Rising sun lemma 1932, proof is an easy exercise)

If  $g : [a, b] \to \mathbb{R}$  is cont, then  $g(c) \le g(d)$  for every component (c, d) of  $U = \{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.$ 

### Fact (Proved by induction)

Let a < b and  $\mathcal{J}$  be a family of open intervals with  $\bigcup \mathcal{J} \subset (a, b)$ . (i) If  $[\alpha, \beta] \subset \bigcup \mathcal{J}$ , then  $\sum_{I \in \mathcal{J}} \ell(I) > \beta - \alpha$ . (ii) If  $I \in \mathcal{J}$  are pairwise disjoint, then  $\sum_{I \in \mathcal{J}} \ell(I) \le b - a$ . If  $g : [a, b] \to \mathbb{R}$  is cont, then  $g(c) \le g(d)$  for every component (c, d) of  $U = \{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.$ 



Frigyes Riesz (1880-1956)

Illustration of the Rising Sun Lemma

The points in the set  $U \cap (a, b)$  are those lying in the shadow.

Goal: If  $f : \mathbb{R} \to \mathbb{R}$  is cont  $\nearrow$ , then  $f \upharpoonright P$  is Lipschitz for a perfect P. Have: If  $g : [a, b] \to \mathbb{R}$  is cont, then  $g(c) \le g(d)$  for every comp. (c, d) of  $\{x \in [a, b) : g(x) < g(y) \text{ for some } y \in (x, b]\}.$ 

Sketch of proof. Fix  $L > \frac{f(b)-f(a)}{b-a}$ , put g(t) = f(t) - Lt, and  $U = \{x \in [a, b) : g(y) > g(x) \text{ for some } y \in (x, b]\}.$ 

*f* is Lipschitz on  $P = [\bar{a}, b] \setminus U$  with constant *L*, where

 $\bar{a} = \sup\{x \colon [a,x) \subset U\}$ . Fix  $X = \{x_n \colon n \in \mathbb{N}\}$ . Need  $P \setminus X \neq \emptyset$ .

If  $\mathcal{J} =$  open components of U, then  $\ell(f[J]) \ge L\ell(J)$  for  $J \in \mathcal{J}$ .

By Fact (ii),  $\sum_{J \in \mathcal{J}} \ell(f[J]) \leq f(b) - f(\overline{a})$ . So,

 $\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}} \ell(f[J]) \leq \frac{f(b) - f(\bar{a})}{L} < b - \bar{a}, \text{ and by Fact (i),}$  $P \neq \emptyset$ . To get  $P \setminus X \neq \emptyset$  increase slightly  $\mathcal{J}$ .

Bonus

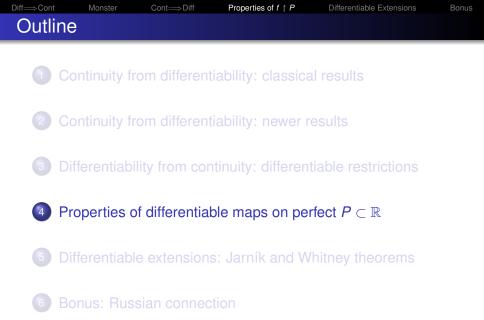
Diff⇒Cont Monster Cont⇒Diff Properties of *f* ↑ *P* Differentiable Extensions End of proof of differentiable restriction theorem

Goal: If  $f : \mathbb{R} \to \mathbb{R}$  is cont, then  $f \upharpoonright Q$  is diff. for some perfect Q. Have: If  $f : \mathbb{R} \to \mathbb{R}$  is cont  $\nearrow$ , then  $f \upharpoonright P$  is Lipschitz for a perfect P.

Proof of differentiable restriction theorem.

*f* is Lipschitz on some perfect *P*: proved above for somewhere monotone *f*; otherwise *f* is constant on some perfect set.

For function  $f \upharpoonright P$  use Morayne theorem to find perfect  $Q \subset P$  such that the quotient map for  $f \upharpoonright Q$  is uniformly continuous. Then Q is as needed. Bonus



 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f ↑ P
 Differentiable Extensions
 Bonus

 Differentiable monster (# 2)

Are differentiable  $f: P \to \mathbb{R}, P \subset \mathbb{R}$  perfect, good? Not at all!

Example (Ciesielski & Jasinski 2016; simplified by KC in 2017)

There exists differentiable auto-homeomorphism  $\mathfrak{f}$  of a compact perfect subset  $\mathfrak{X}$  of the Cantor ternary set  $\mathfrak{C}$  such that  $\mathfrak{f}' \equiv 0$ .

Counterintuitive, as f is shrinking at every  $x \in \mathfrak{X}$  $(|\mathfrak{f}(x) - \mathfrak{f}(y)| < |x - y|$  for every  $y \in \mathfrak{X}$  with small |x - y| > 0) but it maps compact  $\mathfrak{X}$  onto itself. Also

Theorem (Edelstein 1962, almost contradicting above thm)

If  $f: X \rightarrow X$  is LC and X is compact, then f has a periodic point,

*f* is *locally contractive, LC*, provided for every *x* ∈ *X* there is open *U* ∋ *x* s.t. *f* ↾ *U* is Lipschitz with constant < 1.</li>

| Monster | Cont⇒⇒Diff     | Propert            | ies of <i>f</i> | Differentiable Extensions | 1 |
|---------|----------------|--------------------|-----------------|---------------------------|---|
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |
| (       | GOSH, I SHI'UN | K this compact     | Set at every po | Nt.                       |   |
| 5       | SOV            | VHy is it still th | e same?l        |                           |   |
|         |                | 1119-5-6 50-22 01  |                 | 5                         |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |
|         |                |                    | $\underline{}$  |                           |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 | 203                       |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |
|         |                |                    |                 |                           |   |

Figure: The result of the action of  $\mathfrak{f}^2 = \langle \mathfrak{f}, \mathfrak{f} \rangle$  on  $\mathfrak{X}^2 = \mathfrak{X} \times \mathfrak{X}$ 

э

ъ

## Diff $\Rightarrow$ Cont Monster Cont $\Rightarrow$ Diff Properties of $f \upharpoonright P$ Differentiable Extensions Bonus Definition of f with $f' \equiv 0$ , Monster # 2

 $\mathfrak{f} = h \circ \sigma \circ h^{-1}$ , where  $h: 2^{\omega} \to \mathbb{R}$  is embedding and  $\sigma: 2^{\omega} \to 2^{\omega}$  is the "add one and carry" adding machine:

$$\sigma(s) = \begin{cases} \langle 0, 0, 0, \ldots \rangle & \text{if } s_i = 1 \text{ for all } i < \omega, \\ \langle 0, 0, \ldots, 0, 1, s_{k+1}, s_{k+2}, \ldots \rangle & \text{if } s_k = 0 \& s_i = 1 \text{ for } i < k. \end{cases}$$

$$h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s \upharpoonright n)},$$

where  $N(s \upharpoonright 0) = 1$  and, for n > 0,

$$N(s \upharpoonright n) = \sum_{i < n-1} s_i 2^i + (1 - s_{n-1}) 2^{n-1} + 2^n$$
  
=  $(1(1 - s_{n-1}) s_{n-2} \dots s_0)_2.$ 

E.g.  $N(101101) = (1001101)_2$ 

Diff $\Rightarrow$  Cont Monster Cont $\Rightarrow$  Diff Properties of  $f \upharpoonright P$  Differentiable Extensions Bonus Proof of  $\mathfrak{f}' \equiv 0$  for  $\mathfrak{f} = h \circ \sigma \circ h^{-1}$ 

Def:  $h(s) = \sum_{n=0}^{\infty} 2s_n 3^{-(n+1)N(s|n)}$ , Fact: If  $s \neq t \in 2^{\omega}$  and  $n = \min\{i < \omega : s_i \neq t_i\}$ , then  $3^{-(n+1)N(s|n)} \leq |h(s) - h(t)| \leq 3 \cdot 3^{-(n+1)N(s|n)}$ .

Also (a):  $\forall s \in 2^{\omega} \exists k < \omega \ N(\sigma(s) \upharpoonright n) = N(s \upharpoonright n) + 1$  for all n > k

as it fails only for 
$$s = \langle s_0, \dots, s_{n-2}, s_{n-1}, \dots \rangle = \langle 1, \dots, 1, 0, \dots \rangle$$
.

### Proof of $\mathfrak{f}' \equiv 0$ .

To see f'(h(s)) = 0: pick  $k < \omega$  from (a) and  $\delta > 0$  s.t.  $0 < |h(s) - h(t)| < \delta$  implies  $n = \min\{i < \omega : s_i \neq t_i\} > k$ . Then,

$$\frac{|\mathfrak{f}(h(s)) - \mathfrak{f}(h(t))|}{|h(s) - h(t)|} \le \frac{3 \cdot 3^{-(n+1)N(\sigma(s) \restriction n)}}{3^{-(n+1)N(s \restriction n)}} = 3 \cdot 3^{-(n+1)N(s \restriction n)}$$

So f'(h(s)) = 0, as  $3 \cdot 3^{-(n+1)}$  is arbitrarily small for small  $\delta$ .

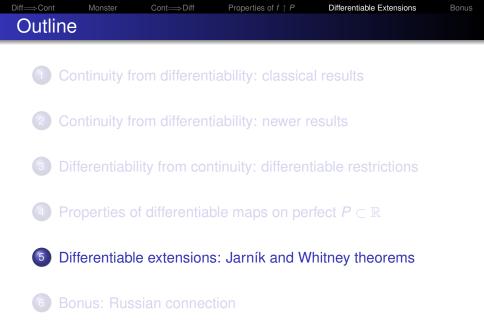
Every orbit  $\{x, f(x), f^2(x), \ldots\}$  of f is dense in  $\mathfrak{X}$ .

So, f is a minimal dynamical system. Must it be?

### Theorem (KC & JJ 2016: YES, essentially)

If  $f: X \to X$  is onto, PC, and X is infinite compact, then there is a perfect  $P \subset X$  s.t.  $f \upharpoonright P$  is a minimal dynamical system,

where *f* is *pointwise contractive*, *PC*, if for every  $x \in X$  there is open  $U \ni x$  and  $L \in [0, 1)$  s.t.  $|f(x) - f(y)| \le L|x - y|$  for all  $y \in U$ .



 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f ↑ P
 Differentiable Extensions
 Bonus

 Notation

For J = (a, a + h) let  $I_J = [a + h/3, a + 2h/3]$ , middle third of J.

For closed  $Q \subset \mathbb{R}$  and  $f \colon Q \to \mathbb{R}$  let

 $\hat{Q} = Q \cup \bigcup \{I_J : J \text{ is a bounded connected component of } \mathbb{R} \setminus Q\},$ 

 $\overline{f}: \mathbb{R} \to \mathbb{R}$  — "the" linear interpolation of  $f, \hat{f} = \overline{f} \upharpoonright \hat{Q}$ .

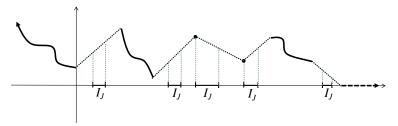


Figure: The linear interpolation  $\overline{f}$  of f, represented by thick curves.

Diff ⇒ Cont Properties of f Differentiable Extensions Monster Bonus Jarník's differentiable extension theorems Theorem (Jarník 1923) If  $Q \subset \mathbb{R}$  is perfect, than any differentiable  $f: Q \to \mathbb{R}$  has

differentiable extension  $F: \mathbb{R} \to \mathbb{R}$ .

Proved in:

V. Jarník, O rozšíření definičního oboru funkcí jedné proměnné, přičemž zůstává zachována derivabilita funkce (in Czech) Rozpravy Čes. akademie, II. tř., XXXII (1923), No. 15, 15 p.

Sketched in: V. Jarník, Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dé rivabilité de la fonction (in French), Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1-5.

Independently proved in 1974 by Petruska and Laczkovich.

Diff⇒Cont

Cont=

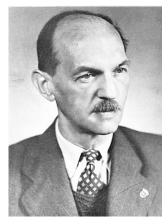
Properti

f ↾ P Diffe

Differentiable Extensions

Bonus

## Vojtěch Jarník and Hassler Whitney



Vojtěch Jarník (1897–1970)



Hassler Whitney (1907-1989)

 Diff
 Cont
 Monster
 Cont
 Diff
 Properties of f | P
 Differentiable Extensions
 Bonus

 Jarník and Whitney differentiable extension theorems

Theorem (Jarník and Whitney thms, version of MC&KC 2017)

If  $Q \subset \mathbb{R}$  is closed, than any differentiable  $f : Q \to \mathbb{R}$  has differentiable extension  $F : \mathbb{R} \to \mathbb{R}$ . This F is  $C^1$  iff such extension exists iff  $\hat{f} = \overline{f} \upharpoonright \hat{Q}$  is continuously differentiable.

Corollary (Agronsky, Bruckner, Laczkovich, Preiss 1985:  $C^1$  interpolation theorem)

For every continuous  $f : \mathbb{R} \to \mathbb{R}$  there is  $C^1$  map  $g : \mathbb{R} \to \mathbb{R}$  with  $f \cap g$  uncountable.

Proof of Corollary: We proved that there is perfect  $Q \subset \mathbb{R}$  s.t. the quotient map of  $h = f \upharpoonright Q$  is uniformly continuous.

It is easy to see that  $\hat{h}$  is continuously differentiable for such *h*.



Differentiable  $f: Q \to \mathbb{R}$  has differentiable extension  $F: \mathbb{R} \to \mathbb{R}$ .

Proposition (Linear interpolation almost works)

If  $f: Q \to \mathbb{R}$  is differentiable, then  $\overline{f}$  is differentiable at any  $x \in \mathbb{R}$  which is not an end-point of a connected component of  $\mathbb{R} \setminus Q$ .

The right extension: Small modification of  $\overline{f}$ :  $F = \overline{f} + g$ :

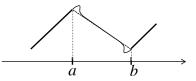


Figure: A format of the graph (thin continuous curve) of  $F = \overline{f} + g$  on a component (a, b) of  $\mathbb{R} \setminus Q$ . Thick segments: parts of the graph of f

Details: elementary. Require some checking.

Diff ⇒ Cont Monster Properties of  $f \upharpoonright P$ Differentiable Extensions Bonus Differentiable extensions of f. Monster # 2

By Jarník's theorem, our  $f: \mathfrak{X} \to \mathfrak{X}$  can be extended to differentiable  $F: \mathbb{R} \to \mathbb{R}$ . Can such F be  $C^1$ ?

## Theorem (KC & JJ 2016: No)

If  $f: X \to \mathbb{R}$  is differentiable with |f'| < 1 on X and f has a  $C^1$ extension, then  $X \not\subset f[X]$ .

Can such F can be bad? Yes, very bad!

### Theorem (KC & Cheng-Han Pan (Ph.D. student) 2018)

For every closed set  $P \subseteq \mathbb{R}$  and differentiable  $f : P \to \mathbb{R}$ , there exists a differentiable extension  $F \colon \mathbb{R} \to \mathbb{R}$  of f such that F is nowhere monotone on  $\mathbb{R} \setminus P$ . In particular, if P is nowhere dense in  $\mathbb{R}$ , then  $\hat{f}$  is monotone on no interval.

ъ



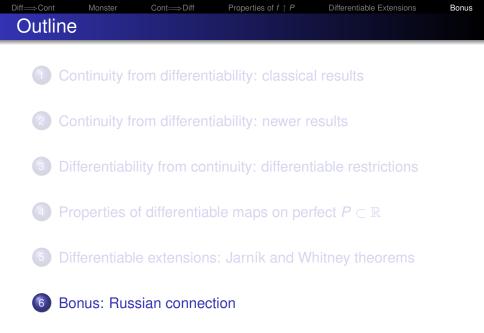
Example (Ciesielski & Cheng-Han Pan (Ph.D. student) 2018)

There exists everywhere differentiable nowhere monotone function  $F : \mathbb{R} \to \mathbb{R}$  (i.e., Monster #1) such that  $F \upharpoonright \mathfrak{X} = \mathfrak{f}$  (i.e., Monster #2).

So #3, as #1+ #2 = #3

#### Proof.

Use previous theorem to f.





## Recognize, from a photo, the following well known Russian mathematician.

Do not tell the name aloud, as yet!





???

#### Krzysztof Chris Ciesielski

э

 Diff⇒Cont
 Monster
 Cont⇒Diff
 Properties of f ↾ P
 Differentiable Extensions
 Bonus

 Here is the photo, with hint to educated in languages



## Никола́й Никола́евич Лу́зин

Krzysztof Chris Ciesielski

Smooth restriction, extension, and covering theorems 35





## Nikolai Luzin (1883-1950)

Krzysztof Chris Ciesielski

Smooth restriction, extension, and covering theorems 36

э

## Diff $\Rightarrow$ Cont Monster Cont $\Rightarrow$ Diff Properties of $f \upharpoonright P$ Differentiable Extensions **Testing continuity of** $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ : old result

#### Theorem (Luzin 1948, textbook in russian)

For every function  $f : \mathbb{R}^2 \to \mathbb{R}$ , if f(x, h(x)) is continuous for every  $h \in C(\mathbb{R})$ , then f is continuous.

For  $\mathcal{H} \subset \mathbb{R}^{\mathbb{R}}$ ,  $f : \mathbb{R}^2 \to \mathbb{R}$  is  $\mathcal{H}$ -continuous if  $f \upharpoonright h$  is continuous for every  $h \in \mathcal{H}$ .

**Fact**. If  $h \in C(\mathbb{R})$ , then  $f \upharpoonright h$  is continuous if, and only if, f(x, h(x)) is continuous.

Luzin's result: every  $C(\mathbb{R})$ -continuous f(x, y) is continuous.

**Q**. For what other classes  $\mathcal{H} \subset \mathbb{R}^{\mathbb{R}}$ ,

H-continuity implies continuity?

Bonus

## Testing continuity of $f : \mathbb{R}^2 \to \mathbb{R}$ : new results

Properties of f

For  $X \subset \mathbb{R}^2$ , T(X) all translations of X.

Theorem (Ciesielski & Rosenblatt 2014)

The statement *H*-continuity implies continuity

- is true for  $\mathcal{H} = "C^1"$  (derivative can be infinite);
- is false for  $\mathcal{H} = D^1$ ;

Monster

Diff ⇒ Cont

- is false for  $\mathcal{H} = T(h)$  for any continuous  $h \colon \mathbb{R} \to \mathbb{R}$ ;
- is true for  $\mathcal{H} = T(h)$  for some Baire 1 function  $h: \mathbb{R} \to \mathbb{R}$ .

## That is all!

## Thank you for your attention!

Krzysztof Chris Ciesielski

▲ 同 ▶ | ▲ 三 ▶ Smooth restriction, extension, and covering theorems 39

э

ъ